
Compilation Issues in
Objected-Oriented
Language

 OO language features

 Single inheritance

 Multiple inheritance

Object-Oriented Programming

 OO programming represents real-world
objects into software objects

Real-world objects have states and behaviors
which are represented by instance variables
and methods in software objects

 OO programming languages support
encapsulation and inheritance

Encapsulation

 Information hiding and modularity

 Instance variables are not accessible outside
of the object

They are accessible only through the methods

Classes

 A software blueprint for the same kind of
objects is called a class

A car class: variable declarations and method
implementations

Must instantiate the car class to create a car
object

Inheritance

 Classes can be defined in terms of other classes

 Hierarchy of classes

 Each subclass inherits variables and methods from
superclass

 Subclass can also add its own variables and methods

 Subclass can override inherited methods and provide
specialized implementation for it

Polymorphism

 A subclass instance can be used anywhere
that one of its superclass is expected
 As the value assigned to a variable or an argument

 As the object on which a method is invoked

public class Car-demonstrate {
 public static void main(String argv[]) {
 Vehicle x = new Car();
 x.move();
 }
}

An Example OO Grammar

decl -> classdecl

classdecl -> class ID extends ID { fields_list }

field_list -> field_list field |

 field

field -> var | method_decl

unary -> new ID() |

 -> unary.ID |

 -> unary.ID (args)

 How to make a symbol table, do type checking, and
generate code for this grammar?

An Example OO Program
class Vehicle extends Object {
 int position=0;
 void move(int x) { position = position + x; }
}
class Car extends Vehicle {
 int passenger=0;
 void await(Vehicle v) { if (v.position < position)
 v.move(position-v.position);
 else move(10); }
}
class Truck extends Vehicle {
 void move(int x) { if (x < 55) position = position + x;}
 void load(int x) { …… }

Truck t = new Truck(); Car c = new Car(); Vehicle v = c;
c.passenger=2;
c.move(60);
v.move(70); c.await(t);

Object

Vehicle

 Car

Truck

OO Compilation Issues

 How to layout class data fields and how to
generate code to access them

 How to layout the method table and how to
generate code to access them

 Compile-time binding vs. run-time binding

 How to support multiple inheritance

Class Descriptor

 As in non-OO languages, compiler needs to
collect information on classes such as
deciding data fields layout and recording the
addresses of methods included in them

The information is saved in a class descriptor

 Offsets of data fields

 Addresses of methods

 Compiler consult class descriptor for code generation

Access to Data Fields

 Data fields are located at objects separately

 For Vehicle v; v.position must be compiled into a
load from the object pointed to by v
 Offset of position can be found from a symbol table

where vehicle class information is saved

 However, v can also point to a car object and if the
offset of position in a car object is different, we do not
know how to compile v.position
 Example: Vehicle: position (offset 0)

 Car: passenger (offset 0), position (offset 1)

Data Layout with Single Inheritance

 If each class can extend only one parent class
(as in java), prefixing of data fields is used
 When B extends A, those fields that are inherited from

A are laid out in the B object at the beginning, in the
same order as they appear in A, then B’s fields are laid
 Then, each field will have a unique offset no matter which

object it is included

 Access of a field for an object: since the compiler
knows the offset of a field, it is a single memory
access (e.g., r = load (address_object + offset))

An Example of Prefixing

class A extends Object {int a=0;}

class B extends A {int b=0, c=0;}

class C extends A {int d=0;}

class D extends B {int e=0;}

 A B C D

--- --- --- ---

 a a a a

 b d b

 c c

 e

Access to Methods

 Need to know the method address for jump

 Method addresses are located at the class
descriptor since they can be shared

 There exist differences between

Class method: address can be known at compile time

 Instance method: address can be decided at run time

Class (Static) Methods

 Compiler searches across class hierarchy
For Car c; c.f(), for example, compiler searches

for f() in the Car class; if not there, searches
for its parent class; if the compiler finds f() in
a superclass, say A, then c.f() is compiled
into a jump to A_f()
 Although c can point to a subclass object (e.g.,
Truck), f() must be a method available at c’s class

Instance (Dynamic) Methods

 Due to polymorphism and overriding, it is
impossible to decide at compile-time which
method will be called at run-time

 In this example, a method call c.f() will be a call
to A_f() if the variable points an object of C (i.e.,
c = new(C);) while it is a call to D_f() if it points
to an object of D (i.e., c = new(D);)

class A extends Object {int x=0; method f()}
class B extends A {method g()}
class C extends B {method g()}
class D extends C {int y; method f()}
main() {C c; ... printf(c.f()); ...}

Dispatch Table: runtime data structure

 Compiler must generate a dispatch table for each
class, which contains addresses for all methods
available in the class (saved in code or global area)

 Each object will have a pointer to this table
 An instance method call c.f() will be translated to

 Load the start address of the dispatch table
 R1 = load(c + offset_of_pointer_to_dispatch_table)

 Load the method address
 R2 = load(R1 + offset_of_f())

 Jump R2
 Can we know offset_of_f() at compile time?

 If A_f() and D_f() have different offsets, it would cause a trouble

Method Layout with Single Inheritance

 Employ a similar layout as prefixing
 When class B extends class A, B's dispatch table starts

with entries for all method names known to A and then
continues with new methods declared by B

 An overridden method points to a different method-
instance address

 Creation of an object will keep a pointer to the dispatch
table for the corresponding class that is newed

Example Dispatch Tables

 Offsets

 f(): 0, g(): 1

Dealing with Multiple Inheritance

 For languages that allow class D to extend several
parent classes A, B, and C, finding data field
offsets and method instances is more difficult

 E.g., it is impossible to put all of both A's fields and B's
fields at the beginning of D, for the example below:

class A extends Object {int a=0;}

class B extends Object {int b=0, c=0;}

class C extends A {int d=0;}

class D extends A,B,C {int e=0;}

One Solution: Graph Coloring

 Statically analyze all classes at once, find some
unique field offset for each field name, which can
be used in every object containing the field
 Can model this as a graph-coloring problem

 There is a node for each “distinct” field name and an edge
between two nodes which co-exist in the same class

 The offsets 0, 1, 2, .. are the colors

 Distinct name does not mean simple equivalence of strings;
each fresh, non-overriding declaration of x is a distinct name

 Access of a field is still a single memory access since
the compiler can determine the offset

Graph Coloring Solution for the Example

 Offsets: a (0), b (1), c (2), d (3), e (4)

class A extends Object {int a=0;}

class B extends Object {int b=0, c=0;}

class C extends A {int d=0;}

class D extends A,B,C {int e=0;}

 A B C D

--- --- --- ---

 a a a

 b b

 c c

 d d

 e

Problems of Graph Coloring

 There are empty slots in the middle of an object since we
cannot color the N fields of a class with the first N offsets

 Solution: pact the fields of each object and have the class
descriptor tell where each field is located (now colors are
offsets within a descriptor, not within an object)
 Since the number of descriptors is much smaller compared to that

of objects, the empty slots within the descriptor are acceptable

 Access of a field requires three memory accesses, though
 load descriptor pointer, load field-offset value, load/store the data

Multiple Inheritance with Dynamic Linking

 Dynamic linking systems like Java resolve
references (change name into offsets) at run-time

 Single inheritance does not cause any problem

 Graph coloring for multiple inheritance has problem

 Dynamic linking system allows loading of new classes
into a running system; those classes may be subclasses
of classes already in use

 Run-time graph coloring poses many problems

 Hashing can be an alternative

