
Lex Compiler

 Creating lexical analyzer with lex

 Sensitivity

 Operators

Creating a Lexical Analyzer with lex

lex.l lex lex.yy.c

lex.yy.c C compiler a.out

input
stream

a.out
sequence
of tokens

lex foo.l; cc lex.yy.c –ll; a.out < test.c;

lex specification

 A lex program consists of three parts:

 declarations
%%
translation rules
%%
auxiliary procedures

Example:

%%
[\t]+$;
%%

// delete all blanks and tabs at the
// end of lines from the input

Three Parts

 Declarations

 variables, constants, regular definitions

 Translation rules:
 Sequence of pi {actioni}, where pi is a regular expression and

actioni is a C program fragment describing the action the lexer
takes when the token pi is found

 Auxiliary procedures

 Functions needed by the actions

Cooperation bet’n Lexer & Parser

 When activated by the parser, the lexer matches the
longest lexeme and perform an action

 Typically, the action gives control back to parser via
return(Token_Type)

 Otherwise, lexer finds more lexemes until an action
returns

 Lexer returns token to the parser and can also pass an
attribute via a global variable yylval

 Two reserved variables yytext (pointer to the first char
of lexeme) and yyleng (length of the string)

An Example
%{
 /* whatever is included here will be included in lex.yy.c */
 #include subc.h
 #include y.tab.h
int commentdepth = 0;
%}
Letter [a-z-A-Z]
Digit [0-9]
Id {Letter}({Letter}|{DIgit})*
%%
{Id} {yylval = install_id(); return(ID);
%%
install_id() { /* function to include the id in the symbol table */ }

Lookahead Operator: Right Sensitivity

 Remember the need of “lookahead” in some
programming languages

 In lex, an expression form r1/r2, where r1 and r2 are
regular expressions, means that r1 matches only if
followed by a string in r2

 Example: Fortran DO loop (e.g., DO I = 1, 5)

If matched: *yytext = “DO” and yyleng = 2

DO/({letter} | {digit})* = ({letter} | {digit})*,

Start Conditions: Left Sensitivity

 Different lexical rules for different cases in input

 lex provides start conditions on rules

 E.g., copy input to output, changing the word “magic”
to “first” then changing it to “second” alternately

 %start AA BB
%%
<AA> magic {printf(“first”); BEGIN BB}
<BB> magic {printf(“second”); BEGIN AA}
%%
main() { BEGIN AA; yylex(); }

Operator Characters in lex

 “ “ : take as text characters (ex: xyz”++”)

 \ : make operators as texts (ex: xyz\+\+)

 ^ : complemented character set (ex: [^abc])
 [^a-zA-Z]: matches any character that is not a letter

 . : arbitrary character (ex: . printf(“bad input”);)

 Context sensitivity : ^ and $
 If the first character of an expression is ^ , it is matched

only at the beginning of a line

 If the last character is $, the expression is matched only
at the end of line (ex: ab$ = ab/\n)

