
Top-Down Parsing

Dragon ch. 4.4

Recognizer and Parser

 A recognizer is a machine (system) that can accept a
terminal string for some grammar and determine whether
the string is in the language accepted by the grammar

 A parser, in addition, finds a derivation for the string
 For grammar G and string x, find a derivation S⇒* x if one exists

 Construct a parse tree corresponding to this derivation

 Input is read (scanned) from left to right

 Two types of the parser: top-down vs. bottom-up

Top-down Parsing

 Top-down parsing expands a tree from the
top (start symbol) using a stack

 Put the start symbol on the stack top

 Repeat
 Expand a nonterminal on the stack top

 Match stack tops with input terminal symbols

 Problem: which production to expand?
 If there are multiple productions for a given nonterminal

 One way: guess!

Structure of top-down parsing

Predictive
Top-down

Parser

Output:
Sequence of Productions

 Parse
 Table
(which
 production
 to expand)

consult

a a b $

$

S

A

Example of Parsing by Guessing

 P of an Example Grammar
 S → AS|B, A → a, B→ b

 Parsing process

 In reality, computers do not guess very well
 So we use lookahead for correct expansion

 Before we do this, we must “condition” the grammar

Removal of Left Recursion

 Problem: infinite regression

 A → Aα | β, (the corresponding langauge is βα*)

 Remove of immediate left recursion
A → βB, B → αB|ε

 More generally,

 A → Aα1, A → Aα2

 A → β1, A → β2

 A → (β1|β2)B, B → (α1|α2)B|ε

Example of Removing Left Recursion

 Example of removing left immediate recursion

 Can remove all left recursions

 Refer to Dragon Ch. 4.1 page 177

 E → E + T
 E → T
 E → TB
 B → +TB | e

Left Factoring

 Not have sufficient information right now

A → αβ|αγ

 Left factoring: turn two alternatives into one
so that we match α first and hope it helps

A → αB, B→β|γ

Example: E → T + E
 E → T
 E → TB
 B → +E | e

Predictive Top-Down Parsing

 Perform educated guess

 Do not blindly guess productions that cannot even
get the first symbol right

 If the current input symbol is a and the top stack

symbol is S, which of the two productions (S →
bS, S → a) should be expanded?

 Two versions

 Non-Recursive version with a stack

 Recursive version: recursive descent parsing

Table-Driven Non-Recursive Parsing

 Input buffer: the string to be parsed followed by $

 Stack: a sequence of grammar symbols with $ at the bottom
 Initially, the stack has the start symbol on top of $

 Parsing table: two dimensional array M[A,a], where A is a
non-terminal and a is a terminal or $; it has productions

 Output: a sequence of productions expanded

Predictive
Parser

Output:
Sequence of Productions

 Parse
 Table
(which
 production
 to expand)

consult

$
S

A

a a b $

Action of the Parser

When X is a symbol on top of the stack and a

is the current input symbol
 If X = a = $, a successful completion of parsing

 If X = a ≠ $, pops X off the stack and advances

the input pointer to the next input symbol

 If X is a nonterminal, consult M[X,a] which will be

either an X-production or an error;
 If M[X,a] = {X → UVW}, X on top of stack is replaced by

WVU (with U on top) and print its production number

 If [X,a] = error means a parsing error

An Example Grammar

Original grammar
E → E + T | T
T → T * F | F
F → (E) | id

After removing left recursion
E → TE‟
E‟ → +TE‟ | e
T → FT‟
T‟ → *FT‟ | e
F → (E) | id

An Example Parsing Table
id + * () $

E
E’

T

T’

F

E → TE’

T → FT’

F → id

E’ → +TE’

T’ → e

T’→ *F

E → TE’

T → FT’

F→ (E)

E’ → e

T’ → e

E’ → e

T’ → e

How is id + id * id parsed?

How to Construct the Parse Table?

 For this, we use three functions
 Nullable() : can it be a null?

 Predicate, V* → {true, false}

 Telling if a string of nonterminals is nullable, i.e., can
derive an empty string

 FNE(): first but no epsilon
 Terminals that can appear at the beginning of a

derivation from a string of grammar symbols

 Follow(): what can follow after a nonterminal?
 Terminals (or $) that can appear after a nonterminal in

some sentential form

Nullable()

 Nullable(α) = true if α ⇒ *ε
 = false, otherwise
 Start with the obvious ones, e.g., A → ε

 Add new ones when A → α and Nullable(α)

 Keep going until there is no change

 More formally,
 Nullable(ε) = true

 Nullable(X1X2..Xn) = true iff Nullable(Xi)∀i

 Nullable(A) = true if A → α and Nullable(α)

FNE()

 Definition: FNE(α) = {a|α ⇒* aX}

 FNE() is computed as in Nullable()
 FNE(a) = {a}

 FNE(X1X2...Xn) =
if(!Nullable(X1)) then FNE(X1)
else FNE(X1) ∪ FNE(X2X3...Xn)

 if A → α then FNE(A) ⊇ FNE(α)

FNE() Computation Example
 For our example grammar

 E → TE‟

 E‟ → +TE‟ | e

 T → FT‟

 T‟ → *FT‟ | e

 F → (E) | id

 We can compute FNE() as follows

Nullable(T) = false FNE(E) = FNE(T) = {(,id}
 FNE(E‟) = {+}
Nullable(F) = false FNE(T) = FNE(F) = {(,id}
 FNE(T‟) = {*}
 FNE(F) = {(, id}

First()

 The Dragon book uses First(), which is a
combination of Nullable() and FNE()
 If α is nullable First(α) = {a|α ⇒* aX}∪{ε}

else First(α) = {a|α ⇒* aX}

 First() can be computed from Nullable()
and FNE(), or directly (see Dragon book)

Follow()
 Follow(A)={a|S ⇒* αAaβ}, where a might be $

 Follow() is needed if there is an ε-production

 To compute Follow(),
 $ ∈ Follow(S)

 When A → αBβ,

 Follow(B) ⊇ FNE(β)

 When A → αBβ and Nullable(β),
Follow(B) ⊇ Follow(A)

Follow() Computation Example
 For our example grammar

 E → TE‟

 E‟ → +TE‟ | e

 T → FT‟

 T‟ → *FT‟ | e

 F → (E) | id

 We can compute Follow() as follows

FNE(E) = FNE(T) = {(, id} Follow(E) = {$,)}
FNE(E‟) = {+} Follow(E‟) = {$,)}
FNE(T) = FNE(F) = {(, id} Follow(T) = {+, $,)}
FNE(T‟) = {*} Follow(T‟) = {+, $,)}
FNE(F) = {(, id} Follow(F) = {*, +, $,)}

• When A → αBβ,
 Follow(B) ⊇ FNE(β)
• When A → αBβ and Nullable(β),
 Follow(B) ⊇ Follow(A)

Predictive Parsing Table

 How to construct the parsing table

 Mapping N x T → P

 A → α ∈ M[A,a] for each a ∈ FNE(αFollow(A))
 a ∈ FNE(α), or

 Nullable(α) and a ∈ FOLLOW(A)

 Meaning of “Nullable(α) and a ∈ FOLLOW(A)”

 Since the stack has (part of) a sentential form with A
at the top, we can remove A (by expanding A→α) then
try to match a with a symbol below A in the stack

 Why? The symbol below A must be in Follow(A), so there is a

chance that it can be a (※ or is this always guaranteed?)

Predictive Parsing Table
 For our example grammar

 E → TE’

 E’ → +TE’ | e

 T → FT’

 T’ → *FT’ | e

 F → (E) | id

 The parsing table is as follows:

FNE() Follow() id + * () $

E
E’

T

T’

F

(, id $,)

+ $,)

(, id +, $,)

* +, $,)

(, id *, +, $,)

E → TE’

T → FT’

F → id

E’ → +TE’

T’ → e

T’ → *F

E → TE’

T → FT’

F → (E)

E’ → e

T’ → e

E’ → e

T’ → e

LL(1) Grammar

 Definition: a grammar G is LL(1) if there is at
most one production for any entry in the table

 So we can do top-down parsing with one lookahead

 LL(1) means left-to-right scan, performing
leftmost derivation, with one symbol lookahead

LL(1) Conditions

 G is LL(1) iff whenever A → α and A → β are
distinct production of G, the following holds
 α and β do not both derive strings beginning with a (∈ T)

 α and β do not both derive ε

 if β ⇒* ε then FNE(α) ∩ Follow(A) is empty

 In other words, G is LL(1) if
 if G is ε-free and unambiguous, FNE(α) ∩ FNE(β) = Φ

 If an ε-production is present,
FNE(αFollow(A)) ∩ FNE(βFollow(A)) = Φ

Testing for non-LL(1)ness

 In practice, for LL(1) testing, it is easiest to
construct the parse table and check

 Some shortcuts to test if G is not LL(1)

 G is left-recursive (e.g., A → Aα | β)

 Common left factors (e.g., A → αβ|αγ)

 G is ambiguous (e.g., S → Aa | a, A → ε)

Non-LL(1) Grammar
 Consider the following grammar G1, which is not LL(1)

S → Bbc
B → ε|b|c
 FNE(B) = FNE(S) = {b,c},
 FOLLOW(S)={$}, FOLLOW(B)={b}

 Since FNE(εFOLLOW(B))=FNE(bFOLLOW(B))={b}

 We want consider a larger class of LL parsing, LL(k),
which look-ahead more symbols

 FNE FOLLOW b c

S

B

{b,c} {$}

{b,c} {b}

S→Bbc S→Bbc

B→e B→c

B→b

LL(K) Parsing

 Begin by extending the definition of FNE() and FOLLOW()

 Definitions of FNEk() and FOLLOWk()

 As with FOLLOW(), we will implicitly augment the
grammar with S‟ → S$k so that out definitions are:
FOLLOWk(a) = {w|S ⇒* αAβ and ω ∈ FNEk(β$k)}

FNEk(α) = {w|(|w| < k and α ⇒* w) or
 (|w| = k and α ⇒* wx for some x}
FOLLOWk(A) = {w|S ⇒* αAβ and w ∈ FNEk(β)}

LL(K) Parsing Definition
 G is LL(k) for some fixed k if, whenever there are

two leftmost derivations,

S ⇒* wAα ⇒ wβα ⇒* wx, and
S ⇒* wAα ⇒ wγα ⇒* wy and β≠γ,
then FNEk(x) ≠ FNEk(y)

Strong-LL(K) Parsing

 Simplest way to implementing LL(k) parsing table

 Insert A→α ∈ M[A, x] for each x ∈ FNEk(αFollowk(A))

A grammar G is strong-LL(k) if there is at most
one production for any entry in the table

 If FNEk(βFOLLOWk(A)) ∩ FNEk(γFOLLOWk(A))=Φ for
all A → β and A → γ in G

Non-LL(1), but Strong-LL(2) Grammar

 Consider our non-LL(1) grammar G1 again
S → Bbc

B → ε|b|c

 FNE2(BbcFOLLOW2(S)) = {bc,bb,cb}

 FNE2(εFOLLOW2(B)) = {bc}, FNE2(bFOLLOW2(B)) = {bb},
FNE2(cFOLLOW2(B)) = {cb}

 So, G1 is Strong-LL(2) even though it is not LL(1)

bc bb cb

S S→Bbc S→Bbc S→Bbc

B B→e B→b B→c

LL(2) but Non-Strong LL(2) Grammar

 Consider the following grammar G2
S → Bbc|aBcb

B → ε|b|c

 FNE2() and FOLLOW2() functions:
 FNE2(S) = {ab, ac, bb, bc, cb}, FNE2(B) = {b,c}

 FOLLOW2(S) = {$$}, FOLLOW2(B) = {bc,cb}
 FNE2(εFOLLOW2(B)) = {bc,cb}

 FNE2(bFOLLOW2(B)) = {bb,bc}, so not strong-LL(2)

 But isn‟t G LL(2), either?
 Check with the LL(k) definition

 S ⇒ Bbc ⇒

 S ⇒ aBcb ⇒

Modified Grammar G2‟

 G2 is indeed LL(2), then what‟s wrong with strong-LL(2)
algorithm? Why can‟t it generate a LL(2) parsing table?

 Because of Follow(), which does not always tell the truth

 Let us rewrite G2 with two new nonterminals, Bbc and Bcb,
to keep track of local lookahead (context) information
 S → Bbcbc|aBcbcb

 Bbc → ε|b|c

 Bcb → ε|b|c

 Now, in place of FNE2(βFOLLOW2(B)) to control putting
B→β into table, use FNE2(βR) to control BR→β, where R is
local lookahead

 For S → Bbcbc, FNE2(Bbcbc$$) = {bc,bb,cb}

 For S → aBcbcb, FNE2(aBcbcb$$) = {ac,ab}

 For Bbc → ε , FNE2(ε{bc}) = {bc}

 For Bbc → b, FNE2(b{bc}) = {bb}

 For Bbc → c, FNE2(c{bc}) = {cb}

 For Bcb → ε , FNE2(ε{cb}) = {cb}

 For Bcb → b, FNE2(b{cb}) = {bc}

 For Bcb → c, FNE2(c{cb}) = {cc}

 Corresponding LL(2) Table: G2‟ is strong-LL(2)

LL(k) vs. Strong-LL(k)

 LL(k) definition says
ωAα ⇒ ωβα, ωAα ⇒ ωγα

FNEk(βα)∩FNEk(γα) = Φ
 xAδ ⇒ xβδ, xAδ ⇒ xγδ

FNEk(βδ)∩FNEk(γδ) = Φ

 Strong-LL(k) definition adds additional constraint
 FNEk(βα)∩FNEk(γδ) = Φ
 FNEk(βδ)∩FNEk(γα) = Φ

 Why? Because it relies on Follow(A) to get the context
information, which always includes both α and δ

LL(1) = Strong LL(1) ?

 One question:
 We saw an example grammar that is LL(2), yet not

strong-LL(2)

 Then, are there any example grammars that are LL(1),
yet not Strong-LL(1)?

 The issue is the granularity of the lookahead

 The lookahead of LL(2) is finer than LL(1) since
it look aheads more

 A nice exam question

Recursive-Descent Parsing
 Instead of stack, use recursive procedures

 Sequence of production calls implicitly define parse
tree

 Given a parse table M[A,a], it is easy to write one

 extern token lookahead;
void match(token tok) {
 if (lookahead != tok) error();
 else lookahead = get_next_token();
}
void E() {
 switch (lookahead) {
 case „id‟:
 case „(„ : T(); Ep(); break;

 default : error();
 }
}

void Ep() {
 switch (lookahead) {
 case „+‟ : match(„+‟); T(); Ep(); break;
 case „)‟ :
 case „$‟: break;

 default : error();
 }
}
...
main() {
 lookahead = get_next_token();
 E();
}

LL(1) Summary

 LL(1) parsing

 Stack, lookahead, parsing table

 Parsing table construction
 Nullable(), FNE(), Follow()

 LL(1) grammar

 Actually represent limited class of languages

 i.e., many programming languages are not LL(1)

 So, consider a larger class: LR bottom-up parsing

