
Top-Down Parsing

Dragon ch. 4.4

Recognizer and Parser

 A recognizer is a machine (system) that can accept a
terminal string for some grammar and determine whether
the string is in the language accepted by the grammar

 A parser, in addition, finds a derivation for the string
 For grammar G and string x, find a derivation S⇒* x if one exists

 Construct a parse tree corresponding to this derivation

 Input is read (scanned) from left to right

 Two types of the parser: top-down vs. bottom-up

Top-down Parsing

 Top-down parsing expands a tree from the
top (start symbol) using a stack

 Put the start symbol on the stack top

 Repeat
 Expand a nonterminal on the stack top

 Match stack tops with input terminal symbols

 Problem: which production to expand?
 If there are multiple productions for a given nonterminal

 One way: guess!

Structure of top-down parsing

Predictive
Top-down

Parser

Output:
Sequence of Productions

 Parse
 Table
(which
 production
 to expand)

consult

a a b $

$

S

A

Example of Parsing by Guessing

 P of an Example Grammar
 S → AS|B, A → a, B→ b

 Parsing process

 In reality, computers do not guess very well
 So we use lookahead for correct expansion

 Before we do this, we must “condition” the grammar

Removal of Left Recursion

 Problem: infinite regression

 A → Aα | β, (the corresponding langauge is βα*)

 Remove of immediate left recursion
A → βB, B → αB|ε

 More generally,

 A → Aα1, A → Aα2

 A → β1, A → β2

 A → (β1|β2)B, B → (α1|α2)B|ε

Example of Removing Left Recursion

 Example of removing left immediate recursion

 Can remove all left recursions

 Refer to Dragon Ch. 4.1 page 177

 E → E + T
 E → T
 E → TB
 B → +TB | e

Left Factoring

 Not have sufficient information right now

A → αβ|αγ

 Left factoring: turn two alternatives into one
so that we match α first and hope it helps

A → αB, B→β|γ

Example: E → T + E
 E → T
 E → TB
 B → +E | e

Predictive Top-Down Parsing

 Perform educated guess

 Do not blindly guess productions that cannot even
get the first symbol right

 If the current input symbol is a and the top stack

symbol is S, which of the two productions (S →
bS, S → a) should be expanded?

 Two versions

 Non-Recursive version with a stack

 Recursive version: recursive descent parsing

Table-Driven Non-Recursive Parsing

 Input buffer: the string to be parsed followed by $

 Stack: a sequence of grammar symbols with $ at the bottom
 Initially, the stack has the start symbol on top of $

 Parsing table: two dimensional array M[A,a], where A is a
non-terminal and a is a terminal or $; it has productions

 Output: a sequence of productions expanded

Predictive
Parser

Output:
Sequence of Productions

 Parse
 Table
(which
 production
 to expand)

consult

$
S

A

a a b $

Action of the Parser

When X is a symbol on top of the stack and a

is the current input symbol
 If X = a = $, a successful completion of parsing

 If X = a ≠ $, pops X off the stack and advances

the input pointer to the next input symbol

 If X is a nonterminal, consult M[X,a] which will be

either an X-production or an error;
 If M[X,a] = {X → UVW}, X on top of stack is replaced by

WVU (with U on top) and print its production number

 If [X,a] = error means a parsing error

An Example Grammar

Original grammar
E → E + T | T
T → T * F | F
F → (E) | id

After removing left recursion
E → TE‟
E‟ → +TE‟ | e
T → FT‟
T‟ → *FT‟ | e
F → (E) | id

An Example Parsing Table
id + * () $

E
E’

T

T’

F

E → TE’

T → FT’

F → id

E’ → +TE’

T’ → e

T’→ *F

E → TE’

T → FT’

F→ (E)

E’ → e

T’ → e

E’ → e

T’ → e

How is id + id * id parsed?

How to Construct the Parse Table?

 For this, we use three functions
 Nullable() : can it be a null?

 Predicate, V* → {true, false}

 Telling if a string of nonterminals is nullable, i.e., can
derive an empty string

 FNE(): first but no epsilon
 Terminals that can appear at the beginning of a

derivation from a string of grammar symbols

 Follow(): what can follow after a nonterminal?
 Terminals (or $) that can appear after a nonterminal in

some sentential form

Nullable()

 Nullable(α) = true if α ⇒ *ε
 = false, otherwise
 Start with the obvious ones, e.g., A → ε

 Add new ones when A → α and Nullable(α)

 Keep going until there is no change

 More formally,
 Nullable(ε) = true

 Nullable(X1X2..Xn) = true iff Nullable(Xi)∀i

 Nullable(A) = true if A → α and Nullable(α)

FNE()

 Definition: FNE(α) = {a|α ⇒* aX}

 FNE() is computed as in Nullable()
 FNE(a) = {a}

 FNE(X1X2...Xn) =
if(!Nullable(X1)) then FNE(X1)
else FNE(X1) ∪ FNE(X2X3...Xn)

 if A → α then FNE(A) ⊇ FNE(α)

FNE() Computation Example
 For our example grammar

 E → TE‟

 E‟ → +TE‟ | e

 T → FT‟

 T‟ → *FT‟ | e

 F → (E) | id

 We can compute FNE() as follows

Nullable(T) = false FNE(E) = FNE(T) = {(,id}
 FNE(E‟) = {+}
Nullable(F) = false FNE(T) = FNE(F) = {(,id}
 FNE(T‟) = {*}
 FNE(F) = {(, id}

First()

 The Dragon book uses First(), which is a
combination of Nullable() and FNE()
 If α is nullable First(α) = {a|α ⇒* aX}∪{ε}

else First(α) = {a|α ⇒* aX}

 First() can be computed from Nullable()
and FNE(), or directly (see Dragon book)

Follow()
 Follow(A)={a|S ⇒* αAaβ}, where a might be $

 Follow() is needed if there is an ε-production

 To compute Follow(),
 $ ∈ Follow(S)

 When A → αBβ,

 Follow(B) ⊇ FNE(β)

 When A → αBβ and Nullable(β),
Follow(B) ⊇ Follow(A)

Follow() Computation Example
 For our example grammar

 E → TE‟

 E‟ → +TE‟ | e

 T → FT‟

 T‟ → *FT‟ | e

 F → (E) | id

 We can compute Follow() as follows

FNE(E) = FNE(T) = {(, id} Follow(E) = {$,)}
FNE(E‟) = {+} Follow(E‟) = {$,)}
FNE(T) = FNE(F) = {(, id} Follow(T) = {+, $,)}
FNE(T‟) = {*} Follow(T‟) = {+, $,)}
FNE(F) = {(, id} Follow(F) = {*, +, $,)}

• When A → αBβ,
 Follow(B) ⊇ FNE(β)
• When A → αBβ and Nullable(β),
 Follow(B) ⊇ Follow(A)

Predictive Parsing Table

 How to construct the parsing table

 Mapping N x T → P

 A → α ∈ M[A,a] for each a ∈ FNE(αFollow(A))
 a ∈ FNE(α), or

 Nullable(α) and a ∈ FOLLOW(A)

 Meaning of “Nullable(α) and a ∈ FOLLOW(A)”

 Since the stack has (part of) a sentential form with A
at the top, we can remove A (by expanding A→α) then
try to match a with a symbol below A in the stack

 Why? The symbol below A must be in Follow(A), so there is a

chance that it can be a (※ or is this always guaranteed?)

Predictive Parsing Table
 For our example grammar

 E → TE’

 E’ → +TE’ | e

 T → FT’

 T’ → *FT’ | e

 F → (E) | id

 The parsing table is as follows:

FNE() Follow() id + * () $

E
E’

T

T’

F

(, id $,)

+ $,)

(, id +, $,)

* +, $,)

(, id *, +, $,)

E → TE’

T → FT’

F → id

E’ → +TE’

T’ → e

T’ → *F

E → TE’

T → FT’

F → (E)

E’ → e

T’ → e

E’ → e

T’ → e

LL(1) Grammar

 Definition: a grammar G is LL(1) if there is at
most one production for any entry in the table

 So we can do top-down parsing with one lookahead

 LL(1) means left-to-right scan, performing
leftmost derivation, with one symbol lookahead

LL(1) Conditions

 G is LL(1) iff whenever A → α and A → β are
distinct production of G, the following holds
 α and β do not both derive strings beginning with a (∈ T)

 α and β do not both derive ε

 if β ⇒* ε then FNE(α) ∩ Follow(A) is empty

 In other words, G is LL(1) if
 if G is ε-free and unambiguous, FNE(α) ∩ FNE(β) = Φ

 If an ε-production is present,
FNE(αFollow(A)) ∩ FNE(βFollow(A)) = Φ

Testing for non-LL(1)ness

 In practice, for LL(1) testing, it is easiest to
construct the parse table and check

 Some shortcuts to test if G is not LL(1)

 G is left-recursive (e.g., A → Aα | β)

 Common left factors (e.g., A → αβ|αγ)

 G is ambiguous (e.g., S → Aa | a, A → ε)

Non-LL(1) Grammar
 Consider the following grammar G1, which is not LL(1)

S → Bbc
B → ε|b|c
 FNE(B) = FNE(S) = {b,c},
 FOLLOW(S)={$}, FOLLOW(B)={b}

 Since FNE(εFOLLOW(B))=FNE(bFOLLOW(B))={b}

 We want consider a larger class of LL parsing, LL(k),
which look-ahead more symbols

 FNE FOLLOW b c

S

B

{b,c} {$}

{b,c} {b}

S→Bbc S→Bbc

B→e B→c

B→b

LL(K) Parsing

 Begin by extending the definition of FNE() and FOLLOW()

 Definitions of FNEk() and FOLLOWk()

 As with FOLLOW(), we will implicitly augment the
grammar with S‟ → S$k so that out definitions are:
FOLLOWk(a) = {w|S ⇒* αAβ and ω ∈ FNEk(β$k)}

FNEk(α) = {w|(|w| < k and α ⇒* w) or
 (|w| = k and α ⇒* wx for some x}
FOLLOWk(A) = {w|S ⇒* αAβ and w ∈ FNEk(β)}

LL(K) Parsing Definition
 G is LL(k) for some fixed k if, whenever there are

two leftmost derivations,

S ⇒* wAα ⇒ wβα ⇒* wx, and
S ⇒* wAα ⇒ wγα ⇒* wy and β≠γ,
then FNEk(x) ≠ FNEk(y)

Strong-LL(K) Parsing

 Simplest way to implementing LL(k) parsing table

 Insert A→α ∈ M[A, x] for each x ∈ FNEk(αFollowk(A))

A grammar G is strong-LL(k) if there is at most
one production for any entry in the table

 If FNEk(βFOLLOWk(A)) ∩ FNEk(γFOLLOWk(A))=Φ for
all A → β and A → γ in G

Non-LL(1), but Strong-LL(2) Grammar

 Consider our non-LL(1) grammar G1 again
S → Bbc

B → ε|b|c

 FNE2(BbcFOLLOW2(S)) = {bc,bb,cb}

 FNE2(εFOLLOW2(B)) = {bc}, FNE2(bFOLLOW2(B)) = {bb},
FNE2(cFOLLOW2(B)) = {cb}

 So, G1 is Strong-LL(2) even though it is not LL(1)

bc bb cb

S S→Bbc S→Bbc S→Bbc

B B→e B→b B→c

LL(2) but Non-Strong LL(2) Grammar

 Consider the following grammar G2
S → Bbc|aBcb

B → ε|b|c

 FNE2() and FOLLOW2() functions:
 FNE2(S) = {ab, ac, bb, bc, cb}, FNE2(B) = {b,c}

 FOLLOW2(S) = {$$}, FOLLOW2(B) = {bc,cb}
 FNE2(εFOLLOW2(B)) = {bc,cb}

 FNE2(bFOLLOW2(B)) = {bb,bc}, so not strong-LL(2)

 But isn‟t G LL(2), either?
 Check with the LL(k) definition

 S ⇒ Bbc ⇒

 S ⇒ aBcb ⇒

Modified Grammar G2‟

 G2 is indeed LL(2), then what‟s wrong with strong-LL(2)
algorithm? Why can‟t it generate a LL(2) parsing table?

 Because of Follow(), which does not always tell the truth

 Let us rewrite G2 with two new nonterminals, Bbc and Bcb,
to keep track of local lookahead (context) information
 S → Bbcbc|aBcbcb

 Bbc → ε|b|c

 Bcb → ε|b|c

 Now, in place of FNE2(βFOLLOW2(B)) to control putting
B→β into table, use FNE2(βR) to control BR→β, where R is
local lookahead

 For S → Bbcbc, FNE2(Bbcbc$$) = {bc,bb,cb}

 For S → aBcbcb, FNE2(aBcbcb$$) = {ac,ab}

 For Bbc → ε , FNE2(ε{bc}) = {bc}

 For Bbc → b, FNE2(b{bc}) = {bb}

 For Bbc → c, FNE2(c{bc}) = {cb}

 For Bcb → ε , FNE2(ε{cb}) = {cb}

 For Bcb → b, FNE2(b{cb}) = {bc}

 For Bcb → c, FNE2(c{cb}) = {cc}

 Corresponding LL(2) Table: G2‟ is strong-LL(2)

LL(k) vs. Strong-LL(k)

 LL(k) definition says
ωAα ⇒ ωβα, ωAα ⇒ ωγα

FNEk(βα)∩FNEk(γα) = Φ
 xAδ ⇒ xβδ, xAδ ⇒ xγδ

FNEk(βδ)∩FNEk(γδ) = Φ

 Strong-LL(k) definition adds additional constraint
 FNEk(βα)∩FNEk(γδ) = Φ
 FNEk(βδ)∩FNEk(γα) = Φ

 Why? Because it relies on Follow(A) to get the context
information, which always includes both α and δ

LL(1) = Strong LL(1) ?

 One question:
 We saw an example grammar that is LL(2), yet not

strong-LL(2)

 Then, are there any example grammars that are LL(1),
yet not Strong-LL(1)?

 The issue is the granularity of the lookahead

 The lookahead of LL(2) is finer than LL(1) since
it look aheads more

 A nice exam question

Recursive-Descent Parsing
 Instead of stack, use recursive procedures

 Sequence of production calls implicitly define parse
tree

 Given a parse table M[A,a], it is easy to write one

 extern token lookahead;
void match(token tok) {
 if (lookahead != tok) error();
 else lookahead = get_next_token();
}
void E() {
 switch (lookahead) {
 case „id‟:
 case „(„ : T(); Ep(); break;

 default : error();
 }
}

void Ep() {
 switch (lookahead) {
 case „+‟ : match(„+‟); T(); Ep(); break;
 case „)‟ :
 case „$‟: break;

 default : error();
 }
}
...
main() {
 lookahead = get_next_token();
 E();
}

LL(1) Summary

 LL(1) parsing

 Stack, lookahead, parsing table

 Parsing table construction
 Nullable(), FNE(), Follow()

 LL(1) grammar

 Actually represent limited class of languages

 i.e., many programming languages are not LL(1)

 So, consider a larger class: LR bottom-up parsing

