5. Properties of Kalman Filtering

Orthogonality Principle

The Kalman filter is a special case of the mean-square estimator, that is, the Kalman estimates are the
conditional mean estimates, viz.,

X = E{x]|z}. (5-1)

Now, we want to show that the Kalman filter satisfies the orthogonality principle. Let RVs x and z be
jointly distributed. Then for any function g(-),

E{g(z)(z — E{z | 2})"} =

That is, any function of z is orthogonal to x once the conditional mean has been subtracted out. To
show this, write

E{g(z)(x — E{z | 2})"} = E{g(2)2" } - E{g(z)E{z" | 2}}
= E{g(2)x" } — E{E{g(2)z" | 2}}
= E{g(z)a" } — E{g(z)z" } = 0

—



We used the fact that
g(z)E{z" | 2} = E(g(2)z" | 2}

for any function g(-) since g(z) is deterministic if z is fixed. The orthogonality principle says that the
RV

T=uz—F{z|z},

which is the estimation error, is orthogonal to all other RVs g(z). It has the following implication for
estimation theory. If g(-) is any function (or filter), then
E||x — E{x| z}” < E||:c — g(z)”,
Proof: E(x— g(z))2 =E(x—E{x|z2}+E{x|}- g(z))2
= E(x-E{x|2})" + E(E{x| 2} - g(z))’ (orthogonality principle applied)
> E(x—E{x| z})2

where HH denotes the Euclidean norm. Thus no other function of z provides a “closer approximation
to x” in a probabilistic sense than does the Kalman filter which estimates x as E{x| z}.




White Gaussian Residual

The residual is defined by
=2z, —H X (=), (5-2)
which can be expressed
e =Hexe +v —H X ()
= H @ X + [ @t )G B+ v, — H @ iR (+) (5-3)

~ t,
=H @K () +H || @ty 7)G(2)dB(r) +v,
where f(z) isthe Brownian motion, i.e., d3(7) = w(r)dr.

Let’s investigate the right-hand side terms in Eqg. (5-3). Notice that the unconditional density



f;[}kfl("")(f) - f(jo 'fjk—l("r)zkfl (5, Zk—l) dzk—l
— J:O:O 'f‘%k:—l(+)|zk:—1 (S')fzk_l (Zk—l) de_l

(Note that f. .. (€|z,.,)= (27)”/2 |P,€1(+)|1/2} GXP{—%fTPk_i(‘F)f}

= f;. (), (&) since B, (+) is independent of z, ,.)

= fgzk,l(ﬂ\zk,l (€) f O; fz,H (201)d2,
= fioa ()

This equation indicates that X, ; is independent of z, ,. The second term of the right-hand side of
Eqg. (5-3) is also independent of z, , since it involves only transition matrix and process noise.
Finally, v, isindependent of z,, because it is white. Therefore, we can say that r, is independent
of z, ;. On the other hand, we can notice that r, is a linear function of z,. Therefore, we can
conclude that r, isa white sequence.

Eqg. (5-3) also tells us that since z, is Gaussian, r, is Gaussian with the following mean and
variance.



E{r}=H, @ E{X_,(-)}+HE{I()}+E{v,}=0 (5-4)
ELren 3= E{(Hy X = % O+ V) H DX = % (] +v,) "}
=H P (H,' +R,
This verifies that the residual r, isa white Gaussian sequence. This property is useful:

(1) to verify a design of Kalman filter,
(2) to detect a sensor failure or bad data.

(5-5)



Stability

Consider the following time-invariant system and the deterministic asymptotic estimation

Xy = AX, +BU, (5-6a)
7, = Hy, (5-6b)

where state x, € R", control input u, € R™, output z, €R"; and A, B, and H are known constant

matrices of appropriate dimension. All variables are deterministic, so that if initial state x, is known
then Eq. (5-6) can be solved exactly for x,, z for k>0.

Deterministic asymptotic estimation problem: Design an estimator whose output X, converges with k
to the actual state x, of Eq. (5-6) when the initial state x, is unknown, but u, and z, are given
exactly.

An estimator of observer which solves this problem has the form
Xa = AX, + L(z, —HX, )+ Bu,, (5-7)

as shown in Fig. 5-1.
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To Choose L in Eq. (5-7) so that the estimation error X, = x, —X, goes to zero with k for all x,, it is
necessary to examine the dynamics of X, . Write

X1 = X _Xk+l
= Ax, +Bu, —| A%, +L(z -HX,)+By, |
= A(lk _Xk)_ L(Hlk - HXk)
=(A-LH)X,

It is now apparent that in order that X, go to zero with k for any X,, observer gain L must be
selected so that (A—LH) is stable. L can be chosen so that X, — 0 if and only if (A/H) is
detectable which is defined in the sequel.

(1). (A, H) is observable if the poles of (A-LH) can be arbitrarily assigned by appropriate choice of the
output injection matrix L.

(2). (A, H) is detectable if (A-LH) can be made asymptotically stable by some matrix L. (If (A, H) is
observable, then the pair is detectable; but the reverse is not necessarily true.)

(3). (A, B) is reachable if the poles of (A-BK) can be arbitrarily assigned by appropriate choice of the



feedback matrix K.

(4). (A, B) is stabilizable if (A-BK) can be made asymptotically stable by some matrix K. (If (A, B) is
reachable, then (A, B) is stabilizable; but the reverse is not necessarily true.)

Now, consider the following stochastic system

X = Alk + ng +G\/_Vkslo - N(Xo’ Po)’ W, ~ N(O’Q)
Z, =Hx, +Vv,, v, ~ N(O,R).

The stability of the Kalman filter designed for this system is presented by two theorems.



Theorem 5-1. (Sufficient condition for a Kalman filter to be stable)

Let (A, H) be detectable. Then for every choice of P, there is a bounded limiting solution P to
Pea(5) = AP () =P (DH" (HR()H" +R) "HR (-)]A" +GQG'. (5-8)
Furthermore, P is a positive semidefinite solution to the algebraic Riccati equation

P=AP-PH"(HPH' +R)™"HP]JA" +GQG". (5-9)

(Proof)
(A, H) detectable means that there exists an L that makes (A-LH) asymptotically stable.

Construct a suboptimal X, using the L
2!, = (A— LH)i} + Bu, + Lz, . (This is a state observer.)

The estimation error in this case is given by
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)z|1_+1 =X — )A(lbl
= Ax, +Bu, +Gw, —(A-LH)X,, - - Lz,
= Ax, +Bu, +Gw, —(A-LH)X, — L[ka +V, ]
=(A-LH)X, +Gw, —Lv

The estimation error covariance is
S,y =(A-LH)S, (A-LH)" +LRL" +GQG'.

If (A-LH) is asymptotically stable, S, has a finite steady-state value according to the Lyapunov
theorem.

Since the Kalman is optimal, P, (-) <S,, where P, (-) satisfies Eq. (5-8).
From the above rationale, if (A, H) is detectable,
lim, , R,()=Ilim_ B ()=P

and P is the solution of the algebraic Riccati equation, Eq. (5-9).
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Theorem 5-2: (Necessary and sufficient condition for a Kalman filter to be stable)

Let /Q be a square root of the process noise covariance so that Q =/Q./Q >0, and let the

measurement noise have R>0. Suppose (A, G\/a) Is reachable. Then (A, H) is detectable if and only
if

a. There is a unique positive definite limiting solution P to Eq. (5-8) which is independent of P,.
Furthermore, P is the unique positive definite solution to the algebraic Riccati equation.

b. The steady-state error system defined by Kalman filter, viz.,
X1 (5) = Al = K H)X, () + G — AK, v, (5-10)
with steady-state Kalman gain
K=PHT(HPH™ +R)™* (5-11)

Is asymptotically stable.
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(Proof)
DefineDby R=DD".

R>0 implies that |D| = 0. Then, there exists an M that holds H=DM.
(A, G./Q) reachable implies
rank[zl - A G./Q]=n. (5-12)

(Suppose that rank[zl — A G\/ﬁ] # n, then there exists an n-dimensional non-zero vector g such
that gzl -A G./Q]=0, that is, gA=zq and gG./Q = 0. These equations may be expanded to
gAGJQ = 2qG\JQ =0

gA’GJQ = 2qAGQ = 2*¢GJQ = 0

resulting in
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qC(A G,/Q) = q[G./Q, AG./Q, ---, A™'G,/Q] =0.
This contradicts to the assumption that (A, G\/G) Is reachable.)
Eq. (5-12) may be expanded to

n = rank[zl — A, G,/Q, LD]
1 00
= rank[zl - A, G,/Q, LD]|0 I 0
MOl

= rank[zl - A+ LH, G,/Q, LD].
This implies that ((A—LH),[G+/Q, LD]) is reachable.

To prove necessity, let gain L define a suboptimal estimate Z; as in the proof of Theorem 5-1, with
(A-LH) asymptotically stable. By Theorem 5-1, (A, H) detectable implies P, (-) > P with P

bounded and at least positive semidefinite. But E|z,(—)| < E for all L because of the
optimality of the Kalman filter. Hence, system A(I-KH) is also asymptotically stable with

~LI2
Ly,
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K=PH'(HPH' +R)™
Define L'= AK. Then we can write the algebraic Riccati equation as

P=(A-L'H)P(A-L'H)" +L'DD" (L) +G,/QQ G

(5-13)
=(A-L'H)P(A-L'H)" +[G{/Q L'D]J[GJ/Q L'D]".

We know that P is an at least positive semidefinite solution of Eq. (5-13). But Eq. (5-13) is also a
Lyapunov equation, for which we know that (A—L'H) is stable (according to the Lyapunov

Theorem) and also that the pair ((A—L'H), [G\/a, L'D]) is reachable (shown above). So the solution
P is also unique and positive definite, and the gain K =PH" (HPHT +R)™ is uniquely defined.

(Lyapunov Theorem: (Ref. Panos J. Antsaklis and Anthony N. Michel, Linear Systems)
If there is a positive definite and symmetric matrix X and a positive definite and symmetric matrix Q
satisfying ,
A" XA—- X +Q =0, (Lyapunov Equation)
then the matrix A is stable. Conversely, if A is stable, then, given any symmetric matrix Q, the above
Lyapunov equation has a unique solution, and if Q is positive definite then X is positive definite.)

To show sufficiency, note that if A(I-KH) is asymptotically stable, there is an L=AK for which the
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system (A-LH) is stable and hence the pair (A, H) is detectable. Q.E.D.

In summary, Theorem 5-2 says that if the state is reachable by the process noise, so that every
mode is excited by w,, then the Kalman filter is asymptotically stable if (A, H) is detectable.

Thus, we can guarantee a stable filter by selecting the measurement matrix H correctly and
ensuring that the process model is sufficiently corrupted by noise!
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