
Semantic Analysis

Dragon: Ch 6. (Just part of it)

Holub:

What is semantic analysis?

 Semantic validity
 Parser and Lexer ensure the input has valid structure

 Need to check if the input has valid meaning (the
meaning of a program is the result of the computation)

 Static semantic checking at compile-Time
 Type checking: if operand types match the operator

 Flow-of-Control: if having well defined “jumps” (e.g., if
there is a “continue”, there should be enclosing iterator)

Limitations of Semantic Analysis

 Lexical & syntactic analysis is advanced

Well worked-out theories to provide precise
description of aspects of programming language

 Regular expression and context free grammar

 It is possible to “compile” these descriptions into
lexical and syntactic analyzer automatically
 lex and yacc

 Semantic analysis is less advanced
 A great deal of investigation is going on in formal

semantics of programming languages

 It is difficult to write a precise description of semantics
of a programming language (though possible)

 Automatic compilation of such a description into a
semantic analyzer is beyond the state of the art

 There have been promising researches, but there still is
a long way to go

Static and Dynamic Semantics

 One issue is that the semantics of a program is
not entirely determined at compile-time

 In a typical programming language,
 Compiler decides some semantic issues (e.g., correct

binding of types and names)
 Leave some to the object code to be determined at

run-time (e.g., out–of-bound array accesses)
 However, compiler must assure that the semantics is

preserved in by the object code

 The compile-time part: static semantics
The run-time part: dynamic semantics

Ensuring Static Semantics

 Semantic analysis phase deals with static
semantics

Should catch all compile-time semantic errors

Keep track of types, declarations, scoping, etc
for use in code generation

Declarations & Symbol Tables

 Declarations
 Associate “meaning” with names

 For example,
 Variables (name, type, storage class, scope, etc.)

 Functions (name, arguments, return type, external or not)

 Types (type class, size, etc.) ….

Declarations & Symbol Tables

 To handle declarations, we use symbol tables
 A global data structure to map a name with values or

attributes at compile-time
 E.g., int x; x is an integer variable

 Symbol tables become complicated when the mapping
depends on contextual information (ex: block-structure)

 In our compiler, we have two kinds of symbol table
 “Flat” symbol table

 “Scoped” symbol table

“Flat” Symbol Table

 Symbol Table that depicts global name definition
 No contextual information

 A simple mapping from name to declarations

 Used in very simple compilers
 Assemblers or macro processors

 This is actually a dictionary abstract data type
 Insert(Name, Decl): map the name with declaration

 Lookup(Name): get the declaration with that name

 enter(Name): combination of the two (i.e., inserts Name
if it is not already there and returns the declaration)

Flat Symbol Table in Lexer

 Our project compiler will have two symbol tables,
one of which is flat (i.e., the hash table we used)
 Lexer enters name of an identifier into this symbol table

and returns declaration, which is a pointer to struct id

 After lexical analysis, struct id pointers are used
to represent identifiers everywhere
 Actually, they are the names in another, more

complicated symbol table that handles scoping

 An advantage is that when we want to check if two
identifiers are the same, we can compare their struct
id pointers, instead of string comparison
 But we compare strings in the hash table, anyway don’t we?

Data Structures for Flat Symbol Table

 Linear search structures
 Array or linked List: easy to program, OK if list is short

 Binary search tree
 Good asymptotic log n average performance

 In practice, not used in a compiler symbol table from an
engineering viewpoint of programmability and performance

 Hash table
 If there are many symbols, a hash table is good, and if

implemented carefully, almost constant insert/lookup

Block Structure & Scoping

 Block structure is one of the most useful features
 Statement that can have its own data definitions that

disappear after exiting the block

 Prevents accidental name clashes

 Ex: {decls; stmts} in C

 Blocks can be nested but cannot otherwise overlap

int x; int y;
{
 float x;
 x += y; /* float += int */
}
x += .. /* int */

Scope & Extent in Block Structures

 The “scope” of a declaration is the portion of a
program text for which the declaration is “visible”
 Global declaration: entire program

 Local declaration: procedure or block

 Some names may have many scopes

 The “extent” means the lifetime of the storage
associated with the variable
 Scope & extent are usually the same

 Exception (e.g., static locals in C)

Scoped Name Definition

 Compiler symbol tables are concerned exclusively
with the scope, not the extent
 Bind names to attributes depending on the scope in

which it occurs

 Scope rule determines which declaration applies
to a name instance: most-closely nested rule
 The scope of declaration in a block B includes B
 If name x is not declared in B, then an instance of x in

B is in the scope of the declaration of x in the most
closely enclosing block B’

“Scopd” Symbol Table

 Abstract scoping operations: use stack paradigm
 push_scope(): start a new scope which becomes the

“current scope”

 pop_scope(): return to the previous state; restore
symbol table before the last push_scope()

 insert(name, decl): basically the same, but it inserts the
definition in the “current scope”

 lookup(name) must now search for the variable in all of
pushed but not popped scopes in reverse order in
which they were pushed; it returns the first definition

Example

{ push_scope()

 int x; insert(x, var int decl)

 int y; insert(y, var int decl)

 { push_scope()

 float x; insert(x, var float decl)

 x += y; lookup(x) : float; lookup(y): int;

 } pop_scope()

 x += .. lookup(x) : int

} pop_scope()

Implementation of Scoped Symbol Table

 Stack of flat tables
 Implement a stack of array elements and each

array element is a flat symbol table

 push_scope() and pop_scope() literally push and
pop a flat table

 insert() inserts in the current scope (table) and
lookup() does a flat-table lookup in each element
of the array from the top

 Problems: scopes with not many definitions either
waste space or require complex implementation

Our Implementation Choice

 Stack of definitions
 Keep a stack of individual definitions (not scopes) and

mark scope boundaries so that pop_scope() knows how
many definitions to remove from the top of the stack

 Two methods to make the boundary
 Inserts a pseudo definition that is recognized as a marker

 Maintain a separate scope stack which points the to the top of
stack when a scope was pushed: we can take this approach

 insert() always inserts to the top of definition stack

 lookup() searches backwards in the table

Example
After push _scope(), insert(x, var int decl) After insert(y, var int decl)

After push_scope() After insert(x, var float)

Another Implementation: Hash Table

 Holub: pp. 485-488

Maintain a single hash table that
implements open hashing

A name is hashed and inserted at the
beginning of the linked list of that hash slot

Example Hashed Symbol Table

Example:

 int x;
 func(int y, int z)
 {
 int w;
 while(expr) {
 int w, v;
 }

 }

Declarations

 Name definitions associate “semantic something” with a
name, which is a data structure representing the declaration
 Processing declaration depends on the language semantics

 Declarations and names are completely independent things and the
only association occurs in the symbol table

 Association may change in the context and one name may be
associated with many declarations

 There are many ways to process declarations and build a
symbol table, and we will present one way that is relatively
simple yet is directly applicable to processing C declaration

An Example of subc.h

 Data formats and structures in “subc.h”

 IDs, symbol table entries, and declarations

 struct id {
 char *name;
 int lextype;
};

struct ste {
 struct id *name;
 struct decl *decl;
 struct ste *prev;
};

struct decl {
 int declclass; /* DECL Class: VAR, CONST, FUNC, TYPE */
 struct decl *type; /* VAR, CONST: pointer to its type decl */
 int value; /* CONST: value of integer const */
 float real_value; /* CONST: value of float const */
 struct ste *formals; /* FUNC: ptr to formals list */
 struct decl *returntype; /* FUNC: ptr to return TYPE decl */
 int typeclass; /* TYPE: type class: int, array, ptr */
 struct decl *elementvar /* TYPE (array): ptr to element VAR decl */
 int num_index /* TYPE (array): number of elements */
 struct ste *fieldlist /* TYPE (struct): ptr to field list */
 struct decl *ptrto /* TYPE (pointer): type of the pointer */
 int size /* ALL: size in bytes */
 struct ste **scope; /* VAR: scope when VAR declared */
 struct decl *next; /* For list_of_variables declarations */
}; /* Or parameter check of function call */

An Example Declaration in subc.y

%union yystacktype
{
 int intval;
 double flatval;
 char *stringval;
 struct id *idptr;
 struct decl *declptr;
 struct ste *steptr;
}
%type <declptr> type type_id var var_list ...
%nonassoc <idptr> ID
%nonassoc <intval> INTEGER-CONST
%nonassoc <floatval> FLOAT-CONST
%nonassoc <stringval> STRING-CONST

An Example of init_type()
init_type() {
 inttype = maketypedecl(INT);
 floattype = maketypedecl(FLOAT);
 voidtype = maketypedecl(VOID);
 ..
 declare(enter(ID, “int”, 3), inttype);
 declare(enter(ID, “float”, 5), floattype);
 returnid = enter(ID, “*return”, 7);

 In this example, type specifiers like int are regarded
as a token ID instead of a token TYPE and the lexer
will give idptr to yylval; later yacc will look through the
linked list of the symbol table to determine the
declaration that was inserted during the initialization

An Example subc.l
...
<norm>{ID} {
 yylval.idptr = enter(ID, yytext, yyleng);
 return (yylval.idptr → lextype);
}

<norm>{DEC_INTEGER} {
 yylval.intval = (int) strtol(yytext, (char**) NULL, 10);
 return (INTEGER-CONST);
}

<norm>{REAL} {
 sscanf(yytext, “%lf”, &yylval.floatval);
 return (FLOAT-CONST);
}

Example: Simple Variable Declarations

int x
int y[20];

grammar
var_decl : type ID “;”
 | type ID “[“ const_expr “]”

type : type_id
 | ...
type_id : ID

 For array type decls, we made the elementvar ptr to
point a VAR decl instead of TYPE decl, to make sure
an element of the array in LHS of an assignment
statement is a variable when we do the type checking

var_decl : type ID “;” { declare($2, makevardecl($1); }
 | type ID “[” const_expr “]” “;”

 {declare($2,makeconstdecl(makearraydecl($4,makevardecl($1))));}
type : type_id {$$ = $1}
 | struct_specifier {$$=$1}
type_id : ID
 { struct decl *declptr = findcurrentdecl($1);
 check_is_type(declptr);
 $$ = declptr;
 }

Example: List of Variable Declarations

 Assume struct decl has one more field: next
which links decls whose type are not yet defined

def : type var_list “;” {add_type_to_var($1, $2);}

 ;
var_list : var_list “,” var {$3→next = $1; $$ = $3}

 | var {$$ = $1;} /* $1→next is assumed to be NULL */
 ;
var : ID {declare($1, $$ = makevardecl(NULL));}
 | ID “[” const_expr “]” {declare($1,

 makeconstdecl(makearraydecl($3, $$=makevardecl(NULL)));}
 | “*” ID {declare($2, makevardecl($$=makeptrdecl(NULL)));}

 ;

Example: Struct Declaration

 Structures: how to collect fields?
struct_specifier : STRUCT tag “{”

 { push_scope(); }
 def_list /* popscope reverses stes */
 { struct ste *fields = popscope();
 declare($2, ($$=makestructdecl(fields))); }
 “}”

 | STRUCT tag
 { struct decl *declptr = findcurrentdecl($2);
 check_is_struct_type(declptr);
 $$ = declptr;
 }
 ;

struct temp { int x; int y[20]; } w;

Examples: Function Declarations
func_decl: opt_type ID “(”

 {
 struct decl *procdecl = makeprocdecl();
 declare($2, procdecl);
 pushscope(); /* for collecting formals */
 declare(returnid, $1);
 $<declptr>$ = procdecl;
 }
 var_list “)”

 {
 struct ste *formals;
 struct decl *procdecl = $<declptr>4;
 formals = popscope();
 /* popscope reverses stes (first one is the returnid) */
 procdecl→returntype = formals→decl;

 procdecl→formals = formals→prev;
 pushscope() /* for installing formals & locals in this scope */
 pushtelist(formals);
 }
 compound_stmts
 {
 popscope();
 }
opt_type: type_id {$$ = $1;}
 | /* empty */ {$$ = voidtype; }
 ;

 For the type checking of return types within the function,
we declare a fake ID *return in the symbol table and when
we parse return expr ; we compare the current declaration
of expr to the return type which can be get via
findcurrentdecl(returnid)

 stmt: RETURN expr; {checksametype(findcurrentdecl(returnid), $2);}

Some Type Checking Examples
unary : INTCONST {$$ = makenumconstdecl(inttype, $1);}
 | ID {$$ = findcurrentdecl($1);}
 | unary “.” ID {$$ = structaccess($1, $3);}
 | unary “[” expr “]” {$$ = arrayaccess($1, $3);}

 ;
binary | unary {$$ = $1→type;}
 | binary „+‟ binary {$$ = plustype($1, $3);}

 ;
expr : binary
 ;
assignment | unary “=“ expr {check_isvar($1);

 check_compatible($1, $3);
 $$ = $1 →type;}
 ;

•When unary becomes binary, we take type information and propagate it

Array and Structure Accesses

struct decl *arrayaccess (struct decl *arrayptr, struct decl *indexptr) {
 struct decl *arraytype = arrayptr→type;
 check_isarray(arraytype);
 check_sametype(inttype, indexptr);
 return (arraytype→elementvar);
};

struct decl *structaccess (struct decl *structptr, struct id *fieldid) {
 struct decl *typeptr = structptr →type;
 check_isstruct(typeptr);
 return (finddecl(fieldid, typeptr →fields));
}

Example: Function Calls
unary : unary “(” args “)”

 { checkisproc($1);
 $$ = checkfunctioncall($1, $3); }

args : expr “,” args { $1→next = $3; $$ = $1; }

 | expr { $$ = $1; }
 ;

struct decl *plustype(struct decl type1, struct decl type2)
{
 struct decl *type_after;
 type_after = check_compatible_type(type1, type2);
 return (type_after);
}

struct decl * checkfunctioncall(struct decl *procptr, struct decl *actuals)
{
 struct ste *formals = procptr→formals;
 /* 1. compare number of formals and actuals */

 /* 2. check for type match */
 while(formals != NULL && actuals != NULL) {
 checkisvar(formals →decl);
 check_compatible(formals →decl, actuals);
 formals = formals →prev;
 actuals = actuals →next;
 }
 return (procptr →returntype); /* for decl of the call */
}

• Above method of argument checking does not work for actuals

Type Theory: Type Equivalence

 Two Type Equivalence: Structural & Name
Equivalence
 Structural Equivalence: Same Type Expression

 Name Equivalence: Same Type Name

 Ex: struct s1 { int a;}; and struct s2 { int a; };

: structurally-equivalent but not name-equivalent

 In C, with exceptions of structs and unions,
structural equivalence holds. So, comparing
pointers to struct decls is not enough to decide
type equivalence but helps to determine it quickly
if they are equal

Type Compatibility

 Operand Compatibility
What combinations of operators and

operands are allowed by the language

 Assignment Compatibility
Check the correctness of assignment

Function calls: the formals must be
assignment compatible with actuals

Type Determination

 Simple Model: Type of an expression depends
on its operands
Ex: int + int → int
 Literals (numbers or strings):

 Lexical type determines its type

 ID: type depends on its declaration

 Compound expression: function of operator and
operands

 Type conversion

 Type coercion: Implicit Type Conversion that
takes place during assignment or when
evaluating an expression

