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Outlines
 Readings

 Ali Hajimiri “Generalized Time- and Transfer-Constant Ali Hajimiri, Generalized Time- and Transfer-Constant 
Circuit Analysis,” TCAS-I, 06/2010.

 Overview
 Deriving circuit equations from small-signal circuit models 

sound straightforward, but actually carrying it out is a very 
mechanical process once the circuit becomes big enough. p g g
Also, the equations you get in the end are typically very 
complex, giving few insights about the circuits’ behavior.

 A generalized method to estimate the coefficients in the g
transfer function of a linear circuit network has been recently 
published and it builds on top of the popular open-circuit time 
constant (OCT) method. It allows one to “incremently” derive 
the transfer coefficients only when necessary without solving 
the whole algebraic equations. 2



Motivation
 Small-signal circuit analysis serves as foundation for 

analog circuit designanalog circuit design
 The transfer functions (TF) you can derive from the small-

signal models describe all the desired characteristics of the 
intended linear systemintended linear system

 However, deriving TF involves solving large algebraic 
equations which can be very tediousq y
 Solving KCL and KVL equations mechanically
 You may end up with very complex expressions for high-

order circuits (with many poles)order circuits (with many poles)

 But, what if all I want is the time constants of the 
approximate first- or second-order model?approximate first or second order model?
 Then crunching all these expressions seems an overwork
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History
 Open-circuit time constants (OCT)

 Thornton Searle et al in early 1960s Thornton, Searle, et al. in early 1960s
 Assume lumped circuits with R’s and C’s only
 The coefficient for the first-order term (s) in the denominator 

i l t th f ti t t i t d ith his equal to the sum of time constants associated with each 
capacitor alone when all other capacitors are open-circuited 
and sources are nulled
Th ffi i t i ti t f th d i t l (BW) The coefficient gives an estimate for the dominant pole (BW)

 Zero-value time constants (ZVT)
 Extends to circuits with inductors Extends to circuits with inductors
 Based on the evaluation of the determinant of the Y matrix in 

the nodal equations
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History (2)
 Cochran and Grabel in early 1970s

 Determine as many denominator coefficients as needed Determine as many denominator coefficients as needed
 By calculating time constants under different combinations of 

shorting and opening the energy-storage elements
L t l d b R t k i th 1980 Later cleaned up by Rosenstark in the 1980s

 Extended to include transcapacitors (by Fox, et al.) and 
mutual inductors (by Andreani, et al.)

 Davis in late 1970s
 A method to determine the numerator coefficients as well
 For lumped RC circuits
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Transfer Function of a Linear System
 The canonical expression for the TF of a linear, 

lumped-element circuit is:lumped element circuit is:

Or,

 So characterizing the TF means either determining 
the coefficients {a } and {b }’s or the pole/zero positionsthe coefficients {ai} and {bi} s or the pole/zero positions
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Determining the System Order
 The order of a linear system is set by the order of the 

denominator polynomial: “n”denominator polynomial: n
 Equal to the number of independent energy storage elements
 The maximum number of independent initial condition 

t ( it lt d i d t t )parameters (e.g. capacitor voltages and inductor currents)

 The order n corresponds to the number of polesThe order n corresponds to the number of poles
 Also equal to the number of natural frequencies (eigenmodes)
 Independent of the choice of input and output ports – the 

intrinsic characteristic of the circuitintrinsic characteristic of the circuit

 The zeros are dependent on the choice of input/outputp p p

7



Deriving TF of a First-Order System
 LTI circuit with a single energy-storing element (L or C)

 The rest of the circuits contain only frequency-independent The rest of the circuits contain only frequency-independent 
elements such as resistors and dependent sources

 The circuit can have at most one pole and one zero:

 gain = a pole = -1/b and zero = -a /a gain = a0, pole = -1/b1 and zero = -a0/a1
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Determining the Gain (a0)
 The DC gain of the circuit (a0) can be derived from the 

circuit with C being open and L being shortedcircuit with C being open and L being shorted

where H0 denotes the transfer gain when all reactive 
elements are zero-valuedelements are zero-valued

9



Determining the Pole (b1)
 For a first-order circuit with a capacitor C1, the only 

time constant 1 is:time constant 1 is:

where R 0 is the resistance seen across the capacitorwhere R1
0 is the resistance seen across the capacitor 

with all the independent sources and inputs “nulled”

 Nulling a source means:
 Replacing an independent V-source with a short circuit (V=0) Replacing an independent V source with a short circuit (V 0)
 Replacing an independent I-source with an open circuit (I=0)
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Determining the Pole (b1)
 For a first-order circuit with an inductor L1, the time 

constant 1 is:constant 1 is:

where R1
0 is the resistance seen across the inductor 

with all the independent sources and inputs “nulled”

 Notes on the R1
0 notation:

 The superscript (0): all the sources and reactive elements are 
at their zero values

 The subscript (1): the index of the energy storing element
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Some Observation
 The impedance of a capacitor C is:

The capacitance “C” and the complex frequency “s” p p q y
always appear together as a product

 The TF of the single-capacitor circuit can be written as:

and
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Determining the Zero (a1)
 As C1 goes to infinity, the TF converges to:

where H1 is the transfer gain with the reactive element 
at its infinite value (e.g. capacitor C1 short-circuited)

 Then the coefficient a1 is:
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Putting It Altogether
 TF of an LTI circuit with one energy-storing element is:

where
 H0: the zero valued transfer gain (C opened L shorted) H0: the zero-valued transfer gain (C opened, L shorted)
 H1: the infinite-valued transfer gain (C shorted, L opened)
 1 : the time constant associated with the reactive element and 

resistance it sees with the independent sources nulled (R1
0)

14



Case with N Energy-Storage Elements
 Let’s assume the energy-storing elements (L’s and C’s) 

are separated from the rest as shown beloware separated from the rest as shown below
 The rest include only resistors and dependent sources
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Some Observations on TF
 The only way for an “s” term to occur in the TF of a 

lumped circuit is as a multiplicative factor to alumped circuit is as a multiplicative factor to a 
capacitor or an inductor: sC or sL

 It implies that for capacitor-only circuits, the p p y ,
coefficients in the following expression should be:

Linear combination 
of all capacitors

Linear combination 
t o a prod cts of

16
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Determining b1

 If we reduce the circuit to a case where all capacitors 
but Ci has a value of zero (open-circuited) it shouldbut Ci has a value of zero (open circuited), it should 
have a TF with the following form:

 We previously derived that the time constant of the We previously derived that the time constant of the 
resulting first-order system is:

where Ri
0 is the resistance seen by the capacitor Ci

looking into its port with all other reactive elements at g p
their zero values and independent sources nulled
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Determining b1 (2)
 Since this argument is applicable to any capacitor in 

the system the first denominator coefficient b1 is equalthe system, the first denominator coefficient b1 is equal 
to the sum of the zero-value time constants (ZVT):

where the ZVT’s are calculated as:
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Estimating the Dominant Pole from b1

 From

 It follows that:

 If 1/p1 is much greater than any other 1/pi’s, then:

 However, there is no 1:1 correspondence between the 
ZVT i and the pole frequency pi
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Example: Common-Emitter Stage

 Low-frequency gain is:

 The zero-value time constants are:
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Example: Common-Emitter Stage
 Therefore,

 Analysis results:

 SPICE gives -3dB bandwidth of 97MHz 
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Determining a1

 When Ci goes to infinity (i.e. short-circuit) while all 
other reactive elements are at zero value TF reducesother reactive elements are at zero value, TF reduces 
to a constant Hi:
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Determining a1 (2)
 Since               ,                        and

which can be evaluated using low-frequency calc. only
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Example: Common-Emitter Stage
 Determining a1:

 Combining all the results:
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Determining the High-Order Terms
 Let’s set Ci to infinity while all reactive elements but Cj

are at their zero valuesare at their zero values

 Define the time constant of this reduced first-order 
system as:y
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Determining the High-Order Terms (2)
 It can be found that (see the paper):

where Hij is the input-to-output transfer gain whenwhere H is the input to output transfer gain when 
both the i-th and j-th reactive elements are at their 
infinite value
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Determining the High-Order Terms (3)
 And in general

where k
ij corresponds to the time constant due to k-th 

reactive element when the indexed elements (i, j, …) are 
i fi it l d hil th t l d dinfinite valued while the rest are zero valued and 
Hijk… is the gain when all the indexed elements (i, j, k, …) 
are at their infinite value and all others are zero valued
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Example: Common-Emitter Stage

 Determining b2:

 Choose      ‘s that are easiest to compute:
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Example: Common-Emitter Stage
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Example: Common-Emitter Stage
 Then:
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Insights: Number of Zeros 

 The number of zeros is determined by the order of the 
t l i l hi h i i t d t i d bnumerator polynomial, which is in turn determined by 

the highest order non-zero transfer gain Hijk…

 The number of zeros is equal to the maximum number 
of energy-storing elements that can be simultaneously 
infinite-valued while producing a nonzero transfer gainte a ued e p oduc g a o e o t a s e ga
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Insights: Decoupled Time Constants
 In general, there is no 1:1 correspondence between 

the ZVT time constants and the pole frequenciesthe ZVT time constants and the pole frequencies

 However, an exception is when a time-constant is 
decoupled, that is, it does not change for any shorting p , , g y g
or opening of other energy-storing elements:

 This concept can be generalized to a group of timeThis concept can be generalized to a group of time 
constants as well, in which case, we can factor the TF 
into a product of low-order TFs
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Example: CE Stage with Cascode
 With

decoupled from the rest theDecoupled decoupled from the rest, the 
TF can be computed with 
less efforts: 
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Estimating Bandwidth with ZVT’s
 In case with no dominant zeros, the TF can be 

approximated as:approximated as:

 Implying that the bandwidth h can be estimated as:

 This estimate is conservative and underestimate the true 
bandwidth

 Also, it assumes the dominant pole is real (gross 
underestimation is resulted when it is complex)
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Estimating BW for System with Zeros
 For systems with zeros, we approximate them as:

where

 And one can approximate the bandwidth h as:
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Effect of Zeros in a First-Order System
 From

we can get:

 Therefore the ratio H0/H1 tells which one is at the 
lower frequency
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Effect of Zeros in a First-Order System
 The TF can be decomposed into two parallel first-

order systems:order systems:

which has a step response of:

 The ratio H0/H1 determines the overall shape
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Effect of Zeros in a Second-Order System
 For a second-order system with two real poles:

 The system can be decomposed into:
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Effect of Zeros in a Second-Order System
 Again, the ratio A1/A2 determines

the overall shape of s(t)the overall shape of s(t) 
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A General Second-Order System
 The TF of a general second-order system can be 

expressed by its natural frequency  and the qualityexpressed by its natural frequency n and the quality 
factor Q:

where 

For a second order s stem
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Infinite Value Time Constant (IVT)
 For a high-pass system whose TF can be expressed as:

 Then the low-side –3dB frequency l can be estimated:

where R  is the resistance looking into i th port when allwhere Ri
 is the resistance looking into i-th port when all 

the reactive elements are at their infinite values 41



Example: CE Stage with Input Zero

With C 4 3pF With C1 = 4.3pF,

 But SPICE says BW = 482MHz!
 Due to the zero that cancels the first pole Due to the zero that cancels the first pole
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Example: CE Stage with Input Zero
 Using the modified ZVT’s:

 Closer to the simulated 482MHzCloser to the simulated 482MHz
 The more accurate results can be obtained by using the 

second-order system analysis
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Example: Source Follower

 Then we get:

 SPICE gives peaking at 9.8GHz and h of 15.5GHzg p g h
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Example: Reactive Bandpass Filter

 Time constants are:

 And all transfer gains are zero except:
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Example: Reactive Bandpass Filter
 It immediately results in the following TF:
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Example: LC Oscillator
 Time constants are:

 The only non-zero transfer gain:

 And the TF is:And the TF is:
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