
Overview of Compiler Optimization

 Code Generation and Optimization

 An Example of Code Optimization

 Overview of Optimization Concepts

Machine Code Generation & Optimization

 Intermediate representation (IR) such as stack
machine code is translated into machine code

 It is still pseudo machine code where registers are
not yet allocated (we can call it a low-level IR)

 Pseudo machine code is optimized and
transformed into real machine code

Structure of Modern Compilers

Optimization Phases

 Un-optimized pseudo machine code becomes
better code by passing thru optimization phases

 What kind of optimization phases we have and how to
order those phases differ from compiler to compiler

 We will show one example of optimization phases with
an example code optimization

One Pitfall of Optimizations

 There are numerous optimizations that do not seem to arise
in practice if you “program very well”, such as common
subexpression elimination (CSE), dead code elimination and
copy propagation, constant propagation, constant folding, etc.
 CSE: x=y+z; … w=y+z -> x=y+z; …w=x;

 Copy propagation: x=y;… z=x+100 -> x=y;… z=y+100

 Constant folding: if (4>3) -> if (true)

 The reality is that although you may be able to avoid explicit
ones while you do your programming, the compiler still
generate those opportunities (e.g., address computation)

 We will see such examples soon

An Example of Code Optimization

--------------- Source C Code ------------------
int a[25][25];
main()
{
 int i;
 for (i=0; i<25; i++)
 a[i][0] = 0;
}

------------- Optimized Assembly Code ----------------

 ADDIL LR’a-$global$,%r27 ;offset 0x0
 LD0 RR’a-$global$(%r1),%r31 ;offset 0x4
 LDI -25,%r23 ;offset 0x8
$00000003
 ADDIB,< 1,%r23,$00000003 ;offset 0xc
 STWM %r0,100(%r31) ;offset 0x10

Un-optimized Code

 STW 0,-40(30)
 LDW -40(30),206
 LDI 25,212
 IFNOT 206 < 212 GOTO $00000002
 NOP
$00000003
 LDW -40(30),206
 ADDILG LR’a-$global$,27,213
 LDO RR’a-$global$(213),208
 MULTI 100,206,214
 ADD 208,214,215
 STWS 0,0(215)
 LDW -40(30),206
 LDO 1(206),216
 STW 216,-40(30)
 LDW -40(30),206
 LDI 25,212
 IF 206 < 212 GOTO $00000003
 NOP
$00000002

Representation: a Basic Block

 Basic Block = A Consecutive Sequence of Instructions (Statements)

 A sequence of consecutive instructions in which flow of control
enters at the beginning and leaves at the end without halt or
possibility of branching except at the end

 A basic block header: target instruction of a branch or a control
join point

Optimizations within a basic block are local optimizations.

 How to build basic blocks?

 First build a control flow graph of instructions, then identify basic
block headers

 Many optimizations work on a control flow graph of basic blocks

Building Basic Blocks for the Example
Code

Local Optimizations

 Analysis and transformation performed within a basic block

 No control flow information is considered

 Examples of local optimization

― Load to copy optimization

― Local common sub-expression elimination

― Some expressions evaluated more than once in a BB is replaced
by a single calculation (delete later ones if they have the same
target register)

― Local constant folding or elimination

― Expressions that can be evaluated at compile-time is replaced by
constant, compile-time value

― Dead code elimination

After Local Optimizations

 STW 0,-40(30)
 LDWCOPY 0,206 :: <== LDW -40(30),206
 L야 25,212 load-copy optization
$00000003
 LDW -40(30),206
 ADDILG LR’a-$global$,27,213
 LD0 RR’a-$global$(213),208
 MULTI 100,206,214
 ADD 208,214,215
 STWS 0,0(215) :: Deleted LDW -40(30),206
 LD0 1(206),216 local CSE optimization
 STW 216,-40(30)
 LDWCOPY 216,206 :: <== LDW -40(30),206
 LDI 25,212 load-copy optimization
 IF 206 < 212 GOTO $00000003
 NOP
$00000002

Extended Basic Block

 A chain of sequential basic blocks that has no incoming
branches yet can have outgoing branches

 Can we apply same optimizations on extended basic blocks?

 Yes

Global CSE

Redundant Definition Elimination

 Value numbering:
 Hints for applying CSE: code generator is expected to

assign the same target pseudo register for the same
right-hand-sides

 Compute available expressions across all paths an
expression x+y is available at a point p if every
path to p evaluates x+y and after last evaluation
prior to reaching p, there are no subsequent
assignment to x or y

 Delete redundant expressions

After Global CSE Optimization

 STW 0,-40(30) ; @i
 LDWCOPY 0,206 ; @i
 LDI 25,212
$00000003
 ADDILG LR’a-$global$,27,213 :: deleted LDW -40(30),206
 LDO RR’a-$global$(213),208
 MULTI 100,206,214
 ADD 208,214,215
 STWS 0,0(215) ; @a[i][0]
 LDO 1(206),216
 STW 216,-40(30) ; @i
 LDWCOPY 216,206 ; @i
 IF 206 < 212 GOTO $00000003 :: deleted LDI 25,212
 NOP

Promotion of Memory Operations

 Memory Live Range: a set of stores (definition) and
loads (uses)
 Access the same location in memory
 For each use (load) in the set, all definitions that

might reach it are also in the set

 A Live Range of Memory can be promoted to
register operations if certain conditions are met
 Store is promoted into copies and loads are

deleted
 The front-end provides some information on

which loads and stores access the same location,
or you can find it by yourself by analyzing the
assembly at this phase

Example

After Register Promotion

 There are two Memory Live Ranges
STW 0,-40(30) ; @i STW 216,-40(30) ;@i
LDWCOPY 0,206 ; @i LDWCOPY 216,206 ;@i

 After Optimization
 Copy 0,206
 LDI 25,212
 NOP
$00000003
 ADDILG LR’a-$global$,27,213
 LDO RR’a-$global$(213),208
 MULTI 100,206,214
 ADD 208,214,215
 STWS 0,0(215)
$00000001
 LDO 1(206),216
 COPY 216,206
 IF 206 < 212 GOTO $00000003
 NOP

Loop Transformation

Traditional loop optimizations

 Loop invariant code motion (LICM)

 Strength reduction

 Induction variable elimination

After Loop Optimization

 COPY 0,206
 LDI 25,212
 ADDILG LR’a-$global$,27,213 :: ← loop invariant code
 LDO RR’a-$global$(213),208 :: ← motion into loop header
 LDI 0,218 :: ← newly inserted
 LDI 2500,219 :: ← at the loop header
$00000003
 COPY 218,214 :: ← MULTI 100,206,214
 ADD 208,214,215
 STWS 0,0(215)

 LDO 100(218),220 :: ← LDO 1(206),216

 COPY 220,218 :: ← COPY 216, 206
 IF 218 < 219 GOTO $00000003 :: ← IF 206 < 212 GOTO $00000003

Building Register Live Ranges

 Live range of register definition and uses

 Unit for register allocation

 Helps for dead code elimination

After Building Register Live Ranges

 Two Dead Instructions
 COPY 0,206
 LDI 25,212

 After Optimization

 ADDILG LR’a-$global$,27,66
 LDO RR’a-$global$(66),65
 LDI 0,69
 LDI 2500,71

$00000003
 COPY 69,67
 ADD 65,67,68
 STWS 0,0(68)
 LDO 100(69),70
 COPY 70,69
 IF 71 < 69 GOTO $00000003

Instruction Scheduling

 Assume that the machine has two ALUs and superscalar
capability.

 ADDILG LR’a-$global$,27,66
 LDO RR’a-$global$(66),65
 LDI 0,69
 LDI 2500, 71

$00000003
 COPY 69,67
 LDO 100(69),70 :: ← code motion
 ADD 65,67,68
 COPY 70,69 :: ← code motion
 STWS 0,0(68)
 IF 71 < 69 GOTO $00000003

Register Allocation

 Copy Elimination : two ways
 Copy Propagation : make copy dead

 Copy Coalescing : if the target live range and the
source live range of a copy instruction does not
interface, those ranges are merged together and are
allocated the same register: copy is deleted since it
has the form of “copy r1 r1” now.

 Building interference graphs

 Color live ranges such that two interfering
ranges are not assigned by the same color

After Register Allocation

 “COPY 69,67” is propagated and deleted
 “COPY 70,69” is coalesced as “COPY 69 69”

 Result after Copy Elimination
 ADDILG LR’a-$global$,27,66

 LDO RR’a-$global$(66),65
 LDI 0,69
 LDI 2500,71

$00000003
 ADD 65,69,68
 LDO 100(69),69
 STWS 0,0(68)
 IF 71 < 69 GOTO $00000003

Final Finishing

 Register save and restore code generation

 Call boundary and method entry/exit

 Peephole optimizations

 Assemble

