
Compilation Issues in
Objected-Oriented
Language

 OO language features

 Single inheritance

 Multiple inheritance

Object-Oriented Programming

 OO programming represents real-world
objects into software objects

Real-world objects have states and behaviors
which are represented by instance variables
and methods in software objects

 OO programming languages support
encapsulation and inheritance

Encapsulation

 Information hiding and modularity

 Instance variables are not accessible outside
of the object

They are accessible only through the methods

Classes

 A software blueprint for the same kind of
objects is called a class

A car class: variable declarations and method
implementations

Must instantiate the car class to create a car
object

Inheritance

 Classes can be defined in terms of other classes

 Hierarchy of classes

 Each subclass inherits variables and methods from
superclass

 Subclass can also add its own variables and methods

 Subclass can override inherited methods and provide
specialized implementation for it

Polymorphism

 A subclass instance can be used anywhere
that one of its superclass is expected
 As the value assigned to a variable or an argument

 As the object on which a method is invoked

public class Car-demonstrate {
 public static void main(String argv[]) {
 Vehicle x = new Car();
 x.move();
 }
}

An Example OO Grammar

decl -> classdecl

classdecl -> class ID extends ID { fields_list }

field_list -> field_list field |

 field

field -> var | method_decl

unary -> new ID() |

 -> unary.ID |

 -> unary.ID (args)

 How to make a symbol table, do type checking, and
generate code for this grammar?

An Example OO Program
class Vehicle extends Object {
 int position=0;
 void move(int x) { position = position + x; }
}
class Car extends Vehicle {
 int passenger=0;
 void await(Vehicle v) { if (v.position < position)
 v.move(position-v.position);
 else move(10); }
}
class Truck extends Vehicle {
 void move(int x) { if (x < 55) position = position + x;}
 void load(int x) { …… }

Truck t = new Truck(); Car c = new Car(); Vehicle v = c;
c.passenger=2;
c.move(60);
v.move(70); c.await(t);

Object

Vehicle

 Car

Truck

OO Compilation Issues

 How to layout class data fields and how to
generate code to access them

 How to layout the method table and how to
generate code to access them

 Compile-time binding vs. run-time binding

 How to support multiple inheritance

Class Descriptor

 As in non-OO languages, compiler needs to
collect information on classes such as
deciding data fields layout and recording the
addresses of methods included in them

The information is saved in a class descriptor

 Offsets of data fields

 Addresses of methods

 Compiler consult class descriptor for code generation

Access to Data Fields

 Data fields are located at objects separately

 For Vehicle v; v.position must be compiled into a
load from the object pointed to by v
 Offset of position can be found from a symbol table

where vehicle class information is saved

 However, v can also point to a car object and if the
offset of position in a car object is different, we do not
know how to compile v.position
 Example: Vehicle: position (offset 0)

 Car: passenger (offset 0), position (offset 1)

Data Layout with Single Inheritance

 If each class can extend only one parent class
(as in java), prefixing of data fields is used
 When B extends A, those fields that are inherited from

A are laid out in the B object at the beginning, in the
same order as they appear in A, then B’s fields are laid
 Then, each field will have a unique offset no matter which

object it is included

 Access of a field for an object: since the compiler
knows the offset of a field, it is a single memory
access (e.g., r = load (address_object + offset))

An Example of Prefixing

class A extends Object {int a=0;}

class B extends A {int b=0, c=0;}

class C extends A {int d=0;}

class D extends B {int e=0;}

 A B C D

--- --- --- ---

 a a a a

 b d b

 c c

 e

Access to Methods

 Need to know the method address for jump

 Method addresses are located at the class
descriptor since they can be shared

 There exist differences between

Class method: address can be known at compile time

 Instance method: address can be decided at run time

Class (Static) Methods

 Compiler searches across class hierarchy
For Car c; c.f(), for example, compiler searches

for f() in the Car class; if not there, searches
for its parent class; if the compiler finds f() in
a superclass, say A, then c.f() is compiled
into a jump to A_f()
 Although c can point to a subclass object (e.g.,
Truck), f() must be a method available at c’s class

Instance (Dynamic) Methods

 Due to polymorphism and overriding, it is
impossible to decide at compile-time which
method will be called at run-time

 In this example, a method call c.f() will be a call
to A_f() if the variable points an object of C (i.e.,
c = new(C);) while it is a call to D_f() if it points
to an object of D (i.e., c = new(D);)

class A extends Object {int x=0; method f()}
class B extends A {method g()}
class C extends B {method g()}
class D extends C {int y; method f()}
main() {C c; ... printf(c.f()); ...}

Dispatch Table: runtime data structure

 Compiler must generate a dispatch table for each
class, which contains addresses for all methods
available in the class (saved in code or global area)

 Each object will have a pointer to this table
 An instance method call c.f() will be translated to

 Load the start address of the dispatch table
 R1 = load(c + offset_of_pointer_to_dispatch_table)

 Load the method address
 R2 = load(R1 + offset_of_f())

 Jump R2
 Can we know offset_of_f() at compile time?

 If A_f() and D_f() have different offsets, it would cause a trouble

Method Layout with Single Inheritance

 Employ a similar layout as prefixing
 When class B extends class A, B's dispatch table starts

with entries for all method names known to A and then
continues with new methods declared by B

 An overridden method points to a different method-
instance address

 Creation of an object will keep a pointer to the dispatch
table for the corresponding class that is newed

Example Dispatch Tables

 Offsets

 f(): 0, g(): 1

Dealing with Multiple Inheritance

 For languages that allow class D to extend several
parent classes A, B, and C, finding data field
offsets and method instances is more difficult

 E.g., it is impossible to put all of both A's fields and B's
fields at the beginning of D, for the example below:

class A extends Object {int a=0;}

class B extends Object {int b=0, c=0;}

class C extends A {int d=0;}

class D extends A,B,C {int e=0;}

One Solution: Graph Coloring

 Statically analyze all classes at once, find some
unique field offset for each field name, which can
be used in every object containing the field
 Can model this as a graph-coloring problem

 There is a node for each “distinct” field name and an edge
between two nodes which co-exist in the same class

 The offsets 0, 1, 2, .. are the colors

 Distinct name does not mean simple equivalence of strings;
each fresh, non-overriding declaration of x is a distinct name

 Access of a field is still a single memory access since
the compiler can determine the offset

Graph Coloring Solution for the Example

 Offsets: a (0), b (1), c (2), d (3), e (4)

class A extends Object {int a=0;}

class B extends Object {int b=0, c=0;}

class C extends A {int d=0;}

class D extends A,B,C {int e=0;}

 A B C D

--- --- --- ---

 a a a

 b b

 c c

 d d

 e

Problems of Graph Coloring

 There are empty slots in the middle of an object since we
cannot color the N fields of a class with the first N offsets

 Solution: pact the fields of each object and have the class
descriptor tell where each field is located (now colors are
offsets within a descriptor, not within an object)
 Since the number of descriptors is much smaller compared to that

of objects, the empty slots within the descriptor are acceptable

 Access of a field requires three memory accesses, though
 load descriptor pointer, load field-offset value, load/store the data

Multiple Inheritance with Dynamic Linking

 Dynamic linking systems like Java resolve
references (change name into offsets) at run-time

 Single inheritance does not cause any problem

 Graph coloring for multiple inheritance has problem

 Dynamic linking system allows loading of new classes
into a running system; those classes may be subclasses
of classes already in use

 Run-time graph coloring poses many problems

 Hashing can be an alternative

