
5. Properties of Kalman Filtering 
 
 
Orthogonality Principle 
 

The Kalman filter is a special case of the mean-square estimator, that is, the Kalman estimates are the 
conditional mean estimates, viz., 
 

ˆ { | }KFx E x z= .            (5-1) 
 
 Now, we want to show that the Kalman filter satisfies the orthogonality principle. Let RVs x and z be 
jointly distributed. Then for any function g(⋅), 
 

{ ( )( { | }) } 0TE g z x E x z− = . 
 
That is, any function of z is orthogonal to x once the conditional mean has been subtracted out. To 
show this, write 
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We used the fact that 
 

( ) { | } ( ( ) | }T Tg z E x z E g z x z=  
 
for any function  since g(z) is deterministic if z is fixed. The orthogonality principle says that the 
RV 

( )g ⋅

 
{ |x x E x z= − } , 

 
which is the estimation error, is orthogonal to all other RVs g(z). It has the following implication for 
estimation theory. If  is any function (or filter), then ( )g ⋅
 

{ | } ( )E x E x z E x g z− ≤ − , 
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Proof: ( ) { | } { | } ( )

         { | } { | } ( ) (orthogonality principle applied)
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where ⋅  denotes the Euclidean norm. Thus no other function of z provides a “closer approximation 
to x” in a probabilistic sense than does the Kalman filter which estimates x as { | }E x z . 
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White Gaussian Residual 
 

The residual is defined by 
 

)(ˆ −−= kkkk xHzr ,          (5-2) 
 
which can be expressed 
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where )(τβ  is the Brownian motion, i.e., . ( ) ( )d w dβ τ τ τ=

 
Let’s investigate the right-hand side terms in Eq. (5-3). Notice that the unconditional density 
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This equation indicates that 1

~
−kx

−kz

 is independent of . The second term of the right-hand side of 
Eq. (5-3) is also independent of  since it involves only transition matrix and process noise. 
Finally,  is independent of  because it is white. Therefore, we can say that  is independent 
of . On the other hand, we can notice that  is a linear function of . Therefore, we can 
conclude that  is a white sequence. 

1−kz
1−kz

kv 1 kr
1−kz kr kz

kr
 
Eq. (5-3) also tells us that since  is Gaussian,  is Gaussian with the following mean and 
variance. 

kz kr
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This verifies that the residual  is a white Gaussian sequence. This property is useful: kr
(1) to verify a design of Kalman filter, 
(2) to detect a sensor failure or bad data. 
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Stability 
 
Consider the following time-invariant system and the deterministic asymptotic estimation 
 
 1x x ukk kA B+ +             (5-6a) =
 z xkk H=              (5-6b) 
 
where state x n

k R∈ , control input u m
k R∈ , output z p

k R∈ ; and A, B, and H are known constant 
matrices of appropriate dimension. All variables are deterministic, so that if initial state 0x  is known 
then Eq. (5-6) can be solved exactly for xk , zk  for 0k ≥ . 
 
Deterministic asymptotic estimation problem: Design an estimator whose output x̂k  converges with k 
to the actual state xk  of Eq. (5-6) when the initial state 0x  is unknown, but uk  and zk  are given 
exactly. 
 
An estimator of observer which solves this problem has the form 
 
 ( )1ˆ ˆ ˆx x z x ukk k k kA L H B+ + − + ,         (5-7) =
 
as shown in Fig. 5-1. 
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To Choose L in Eq. (5-7) so that the estimation error ˆx x xkk k= −  goes to zero with k for all 0x , it is 
necessary to examine the dynamics of xk . Write 
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It is now apparent that in order that xk  go to zero with k for any 0x , observer gain L must be 
selected so that ( )A LH−  is stable. L can be chosen so that x 0→  if and only if )k ( ,A H  is 
detectable which is defined in the sequel. 
 
 
(1). (A, H) is observable if the poles of (A-LH) can be arbitrarily assigned by appropriate choice of the 
output injection matrix L. 
 
(2). (A, H) is detectable if (A-LH) can be made asymptotically stable by some matrix L. (If (A, H) is 
observable, then the pair is detectable; but the reverse is not necessarily true.) 
 
(3). (A, B) is reachable if the poles of (A-BK) can be arbitrarily assigned by appropriate choice of the 
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feedback matrix K. 
 
(4). (A, B) is stabilizable if (A-BK) can be made asymptotically stable by some matrix K. (If (A, B) is 
reachable, then (A, B) is stabilizable; but the reverse is not necessarily true.) 
 
Now, consider the following stochastic system 
 
 1 0 0 0x x u w , x ~ (x , ), w ~ (0, )k k k k kA B G N P N Q+ +  =+

 z x v , v ~ (0, )k k k kH N R= + . 
 
The stability of the Kalman filter designed for this system is presented by two theorems. 
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Theorem 5-1. (Sufficient condition for a Kalman filter to be stable) 
 

Let (A, H) be detectable. Then for every choice of  there is a bounded limiting solution P to 0P
 

TT
k

T
k

T
kkk GQGAHPRHHPHPPAP +−+−−−−=− −

+ )]())(()()([)( 1
1 .  (5-8) 

 
Furthermore, P is a positive semidefinite solution to the algebraic Riccati equation 
 

TTTT GQGAHPRHPHPHPAP ++−= − ])([ 1 .      (5-9) 
 
 
(Proof) 
 
(A, H) detectable means that there exists an L that makes (A-LH) asymptotically stable. 
 
Construct a suboptimal  using the L kx̂
 

1 ˆ( )L L
k kx A LH x Bu+ = − + +k kLz . (This is a state observer.) 

 
The estimation error in this case is given by 
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The estimation error covariance is 
 

TTT
kk GQGLRLLHASLHAS ++−−=+ )()(1 . 

 
If (A-LH) is asymptotically stable,  has a finite steady-state value according to the Lyapunov 
theorem. 

kS

 
Since the Kalman is optimal, kk SP <−)( , where )(−kP  satisfies Eq. (5-8). 
 
From the above rationale, if (A, H) is detectable, 
 

PPP kkkk =−=− ∞→+∞→ )(lim)(lim 1  
 

and P is the solution of the algebraic Riccati equation, Eq. (5-9). 
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Theorem 5-2: (Necessary and sufficient condition for a Kalman filter to be stable) 
 

Let Q  be a square root of the process noise covariance so that 0≥=
T

QQQ , and let the 
measurement noise have R>0. Suppose ),( QGA  is reachable. Then (A, H) is detectable if and only 
if 

 
a. There is a unique positive definite limiting solution P to Eq. (5-8) which is independent of . 

Furthermore, P is the unique positive definite solution to the algebraic Riccati equation. 
0P

 
b. The steady-state error system defined by Kalman filter, viz., 

 
kkkkkk vAKGwxHKIAx −+−−=−+ )(~)()(~

1      (5-10) 
 
with steady-state Kalman gain 
 

1)( −+= RHPHPHK TT         (5-11) 
 
is asymptotically stable. 
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(Proof) 
 
Define D by . TDDR =
 
R>0 implies that 0≠D . Then, there exists an M that holds H=DM. 
 

),( QGA  reachable implies 
 

nQGAzIrank =− ][ .         (5-12) 
 
(Suppose that nQGAzIrank ≠− ][ , then there exists an n-dimensional non-zero vector q such 
that 0][ =− QGAzIq , that is, qA=zq and 0=QqG . These equations may be expanded to 

2 2
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= =
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resulting in 
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0],,,[),( 1 =⋅⋅⋅= − QGAQAGQGqQGAqC n . 
 
This contradicts to the assumption that ),( QGA  is reachable.) 
 
Eq. (5-12) may be expanded to 
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This implies that ]),[),(( LDQGLHA −  is reachable. 
 
To prove necessity, let gain L define a suboptimal estimate  as in the proof of Theorem 5-1, with 
(A-LH) asymptotically stable. By Theorem 5-1, (A, H) detectable implies 

ˆLkx
PPk →−)(  with P 

bounded and at least positive semidefinite. But 
2

( ) L
kE x E x− ≤2

k  for all L because of the 
optimality of the Kalman filter. Hence, system A(I-KH) is also asymptotically stable with 
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1)( −+= RHPHPHK TT . 
 
Define AKL =′ . Then we can write the algebraic Riccati equation as 
 

.]][[)()(

)()()(
TT

TTTTT

DLQGDLQGHLAPHLA

GQQGLDDLHLAPHLAP

′′+′−′−=

+′′+′−′−=
    (5-13) 

 
We know that P is an at least positive semidefinite solution of Eq. (5-13). But Eq. (5-13) is also a 
Lyapunov equation, for which we know that )( HLA ′−  is stable (according to the Lyapunov 
Theorem) and also that the pair ]), DL′[),(( QGHLA ′−  is reachable (shown above). So the solution 
P is also unique and positive definite, and the gain 1)( −+ RHPH= PHK TT  is uniquely defined. 
 
(Lyapunov Theorem: (Ref. Panos J. Antsaklis and Anthony N. Michel, Linear Systems) 
 If there is a positive definite and symmetric matrix X and a positive definite and symmetric matrix Q 
satisfying , 

0TA XA X Q− + = , (Lyapunov Equation) 
then the matrix A is stable. Conversely, if A is stable, then, given any symmetric matrix Q, the above 
Lyapunov equation has a unique solution, and if Q is positive definite then X is positive definite.) 
 
 To show sufficiency, note that if A(I-KH) is asymptotically stable, there is an L=AK for which the 
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system (A-LH) is stable and hence the pair (A, H) is detectable.     Q.E.D. 
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In summary, Theorem 5-2 says that if the state is reachable by the process noise, so that every 

mode is excited by , then the Kalman filter is asymptotically stable if (A, H) is detectable. 
Thus, we can guarantee a stable filter by selecting the measurement matrix H correctly and 
ensuring that the process model is sufficiently corrupted by noise! 
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