
Top-Down Parsing 

Dragon ch. 4.4 



Recognizer and Parser 

 A recognizer is a machine (system) that can accept a 
terminal string for some grammar and determine whether 
the string is in the language accepted by the grammar 
 

 A parser, in addition, finds a derivation for the string 
 For grammar G and string x, find a derivation S⇒* x if one exists 

 Construct a parse tree corresponding to this derivation 

 Input is read (scanned) from left to right 

 Two types of the parser: top-down vs. bottom-up 



Top-down Parsing 

 Top-down parsing expands a tree from the 
top (start symbol) using a stack  

 Put the start symbol on the stack top 

 Repeat 
 Expand a nonterminal on the stack top 

 Match stack tops with input terminal symbols 

 Problem: which production to expand? 
 If there are multiple productions for a given nonterminal 

 One way: guess! 



Structure of top-down parsing  
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Example of Parsing by Guessing 

 P of an Example Grammar 
 S → AS|B, A → a, B→ b 

 Parsing process 

 

 

 

 

 

 

 

 In reality, computers do not guess very well 
 So we use lookahead for correct expansion 

 Before we do this, we must “condition” the grammar 



Removal of Left Recursion 

 Problem: infinite regression 

 A → Aα | β, (the corresponding langauge is βα*) 

 Remove of immediate left recursion 
A → βB, B → αB|ε  

 More generally, 

 A → Aα1, A → Aα2 

 A → β1, A → β2 

 A → (β1|β2 )B, B → (α1|α2)B|ε  



Example of Removing Left Recursion 

 Example of removing left immediate recursion 

 

 

 

 
 Can remove all left recursions 

 Refer to Dragon Ch. 4.1 page 177 

 

   E → E + T 
   E → T 
   E → TB 
   B → +TB | e 



Left Factoring 

 Not have sufficient information right now  

A → αβ|αγ 

 Left factoring: turn two alternatives into one 
so that we match α first and hope it helps 

A → αB, B→β|γ 

Example:      E → T + E 
    E → T 
    E → TB 
    B → +E | e 



Predictive Top-Down Parsing 

 Perform educated guess 

 Do not blindly guess productions that cannot even 
get the first symbol right 

 If the current input symbol is a and the top stack 

symbol is S, which of the two productions (S → 
bS, S → a) should be expanded? 

 Two versions 

 Non-Recursive version with a stack 

 Recursive version: recursive descent parsing 

 



Table-Driven Non-Recursive Parsing 

 

 

 

 

 

 Input buffer: the string to be parsed followed by $ 

 Stack: a sequence of grammar symbols with $ at the bottom 
 Initially, the stack has the start symbol on top of $ 

 Parsing table: two dimensional array M[A,a], where A is a 
non-terminal and a is a terminal or $; it has productions 

 Output: a sequence of productions expanded 
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Action of the Parser 

When X is a symbol on top of the stack and a 

is the current input symbol 
 If X = a = $, a successful completion of parsing 

 If X = a ≠ $, pops X off the stack and advances 

the input pointer to the next input symbol 

 If X is a nonterminal, consult M[X,a] which will be 

either an X-production or an error;  
 If M[X,a] = {X → UVW}, X on top of stack is replaced by 

WVU (with U on top) and print its production number  

 If [X,a] = error means a parsing error 



An Example Grammar 

Original grammar 
E → E + T | T 
T → T * F | F 
F → ( E ) | id 

After removing left recursion 
E → TE‟ 
E‟ → +TE‟ | e 
T → FT‟ 
T‟ → *FT‟ | e 
F → ( E ) | id 



An Example Parsing Table 
id + * ( ) $ 
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How is id + id * id parsed? 



How to Construct the Parse Table? 

 For this, we use three functions 
 Nullable() : can it be a null?  

 Predicate, V* → {true, false} 

 Telling if a string of nonterminals is nullable, i.e., can 
derive an empty string 

 FNE(): first but no epsilon 
 Terminals that can appear at the beginning of a 

derivation from a string of grammar symbols 

 Follow():  what can follow after a nonterminal? 
 Terminals (or $) that can appear after a nonterminal in 

some sentential form 



Nullable() 

 Nullable(α) = true if α ⇒ *ε  
   = false, otherwise 
 Start with the obvious ones, e.g., A → ε  

 Add new ones when A → α and Nullable(α) 

 Keep going until there is no change 
 

 More formally, 
 Nullable(ε ) = true 

 Nullable(X1X2..Xn) = true iff Nullable(Xi)∀i 

 Nullable(A) = true if A → α and Nullable(α) 

 
 



FNE() 

 Definition: FNE(α) = {a|α ⇒* aX} 

 FNE() is computed as in Nullable() 
 FNE(a) = {a} 

 FNE(X1X2...Xn) =  
if(!Nullable(X1)) then FNE(X1) 
else FNE(X1) ∪ FNE(X2X3...Xn) 

 if A → α then FNE(A) ⊇ FNE(α) 



FNE() Computation Example 
 For our example grammar 

 E → TE‟ 

 E‟ → +TE‟ | e     

 T → FT‟ 

 T‟ → *FT‟ | e 

 F → (E) | id 

 We can compute FNE() as follows 

Nullable(T) = false FNE(E) = FNE(T) = {(,id} 
   FNE(E‟) = {+} 
Nullable(F) = false FNE(T) = FNE(F) = {(,id} 
   FNE(T‟) = {*} 
   FNE(F) = {(, id} 



First() 

 The Dragon book uses First(), which is a 
combination of Nullable() and FNE() 
 If α is nullable First(α) = {a|α ⇒* aX}∪{ε} 

else First(α) = {a|α ⇒* aX} 
 

 First() can be computed from Nullable() 
and FNE(), or directly (see Dragon book) 



Follow() 
 Follow(A)={a|S ⇒* αAaβ}, where a might be $  

 Follow() is needed if there is an ε-production 

 To compute Follow(), 
 $ ∈ Follow(S) 

 When A → αBβ,  

   Follow(B) ⊇ FNE(β) 

 When A → αBβ and Nullable(β), 
Follow(B) ⊇ Follow(A) 



Follow() Computation Example 
 For our example grammar 

 E → TE‟ 

 E‟ → +TE‟ | e     

 T → FT‟ 

 T‟ → *FT‟ | e 

 F → (E) | id 

 We can compute Follow() as follows 

FNE(E) = FNE(T) = {(, id} Follow(E) = {$, )} 
FNE(E‟) = {+}   Follow(E‟) = {$, )} 
FNE(T) = FNE(F) = {(, id} Follow(T) = {+, $, )} 
FNE(T‟) = {*}   Follow(T‟) = {+, $, )} 
FNE(F) = {(, id}  Follow(F) = {*, +, $, )} 

• When A → αBβ,  
      Follow(B) ⊇ FNE(β) 
• When A → αBβ and Nullable(β), 
      Follow(B) ⊇ Follow(A) 

 



Predictive Parsing Table 

 How to construct the parsing table 

 Mapping N x T → P 

 A → α ∈ M[A,a] for each a ∈ FNE(αFollow(A)) 
 a ∈ FNE(α), or 

 Nullable(α) and a ∈ FOLLOW(A) 

 Meaning of “Nullable(α) and a ∈ FOLLOW(A)” 

 Since the stack has (part of) a sentential form with A 
at the top, we can remove A (by expanding A→α) then 
try to match a with a symbol below A in the stack 

 Why? The symbol below A must be in Follow(A), so there is a 

chance that it can be a (※ or is this always guaranteed?) 



Predictive Parsing Table 
 For our example grammar 

 E → TE’ 

 E’ → +TE’ | e     

 T → FT’ 

 T’ → *FT’ | e 

 F → (E) | id 

 The parsing table is as follows: 
 

FNE()   Follow() id + * ( ) $ 

E 
E’ 

T 

T’ 

F 

(, id     $, ) 

+         $, ) 

(, id     +, $, ) 

*         +, $, ) 

(, id     *, +, $, ) 

E → TE’ 

 

T → FT’ 

 

F → id 

 

E’ → +TE’ 

 

T’ → e 

 

 

 

T’ → *F 

E → TE’ 

 

T → FT’ 

 

F → (E) 

 

E’ → e 

 

T’ → e 

 

E’ → e 

 

T’ → e 



LL(1) Grammar 

 Definition: a grammar G is LL(1) if there is at 
most one production for any entry in the table 

 So we can do top-down parsing with one lookahead 

 

 LL(1) means left-to-right scan, performing 
leftmost derivation, with one symbol lookahead 

 



LL(1) Conditions  

 G is LL(1) iff whenever A → α and A → β are 
distinct production of G, the following holds 
 α and β do not both derive strings beginning with a (∈ T) 

 α and β do not both derive ε  

 if β ⇒* ε  then FNE(α) ∩ Follow(A) is empty 
 

 In other words, G is LL(1) if 
 if G is ε-free and unambiguous, FNE(α) ∩ FNE(β) = Φ 

 If an ε-production is present, 
FNE(αFollow(A)) ∩ FNE(βFollow(A)) = Φ 



Testing for non-LL(1)ness 

 In practice, for LL(1) testing, it is easiest to 
construct the parse table and check 

 

 Some shortcuts to test if G is not LL(1) 

 G is left-recursive (e.g., A → Aα | β)  

 Common left factors (e.g., A → αβ|αγ) 

 G is ambiguous (e.g., S → Aa | a, A → ε ) 



Non-LL(1) Grammar 
 Consider the following grammar G1, which is not LL(1) 

S → Bbc 
B → ε|b|c 
 FNE(B) = FNE(S) = {b,c},  
 FOLLOW(S)={$}, FOLLOW(B)={b} 

 
 
 
 
 
 Since FNE(εFOLLOW(B))=FNE(bFOLLOW(B))={b} 

 We want consider a larger class of LL parsing, LL(k), 
which look-ahead more symbols 

 FNE     FOLLOW     b           c 
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LL(K) Parsing 

 Begin by extending the definition of FNE() and FOLLOW() 

 Definitions of FNEk() and FOLLOWk() 

 

 

 

 

 As with FOLLOW(), we will implicitly augment the 
grammar with S‟ → S$k so that out definitions are: 
FOLLOWk(a) = {w|S ⇒* αAβ and ω ∈ FNEk(β$k)} 

FNEk(α) = {w|(|w| < k and α ⇒* w) or  
                    (|w| = k and α ⇒* wx for some x} 
FOLLOWk(A) = {w|S ⇒* αAβ and w ∈ FNEk(β)} 



LL(K) Parsing Definition 
 G is LL(k) for some fixed k if, whenever there are 

two leftmost derivations, 
 

 

 

S ⇒* wAα ⇒ wβα ⇒* wx, and  
S ⇒* wAα ⇒ wγα ⇒* wy and β≠γ,  
then FNEk(x) ≠ FNEk(y) 



Strong-LL(K) Parsing 
 

 Simplest way to implementing LL(k) parsing table 

 Insert A→α ∈ M[A, x] for each x ∈ FNEk(αFollowk(A)) 
 

A grammar G is strong-LL(k) if there is at most 
one production for any entry in the table 

 If FNEk(βFOLLOWk(A)) ∩ FNEk(γFOLLOWk(A))=Φ for 
all A → β and A → γ in G 



Non-LL(1), but Strong-LL(2) Grammar 

 Consider our non-LL(1) grammar G1 again 
S → Bbc 

B → ε|b|c 

 FNE2(BbcFOLLOW2(S)) = {bc,bb,cb} 

 FNE2(εFOLLOW2(B)) = {bc}, FNE2(bFOLLOW2(B)) = {bb}, 
FNE2(cFOLLOW2(B)) = {cb} 

 

 

 

 

 

 So, G1 is Strong-LL(2) even though it is not LL(1)  

bc bb cb 

S S→Bbc S→Bbc S→Bbc 

B B→e B→b B→c 



LL(2) but Non-Strong LL(2) Grammar 

 Consider the following grammar G2 
S → Bbc|aBcb 

B → ε|b|c 

 FNE2() and FOLLOW2() functions: 
 FNE2(S) = {ab, ac, bb, bc, cb}, FNE2(B) = {b,c} 

 FOLLOW2(S) = {$$}, FOLLOW2(B) = {bc,cb} 
 FNE2(εFOLLOW2(B)) = {bc,cb} 

 FNE2(bFOLLOW2(B)) = {bb,bc}, so not strong-LL(2) 

 But isn‟t G LL(2), either? 
 Check with the LL(k) definition 

 S ⇒ Bbc ⇒ 

 S ⇒ aBcb ⇒ 



Modified Grammar G2‟ 

 G2 is indeed LL(2), then what‟s wrong with strong-LL(2) 
algorithm? Why can‟t it generate a LL(2) parsing table? 

 Because of Follow(), which does not always tell the truth 
 

 Let us rewrite G2 with two new nonterminals, Bbc and Bcb, 
to keep track of local lookahead (context) information 
 S → Bbcbc|aBcbcb 

 Bbc → ε|b|c 

 Bcb → ε|b|c 

 Now, in place of FNE2(βFOLLOW2(B)) to control putting 
B→β into table, use FNE2(βR) to control BR→β, where R is 
local lookahead 



 For S → Bbcbc, FNE2(Bbcbc$$) = {bc,bb,cb} 

 For S → aBcbcb, FNE2(aBcbcb$$) = {ac,ab} 

 For Bbc → ε , FNE2(ε{bc}) = {bc} 

 For Bbc → b, FNE2(b{bc}) = {bb} 

 For Bbc → c, FNE2(c{bc}) = {cb} 

 For Bcb → ε , FNE2(ε{cb}) = {cb} 

 For Bcb → b, FNE2(b{cb}) = {bc} 

 For Bcb → c, FNE2(c{cb}) = {cc} 

 Corresponding LL(2) Table: G2‟ is strong-LL(2) 



LL(k) vs. Strong-LL(k) 

 LL(k) definition says 
ωAα ⇒ ωβα, ωAα ⇒ ωγα 

FNEk(βα)∩FNEk(γα) = Φ 
 xAδ ⇒ xβδ, xAδ ⇒ xγδ 

FNEk(βδ)∩FNEk(γδ) = Φ 
 

 Strong-LL(k) definition adds additional constraint 
 FNEk(βα)∩FNEk(γδ) = Φ 
 FNEk(βδ)∩FNEk(γα) = Φ 
 

 Why? Because it relies on Follow(A) to get the context 
information, which always includes both α and δ 



LL(1) = Strong LL(1) ? 

 One question: 
 We saw an example grammar that is LL(2), yet not 

strong-LL(2) 

 Then, are there any example grammars that are LL(1), 
yet not Strong-LL(1)? 

 The issue is the granularity of the lookahead 

 The lookahead of LL(2) is finer than LL(1) since 
it look aheads more 

 A nice exam question 



Recursive-Descent Parsing 
 Instead of stack, use recursive procedures 

 Sequence of production calls implicitly define parse 
tree 

 Given a parse table M[A,a], it is easy to write one 

 extern token lookahead; 
void match(token tok) { 
    if (lookahead != tok) error(); 
    else lookahead = get_next_token(); 
} 
void E() { 
    switch (lookahead) { 
        case „id‟: 
        case „(„ : T(); Ep(); break; 

        default : error(); 
    } 
} 

void Ep() { 
    switch (lookahead) { 
        case „+‟ : match(„+‟); T(); Ep(); break; 
        case „)‟ : 
        case „$‟: break; 

        default : error(); 
    } 
} 
... 
main() { 
    lookahead = get_next_token(); 
    E(); 
} 



LL(1) Summary 

 LL(1) parsing 

 Stack, lookahead, parsing table 

 Parsing table construction 
 Nullable(), FNE(), Follow()  

 LL(1) grammar 

 Actually represent limited class of languages 

 i.e., many programming languages are not LL(1) 

 So, consider a larger class: LR bottom-up parsing 


