
Syntax-Directed
Translation & YACC

Dragon: Ch 5. (Just part of it)

Holub: pp 183-192, pp 348-354
 Dragon: ch. 4.9

Syntax-Directed Translation

 We cover this topic briefly, mostly for how we use in YACC

 Grammar defines the syntax of a language, but now we
want to talk about semantics (meanings)

 Let us first talk about how to perform semantic evaluation
 Approach 1: build the parse tree first and then traverse the tree

 Approach 2: use parser actions to evaluate & pass semantic values
 This means that we use the parser as a control structure

 Advantages of parser doing more than syntax analysis
 Do not have to construct the parse tree

 Do not need lots of recursive functions to associate/evaluate values

 We take the approach 2, which is one kind of syntax-directed
translation (SDT)

Semantics

 Semantics in SDT are determined by
 Semantic values associated with syntactic constructs

such as terminals or nonterminals
 What is semantic value? It depends on syntactic constructs

 ID: pointer to struct id, INT_NUM: integer number, Nonterminals:
pointer to struct decl, …….

 Semantic actions taken when reducing a production
 Evaluate and pass semantic values of reduced RHS
 Implemented by C code embedded in the RHS of a

production, executed at “that” point of parsing
 Since LR parsing need to process entire RHS before reducing an

actual production, we usually embed C code at the end of a RHS
 It is dangerous to embed action in the middle of a RHS

The Case of YACC

 In YACC

 Each grammar symbol in a production has a semantic value

 Expressed using $i notation

 Action is C code embedded in the RHS of a production

 Executed at the point it is encountered during parsing
 Usually at the end of a production

An Example :
E : E „+‟ E {$$ = $1 + $3;}
 | E „*‟ E {$$ = $1 * $3;}

 | num {$$ = $1;}
;
This assumes that the lexer converts and returns the number

Semantic Actions in YACC

 How is semantic evaluation done in YACC?
 E.g., E : E „+‟ E {$$ = $1 + $3}

 Run a separate value stack in parallel to state stack
 A pseudo variable $i refers to top_of_stack – (|RHS|-i)

 A pseudo variable $$ refers to the value associated with
LHS (nonterminal); it becomes to $1 by default

$i for i ≤ 0 is also defined.
 Refer to a stack value BEFORE those that match

the current production‟s RHS

 Must know the context when applying this action

 When is this useful? E.g., declaration: type var

F : E B „+‟ E {$$ = ...}

 ;

B : /* empty */ {prev_expr = $0;}

$0 refers to value of E in the previous production

Mid-Rule Actions in YACC

 We sometimes want an action in the middle of RHS

 Can access component value preceding the action via
$i, but cannot refer to forward (i.e., to the right)

 Action itself counts as a $i thing

 Can have its own semantic value by assigning to $$

 Later actions refer to it by $i

 Cannot assign values to LHS except at the end of the
RHS, or by default LHS‟s value becomes $1

A : B {$$ = $1 + 1;}
 C {$$ = $2 + $3;}

Implementation of Mid-rule Action

 YACC creates a new nonterminal and a
production for every mid-rule action.

 Might transform the above as follows:

 Real YACC does the following

A : B {$$ = $1 + 1;}
 C {$$ = $2 + $3;}

A : B M1 C M2{$$ = $4;}
M1 : /* empty */ {$$ = $0 + 1;}
M2 : /* empty */ {$$ = $-1 + $0;}

A : B M1 C {$$ = $2 + $3;}
M1 : /* empty */ {$$ = $0 + 1;}

Conflicts due to Mid-Rule Actions

 Mid-rule actions might lead to conflicts that were
not present in the original grammar

 If we want to do some work to prepare for local
variable spaces in the first production

Example:

 blk : BEGIN decls stmts END

 | BEGIN stmts END

 ;

Shift/Reduce Conflicts
 We might want to add mid-rule action as follows:

 Then, YACC converts the grammar as follows:

 However, this leads to a shift/reduce conflict

blk : M BEGIN decls stmts END
 | BEGIN stmts END
 ;
M : /* empty */ {prepare_local_vars();}

 blk : {prepare_local_vars();} BEGIN decls stmts END

 | BEGIN stmts END

 ;

Reduce/Reduce Conflicts
 If we add mid-rule actions differently as follows:

 Then, YACC converts the grammar as follows:

 However, this leads to reduce/reduce conflict

blk : {prepare_local_vars();} BEGIN decls stmts END
 | {prepare_local_vars();} BEGIN stmts END
 ;

blk : M1 BEGIN decls stmts END
 | M2 BEGIN stmts END
 ;
M1 : /* empty */ {prepare_local_vars();}
M2 : /* empty */ {prepare_local_vars();}

Possible Solutions

 Add the mid-rule action after BEGIN

 Another solution

blk : BEGIN {prepare_local_vars();} decls stmts END
 | BEGIN stmts END
 ;

blk : M BEGIN decls stmts END
 | M BEGIN stmts END
 ;
M : /* empty */ {prepare_local_vars();}

Attributes

 Attributes: semantic value associated with a
node in a parse tree (e.g., $i in YACC)
 Type, numeric value, string, pointer to C structure, etc.

 Two types: synthesized and inherited

 Synthesized attribute: value is determined by the
children of a node
 straightforward for bottom-up parsing

 Inherited attributes: value is passed down
from parent or a sibling of a node
 Example: simple variable declaration rule

 Implementation of inherited attributes
 Save in a global variable (problem: nested calls)

 Use value stack and negative attributes (in YACC)

Augmented and Attributed Grammar

 Augmented grammar:
 Semantic actions are placed in the grammar itself

 The position of an action determines when it is executed

 Attribute grammar
 A grammar to which attributes are attached

 Attributes help to specify code generation actions in greater
detail than with an augmented grammar alone

 Augmented, attributed grammar
 An attributed grammar augmented with actions

An Example Grammar

YACC Specification and Value Stack

