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Syntax—Directed Translation

m \We cover this topic briefly, mostly for how we use in YACC

m Grammar defines the syntax of a language, but now we
want to talk about semantics (meanings)

m Let us first talk about how to perform semantic evaluation
Approach 1: build the parse tree first and then traverse the tree

Approach 2: use parser actions to evaluate & pass semantic values
m [his means that we use the parser as a control structure
m Advantages of parser doing more than syntax analysis
Do not have to construct the parse tree
Do not need lots of recursive functions to associate/evaluate values

We take the approach 2, which is one kind of syntax—directed
translation (SDT)
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Semantics

0 iIn SOT are determined by

Semantic values associated with syntactic constructs
such as terminals or nonterminals

m What is semantic value? It depends on syntactic constructs

ID: pointer to struct id, INT_NUM: integer number, Nonterminals:
pointer to struct dec/, .......

Semantic actions taken when reducing a production
m Evaluate and pass semantic values of reduced RHS

= Implemented by C code embedded in the RHS of a
production, executed at “that” point of parsing

Since LR parsing need to process entire RHS before reducing an
actual production, we usually embed C code at the end of a RHS

= |t js dangerous to embed action in the middle of a RHS
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The Case of YACC

m In YACC

1 Each grammar symbol in a production has a semantic value
m Expressed using $i notation

1 Action is C code embedded in the RHS of a production

1 Executed at the point it is encountered during parsing
m Usually at the end of a production
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Semantic Actions in YACC

m How IS semantic evaluation done in YACC?
Eg., E:E + E{$$=9%1+ $3}

m Bun a separate value stack in parallel to state stack
A pseudo variable $i refers to top_of_stack — (|RHS|-i)

A pseudo variable $$ refers to the value associated with
LHS (nonterminal); it becomes to $1 by default



"

O30 fori < 0 is also defined.

m Refer to a stack value BEFORE those that match
the current production’s RHS

m Must know the context when applying this action

m When is this useful? E.g., declaration: type var



Mid—Rule Actions in YACC

m We sometimes want an action in the middle of RHS

A Bi$$ =81+ 1}
C {$$ =$2 + $3:}

Can access component value preceding the action via
$i, but cannot refer to forward (i.e., to the right)
Action itself counts as a $i thing

Can have its own semantic value by assigning to $$
Later actions refer to it by Ji

Cannot assign values to LHS except at the end of the
RHS, or by default LHS’s value becomes $1



Implementation of Mid—rule Action

m YACC creates a new nonterminal and a
production for every mid—-rule action.

m Might transform the above as follows:

m Real YACC does the following
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Conflicts due to Mid-

Rule Actions

m Mid—rule actions might lead to conflicts that were

not present in the original grammar

m |[f we want to do some work to prepare for local

variable spaces in the first production
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Shift/

Reduce Conflicts

m We might want to add mid-rule action as follows:

m [hen, YACC converts the grammar as follows:

m However, this leads to a shift/reduce conflict
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Reduce/

Reduce Conflicts

m |f we add mid-rule actions differently as follows:

m [hen, YACC converts the grammar as follows:

m However, this leads to reduce/reduce conflict
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Possible Solutions

m Add the mid-rule action after BEGIN

m Another solution
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Attributes

m Attributes: semantic value associated with a
node in a parse tree (e.qg., $i in YACC)

Type, numeric value, string, pointer to C structure, etc.
Two types: synthesized and inherited

m Synthesized attribute: value Is determined by the
children of a node

straightforward for bottom—-up parsing |
E :E’+ E {$51=91+8$3) Ev =EY+E.f¢

r N

Synthesized Attribute 2
+ E.v



m [nherited attributes: value Is passed down
from parent or a sibling of a node

Example: simple variable declaration rule

inherited
D : T Vg - D /
e = .
T : int | real; T.type V.in = int
AY id { add_type( $0, $1) } int i‘d
. type attribute J

1d attribute

m |[mplementation of inherited attributes
Save in a global variable (problem: nested calls)
Use value stack and negative attributes (in YACC)
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Augmented and Attributed Grammar

m Augmented grammar:
Semantic actions are placed in the grammar itself
The position of an action determines when it is executed

m Attribute grammar
A grammar to which attributes are attached

Attributes help to specify code generation actions in greater
detail than with an augmented grammar alone

m Augmented, attributed grammar
An attributed grammar augmented with actions
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Attributed, Augmented Grammar
S{— E { gen(" Answer = %s", E.t); }
Et_> E & T ¢ { gen(" %s +=%s", E.t, T.1); free(T.t); Et=E.t; }
E—> Ty (Et=Tt
Tt_> NUM

{ T.t=new_name(); gen("%s = %s", T.t, yytext); }
Attributed Parse Tree

Code Generation

t0=1
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¢1=3
| {0 += t1
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Answer = t0



YACC Specification and Value Stack

S > E
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