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Overview
 Readings

 Y  I  Ismail  et al  “Equivalent Elmore Delay for RLC Trees ”  Y. I. Ismail, et al., Equivalent Elmore Delay for RLC Trees,  
TCAD, 01/2000.

 Introduction
 We will look at an alternative method to estimate the time 

constants of linear circuit networks.  While the OCT was 
suitable for estimating the dominant pole position, Elmore 
delay is more suitable for estimating the delay or rise time  delay is more suitable for estimating the delay or rise time. 
This lecture introduces an extended Elmore delay for linear 
circuits including inductors.
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RC Elmore Delay Review
 Elmore delay estimates 50% delay in the step response 

by approximating it as that of a first order linear system:by approximating it as that of a first-order linear system:
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Delay of a Single-Pole System
 A single R-C circuit

 For a step input (e g  0 to Vdd) For a step input (e.g. 0 to Vdd)
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Use “Moment Matching” to Find (=b1)
 Look at the step response waveforms of both circuits

 Specifically  look at the area below the waveforms (1st moment) Specifically, look at the area below the waveforms (1st moment)
 Choose the single pole  such that the areas match

 The area under an exponential is :  The area under an exponential is : 
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Matching Moments of RC Network
R3

C3

DC

R1 R2
C3

C2C1

 For a general RC network  we want to find the area 

C2

 For a general RC network, we want to find the area 
under its step response
 And approximate the area as the optimal time-constant  for a 

single-pole model

 Luckily, there is an easy way
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Matching Moments of RC Network (2)
R3

C3
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 To change its value  a current must flow through each C

C2

 To change its value, a current must flow through each C
 This current Ik is Ck·dVk/dt, for the capacitor at node ‘k’
 Only way for the charge to leave the system is:

t  fl  th h th  i t  b t  C d G d (  Vdd)to flow through the resistors between Ck and Gnd (or Vdd)
 Voltage is dropped across each resistor that carries Ik
 But, computing Ik directly is not easy in generalp g k y y g
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Matching Moments of RC Network (3)
R3

C3

DC
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 While I don’t know what Ik is

C2

 I DO know what the integral of this current is  Qk = CkVk!

 And we can compute the area under the response as:
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Elmore Time Constant
 The time constant of a single-pole 

network that estimates the response 
R3

C3
p

of the network                      is:

DC

R1 R2
C3

C2C1 C2

 Rik  the resistance that the resistive path from input to node k and 
the resistive path from input to node i (=output) have in common

 If all Vi’s are equal (e.g. = Vdd), then:

"Elmore time constant"
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Elmore Time Constant (2)

"Elmore time constant"

 This is the first moment of the RC network
 And our estimate of the circuit’s time constant And our estimate of the circuit’s time constant
 Hence, the 50% Vdd delay is: 

 Side note: Side note:
 When the RC circuit is a “tree” (i.e. with no resistor loops) 

– It’s easy to find Rik by inspection 
Fi d th   i t  f th  th  (i  i) d (i  k)– Find the common resistance of the paths (in, i) and (in, k)

 Even for other RC networks, Rik always exists
– Rik is simply the voltage change seen at the output i, by a 

current injected at node k.
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Elmore Delay Example
R3

C3
 To determine Rik, just look 

f  th   i t  

DC

R1 R2
C3

C2C1

for the common resistors 
on the current flow path 
back to the input

 The purple line is the current flow from C3 to the input

C2 back to the input
Output

– If the output is node ‘2’, Rik=R23 = R1
 The blue line is the current flow from C2 to the input

– If the output is node ‘2’  Rik=R22 = R1+R2 – If the output is node 2 , Rik R22  R1+R2 

 Another (more formal) way to determine Rik: 
 Inject a current at node k, and measure the voltage induced atj , g

node ‘i’; Rik = Vi / injected current
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Elmore Delay Summary

 In summary, the delay estimate is easy to find:
Fi d  it  i  th  i it th t h it  l1. Find every capacitor in the circuit that changes its value

2. Find the voltage that a current injected from this capacitor (k) 
will produce at the output (i)  and define the effective will produce at the output (i), and define the effective 
resistance, Rik, equal to this voltage/current

3. Sum CkRik, over all nodes k that change value
– This sum is an estimate of the time constant

 We can apply this to distributed elements like wires toopp y
 Look at a small segment of the wire of length dL, and then add 

up delay contribution from all of these small segment
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Elmore Delay  – Limitation
 Works well in most cases

 Output at the end of a long line can almost always modeled  Output at the end of a long line can almost always modeled 
as a single-pole model

 Works even when two poles are closely spacedp y p

 Poor where there is a pole-zero pair:
 Output is sum of two exponentials R1 Rlarge

Vout

 Output is sum of two exponentials
– One is slow with low amplitude
– One is fast with full amplitude

DC

g

ClargeC1

p
 In example shown on right

– Decays with R1C1 to R1/(R1+Rlarge)
– Then decays with time constant Clarge(Rlarge +R1)
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Example – A Pole-Zero Pair
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Elmore Delay for RLC Network? 
 With inductors, there may exist complex poles in the 

circuits (i e  resonance)circuits (i.e. resonance)
 Its step response may exhibit ringing – its non-monotonic 

response cannot be approximated by a first-order systemp pp y y

 Why worry about L?
 On-chip interconnectp

wires do exhibit L
effects

 Due to high frequency Due to high-frequency
operation and low
resistance (thick top
metals)
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Why Use L? – Inductive Peaking

 Inductors delay current flows; each C charges faster
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Inductors delay current flows; each C charges faster



The Simplest RLC Circuit
 Its normalized TF (i.e. gain=1) is:

which can be expressed by the natural frequency (n) 
and damping factor ():p g ()

hwhere
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The Time-Domain Response
 The step response of the second-order system H(s):

 And the 50% propagation delay and 10-90% rise time 
can be estimated as:

 Note: I think these expressions have typos – fix them
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Extended Elmore Delay
 Let’s approximate a 

general RLC network as general RLC network as 
a second-order system, 
since it can express non-since it can express non
monotonic responses 
(when < 0.7)

 How do we determine n
and ?
 In the spirit of Elmore delay, match the 

first and second moments (m1 and m2)
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RLC Elmore Delay – First Moment
 Now with inductors,

 Since the first moment m1 is
the area under Vi(t):

The same expression as before!
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The same expression as before!



RLC Elmore Delay – Second Moment
 Skipping some intermediate steps…

???
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Summary
 You can approximate an arbitrary RLC network as a 

second-order system with:second-order system with:

 Important observation:
 For a given (for the desired settling response), there is a 

determined ratio between RC and sqrt(LC)
 It implies that the delay is still a linear function of RC It implies that the delay is still a linear function of RC
 Therefore, the Logical Effort framework will still apply!!
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