
Lex Compiler

 Creating lexical analyzer with lex

 Sensitivity

 Operators

Creating a Lexical Analyzer with lex

lex.l lex lex.yy.c

lex.yy.c C compiler a.out

input
stream

a.out
sequence
of tokens

lex foo.l; cc lex.yy.c –ll; a.out < test.c;

lex specification

 A lex program consists of three parts:

 declarations
%%
translation rules
%%
auxiliary procedures

Example:

%%
[\t]+$;
%%

// delete all blanks and tabs at the
// end of lines from the input

Three Parts

 Declarations

 variables, constants, regular definitions

 Translation rules:
 Sequence of pi {actioni}, where pi is a regular expression and

actioni is a C program fragment describing the action the lexer
takes when the token pi is found

 Auxiliary procedures

 Functions needed by the actions

Cooperation bet’n Lexer & Parser

 When activated by the parser, the lexer matches the
longest lexeme and perform an action

 Typically, the action gives control back to parser via
return(Token_Type)

 Otherwise, lexer finds more lexemes until an action
returns

 Lexer returns token to the parser and can also pass an
attribute via a global variable yylval

 Two reserved variables yytext (pointer to the first char
of lexeme) and yyleng (length of the string)

An Example
%{
 /* whatever is included here will be included in lex.yy.c */
 #include subc.h
 #include y.tab.h
int commentdepth = 0;
%}
Letter [a-z-A-Z]
Digit [0-9]
Id {Letter}({Letter}|{DIgit})*
%%
{Id} {yylval = install_id(); return(ID);
%%
install_id() { /* function to include the id in the symbol table */ }

Lookahead Operator: Right Sensitivity

 Remember the need of “lookahead” in some
programming languages

 In lex, an expression form r1/r2, where r1 and r2 are
regular expressions, means that r1 matches only if
followed by a string in r2

 Example: Fortran DO loop (e.g., DO I = 1, 5)

If matched: *yytext = “DO” and yyleng = 2

DO/({letter} | {digit})* = ({letter} | {digit})*,

Start Conditions: Left Sensitivity

 Different lexical rules for different cases in input

 lex provides start conditions on rules

 E.g., copy input to output, changing the word “magic”
to “first” then changing it to “second” alternately

 %start AA BB
%%
<AA> magic {printf(“first”); BEGIN BB}
<BB> magic {printf(“second”); BEGIN AA}
%%
main() { BEGIN AA; yylex(); }

Operator Characters in lex

 “ “ : take as text characters (ex: xyz”++”)

 \ : make operators as texts (ex: xyz\+\+)

 ^ : complemented character set (ex: [^abc])
 [^a-zA-Z]: matches any character that is not a letter

 . : arbitrary character (ex: . printf(“bad input”);)

 Context sensitivity : ^ and $
 If the first character of an expression is ^ , it is matched

only at the beginning of a line

 If the last character is $, the expression is matched only
at the end of line (ex: ab$ = ab/\n)

