Syntax—0Directed

Translation & YACC

Dragon: Ch 5. (Just part of it)

Holub: pp 183-192, pp 348-354
Dragon: ch. 4.9

Syntax—Directed Translation

m \We cover this topic briefly, mostly for how we use in YACC

m Grammar defines the syntax of a language, but now we
want to talk about semantics (meanings)

m Let us first talk about how to perform semantic evaluation
Approach 1: build the parse tree first and then traverse the tree

Approach 2: use parser actions to evaluate & pass semantic values
m [his means that we use the parser as a control structure
m Advantages of parser doing more than syntax analysis
Do not have to construct the parse tree
Do not need lots of recursive functions to associate/evaluate values

We take the approach 2, which is one kind of syntax—directed
translation (SDT)

" A
Semantics

0 iIn SOT are determined by

Semantic values associated with syntactic constructs
such as terminals or nonterminals

m What is semantic value? It depends on syntactic constructs

ID: pointer to struct id, INT_NUM: integer number, Nonterminals:
pointer to struct dec/,

Semantic actions taken when reducing a production
m Evaluate and pass semantic values of reduced RHS

= Implemented by C code embedded in the RHS of a
production, executed at “that” point of parsing

Since LR parsing need to process entire RHS before reducing an
actual production, we usually embed C code at the end of a RHS

= |t js dangerous to embed action in the middle of a RHS

'fllllllllllllllllll
The Case of YACC

m In YACC

1 Each grammar symbol in a production has a semantic value
m Expressed using $i notation

1 Action is C code embedded in the RHS of a production

1 Executed at the point it is encountered during parsing
m Usually at the end of a production

" A
Semantic Actions in YACC

m How IS semantic evaluation done in YACC?
Eg., E:E + E{$$=9%1+ $3}

m Bun a separate value stack in parallel to state stack
A pseudo variable $i refers to top_of_stack — (|RHS|-i)

A pseudo variable $$ refers to the value associated with
LHS (nonterminal); it becomes to $1 by default

"

O30 fori < 0 is also defined.

m Refer to a stack value BEFORE those that match
the current production’s RHS

m Must know the context when applying this action

m When is this useful? E.g., declaration: type var

Mid—Rule Actions in YACC

m We sometimes want an action in the middle of RHS

A Bi$$ =81+ 1}
C {$$ =$2 + $3:}

Can access component value preceding the action via
$i, but cannot refer to forward (i.e., to the right)
Action itself counts as a $i thing

Can have its own semantic value by assigning to $$
Later actions refer to it by Ji

Cannot assign values to LHS except at the end of the
RHS, or by default LHS’s value becomes $1

Implementation of Mid—rule Action

m YACC creates a new nonterminal and a
production for every mid—-rule action.

m Might transform the above as follows:

m Real YACC does the following

" S
Conflicts due to Mid-

Rule Actions

m Mid—rule actions might lead to conflicts that were

not present in the original grammar

m |[f we want to do some work to prepare for local

variable spaces in the first production

"

Shift/

Reduce Conflicts

m We might want to add mid-rule action as follows:

m [hen, YACC converts the grammar as follows:

m However, this leads to a shift/reduce conflict

"

Reduce/

Reduce Conflicts

m |f we add mid-rule actions differently as follows:

m [hen, YACC converts the grammar as follows:

m However, this leads to reduce/reduce conflict

'_
Possible Solutions

m Add the mid-rule action after BEGIN

m Another solution

" A
Attributes

m Attributes: semantic value associated with a
node in a parse tree (e.qg., $i in YACC)

Type, numeric value, string, pointer to C structure, etc.
Two types: synthesized and inherited

m Synthesized attribute: value Is determined by the
children of a node

straightforward for bottom—-up parsing |
E :E’+ E {$51=91+8$3) Ev =EY+E.f¢

r N

Synthesized Attribute 2
+ E.v

m [nherited attributes: value Is passed down
from parent or a sibling of a node

Example: simple variable declaration rule

inherited
D : T Vg - D /
e = .
T : int | real; T.type V.in = int
AY id { add_type($0, $1) } int i‘d
. type attribute J

1d attribute

m |[mplementation of inherited attributes
Save in a global variable (problem: nested calls)
Use value stack and negative attributes (in YACC)

"
Augmented and Attributed Grammar

m Augmented grammar:
Semantic actions are placed in the grammar itself
The position of an action determines when it is executed

m Attribute grammar
A grammar to which attributes are attached

Attributes help to specify code generation actions in greater
detail than with an augmented grammar alone

m Augmented, attributed grammar
An attributed grammar augmented with actions

" A
An

—Xamp

Attributed, Augmented Grammar
S{— E { gen(" Answer = %s", E.t); }
Et_> E & T ¢ { gen(" %s +=%s", E.t, T.1); free(T.t); Et=E.t; }
E—> Ty (Et=Tt
Tt_> NUM

{ T.t=new_name(); gen("%s = %s", T.t, yytext); }
Attributed Parse Tree

Code Generation

t0=1
tl1=2
Ty
o~ t0 += t1
E t0 Ttl ‘"\H
T 10

¢1=3
| {0 += t1
+ | 3

Answer = t0

YACC Specification and Value Stack

S > E

E—>E+T

E—> T

T —> NUM

Value Stack

1

S
O

2

S$ NOM O
(|]

3

$ T

o o
4

$S E
O t0

{gen("Answer = %s", S$1)}

18§ =S81;}

{gen("%s += %s", $1, $3); $$ = $1;}

{name = new name(); gen("%s = $s", SS=name, yytext);}

5 9

S E+ L $ E £+ NUM___

O t0 O 0 t0 O O

6 10

$ E + NUM $ E T T

owowogo ' (L B 5 A 1=3

7$ — 11

]j"t%]j"ﬂ ———————— t1=2 —%——Eﬂ ————————————— t0 +=t1
8 12

—%——ﬁ—] ————————————— t0 += t1 —%--ts-ﬂ ----------- Answer = t0

