Top—Down Parsing

Dragon ch. 4.4

Recognizer and Parser

m A recognizer is a machine (system) that can accept a
terminal string for some grammar and determine whether
the string is in the language accepted by the grammar

m A parser, in addition, finds a derivation for the string
For grammar G and string X, find a derivation S=#* X if one exists
Construct a parse tree corresponding to this derivation
Input is read (scanned) from left to right
Two types of the parser: top—down vs. bottom—-up

Top—down Parsing

m [op—down parsing expands a tree from the
top (start symbol) using a stack
Put the start symbol on the stack top

Repeat
m Expand a nonterminal on the stack top
m Match stack tops with input terminal symbols

m Problem: which production to expand?
m |f there are multiple productions for a given nonterminal
One way: guess!

Structure of top—down parsing

alalbl|$

consult

Predictive Parse

A Top—down Table
S P (which |

arser production

$ l l to expand)

Output:
Sequence of Productions

-xample of Parsing by Guessing

m P of an Example Grammar
S— AS|B,A—a, B—Db

. input stacktop action
Parsmg Process

aab$ S$ S->AS

aab$ ASS$ A->a
aab$ aS$ Match a
ab$ S$ S ->AS

ab$ ASS$ A->a
ab$ as$ Match a

b$ S$ S->B

b$ BS B->b
b$ b$ Match b

$ $ End

m |[n reality, computers do not guess very well
SO we use |lookahead for correct expansion

m Before we do this, we must “condition” the grammar

Removal of Left Recursion

m Problem: infinite regression
A — Aa | B, (the corresponding langauge is Ba*)
Remove of immediate left recursion
A — BB, B — aBl¢
m More generally,
A — Aa,;, A — Aa,
A—=BL A= B
A— (B1B,)B, B — (a;]a,)Ble

" N

—xample of

Removing Left

Recursion

m Example of removing left immediate recursion

1 Can remove all left recursions
1 Refer to Dragon Ch. 4.1 page 177

'_
Left Factoring

m Not have sufficient information right now
A — aBlay

m Left factoring: turn two alternatives into one
so that we match a first and hope it helps
A — aB, B—Bly
C1Example:

Predictive Top—Down Parsing

m Perform educated guess

Do not blindly guess productions that cannot even
get the first symbol right

If the current input symbol is a and the top stack
symbol is S, which of the two productions (S —

bS, S — a) should be expanded?

m [WO versions
Non—Recursive version with a stack
Recursive version: recursive descent parsing

Table—Driven Non—Recursive Parsing

alalb|$
A
| consult
Predictive Parse
— —_
g (which
production
$ Output: to expand)

Sequence of Productions

m |nput buffer: the string to be parsed followed by $

m Stack: a sequence of grammar symbols with $ at the bottom
Initially, the stack has the start symbol on top of $

m Parsing table: two dimensional array M[A,a], where A is a
non—terminal and a is a terminal or $; it has productions

m Output: a sequence of productions expanded

Action of the Parser

When X Is a symbol on top of the stack and a

IS the current input symbol
If X =a =9, asuccessful completion of parsing

f X=a *+ §, pops X off the stack and advances
the input pointer to the next input symbol
If X is a nonterminal, consult M[X,a] which will be

either an X—production or an error;

m If M[X,a] = {X = UVW}, X on top of stack is replaced by
WVU (with U on top) and print its production number

m If [X,a] = error means a parsing error

An Example Grammar

Original grammar After removing left recursion

E—>E+T | T E > TE
T>T*F|F E'— +TE | e
F— CE) | 1d T—FT

T —*FT | e

F— (CE) | id

" A
An Example Parsing Table

id + * ()
E|E~>TE E—TE
E E — +TE EE—>e |E—e
TIT—>FT T—FT
T T —>e T'— *F T"o>e |T">e
F|F—id F— (E)

How is id + id * 1id parsed?

How to Construct the Parse Table?

m For this, we use three functions

Nullable() : can it be a null?

» Predicate, V* — {true, false}

m [elling if a string of nonterminals is nullable, i.e., can
derive an empty string

FNE(): first but no epsilon

m [erminals that can appear at the beginning of a
derivation from a string of grammar symbols

Follow(): what can follow after a nonterminal?

s Terminals (or $) that can appear after a nonterminal in
some sentential form

" S
Nullable()

m Nullable(a) =trueifa = *¢
= false, otherwise
Start with the obvious ones, e.g., A — ¢
Add new ones when A — a and Nullable(a)
Keep going until there is no change

m More formally,
Nullable(e) = true
Nullable(X;X,..X.) = true iff Nullable(X;) Vi
Nullable(A) = true if A — a and Nullable(a)

-N

m Definition: FNE(a) = {ala =* aX}
m FNE() is computed as in Nullable()

FNE(a) = {a}

FNE(X, X,...X,) =
if(!Nullable(X;)) then FNE(X;)
else FNE(X;) U FNE(X,X5...X,)

if A — a then FNE(A) 2 FNE(a)

-NE() Computation Example

m For our example grammar

m E— TE

m B —>+TE | e
m [= FT

« T > #FT | e
s F— (BE) | id

m We can compute FNE() as follows
Nullable(T) = false FNE(E) = FNE(T) = {(,id}

(E
FNE(E") = {+}
Nullable(F) = false FNE(T) = FNE(F) = {(,id}
FNE(T’) = {*}
FNE(F) = {(, id}

=irst()

m The Dragon book uses First(), which is a
combination of Nullable() and FNE()

If a is nullable First(a) = {ala =* aX}U{e}
else First(a) = {ala =* aX}

m First() can be computed from Nullable()
and FNE(), or directly (see Dragon book)

~ollowd()

m Follow(A)=1alS =* aAaB}, where a might be $
Follow() is needed if there is an e —production

m To compute Follow(),
$ = Follow(S)
When A — aB,
Follow(B) = FNE(B)

When A — aBB and Nullable(B),
Follow(B) 2 Follow(A)

Collow() Computation Example

m For our example grammar

=EoIE - When A — aBB,

s B> +TE | e Follow(B) 2 FNE(B)

a T — FT - When A — aB and Nullable(B),
e T o %FT | e Follow(B) = Follow(A)

s F— (E) | id

m We can compute Follow() as follows

FNE(E) = FNE(T) = {(, id} Follow(E) = {$,)}
FNE(E)) = {+} Follow(E’) =43,)}
FNE(T) = FNE(F) = {(, id} Follow(T) = {+, $,)}
FNE(T’) = {*} Follow(T’) = {+, $,)}
FNE(F) = {(, id} Follow(F) = {*, +, $,)}

Predictive

Parsing Table

m How to construct the parsing table

Mapping Nx T — P
A — a € M[A,a] for each a € FNE(aFollow(A))

ma < FNE(a), or

m Nullable(a) and a € FOLLOW(A)

m Meaning of “Nullable(a) and a & FOLLOW(A)”

Since the stack has (part of) a sentential form with A
at the top, we can remove A (by expanding A—a) then
try to match a with a symbol below A in the stack

s Why? The symbol below A must be in Follow(A), so there is a
chance that it can be a (3% or is this always guaranteed?)

m For our example grammar

Predictive Parsing Table

m E—>TF

m B> +TF I e

n T > FT

s "> *FT | e
m [he parsing table is as follows:

FNE() Follow() | 1id + * () $

El((id §) E—-TE E— TE
E |+ $,) E — +TE EE—e|E—e
TiGid +8,) |T—FT T=FP
T s +$,) T—e |T—+F T—e|lT"—e
Fl(id *+8$)|F—id F— (E)

" A
LL(1) Grammar

m Definition: a grammar G is LL(1) if there is at
Mmost one production for any entry in the table
SO we can do top—down parsing with one lookahead

m LL(1) means left—to—right scan, performing
leftmost derivation, with one symbol lookahead

" A
LL(1) Conditions

m Gis LL(1) iff whenever A — a and A — B are
distinct production of G, the following holds
a and B do not both derive strings beginning with a (€ 1)
a and B do not both derive €
if B =* ¢ then FNE(a) N Follow(A) is empty

m |[n other words, G is LL(1) if

if G is e—free and unambiguous, FNE(a) N FNE(B) = ®

If an € —production is present,
FNE(aFollow(A)) N FNE(BFollow(A)) = &

" A
Testing for non—LL(1)ness

m |n practice, for LL(1) testing, it is easiest to
construct the parse table and check

m Some shortcuts to test if G is not LL(1)
G is left-recursive (e.g., A — Aa | B)
Common left factors (e.g., A — aB|ay)

G is ambiguous (e.g., S— Aa | a, A—¢)

Non—LL(1) Grammar

m Consider the following grammar G1, which is not LL(1)
S — Bbc
B—¢l|blc
FNE(B) = FNE(S) = {b,c},
FOLLOW(S)={$}, FOLLOW(B)={b}

FNE FOLLOW b C

{b,c} {$} S—Bbc S—Bbc
ib,c} {b} B—oe B—c
B—b

Since FNE(e FOLLOW(B))=FNE(bFOLLOW(B))=1{b}

m We want consider a larger class of LL parsing, LL(k),
which look—ahead more symbols

m W

'_
LL(K) Parsing

m Begin by extending the definition of FNE() and FOLLOW()
1 Definitions of FNE,() and FOLLOW,()

1 As with FOLLOW(), we will implicitly augment the
grammar with S’ — S$k so that out definitions are:

FOLLOW,(a) = {w|S =* aAB and w € FNEK(B$X) }

"

LL(K)

2arsing

Defini

lon

m G is LL(k) for some fixed Kk if, w
two leftmost derivations,

nenever there are

Strong—LL(K) Parsing

m Simplest way to implementing LL(k) parsing table
Insert A—a & M[A, x] for each x & FNE,(aFollow,(A))

A grammar G is strong—LL(k) if there is at most
one production for any entry in the table

m [f FNE, (BFOLLOW,(A)) N ENE, (yFOLLOW,(A))=® for
alA—Band A—vyin G

-
Non—LL(1), but Strong—-LL(2) Grammar

m Consider our non—-LL(1) grammar G1 again
S — Bbc

B— el|b|c
FNE,(BbcFOLLOW,(S)) = {bc,bb,cb}
FNE,(e FOLLOW,(B)) = {bc}, FNE,(bFOLLOW,(B)) = {bb},
FNE,(cFOLLOW,(B)) = {cb}
bc bb cb
S S—Bbc S—Bbc S—Bbc
B B—e B—Db B—cC

So, G1 is Strong-LL(2) even though it is not LL(1)

" I
LL(2) but Non—Strong LL(2) Grammar

m Consider the following grammar G2
S — Bbcl|aBcb
B— €el|bl|c

FNE,() and FOLLOW,() functions:

s FNE,(S) = {ab, ac, bb, bc, cb}, FNE,(B) = {b,c}

s FOLLOW,(S) = {$3}, FOLLOW,(B) = {bc,cb}
FNE,(e FOLLOW2(B)) = {bc,cb}
FNE,(bFOLLOW2(B)) = {bb,bc}, so not strong-LL(2)

But isn’t G LL(2), either?

s Check with the LL(k) definition
S = Bbc =
S = aBcb =

" A
Modified Grammar G2’

m G2 is indeed LL(2), then what’s wrong with strong—LL(2)
algorithm? Why can’t it generate a LL(2) parsing table?
Because of Follow(), which does not always tell the truth

m et us rewrite G2 with two new nonterminals, B,.and B,
to keep track of local lookahead (context) information
S — B,.bclaB,.cb
B,. > €lblc
B — €lblc
m Now, in place of FNE,(BFOLLOW,(B)) to control putting
B—p into table, use FNE,(BR) to control By—B, where R is
local lookahead

For S — B,.bc, FNE,(B,.bc$$) = {bc,bb,cb}
For S — aB,cb, FNE,(aB,,cb$$) = {ac,ab}
For B,. — €, FNE,(e{bc}) = {bc}
For B,. — b, FNE,(b{bc}) = {bb}
For B,. — ¢, FNE,(c{bc}) = {cb}

) =

() =

For B., — €, FNE,(e{cb}) =
() =

= {cb}

For B., — b, FNE,(b{cb}) = {bc}

For B., — ¢, FNE,(c{cb}) = {cct
m Corresponding LL(2

) Table: G2’ is strong—LL(2)

be bb cb ab ac ce
S S=>B ybc |S—>B bc | S—>Bbe |S—aB ¢b S—>aB _¢b
]%)C Bbc—> e Bbc_> b B> ¢
B B.— b By e Bpy™ ¢

cb

cb

" A
LL(K) vs. Strong—LL(k)

m LL(k) definition says

wAa = wpa, wAa = wya
FNE, (Ba)NFENE, (ya) = @

XAD = XBO, xAd = xyO
FNE (BO)NFENE,(yd) = ®

m Strong—-LL(k) definition adds additional constraint
FNE, (Ba)NFNE,(yd) = ®
FNE, (BS)NFNE, (ya) = ®

Why? Because it relies on Follow(A) to get the context
information, which always includes both a and ©

" A
LL(1) = Strong LL(1) ?

m One question:

We saw an example grammar that is LL(2), yet not
strong—LL(2)

Then, are there any example grammars that are LL(1),
yet not Strong—LL(1)7?

m [he issue is the granularity of the lookahead

m The lookahead of LL(2) is finer than LL(1) since
It look aheads more

m A nice exam question

"

Recursive—Descent Parsing

m |nstead of stack, use recursive procedures

1 Sequence of production calls implicitly define parse
tree

1 Given a parse table M[A,a], it is easy to write one

" A
LL(1) Summary

m LL(1) parsing
Stack, lookahead, parsing table

Parsing table construction
= Nullable(), FNE(), Follow()

m LL(1) grammar
Actually represent limited class of languages
mi.e., many programming languages are not LL(1)
S0, consider a larger class: LR bottom—up parsing

