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Outlines

s Readings

o Al Hajimiri, “Generalized Time- and Transfer-Constant
Circuit Analysis,” TCAS-I, 06/2010.

m Overview

o Deriving circuit equations from small-signal circuit models
sound straightforward, but actually carrying it out is a very
mechanical process once the circuit becomes big enough.
Also, the equations you get in the end are typically very
complex, giving few insights about the circuits’ behavior.

0 A generalized method to estimate the coefficients in the
transfer function of a linear circuit network has been recently
published and it builds on top of the popular open-circuit time
constant (OCT) method. It allows one to “incremently” derive
the transfer coefficients only when necessary without solving
the whole algebraic equations.




Motivation

s Small-signal circuit analysis serves as foundation for
analog circuit design

o The transfer functions (TF) you can derive from the small-
signal models describe all the desired characteristics of the
Intended linear system

m  However, deriving TF involves solving large algebraic
equations which can be very tedious
o Solving KCL and KVL equations mechanically

O You may end up with very complex expressions for high-
order circuits (with many poles)

m  But, what if all | want is the time constants of the
approximate first- or second-order model?

o Then crunching all these expressions seems an overwork




History

s Open-circuit time constants (OCT)
o Thornton, Searle, et al. in early 1960s
0 Assume lumped circuits with R’s and C’s only

0 The coefficient for the first-order term (s) in the denominator
IS equal to the sum of time constants associated with each
capacitor alone when all other capacitors are open-circuited
and sources are nulled

O The coefficient gives an estimate for the dominant pole (BW)

m Zero-value time constants (ZVT)
O Extends to circuits with inductors

O Based on the evaluation of the determinant of the Y matrix in
the nodal equations




History (2)

m  Cochran and Grabel in early 1970s
0 Determine as many denominator coefficients as needed

0 By calculating time constants under different combinations of
shorting and opening the energy-storage elements

Later cleaned up by Rosenstark in the 1980s

Extended to include transcapacitors (by Fox, et al.) and
mutual inductors (by Andreani, et al.)

m Davis in late 1970s
O A method to determine the numerator coefficients as well
o For lumped RC circuits




Transfer Function of a Linear System

m  The canonical expression for the TF of a linear,
lumped-element circuit Is:

ag + a1 + ass> + ... + a,,s™

1+ b8+ bys?+...b,s"

H(s) =

Or,

m  So characterizing the TF means either determining
the coefficients {a;} and {b;}'s or the pole/zero positions
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Determining the System Order

m The order of a linear system is set by the order of the
denominator polynomial: “n”
0 Equal to the number of independent energy storage elements

0 The maximum number of independent initial condition
parameters (e.g. capacitor voltages and inductor currents)

m The order n corresponds to the number of poles
0o Also equal to the number of natural frequencies (eigenmodes)

0 Independent of the choice of input and output ports — the
Intrinsic characteristic of the circuit

m The zeros are dependent on the choice of input/output
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Deriving TF of a First-Order System

m LTI circuit with a single energy-storing element (L or C)

O The rest of the circuits contain only frequency-independent
elements such as resistors and dependent sources

m The circuit can have at most one pole and one zero:

Qo + a1 8
H(S) _ 0 1
1 -+ 618
O gain = a,, pole = -1/b, and zero = -a,/a,
'C-| L

Network with
no dynamics

Network with
no dynamics




Determining the Gain (a,)

m The DC gain of the circuit (a,) can be derived from the
circuit with C being open and L being shorted

(,ZOZHO

where HO denotes the transfer gain when all reactive
elements are zero-valued




Determining the Pole (b,)

m For a first-order circuit with a capacitor C,, the only
time constant t, Is:
T = R?C1 = bl

where R,° is the resistance seen across the capacitor
with all the independent sources and inputs “nulled”

= Nulling a source means:
0 Replacing an independent V-source with a short circuit (V=0)
0 Replacing an independent I-source with an open circuit (I1=0)

10



Determining the Pole (b,)

m For a first-order circuit with an inductor L,, the time
constant t, IS:

Tl:R_E:bl

where R,° is the resistance seen across the inductor
with all the independent sources and inputs “nulled”

= Notes on the R, notation:

0 The superscript (0): all the sources and reactive elements are
at their zero values

0 The subscript (1): the index of the energy storing element
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Some Observation

The impedance of a capacitor C is:

1
Zc(s) = e

The capacitance “C” and the complex frequency “s”
always appear together as a product

The TF of the single-capacitor circuit can be written as:

C
H(S) _ a’O—l_qu 15
1+ 51Chs

and
B = R]
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Determining the Zero (a,)

m  As C, goes to infinity, the TF converges to:

Ao + 061018 X1
N

HIEH S o = )
( )|Cl_> 1‘|‘51018 51

where H! is the transfer gain with the reactive element
at its infinite value (e.g. capacitor C, short-circuited)

m  Then the coefficient a, Is:

a1 = @101 = R?ClHl = ’7’1H1
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Putting It Altogether

m TF of an LTI circuit with one energy-storing element is:

HY + 71 H's
H —
(S) 1+ 78

where
0 HO the zero-valued transfer gain (C opened, L shorted)
o H: the infinite-valued transfer gain (C shorted, L opened)

O 7, :the time constant associated with the reactive element and
resistance it sees with the independent sources nulled (R,°)
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Case with N Energy-Storage Elements

m Let's assume the energy-storing elements (L's and C’s)
are separated from the rest as shown below

0 The rest include only resistors and dependent sources

C. (!w_\"'ﬁ.

X Network with
no dynamics

15



Some Observations on TF

m  The only way for an “s” term to occur in the TF of a
lumped circuit is as a multiplicative factor to a
capacitor or an inductor: sC or sL

m [t implies that for capacitor-only circuits, the
coefficients in the following expression should be:
ao + a1 + as8® + ... + a,,s™
1+ bys+ bys? +...b,s™

N N
- - Linear combination
— % . : Z ’ -
a1 = Z G, b Z P10 of all capacitors
1=1 1=1

H(s) =

1St <J<h . 1St <y . Linear combination
Ao = SJ SJ a; C;C;, by = SJ SJ By C;C; two-way products of
i j i j different capac{gors




Determining b,

m If we reduce the circuit to a case where all capacitors
but C, has a value of zero (open-circuited), it should
have a TF with the following form:

ap + ot Cys

H;(s) =

m  We previously derived that the time constant of the
resulting first-order system is:

) = R)C; = B{C; —. . R} = B

where RO is the resistance seen by the capacitor C,
looking into its port with all other reactive elements at

their zero values and independent sources nulled
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Determining b, (2)

m  Since this argument is applicable to any capacitor in
the system, the first denominator coefficient bl is equal
to the sum of the zero-value time constants (ZVT):

N
blz E T%-O
1=1

where the ZVT’s are calculated as:
Lo=0 .
TZQ p— RZOCZ 'C1='D ’ ’ F‘,

0 L@ X Network with

T = —=& -
0 0 no dynamics
R@'




Estimating the Dominant Pole from b,

s From H(s) _aotays+ a>8> + ... + a,,s™
14 0bys+ bys?+ ...b,s"

(1-2)-(1-2)-(1-2)
(1=5)-(=5)-(-%)

= [tfollows that: , _ _ Z 1
Pi

:ao"

m If 1/p, Is much greater than any other 1/p;'s, then:
1

bl ~ ——
P1

m  However, there is no 1:1 correspondence between the
ZVT t; and the pole frequency p;
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Example: Common-Emitter Stage

R2 R Cp Vout

Vout
o

C].l |
R X J | 1 1
e L TR
Vin __CJ'E v v

7

= Low-frequency gain is:

I'r
ap = H® = =Gmito::

Tr + Rl
m The zero-value time constants are:

0 — LR = Oy (Rylr)
7-0 — CMRO — CM (R1||7°7r + RQ + gm(RlHr';r)RQ)

H H

’Tg — OLRO = CLRQ
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Example: Common-Emitter Stage

= Therefore,
by = Z’T? :’Tg—i—’rg—l—’rg
i

= Analysis results:
H° = —57

70 & T0ps, 73 ~ 1,200ps 17 ~ 400ps
wp &~ 1/by ~ 27 -95MH 2

m  SPICE gives -3dB bandwidth of 97MHz
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Determining a,

m  When C, goes to infinity (i.e. short-circuit) while all
other reactive elements are at zero value, TF reduces
to a constant H'":

o

A—
H' =H Ci—)'OO,Cj:O,i;éj — E
1

Lo=0 Cj—0
C1=0

X Network with
no dynamics
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Determining a, (2)

= Since i =R, o,=RH and o.C;=RC;H' =1}

N
a;l —_ T’L
1=1

which can be evaluated using low-frequency calc. only

L2=0 Cj—r0
C1=0

X Network with
no dynamics
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Example: Common-Emitter Stage

s Determining a;:

N R] ||C” Vout
_ 07y | [ 0
a1 = Z; Ti H Vi"§vzﬂ;:: %ﬁr ?gm\fn iRz ::CL
H™ =0
HY =0
HH — ral|1/gm|| Rz _ R
Ry + 1|1/ gm||R2 72+ Ry RB
= Combining all the results:
1+ L9 1 — ks
H(S):HO' HO " :H0° gm
1 —|—b13—|—6282 1 —|—618+6282
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Determining the High-Order Terms

= Let's set C; to infinity while all reactive elements but C,
are at their zero values

m  Define the time constant of this reduced first-order

system as:
= R.C;

X Network with
no dynamics
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Determining the High-Order Terms (2)

m It can be found that (see the paper):
1<j <j<N

— 0,2
b= D Ti T
i

1<y <y<N

B 0_i17ij
a,g—;J SJTZ-TJ-H
1 J

where H' is the input-to-output transfer gain when
both the I-th and j-th reactive elements are at their
Infinite value
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Determining the High-Order Terms (3)

= Andin general

1<p< <k ...<N

by, —777 ’TTTk

1<y< <k ..

TTT ’T’TTk LHR

where 1} corresponds to the time constant due to k-th
reactive element when the indexed elements (i, |, ...) are
Infinite valued while the rest are zero valued and

Hik-- s the gain when all the indexed elements (i, |, k, ...)
are at their infinite value and all others are zero valued
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Example: Common-Emitter Stage

R2

Cj-l Vgut

R1

X L
Vin?l\/\/jg% ICL

s Determining b,:

b

Vi

Cr

= Choose 7; ‘s that are easiest to compute:

T
Ty s

/]_

TH

Y Y Y T
M

T
Trs7Tr
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Example: Common-Emitter Stage

R,=R:
R K
1 ? T = CLRy

L
RH=R1||I’1:

R
‘ ! L= Co(ra| | Ry)

R R1||I’

¢““ ;3<?%Wrb Th = O, (|| R1)
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Example: Common-Emitter Stage

m Then:
1< <y<3

2 J

 0_L 0_m 0_L
= T[T, —I-TTrTu —I-TL’TM

= (r:||R1)Rs - (CC, + C.CL + C,Cp)
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Insights: Number of Zeros

ag + a8 + ass®> + ... + a,,s™

H(s) —
(5) 1+ bis + bys? + ...b,,s™

m  The number of zeros is determined by the order of the
numerator polynomial, which is in turn determined by
the highest order non-zero transfer gain Hk--

1<y< <k ..

777 ’T’T’Tk LHR

m  The number of zeros is equal to the maximum number
of energy-storing elements that can be simultaneously
Infinite-valued while producing a nonzero transfer gain
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Insights: Decoupled Time Constants

m In general, there is no 1:1 correspondence between
the ZVT time constants and the pole frequencies

m  However, an exception is when a time-constant is
decoupled, that is, it does not change for any shorting
or opening of other energy-storing elements:

ij _ _ij.m

VEERESS (SRR T E
TN =TN =Tn = ... =Ty

m This concept can be generalized to a group of time
constants as well, in which case, we can factor the TF
Into a product of low-order TFs
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Example: CE Stage with Cascode

I = With CL — OpZ + CCQ + Oo
Decoupled SR, decoupled from the rest, the
\ Cp2 .
vl X f 1 TF can be computed with
Ca |C .
/e less efforts:
Cul)\\( a’
F/;\/i— ‘g Cd H(S) = ’ ) / = I .2
Vin __C'Itl v 1 —|_ 618 _l_ b28 1 —1_ TLS
= ,
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Estimating Bandwidth with ZVT’s

m |n case with no dominant zeros, the TF can be
approximated as:

H(s)

agp a

~

T 14 bis+bos2+ ... +bs?  14+bis

= Implying that the bandwidth o, can be estimated as:
1 1

~ — = N
bl Z@l:l T@Q

O  This estimate IS conservative and underestimate the true
bandwidth

0o Also, it assumes the dominant pole is real (gross
underestimation is resulted when it is complex)

Wh
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Estimating BW for System with Zeros

For systems with zeros, we approximate them as:
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Effect of Zeros in a First-Order System

m From
1 — H° H!
H(s) = ag- L2302 - H i
1—s/p 1+ 75
we can get: HY

=P

m  Therefore the ratio H%/H? tells which one is at the
lower frequency
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Effect of Zeros in a First-Order System

m The TF can be decomposed into two parallel first-
order systems:

HO H'
H(s)

:1—|—7'8—|_1—|-é

which has a step response of:
s(t) = H°(1 — e Vu(t) + H'e /" u(t)
s  The ratio HY/H! determines the overall shape

OT 51(t) T salt) T s(t)

H HO
J/' s N -
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Effect of Zeros in a Second-Order System

m For a second-order system with two real poles:

0 1—s/z _ 0 L+ 7.5
Mo = =~ U a1 + o)

m The system can be decomposed into:

slow path )\51\(
Vin
o—3

fast path
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Effect of Zeros in a Second-Order System

= Again, the ratio A,/A, determines
the Overa” Shape Of S(t) Droop o Overall step response
4|
(t o A 1 —t/’Tl A 1 —t/’rg F/Eﬂ“ect of the fast pole
s(t) = A1 (1 —e™ /™) + Ap(1—e7/7) |
4 —Effect of the slow pole
Timz
A
. “ffect of the fast pole A
2 S e e Ak s s e B __t‘t}_eqt_of t_hg_s_lg\_x-'_pp]e

Overshoot

Complete step response

Tin

/ Complete step response
Time
>

* Effect of the slow pole

Undershoot

Effect of the fast pole
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A General Second-Order System

m The TF of a general second-order system can be
expressed by its natural frequency o, and the quality
factor Q:

where
0 — i Wby Tl
o= by == T{)—I—Tg
1 1 1
Wy, = —F— = =

Ve Jin Jam

For a second-order system
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Infinite Value Time Constant (IVT)

m For a high-pass system whose TF can be expressed as:
N a,S"
T 14 bys+ bos2 + ...+ b, s"
Amid
14 =t 4 L

bns by s™

H(s)

s Then the low-side —3dB frequency o, can be estimated:

N
|~ = ~

° = C;R° or L;/R”

where R* Is the resistance looking into i-th port when all
the reactive elements are at their infinite values
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Example: CE Stage with Input Zero

__Rz = C1R) = Cy(Ry]|ry)
C1” Cy 5 V%ut 7? = Cﬂ-Rg = O’}‘T(R]_H?aﬂ')
1 )\\(l/ | 0 — ' RO
M QL S
Vin? R T 1~ = Cy (Ri||rx + Ro + gm(Ral|rz) R2)

’Tg — CLRO = CLRQ
s With C; = 4.3pF,

) ~ 3.07ns

wh &~ 27 -34MH 2

m  But SPICE says BW = 482MHZz!
0 Due to the zero that cancels the first pole
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Example: CE Stage with Input Zero

m  Using the modified ZVT’'s:

HW:O H,u: TTTHl/gmHRQ
Ry + rz||1/ gml|| B2
HL:O le—ngz
1
Wy, R — 21 - 362M H 2z

Zij\; T} (1 — |%|)

m  Closer to the simulated 482MHz

0 The more accurate results can be obtained by using the
second-order system analysis
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Example: Source Follower

'\Fy\, ||: » = O/
| 0
Vin? Cng//& Vout 7, =CL / Im
1 ’Tf — Rlcﬂ
ke
v

Thenwe get: b, =72+ 77 = 5ps
by = g'r?f’ — 250(p8)2
Q =316, w, =27 -10GHz, w, ~27-15.9GHz=
s SPICE gives peaking at 9.8GHz and o, of 15.5GHz

44



Example: Reactive Bandpass Filter

R Ci L3 Vout
| 00" o
Vin % | > iR

= Time constants are:
) =RCy 5 =La/R 715 =L3/R
Ty =2Ls/R 713 = L2/R 15 =0
132 =L3/2R.
= And all transfer gains are zero except:

HY? =1/2
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Example: Reactive Bandpass Filter

m It immediately results in the following TF:

2
H(S): L2018

1+(RCy + L2tLe) 54 (2L9Cy + L3Oy )52+ L2LaCi g3
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Example: LC Osclillator

|in@ = Time constants are:
T =0
\?/l{t, 7L = L(=gm/2+ Go) = =L - Gegy
Go 76 = —C/Geys
ml\_z = The only non-zero transfer gain:
H HY = 1/G€ff
Cr = Andthe TF is:

?:m B 1 — GeffLS + LOSQ

M H(s) = Vout Ls
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