
Top-Down Parsing 

Dragon ch. 4.4 



Recognizer and Parser 

 A recognizer is a machine (system) that can accept a 
terminal string for some grammar and determine whether 
the string is in the language accepted by the grammar 
 

 A parser, in addition, finds a derivation for the string 
 For grammar G and string x, find a derivation S⇒* x if one exists 

 Construct a parse tree corresponding to this derivation 

 Input is read (scanned) from left to right 

 Two types of the parser: top-down vs. bottom-up 



Top-down Parsing 

 Top-down parsing expands a tree from the 
top (start symbol) using a stack  

 Put the start symbol on the stack top 

 Repeat 
 Expand a nonterminal on the stack top 

 Match stack tops with input terminal symbols 

 Problem: which production to expand? 
 If there are multiple productions for a given nonterminal 

 One way: guess! 



Structure of top-down parsing  
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Example of Parsing by Guessing 

 P of an Example Grammar 
 S → AS|B, A → a, B→ b 

 Parsing process 

 

 

 

 

 

 

 

 In reality, computers do not guess very well 
 So we use lookahead for correct expansion 

 Before we do this, we must “condition” the grammar 



Removal of Left Recursion 

 Problem: infinite regression 

 A → Aα | β, (the corresponding langauge is βα*) 

 Remove of immediate left recursion 
A → βB, B → αB|ε  

 More generally, 

 A → Aα1, A → Aα2 

 A → β1, A → β2 

 A → (β1|β2 )B, B → (α1|α2)B|ε  



Example of Removing Left Recursion 

 Example of removing left immediate recursion 

 

 

 

 
 Can remove all left recursions 

 Refer to Dragon Ch. 4.1 page 177 

 

   E → E + T 
   E → T 
   E → TB 
   B → +TB | e 



Left Factoring 

 Not have sufficient information right now  

A → αβ|αγ 

 Left factoring: turn two alternatives into one 
so that we match α first and hope it helps 

A → αB, B→β|γ 

Example:      E → T + E 
    E → T 
    E → TB 
    B → +E | e 



Predictive Top-Down Parsing 

 Perform educated guess 

 Do not blindly guess productions that cannot even 
get the first symbol right 

 If the current input symbol is a and the top stack 

symbol is S, which of the two productions (S → 
bS, S → a) should be expanded? 

 Two versions 

 Non-Recursive version with a stack 

 Recursive version: recursive descent parsing 

 



Table-Driven Non-Recursive Parsing 

 

 

 

 

 

 Input buffer: the string to be parsed followed by $ 

 Stack: a sequence of grammar symbols with $ at the bottom 
 Initially, the stack has the start symbol on top of $ 

 Parsing table: two dimensional array M[A,a], where A is a 
non-terminal and a is a terminal or $; it has productions 

 Output: a sequence of productions expanded 
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Action of the Parser 

When X is a symbol on top of the stack and a 

is the current input symbol 
 If X = a = $, a successful completion of parsing 

 If X = a ≠ $, pops X off the stack and advances 

the input pointer to the next input symbol 

 If X is a nonterminal, consult M[X,a] which will be 

either an X-production or an error;  
 If M[X,a] = {X → UVW}, X on top of stack is replaced by 

WVU (with U on top) and print its production number  

 If [X,a] = error means a parsing error 



An Example Grammar 

Original grammar 
E → E + T | T 
T → T * F | F 
F → ( E ) | id 

After removing left recursion 
E → TE‟ 
E‟ → +TE‟ | e 
T → FT‟ 
T‟ → *FT‟ | e 
F → ( E ) | id 



An Example Parsing Table 
id + * ( ) $ 

E 
E’ 

T 

T’ 
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E → TE’ 

 

T → FT’ 

 

F → id 

 

E’ → +TE’ 

 

T’ → e 

 

 

 

T’→ *F 

E → TE’ 

 

T → FT’ 

 

F→ (E) 

 

E’ → e 

 

T’ → e 

 

E’ → e 

 

T’ → e 

How is id + id * id parsed? 



How to Construct the Parse Table? 

 For this, we use three functions 
 Nullable() : can it be a null?  

 Predicate, V* → {true, false} 

 Telling if a string of nonterminals is nullable, i.e., can 
derive an empty string 

 FNE(): first but no epsilon 
 Terminals that can appear at the beginning of a 

derivation from a string of grammar symbols 

 Follow():  what can follow after a nonterminal? 
 Terminals (or $) that can appear after a nonterminal in 

some sentential form 



Nullable() 

 Nullable(α) = true if α ⇒ *ε  
   = false, otherwise 
 Start with the obvious ones, e.g., A → ε  

 Add new ones when A → α and Nullable(α) 

 Keep going until there is no change 
 

 More formally, 
 Nullable(ε ) = true 

 Nullable(X1X2..Xn) = true iff Nullable(Xi)∀i 

 Nullable(A) = true if A → α and Nullable(α) 

 
 



FNE() 

 Definition: FNE(α) = {a|α ⇒* aX} 

 FNE() is computed as in Nullable() 
 FNE(a) = {a} 

 FNE(X1X2...Xn) =  
if(!Nullable(X1)) then FNE(X1) 
else FNE(X1) ∪ FNE(X2X3...Xn) 

 if A → α then FNE(A) ⊇ FNE(α) 



FNE() Computation Example 
 For our example grammar 

 E → TE‟ 

 E‟ → +TE‟ | e     

 T → FT‟ 

 T‟ → *FT‟ | e 

 F → (E) | id 

 We can compute FNE() as follows 

Nullable(T) = false FNE(E) = FNE(T) = {(,id} 
   FNE(E‟) = {+} 
Nullable(F) = false FNE(T) = FNE(F) = {(,id} 
   FNE(T‟) = {*} 
   FNE(F) = {(, id} 



First() 

 The Dragon book uses First(), which is a 
combination of Nullable() and FNE() 
 If α is nullable First(α) = {a|α ⇒* aX}∪{ε} 

else First(α) = {a|α ⇒* aX} 
 

 First() can be computed from Nullable() 
and FNE(), or directly (see Dragon book) 



Follow() 
 Follow(A)={a|S ⇒* αAaβ}, where a might be $  

 Follow() is needed if there is an ε-production 

 To compute Follow(), 
 $ ∈ Follow(S) 

 When A → αBβ,  

   Follow(B) ⊇ FNE(β) 

 When A → αBβ and Nullable(β), 
Follow(B) ⊇ Follow(A) 



Follow() Computation Example 
 For our example grammar 

 E → TE‟ 

 E‟ → +TE‟ | e     

 T → FT‟ 

 T‟ → *FT‟ | e 

 F → (E) | id 

 We can compute Follow() as follows 

FNE(E) = FNE(T) = {(, id} Follow(E) = {$, )} 
FNE(E‟) = {+}   Follow(E‟) = {$, )} 
FNE(T) = FNE(F) = {(, id} Follow(T) = {+, $, )} 
FNE(T‟) = {*}   Follow(T‟) = {+, $, )} 
FNE(F) = {(, id}  Follow(F) = {*, +, $, )} 

• When A → αBβ,  
      Follow(B) ⊇ FNE(β) 
• When A → αBβ and Nullable(β), 
      Follow(B) ⊇ Follow(A) 

 



Predictive Parsing Table 

 How to construct the parsing table 

 Mapping N x T → P 

 A → α ∈ M[A,a] for each a ∈ FNE(αFollow(A)) 
 a ∈ FNE(α), or 

 Nullable(α) and a ∈ FOLLOW(A) 

 Meaning of “Nullable(α) and a ∈ FOLLOW(A)” 

 Since the stack has (part of) a sentential form with A 
at the top, we can remove A (by expanding A→α) then 
try to match a with a symbol below A in the stack 

 Why? The symbol below A must be in Follow(A), so there is a 

chance that it can be a (※ or is this always guaranteed?) 



Predictive Parsing Table 
 For our example grammar 

 E → TE’ 

 E’ → +TE’ | e     

 T → FT’ 

 T’ → *FT’ | e 

 F → (E) | id 

 The parsing table is as follows: 
 

FNE()   Follow() id + * ( ) $ 

E 
E’ 

T 

T’ 

F 

(, id     $, ) 

+         $, ) 

(, id     +, $, ) 

*         +, $, ) 

(, id     *, +, $, ) 

E → TE’ 

 

T → FT’ 

 

F → id 

 

E’ → +TE’ 

 

T’ → e 

 

 

 

T’ → *F 

E → TE’ 

 

T → FT’ 

 

F → (E) 

 

E’ → e 

 

T’ → e 

 

E’ → e 

 

T’ → e 



LL(1) Grammar 

 Definition: a grammar G is LL(1) if there is at 
most one production for any entry in the table 

 So we can do top-down parsing with one lookahead 

 

 LL(1) means left-to-right scan, performing 
leftmost derivation, with one symbol lookahead 

 



LL(1) Conditions  

 G is LL(1) iff whenever A → α and A → β are 
distinct production of G, the following holds 
 α and β do not both derive strings beginning with a (∈ T) 

 α and β do not both derive ε  

 if β ⇒* ε  then FNE(α) ∩ Follow(A) is empty 
 

 In other words, G is LL(1) if 
 if G is ε-free and unambiguous, FNE(α) ∩ FNE(β) = Φ 

 If an ε-production is present, 
FNE(αFollow(A)) ∩ FNE(βFollow(A)) = Φ 



Testing for non-LL(1)ness 

 In practice, for LL(1) testing, it is easiest to 
construct the parse table and check 

 

 Some shortcuts to test if G is not LL(1) 

 G is left-recursive (e.g., A → Aα | β)  

 Common left factors (e.g., A → αβ|αγ) 

 G is ambiguous (e.g., S → Aa | a, A → ε ) 



Non-LL(1) Grammar 
 Consider the following grammar G1, which is not LL(1) 

S → Bbc 
B → ε|b|c 
 FNE(B) = FNE(S) = {b,c},  
 FOLLOW(S)={$}, FOLLOW(B)={b} 

 
 
 
 
 
 Since FNE(εFOLLOW(B))=FNE(bFOLLOW(B))={b} 

 We want consider a larger class of LL parsing, LL(k), 
which look-ahead more symbols 

 FNE     FOLLOW     b           c 

S 

B 

{b,c}       {$} 

{b,c}       {b} 

S→Bbc   S→Bbc 

B→e       B→c 

B→b 



LL(K) Parsing 

 Begin by extending the definition of FNE() and FOLLOW() 

 Definitions of FNEk() and FOLLOWk() 

 

 

 

 

 As with FOLLOW(), we will implicitly augment the 
grammar with S‟ → S$k so that out definitions are: 
FOLLOWk(a) = {w|S ⇒* αAβ and ω ∈ FNEk(β$k)} 

FNEk(α) = {w|(|w| < k and α ⇒* w) or  
                    (|w| = k and α ⇒* wx for some x} 
FOLLOWk(A) = {w|S ⇒* αAβ and w ∈ FNEk(β)} 



LL(K) Parsing Definition 
 G is LL(k) for some fixed k if, whenever there are 

two leftmost derivations, 
 

 

 

S ⇒* wAα ⇒ wβα ⇒* wx, and  
S ⇒* wAα ⇒ wγα ⇒* wy and β≠γ,  
then FNEk(x) ≠ FNEk(y) 



Strong-LL(K) Parsing 
 

 Simplest way to implementing LL(k) parsing table 

 Insert A→α ∈ M[A, x] for each x ∈ FNEk(αFollowk(A)) 
 

A grammar G is strong-LL(k) if there is at most 
one production for any entry in the table 

 If FNEk(βFOLLOWk(A)) ∩ FNEk(γFOLLOWk(A))=Φ for 
all A → β and A → γ in G 



Non-LL(1), but Strong-LL(2) Grammar 

 Consider our non-LL(1) grammar G1 again 
S → Bbc 

B → ε|b|c 

 FNE2(BbcFOLLOW2(S)) = {bc,bb,cb} 

 FNE2(εFOLLOW2(B)) = {bc}, FNE2(bFOLLOW2(B)) = {bb}, 
FNE2(cFOLLOW2(B)) = {cb} 

 

 

 

 

 

 So, G1 is Strong-LL(2) even though it is not LL(1)  

bc bb cb 

S S→Bbc S→Bbc S→Bbc 

B B→e B→b B→c 



LL(2) but Non-Strong LL(2) Grammar 

 Consider the following grammar G2 
S → Bbc|aBcb 

B → ε|b|c 

 FNE2() and FOLLOW2() functions: 
 FNE2(S) = {ab, ac, bb, bc, cb}, FNE2(B) = {b,c} 

 FOLLOW2(S) = {$$}, FOLLOW2(B) = {bc,cb} 
 FNE2(εFOLLOW2(B)) = {bc,cb} 

 FNE2(bFOLLOW2(B)) = {bb,bc}, so not strong-LL(2) 

 But isn‟t G LL(2), either? 
 Check with the LL(k) definition 

 S ⇒ Bbc ⇒ 

 S ⇒ aBcb ⇒ 



Modified Grammar G2‟ 

 G2 is indeed LL(2), then what‟s wrong with strong-LL(2) 
algorithm? Why can‟t it generate a LL(2) parsing table? 

 Because of Follow(), which does not always tell the truth 
 

 Let us rewrite G2 with two new nonterminals, Bbc and Bcb, 
to keep track of local lookahead (context) information 
 S → Bbcbc|aBcbcb 

 Bbc → ε|b|c 

 Bcb → ε|b|c 

 Now, in place of FNE2(βFOLLOW2(B)) to control putting 
B→β into table, use FNE2(βR) to control BR→β, where R is 
local lookahead 



 For S → Bbcbc, FNE2(Bbcbc$$) = {bc,bb,cb} 

 For S → aBcbcb, FNE2(aBcbcb$$) = {ac,ab} 

 For Bbc → ε , FNE2(ε{bc}) = {bc} 

 For Bbc → b, FNE2(b{bc}) = {bb} 

 For Bbc → c, FNE2(c{bc}) = {cb} 

 For Bcb → ε , FNE2(ε{cb}) = {cb} 

 For Bcb → b, FNE2(b{cb}) = {bc} 

 For Bcb → c, FNE2(c{cb}) = {cc} 

 Corresponding LL(2) Table: G2‟ is strong-LL(2) 



LL(k) vs. Strong-LL(k) 

 LL(k) definition says 
ωAα ⇒ ωβα, ωAα ⇒ ωγα 

FNEk(βα)∩FNEk(γα) = Φ 
 xAδ ⇒ xβδ, xAδ ⇒ xγδ 

FNEk(βδ)∩FNEk(γδ) = Φ 
 

 Strong-LL(k) definition adds additional constraint 
 FNEk(βα)∩FNEk(γδ) = Φ 
 FNEk(βδ)∩FNEk(γα) = Φ 
 

 Why? Because it relies on Follow(A) to get the context 
information, which always includes both α and δ 



LL(1) = Strong LL(1) ? 

 One question: 
 We saw an example grammar that is LL(2), yet not 

strong-LL(2) 

 Then, are there any example grammars that are LL(1), 
yet not Strong-LL(1)? 

 The issue is the granularity of the lookahead 

 The lookahead of LL(2) is finer than LL(1) since 
it look aheads more 

 A nice exam question 



Recursive-Descent Parsing 
 Instead of stack, use recursive procedures 

 Sequence of production calls implicitly define parse 
tree 

 Given a parse table M[A,a], it is easy to write one 

 extern token lookahead; 
void match(token tok) { 
    if (lookahead != tok) error(); 
    else lookahead = get_next_token(); 
} 
void E() { 
    switch (lookahead) { 
        case „id‟: 
        case „(„ : T(); Ep(); break; 

        default : error(); 
    } 
} 

void Ep() { 
    switch (lookahead) { 
        case „+‟ : match(„+‟); T(); Ep(); break; 
        case „)‟ : 
        case „$‟: break; 

        default : error(); 
    } 
} 
... 
main() { 
    lookahead = get_next_token(); 
    E(); 
} 



LL(1) Summary 

 LL(1) parsing 

 Stack, lookahead, parsing table 

 Parsing table construction 
 Nullable(), FNE(), Follow()  

 LL(1) grammar 

 Actually represent limited class of languages 

 i.e., many programming languages are not LL(1) 

 So, consider a larger class: LR bottom-up parsing 


