
Syntax-Directed
Translation & YACC

Dragon: Ch 5. (Just part of it)

Holub: pp 183-192, pp 348-354
 Dragon: ch. 4.9

Syntax-Directed Translation

 We cover this topic briefly, mostly for how we use in YACC

 Grammar defines the syntax of a language, but now we
want to talk about semantics (meanings)

 Let us first talk about how to perform semantic evaluation
 Approach 1: build the parse tree first and then traverse the tree

 Approach 2: use parser actions to evaluate & pass semantic values
 This means that we use the parser as a control structure

 Advantages of parser doing more than syntax analysis
 Do not have to construct the parse tree

 Do not need lots of recursive functions to associate/evaluate values

 We take the approach 2, which is one kind of syntax-directed
translation (SDT)

Semantics

 Semantics in SDT are determined by
 Semantic values associated with syntactic constructs

such as terminals or nonterminals
 What is semantic value? It depends on syntactic constructs

 ID: pointer to struct id, INT_NUM: integer number, Nonterminals:
pointer to struct decl, …….

 Semantic actions taken when reducing a production
 Evaluate and pass semantic values of reduced RHS
 Implemented by C code embedded in the RHS of a

production, executed at “that” point of parsing
 Since LR parsing need to process entire RHS before reducing an

actual production, we usually embed C code at the end of a RHS
 It is dangerous to embed action in the middle of a RHS

The Case of YACC

 In YACC

 Each grammar symbol in a production has a semantic value

 Expressed using $i notation

 Action is C code embedded in the RHS of a production

 Executed at the point it is encountered during parsing
 Usually at the end of a production

An Example :
E : E „+‟ E {$$ = $1 + $3;}
 | E „*‟ E {$$ = $1 * $3;}

 | num {$$ = $1;}
;
This assumes that the lexer converts and returns the number

Semantic Actions in YACC

 How is semantic evaluation done in YACC?
 E.g., E : E „+‟ E {$$ = $1 + $3}

 Run a separate value stack in parallel to state stack
 A pseudo variable $i refers to top_of_stack – (|RHS|-i)

 A pseudo variable $$ refers to the value associated with
LHS (nonterminal); it becomes to $1 by default

$i for i ≤ 0 is also defined.
 Refer to a stack value BEFORE those that match

the current production‟s RHS

 Must know the context when applying this action

 When is this useful? E.g., declaration: type var

F : E B „+‟ E {$$ = ...}

 ;

B : /* empty */ {prev_expr = $0;}

$0 refers to value of E in the previous production

Mid-Rule Actions in YACC

 We sometimes want an action in the middle of RHS

 Can access component value preceding the action via
$i, but cannot refer to forward (i.e., to the right)

 Action itself counts as a $i thing

 Can have its own semantic value by assigning to $$

 Later actions refer to it by $i

 Cannot assign values to LHS except at the end of the
RHS, or by default LHS‟s value becomes $1

A : B {$$ = $1 + 1;}
 C {$$ = $2 + $3;}

Implementation of Mid-rule Action

 YACC creates a new nonterminal and a
production for every mid-rule action.

 Might transform the above as follows:

 Real YACC does the following

A : B {$$ = $1 + 1;}
 C {$$ = $2 + $3;}

A : B M1 C M2{$$ = $4;}
M1 : /* empty */ {$$ = $0 + 1;}
M2 : /* empty */ {$$ = $-1 + $0;}

A : B M1 C {$$ = $2 + $3;}
M1 : /* empty */ {$$ = $0 + 1;}

Conflicts due to Mid-Rule Actions

 Mid-rule actions might lead to conflicts that were
not present in the original grammar

 If we want to do some work to prepare for local
variable spaces in the first production

Example:

 blk : BEGIN decls stmts END

 | BEGIN stmts END

 ;

Shift/Reduce Conflicts
 We might want to add mid-rule action as follows:

 Then, YACC converts the grammar as follows:

 However, this leads to a shift/reduce conflict

blk : M BEGIN decls stmts END
 | BEGIN stmts END
 ;
M : /* empty */ {prepare_local_vars();}

 blk : {prepare_local_vars();} BEGIN decls stmts END

 | BEGIN stmts END

 ;

Reduce/Reduce Conflicts
 If we add mid-rule actions differently as follows:

 Then, YACC converts the grammar as follows:

 However, this leads to reduce/reduce conflict

blk : {prepare_local_vars();} BEGIN decls stmts END
 | {prepare_local_vars();} BEGIN stmts END
 ;

blk : M1 BEGIN decls stmts END
 | M2 BEGIN stmts END
 ;
M1 : /* empty */ {prepare_local_vars();}
M2 : /* empty */ {prepare_local_vars();}

Possible Solutions

 Add the mid-rule action after BEGIN

 Another solution

blk : BEGIN {prepare_local_vars();} decls stmts END
 | BEGIN stmts END
 ;

blk : M BEGIN decls stmts END
 | M BEGIN stmts END
 ;
M : /* empty */ {prepare_local_vars();}

Attributes

 Attributes: semantic value associated with a
node in a parse tree (e.g., $i in YACC)
 Type, numeric value, string, pointer to C structure, etc.

 Two types: synthesized and inherited

 Synthesized attribute: value is determined by the
children of a node
 straightforward for bottom-up parsing

 Inherited attributes: value is passed down
from parent or a sibling of a node
 Example: simple variable declaration rule

 Implementation of inherited attributes
 Save in a global variable (problem: nested calls)

 Use value stack and negative attributes (in YACC)

Augmented and Attributed Grammar

 Augmented grammar:
 Semantic actions are placed in the grammar itself

 The position of an action determines when it is executed

 Attribute grammar
 A grammar to which attributes are attached

 Attributes help to specify code generation actions in greater
detail than with an augmented grammar alone

 Augmented, attributed grammar
 An attributed grammar augmented with actions

An Example Grammar

YACC Specification and Value Stack

