
Introduction

 Read Chapter 1

What is a Compiler?
 Translator from one language (source language)

to another language (target language)

 Input a program in one language

 Output an equivalent program in

 another language

 One important role is to report any

 errors in the source program

source program

target program

Programming Lang. Compilers
Compile source program and run target program

C/C++ program

Machine-language
Program (executable)

input output

Running the target program

Interpreter (Emulator)
 Another form of running program

 Instead of producing a target program with
translation, directly execute the source program

Slower than machine program, but faster to
develop and better handling of errors

input

output

An interpreter

source
program

A hybrid compiler
 Combines compilation and interpretation

 Java program is compiled to bytecode, which is
then interpreted on the virtual machine
 Better portability

 Mainstream these days

 JavaScript, Python,

Ruby, …

source program

input

output

A hybrid compiler

intermediate
program

Other Usage of Compilers
 While compilers most prevalently participate in

programming language translation, other form of
compiler technology has also been utilized

 Compiler-compilers:
 lex: regular expressions → scanner (lexer)

yacc: language grammars → parser

 Text processing: LaTex, Tex, troff

 Database query processors
Predicates → commands to search the DB

 Silicon compilers: Circuit spec → VLSI layouts

 The goal of every compiler is correct and
efficient translation

Language Processing System
source program

modified source program

target assembly program

relocatable machine code

target machine code

library files
relocatable object files

Structure of Modern Compilers
 Requires the analysis of the source language and

the synthesis of the target language

Analysis: Front-end

 Lexical, syntactic, semantic with symbol table

Synthesis: Back-end

 Intermediate code (representation) generation
 E.g., P-code (Pascal), U-code, bytecode, parse tree,…

 machine-independent optimization

 Machine code generation and optimization

Runtime architecture

 Linking, loading, shared libraries

Structure of Modern Compilers

Two Viewpoints of Compilers

 Compilers interact both with programming
languages and with processor architectures

 Therefore, compilers affect

Programming language (PL) design

Processor architecture (ISA) design

Compilers and PL Design

 PL feature and compiler techniques

Virtual methods (C++, Java): dispatch table

Non-locals (Pascal): static links

Automatic memory deallocation (Lisp, Java):
garbage collection (GC)

Call-by-name (Algol): thunks

Static links, GC, thunks are expensive: not in C

Compilers and ISA

 Old wisdom
 CPUs have CISC ISA and compiler tries to generate CISC code

 Current wisdom
 CPUs provide orthogonal RISC ISA and the compiler (optimizer)

make the best use of these instructions for better performance

 It is not easy to generate complex CISC instructions; e.g.,
int A[10]; for for (i = 1; i < 10; i++) X += A[i];

 VAX ISA has a CISC instruction to get the address of A[i]
Index(A,i,low,high): if (low<=i<= high) return (A+4*i) else error;

 RISC ISA will do the same using simple additions/multiplications

 RISC H/W is simpler without complex instructions, while
optimizing compiler generates high-performance code

Compiler Optimizations

 Compiler Optimization

Transform a computation to an equivalent
but better computation

Not actually optimal

What Can an Optimizer Do?

 Execution time of a program is decided by

 Instruction count (# of instructions executed)

CPI (Average # of cycles/instruction)

Cycle time of the machine

 Compiler can reduce the first two items

How?
 Reduce the # of instructions in the code

 Replace expensive instructions with simpler
ones (e.g., replace multiply by add or shift)

 Reduce cache misses (both instruction and
data accesses)

 Grouping independent instructions for parallel
execution (for superscalar or EPIC)

 Sometimes reducing the size of object code
(e.g., for DSPs or embedded microcontrollers)

Why Optimizations Interesting ?

 Seriously affects computer performance
 Overall performance of a program is determined by H/W

performance and by quality of its code

 H/W is fixed once it is released while compiler optimizations
keep improving the performance (e.g., SPEC numbers)

 Many architectural features are primarily controlled by compiler
 e.g., prefetch instructions, EPIC, non-blocking caches, …

 An example of a large software system
 Problem solving: find common cases, formulate mathematically,

develop algorithm, implement, evaluate on real data

 Software engineering Issues
 Hard to maintain and debug (why? Compiler output is code)

Structure of Modern Optimizers

 Phase-by-phase structure
Better code as phases proceed

Phase ordering problem

Register allocation is most time consuming
 Based on graph coloring which is NP-complete

 Optimization levels
-O1: basic optimizations only

-O2 (which is –O): stable optimizations

-Ox (x>2): aggressive but not always stable

Structure of Optimizing Compilers

What can Optimizations do for You?

 Let’s see an example: a bubble sort program

#define N 100
main ()
{
 int A[N], i, j;
 int temp;
 for (i = N-1; i >= 0; i--)
 for (j = 0; j < i; j++)
 {
 if (A[j] > A[j+1]) {
 temp = A[j];
 A[j] = A[j+1];
 A[j+1] = temp;
 }
 }
}

-We compiled with/without
optimizations for the PA-RISC CPU

- cc –S bubblesort.c

- cc –O –S bubblesort.c

 LDI 99,%r1 | LDWX,S %r20(%r21),%r22; A[j+1]
 STW %r1,-48(%r30) ; 99->i | LDW -44(%r30),%r1 ; j
 LDW -48(%r30),%r31 | LDO -448(%r30),%r31; &A
 COMIBF,<=,N 0,%r31,$002; i>=0 ? | SH2ADD %r1,%r31,%r19 ; A[j]

$003 | STWS %r22,0(%r19);A[j+1]->A[j]
 STW %r0,-44(%r30) ; 0->j | LDW -44(%r30),%r20;
 LDW -44(%r30),%r19 | LDO 1(%r20),%r21
 LDW -48(%r30),%r20 | LDW -40(%r30),%r22
 COMBF,<,N %r19,%r20,$001;j<i ? | LDO -448(%r30),%r1

$006 | SH2ADD %r21,%r1,%r31
 LDW -44(%r30),%r21 | STWS %r22,0(%r31);temp->A[j+1]
 LDO 1(%r21),%r22 ; j+1 |$004
 LDO -448(%r30),%r1 ; &A | LDW -44(%r30),%r19 ; j
 LDW -44(%r30),%r31 ; j | LDO 1(%r19),%r20 ; j++
 LDWX,S %r31(%r1),%r19 ; A[j] | STW %r20,-44(%r30)
 LDO -448(%r30),%r20; &A | LDW -44(%r30),%r21
 LDWX,S %r22(%r20),%r21; A[j+1] | LDW -48(%r30),%r22 ; i

 COMB,<=,N %r19,%r21,$004;A[j]<A[j+1] | COMB,< %r21,%r22,$006 ; j<i ?
 LDO -448(%r30),%r22 ;&A | NOP
 LDW -44(%r30),%r1 ; j |$001
 LDWX,S %r1(%r22),%r31 ; A[j] | LDW -48(%r30),%r1 ; i
 STW %r31,-40(%r30) ;A[j]->temp | LDO -1(%r1),%r31 ; i--
 LDW -44(%r30),%r19 | STW %r31,-48(%r30) ;
 LDO 1(%r19),%r20 ; j+1 | LDW -48(%r30),%r19

 LDO -448(%r30),%r21 ; &A | COMIB,<= 0,%r19,$003 ; i>=0 ?

Optimized Assembly Code
 LDI 99,%r31
$003
 COMBF,<,N %r0,%r31,$001
 LDO -444(%r30),%r23
 SUBI 0,%r31,%r24
$006
 LDWS -4(%r23),%r25
 LDWS,MA 4(%r23),%r26
 COMB,<=,N %r25,%r26,$007
 STWS %r26,-8(%r23)
 STWS %r25,-4(%r23)
$007
 ADDIB,<,N 1,%r24,$006+4
 LDWS -4(%r23),%r25
$001
 ADDIBF,< -1,%r31,$003
 NOP
$002

 Compare the Number of Instructions in the Loop!

What you can get from this class?

 Understanding of compilation technology

 Make yourself familiar with
 lex and yacc

 compilation tools

 gcc tool set

 Understanding code optimizations,
virtual machine technology, garbage
collection

