Top-Down Parsing

Dragon ch. 4.4

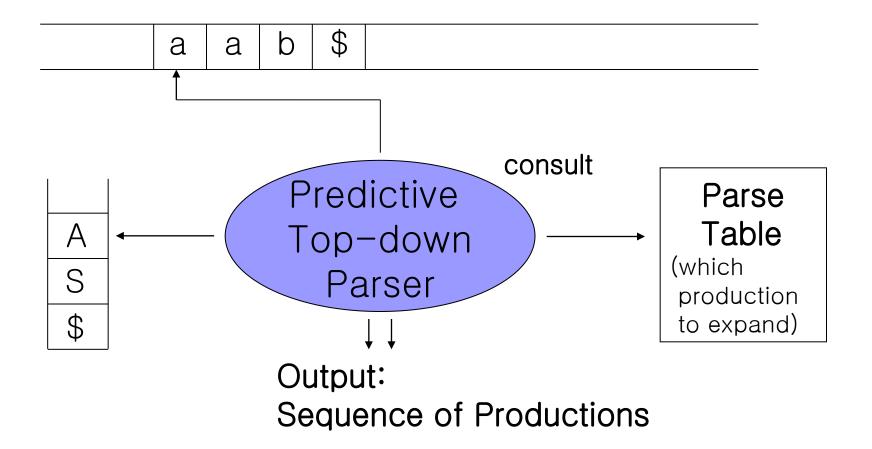
Recognizer and Parser

- A recognizer is a machine (system) that can accept a terminal string for some grammar and determine whether the string is in the language accepted by the grammar
- A **parser**, in addition, finds a derivation for the string
 - □ For grammar *G* and string **x**, find a derivation $S \Rightarrow * x$ if one exists
 - Construct a parse tree corresponding to this derivation
 - □ Input is read (scanned) from left to right
 - □ Two types of the parser: top-down vs. bottom-up

Top-down Parsing

- Top-down parsing expands a tree from the top (start symbol) using a stack
 Put the start symbol on the stack top
 Repeat
 - Expand a nonterminal on the stack top
 - Match stack tops with input terminal symbols
- Problem: which production to expand?
 - If there are multiple productions for a given nonterminal One way: guess!

Structure of top-down parsing



Example of Parsing by Guessing

- P of an Example Grammar
 - $\Box S \rightarrow AS | B, A \rightarrow a, B \rightarrow b$
 - Parsing process

input	stacktop	action	
aab\$	S \$	S -> AS	
aab\$	A S \$	A -> a	
aab\$	a S \$	Match a	
a b \$	S \$	S -> AS	
a b \$	A S \$	A −> a	
a b \$	a S \$	Match a	
b \$	S \$	S -> B	
b \$	В\$	B −> b	
b \$	b \$	Match b	
\$	\$	End	

In reality, computers do not guess very well
 So we use lookahead for correct expansion
 Before we do this, we must "condition" the grammar

Removal of Left Recursion

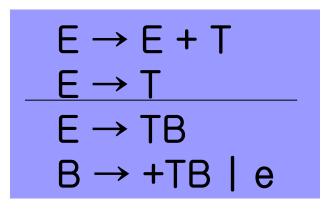
 $\Box A \rightarrow A\alpha_1, A \rightarrow A\alpha_2$

 $\Box A \rightarrow \beta_1, A \rightarrow \beta_2$

 $\Box \land \rightarrow (\beta_1 | \beta_2) В, \ B \rightarrow (\alpha_1 | \alpha_2) B | \epsilon$

Example of Removing Left Recursion

Example of removing left immediate recursion



Can remove all left recursions
Refer to Dragon Ch. 4.1 page 177

Left Factoring

- Not have sufficient information right now $\Box A \rightarrow \alpha \beta | \alpha \gamma$
- Left factoring: turn two alternatives into one so that we match α first and hope it helps $\Box A \rightarrow \alpha B, B \rightarrow \beta | \gamma$

□Example:

$$E \rightarrow T + E$$
$$E \rightarrow T$$
$$E \rightarrow TB$$
$$B \rightarrow +E \mid e$$

Predictive Top-Down Parsing

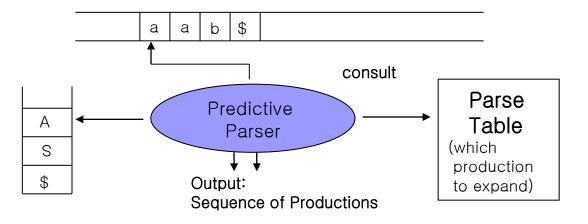
Perform educated guess

- Do not blindly guess productions that cannot even get the first symbol right
- □ If the current input symbol is **a** and the top stack symbol is S, which of the two productions (S \rightarrow **b**S, S \rightarrow **a**) should be expanded?

Two versions

- □ Non-Recursive version with a stack
- □ Recursive version: recursive descent parsing

Table-Driven Non-Recursive Parsing



- Input buffer: the string to be parsed followed by \$
- Stack: a sequence of grammar symbols with \$ at the bottom
 Initially, the stack has the start symbol on top of \$
- Parsing table: two dimensional array M[A,a], where A is a non-terminal and a is a terminal or \$; it has productions
- Output: a sequence of productions expanded

Action of the Parser

When X is a symbol on top of the stack and **a** is the current input symbol

 \Box If X = a = \$, a successful completion of parsing

- □ If X = a ≠ \$, pops X off the stack and advances the input pointer to the next input symbol
- If X is a nonterminal, consult M[X,a] which will be either an X-production or an error;
 - If M[X,a] = {X → UVW}, X on top of stack is replaced by WVU (with U on top) and print its production number
 - If [X,a] = error means a parsing error

An Example Grammar

Original grammar $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid id$

After removing left recursion $E \rightarrow TE'$ $E' \rightarrow +TE' \mid e$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid e$ $F \rightarrow (E) \mid id$

An Example Parsing Table

	id	+	*	()	\$
	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		E' → +TE'			$E' \rightarrow e$	E' → e
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T '		T' → e	T'→ *F		T' → e	T' → e
F	$F \rightarrow id$			F→ (E)		

How is id + id * id parsed?

How to Construct the Parse Table?

For this, we use three functions *Nullable()*: can it be a null?

- Predicate, $V \star \rightarrow \{$ true, false $\}$
- Telling if a string of nonterminals is nullable, i.e., can derive an empty string

FNE(): first but no epsilon

 Terminals that can appear at the beginning of a derivation from a string of grammar symbols

□ *Follow()*: what can **follow** after a nonterminal?

 Terminals (or \$) that can appear after a nonterminal in some sentential form

Nullable()

■ Nullable(α) = true if $\alpha \Rightarrow *\epsilon$ = false, otherwise

□ Start with the obvious ones, e.g., $A \rightarrow \epsilon$ □ Add new ones when $A \rightarrow \alpha$ and Nullable(α) □ Keep going until there is no change

More formally,

 \Box Nullable(ε) = true

- $\Box \text{ Nullable}(X_1X_2..X_n) = \text{true iff Nullable}(X_i) \forall i$
- \Box Nullable(A) = true if A $\rightarrow \alpha$ and Nullable(α)

FNE()

- Definition: $FNE(\alpha) = \{a | \alpha \Rightarrow^* aX\}$
- FNE() is computed as in Nullable()
 FNE(a) = {a}

□ FNE(X₁X₂...X_n) =
if(!Nullable(X₁)) then FNE(X₁)
else FNE(X₁) ∪ FNE(X₂X₃...X_n)
□ if A →
$$\alpha$$
 then FNE(A) ⊇ FNE(α)

FNE() Computation Example

For our example grammar

- $E \rightarrow TE'$
- E' → +TE' | e
- $\blacksquare \top \to \mathsf{FT'}$
- T' → *FT' | e
- $F \rightarrow (E) \mid id$
- We can compute FNE() as follows

Nullable(T) = false

Nullable(F) = false

FNE(E) = FNE(T) = {(,id}
FNE(E') = {+}
FNE(T) = FNE(F) = {(,id}
FNE(T') = {*}
FNE(F) = {(, id}

First()

- The Dragon book uses First(), which is a combination of Nullable() and FNE()
 □ If α is nullable First(α) = {a|α ⇒* aX} ∪ {ε} else First(α) = {a|α ⇒* aX}
- First() can be computed from Nullable() and FNE(), or directly (see Dragon book)

Follow()

- Follow(A)={a|S ⇒* αAaβ}, where a might be \$
 □ Follow() is needed if there is an ε-production
- To compute Follow(),
 - \Box \$ \in Follow(S)
 - \Box When $A \rightarrow \alpha B\beta$,
 - Follow(B) \supseteq FNE(β)
 - □ When $A \rightarrow \alpha B\beta$ and Nullable(β), Follow(B) ⊇ Follow(A)

Follow() Computation Example

For our example grammar

- E → TE'
- E' → +TE' | e
- $\blacksquare \top \to \mathsf{F}\mathsf{T}'$
- T' → *FT' | e
- F \rightarrow (E) | id

• When $A \rightarrow \alpha B\beta$, Follow(B) \supseteq FNE(β)

• When $A \rightarrow \alpha B\beta$ and Nullable(β), Follow(B) \supseteq Follow(A)

We can compute Follow() as follows

```
FNE(E) = FNE(T) = {(, id}
FNE(E') = {+}
FNE(T) = FNE(F) = {(, id}
FNE(T') = {*}
FNE(F) = {(, id}
```

```
Follow(E) = {$, }}
Follow(E') = {$, }}
Follow(T) = {+, $, }}
Follow(T') = {+, $, }}
Follow(F) = {*, +, $, }}
```

Predictive Parsing Table

How to construct the parsing table □ Mapping N x T → P

- $\Box A \rightarrow \alpha \in M[A,a]$ for each $a \in FNE(\alpha Follow(A))$
 - $a \in FNE(\alpha)$, or
 - Nullable(α) and $a \in FOLLOW(A)$

• Meaning of "Nullable(α) and $a \in FOLLOW(A)$ "

□ Since the stack has (part of) a sentential form with A at the top, we can remove A (by expanding A→α) then try to match a with a symbol below A in the stack

Why? The symbol below A must be in Follow(A), so there is a chance that it can be a (* or is this always guaranteed?)

Predictive Parsing Table

For our example grammar

- E → TE'
- E' → +TE' | e
- $T \rightarrow FT'$
- T' → *FT' | e
- $F \rightarrow$ (E) | id

The parsing table is as follows:

	FNE()	Follow()	id	+	*	()	\$
E	(, id	\$,)	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'	+	\$,)		$E' \rightarrow +TE'$			E' → e	E' → e
T	(, id	+,\$,)	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'	*	+,\$,)		T' → e	T' → *F		T' → e	T' → e
F	(, id	*, +, \$,)	$F \rightarrow id$			$F \rightarrow (E)$		

LL(1) Grammar

- Definition: a grammar G is LL(1) if there is at most one production for any entry in the table
 So we can do top-down parsing with one lookahead
- LL(1) means left-to-right scan, performing leftmost derivation, with one symbol lookahead

LL(1) Conditions

- G is LL(1) iff whenever A → α and A → β are distinct production of G, the following holds

 α and β do not both derive strings beginning with a (∈ T)
 α and β do not both derive ε
 if β ⇒* ε then FNE(α) ∩ Follow(A) is empty
- In other words, G is LL(1) if
 if G is ε-free and unambiguous, FNE(α) ∩ FNE(β) = Φ
 If an ε-production is present, FNE(αFollow(A)) ∩ FNE(βFollow(A)) = Φ

Testing for non-LL(1)ness

In practice, for LL(1) testing, it is easiest to construct the parse table and check

Some shortcuts to test if G is not LL(1)
 G is left-recursive (e.g., A → Aα | β)
 Common left factors (e.g., A → αβ|αγ)
 G is ambiguous (e.g., S → Aa | a, A → ε)

Non-LL(1) Grammar

- Consider the following grammar G1, which is not LL(1) $S \rightarrow Bbc$
 - $B \rightarrow \epsilon |b|c$
 - $\square FNE(B) = FNE(S) = \{b,c\},\$
 - □ FOLLOW(S)={\$}, FOLLOW(B)={b}

	FNE	FOLLOW	b	С
S	{b,c}	{\$}	S→Bbc	S→Bbc
В	{b,c} {b,c}	{b}	B→e	B→c
			B→b	

- Since $FNE(\varepsilon FOLLOW(B)) = FNE(bFOLLOW(B)) = \{b\}$
- We want consider a larger class of LL parsing, LL(k), which look-ahead more symbols

LL(K) Parsing

Begin by extending the definition of FNE() and FOLLOW()
 Definitions of FNE_k() and FOLLOW_k()

 $\begin{aligned} \mathsf{FNE}_k(\alpha) &= \{ w | (|w| < k \text{ and } \alpha \Rightarrow^* w) \text{ or} \\ (|w| &= k \text{ and } \alpha \Rightarrow^* wx \text{ for some } x \} \\ \mathsf{FOLLOW}_k(A) &= \{ w | S \Rightarrow^* \alpha A\beta \text{ and } w \in \mathsf{FNE}_k(\beta) \} \end{aligned}$

□ As with FOLLOW(), we will implicitly augment the grammar with S' → S\$^k so that out definitions are: FOLLOW_k(a) = {w|S ⇒* $\alpha A\beta$ and $\omega \in FNEk(\beta$ \$^k)}

LL(K) Parsing Definition

G is LL(k) for some fixed k if, whenever there are two leftmost derivations,

 $\begin{array}{l} S \ \Rightarrow^{*} wA\alpha \ \Rightarrow w\beta\alpha \ \Rightarrow^{*} wx, \ and \\ S \ \Rightarrow^{*} wA\alpha \ \Rightarrow w\gamma\alpha \ \Rightarrow^{*} wy \ and \ \beta \neq \gamma, \\ then \ \mathsf{FNE}_k(x) \ \neq \ \mathsf{FNE}_k(y) \end{array}$

Strong-LL(K) Parsing

- Simplest way to implementing LL(k) parsing table
 □ Insert A→α ∈ M[A, x] for each x ∈ FNE_k(αFollow_k(A))
 - A grammar G is strong-LL(k) if there is at most one production for any entry in the table
 - If $FNE_k(\beta FOLLOW_k(A)) \cap FNE_k(\gamma FOLLOW_k(A)) = \Phi$ for all $A \rightarrow \beta$ and $A \rightarrow \gamma$ in G

Non-LL(1), but Strong-LL(2) Grammar

- Consider our non-LL(1) grammar G1 again
 - $\mathsf{S}\to\mathsf{B}\mathsf{b}\mathsf{c}$
 - $\mathsf{B} \to \varepsilon \, | \, b \, | \, c$
 - $\square FNE_2(BbcFOLLOW_2(S)) = \{bc, bb, cb\}$
 - □ $FNE_2(\epsilon FOLLOW_2(B)) = \{bc\}, FNE_2(bFOLLOW_2(B)) = \{bb\}, FNE_2(cFOLLOW_2(B)) = \{cb\}$

	bc	bb	cb
S	S→Bbc	S→Bbc	S→Bbc
В	B→e	B→b	B→c

□ So, G1 is Strong-LL(2) even though it is not LL(1)

LL(2) but Non-Strong LL(2) Grammar

- Consider the following grammar G2
 S → Bbc|aBcb
 - $B \rightarrow \epsilon |b|c$
 - \Box FNE₂() and FOLLOW₂() functions:
 - FNE₂(S) = {ab, ac, bb, bc, cb}, FNE₂(B) = {b,c}
 - FOLLOW₂(S) = {\$}, FOLLOW₂(B) = {bc,cb}
 - $\Box FNE_2(\varepsilon FOLLOW2(B)) = \{bc,cb\}$
 - \square FNE₂(bFOLLOW2(B)) = {bb,bc}, so not strong-LL(2)
 - □ But isn't G LL(2), either?
 - Check with the LL(k) definition
 - $\Box \ S \ \Rightarrow \ \mathsf{Bbc} \ \Rightarrow$
 - $\ \ \square \ S \ \Rightarrow aBcb \ \Rightarrow \\$

Modified Grammar G2'

- G2 is indeed LL(2), then what's wrong with strong-LL(2) algorithm? Why can't it generate a LL(2) parsing table?
 Because of Follow(), which does not always tell the truth
- Let us rewrite G2 with two new nonterminals, B_{bc} and B_{cb}, to keep track of local lookahead (context) information
 - $\Box S \to B_{bc}bc|aB_{cb}cb$
 - $\Box \ \mathsf{B}_{\mathsf{bc}} \to \mathbf{\epsilon} \, | \, \mathsf{b} \, | \, \mathsf{c}$
 - $\Box \ \mathsf{B}_{cb} \to \boldsymbol{\varepsilon} \, | \, \mathsf{b} \, | \, \mathsf{c}$
- Now, in place of FNE₂(βFOLLOW₂(B)) to control putting B→β into table, use FNE₂(βR) to control B_R→β, where R is local lookahead

Corresponding LL(2) Table: G2' is strong-LL(2)

	bc	bb	cb	ab	ac	cc
S	$S \rightarrow B_{bc} bc$	$S \rightarrow B_{bc}^{bc}$	$S \rightarrow B_{bc}bc$	S->aB _{cb} b	S->aB _{cb} cb	
B _{bc}	$\mathbf{B}_{\mathrm{bc}} \rightarrow e$	$B_{bc} \rightarrow b$	$B_{bc} \rightarrow c$			
B _{cb}	B _{cb} -> b		$B_{cb} \rightarrow e$			$B_{cb} \rightarrow c$

LL(k) vs. Strong-LL(k)

 LL(k) definition says
 ωAα ⇒ ωβα, ωAα ⇒ ωγα FNE_k(βα)∩FNE_k(γα) = Φ
 xAδ ⇒ xβδ, xAδ ⇒ xγδ FNE_k(βδ)∩FNE_k(γδ) = Φ

Strong-LL(k) definition adds additional constraint
 FNE_k(βα)∩FNE_k(γδ) = Φ
 FNE_k(βδ)∩FNE_k(γα) = Φ

Why? Because it relies on Follow(A) to get the context information, which always includes both α and δ

LL(1) = Strong LL(1) ?

One question:

- We saw an example grammar that is LL(2), yet not strong-LL(2)
- Then, are there any example grammars that are LL(1), yet not Strong-LL(1)?
- The issue is the granularity of the lookahead
- The lookahead of LL(2) is finer than LL(1) since it look aheads more
- A nice exam question

Recursive-Descent Parsing

- Instead of stack, use recursive procedures
 - Sequence of production calls implicitly define parse tree
 - Given a parse table M[A,a], it is easy to write one

```
extern token lookahead;
                                          void Ep() {
void match(token tok) {
                                             switch (lookahead) {
                                                case '+' : match('+'); T(); Ep(); break;
   if (lookahead != tok) error();
                                                case ')' :
   else lookahead = get_next_token();
                                                case '$': break;
void E() {
                                                default : error();
   switch (lookahead) {
      case 'id':
                                          }
      case '(' : T(); Ep(); break;
      default : error();
                                          main() {
                                             lookahead = get_next_token();
                                             E();
```

LL(1) Summary

- LL(1) parsing
 - □ Stack, lookahead, parsing table
 - Parsing table construction
 - Nullable(), FNE(), Follow()
- LL(1) grammar
 - Actually represent limited class of languages
 - i.e., many programming languages are not LL(1)
 - □ So, consider a larger class: LR bottom-up parsing