
7. Nonlinear Estimation 
 
7.1 The Extended Kalman Filter (EKF) 
 
Consider a nonlinear, time-invariant state model of the form 
 
 x( 1) (x( )) w( ), w( ) (0, ( ))Q nn n n n Nφ= + Γ ∼        (7.1-1) +
 z( ) (x( )) v( ), v( ) (0, ( ))n n n n N R n+ ∼         (7.1-2) = γ

 { } { } { }T T T . w( )v ( ) 0, w( )x (0) 0, v( )x (0) 0E n n E n E n= = =

 
Assume that ( )φ ⋅  and ( )γ ⋅  are sufficiently smooth in x  so that each has a valid Taylor series 
expansion. Given a realization x̂( )n , expand ( )φ ⋅  into a Taylor series about x̂( )n  
 

 
[ ]

[ ]
ˆ ˆ ˆ(x( )) (x( )) (x( )) x( ) x( )

ˆ ˆ           (x( )) ( ) x( ) x( )

n n J n n n

n n n n
φφ φ

φ

= + − +

+Φ − +

"

� "
       (7.1-3) 

 
where ( )J xφ  is the Jacobian of ( )φ ⋅  evaluated at x  such that 
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"

⎥       (7.1-4) 

 
Likewise, we expand ( )γ ⋅  about the realization x̂ ( )n−  
 

 
ˆ ˆ ˆ(x( )) (x ( )) (x ( )) x( ) x ( )

ˆ ˆ           (x ( )) ( ) x( ) x ( )

n n J n n n

n H n n n

γγ γ

γ

− − −

− −

⎡ ⎤= + − +⎣ ⎦
⎡ ⎤+ − +⎣ ⎦

"

� "
      (7.1-5) 

 
Keeping only the first two terms in the expansions of Eqs. (7.1-3) and (7.1-5), we have a linearized 
signal/measurement model 
 
 [ ]ˆ ˆx( 1) (x( )) ( ) x( ) x( ) w( )n n n n n nφ= +Φ − + Γ        (7.1-6) +

 ˆ ˆz( ) (x ( )) ( ) x( ) x ( ) v( )n n H n n n n .       (7.1-7) γ − −⎡ ⎤= + − +⎣ ⎦
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Time Propagation – Assume that x̂( 1)n −  is unbiased and seek the a priori estimate x̂ ( ) . We 
want 

n−

x̂ ( )n−  to be unbiased, so it must satisfy 
 
 { }ˆx( ) x ( ) 0E n n Z−⎡ ⎤− =⎣ ⎦ , 
 
which yields to 
 

 

{ }
[ ]{ }

{ }

x̂ ( ) x( )

ˆ ˆ       (x( 1)) ( 1) x( 1) x( 1) w( 1)

ˆ        (x( 1)) ( 1)x( 1) w( 1)

ˆ        (x( 1)).

n E n Z

E n n n n n Z

E n n n n Z

n

φ

φ

φ

− =

= − +Φ − − − − + Γ −

= − +Φ − − + Γ −

= −

�
   (7.1-8) 

 
Now, seek the time propagation equation for the a priori conditional error covariance ( )P n−  
 

{ }
{ }

ˆ( ) x( ) x ( )

ˆ ˆ         (x( 1)) ( 1)x( 1) w( 1) x ( )

         ( 1) ( 1) ( 1) ( 1) .T T

P n Cov n n Z

Cov n n n n n Z

n P n n Q n

φ

− −

−

⎡ ⎤= −⎣ ⎦

⎡ ⎤= − +Φ − − + Γ − −⎣ ⎦

= Φ − − Φ − + Γ − Γ

�    (7.1-9) 
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Measurement Update – Assume that x̂ ( )  is unbiased and the error n− x ( )  is orthogonal to the 
measurements 

n−�
z(1), , z( 1)n −" . (Refer to Eq. (7.1-8).) Given the new measurement z( )n , we seek 

the minimum mean square error estimate x̂( )n . Assume that x̂( )n  has the form 
 
 x̂( ) b( ) ( )z( )nn n K n+ .           (7.1-10) =
 
Since x̂( )n  should be unbiased, we have 
 
 [ ]{ }ˆx( ) x( ) 0E n n Z− = . 
 
Substitute Eqs. (7.1-7) and (7.1-10) into this expression to obtain 
 
 ( ){ }ˆx( ) b( ) ( ) (x ( )) ( )x ( ) v( ) 0E n n K n n H n n n Zγ − −⎡ ⎤− − + + =⎣ ⎦� . 

 
Solve this equation for b( )n  
 

 

{ } { } { }
{ }

ˆb( ) ( ) (x ( )) ( ) ( ) x ( ) x( ) ( ) v( )

ˆ      ( ) (x ( )) x( )

ˆ ˆ      ( ) (x ( )) x ( ). (according to Eq. (7.1-8).)

n K n n K n H n E n Z E n Z K n E n Z

K n n E n Z

K n n n

γ

γ

γ

− −

−

− −

= − − + −

= − +

= − +

�
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Therefore, Eq. (7.1-10) becomes 
 
 ˆ ˆ ˆx( ) x ( ) ( ) z( ) (x ( ))n n K n n nγ− −⎡ ⎤= + − ⎦ .        (7.1-11) ⎣
 
Now, we want to find ( )K n . By the orthogonality principle, the following equations hold 
 

 

[ ]{ }
{ }
{ }

T

T

T

ˆx( ) x( ) z ( )

ˆ ˆx( ) x ( ) ( ) z( ) (x ( )) z ( )

x ( ) ( ) ( )x ( ) v( ) z ( )

0, 1,2, , .

E n n i Z

E n n K n n n i Z

E n K n H n n n i Z

i n

γ− −

− −

−

⎡ ⎤⎡ ⎤= − − −⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= − +⎣ ⎦⎣ ⎦
= =

� �

"

     (7.1-12) 

 
We have assumed that, for 1,2, , 1i n= −" , 
 
 { }Tx ( )z ( ) 0,  E n i Z− =�
 
and v( )n  is independent of the measurements, z( ), 1,2, , 1i i n= −" . Thus, Eq. (7.1-12) is already 
satisfied for n − . We need only to consider the remaining case, i.e., 1,2, , 1i = " i n=  
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{ }
{ }

Tx ( ) ( ) ( )x ( ) v( ) z ( )

ˆ ˆx ( ) ( ) ( )x ( ) v( ) (x ( )) ( ) x( ) x ( ) v( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0.

T

T T

E n K n H n n n i Z

E n K n H n n n n H n n n n Z

P n H n K n H n P n H n K n R n

γ

− −

− − − −

− −

⎡ ⎤⎡ ⎤− +⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= − + + − +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

= − −
=

� �

� �  

 
Solving this equation for )(K n , we have the Kalman gain for EKF 
 
 

1
( ) ( ) ( ) ( ) ( ) ( ) ( )T TK n P n H n H n P n H n R n

−− −⎡ ⎤= +⎣ ⎦ .      (7.1-1  3)
 
Finally, we need an expression for ( )P n , the a posteriori conditional error covariance matrix 
 

 

{ } [ ]{ }
{ }

ˆ( ) x( ) Z x( ) x( )

ˆ       x( ) x ( ) ( ) ( )x ( ) v( )

       ( ) ( ) ( ) ( ) ( ) ( ) ( )

             ( ) ( ) ( ) ( ) ( ) ( )

       ( ) ( ) ( ) ( ).

T T

T T

P n Cov n Z Cov n n Z

Cov n n K n H n n n Z

P n P n H n K n K n H n P n

K n H n P n H n R n K n

P n K n H n P n

− −

− − −

−

− −

= = = −

⎡ ⎤⎡ ⎤= − − +⎣ ⎦⎣ ⎦

= − −

⎡ ⎤+ +⎣ ⎦
= −

�

�

     (7.1-14) 
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Summary of EKF 
 
System Model 
Measurement Model 

x( 1) (x( )) w( ), w( ) (0, ( ))n n n n N Q nφ+ = + Γ ∼
z( ) (x( )) v( ), v( ) (0, ( ))n n n n N R nγ= + ∼  

Initial Conditions 
 
Other Assumptions 

0 0 0 0ˆ ˆ ˆ[x(0)] x , [(x(0) x )(x(0) x ) ]TE E P= − − =  
{ } { } { }T T Tw( )v ( ) 0, w( )x (0) 0, v( )x (0) 0E n n E n E n= = =  

Time Propagations ˆ ˆx ( ) (x( 1))n nφ− = −  
( ) ( 1) ( 1) ( 1) ( 1)T TP n n P n n Q n− = Φ − − Φ − + Γ − Γ  

ˆ( 1) (x( 1))n J nφΦ − = −  
Measurement Updates 
 
 
Kalman Gain Matrix 

ˆ ˆ ˆx( ) x ( ) ( ) z( ) (x ( ))n n K n n nγ− −⎡ ⎤= + −⎣ ⎦  

( ) ( ) ( ) ( ) ( )P n P n K n H n P n− −= −  
1

( ) ( ) ( ) ( ) ( ) ( ) ( )T TK n P n H n H n P n H n R n
−− −⎡ ⎤= +⎣ ⎦  

ˆ( ) (x ( ))H n J nγ
−=  
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7.2 Frequency Demodulation 
 
The frequency modulation (FM) is a well-known technique for transmitting analog waveforms. A 
continuous-time message m ( )  modulates the angle of a sinusoidal carrier c ( ) . Let c t c t 0A  denote 
the carrier amplitude and 0Ω  the carrier frequency. 
 
The carrier and message are related by 
 

 c ,     (7.2-1) ( ) ( )0 0 0 0 00
c ( ) cos m ( ) cos ( )

t

c ct A t d A t tβ τ τ θ= Ω + Ω +∫ �

 
where 0β  is the modulation index. The problem of interest is to estimate the message from 
noisy measurements of the form c ( ) v ( ), v ( ) (0, )ct t t N R

m ( )c t
c c c+ ∼ . This process is known as frequency 

demodulation. 
 
We want to solve the frequency demodulation problem by applying the EKF. The message is a 
bandlimited signal in the frequency range mm−Ω < Ω < Ω . We therefore model m ( )  as the output 
of a lowpass filter that has cutoff frequency 

c t
mΩ  and is excited by white noise  with variance w ( )c t

2
cwσ . We employ a first-order Butterworth filter. Then the Laplace transform ( )cH s  representation of 

the filter is 
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 ( )( )
( )

c m
c

c m

M sH s
W s s

Ω
= =

+Ω
. 

 
As a result, the differential equation relating  and  is m ( )c t w ( )c t
 
 cm ( ) m ( ) w ( )c m c mt t t= −Ω +Ω� . 
 
From Eq. (7.2-1), the derivative of ( )c tθ  is 
 
 . 0( ) m ( )c ct tθ β=�
 
Defining a continuous-time state vector by [ ]x ( ) m ( ) ( ) T

c c ct t t , we obtain the following 
continuous-time state model 

θ=

 

 
0

0
x ( ) x ( ) w ( )

       0 0
m m

c c c tt t
β
−Ω Ω⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

�          (7.2-2) 

 
[ ]( )

( )
0 0z ( ) cos 0 1 x ( ) v ( )

       x ( ) v ( ).
c c c

c c c

t A t t t

t tγ

= Ω + +

+�
        (7.2-3) 
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To apply the EKF, discretize the continuous-time state model with a sampling period T. When we 
discretize the system, the discrete-time state vector is 
 
 [ ] [ ]x( ) x ( ) m( ) ( ) m ( ) ( )T T

c c cθ .      (7.2-4) n nT n n nT nTθ= = =
 
To discretize Eq. (7.2-2), we use the Laplace transform relationship 
 

 ( )

( )

1

1 1
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0

1         0
0

1       0        
s

                  0
  ,

1     1

m

m
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t T
m t T

T
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T

m

s
sI

s s

e
e

e

ββ

β

−

− −

=

=

−Ω

−Ω

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎧ ⎫ +Ω⎛ −Ω ⎞⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥Φ = − =⎨⎜ ⎟ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎢ ⎥⎪ ⎪+Ω⎣ ⎦⎩ ⎭

⎡ ⎤
⎢ ⎥= ⎢ ⎥−
⎢ ⎥Ω⎣ ⎦

�

L L

    (7.2-5) 
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( ) ( )

( ) ( )

2 2
02 2

2 2 2
0 02 2

     1         1 2
2 2 .
1 2   3 2 4

2 2

c cm m m

c cm m m m

w m wT T T

w wT T T T
m

m

e e e

e e T e e

σ σ β

σ β σ β

− Ω −Ω − Ω

−Ω − Ω −Ω − Ω

⎡ ⎤Ω
− − +⎢ ⎥

⎢ ⎥=
⎢ ⎥

− + − + Ω + −⎢ ⎥
Ω⎢ ⎥⎣ ⎦

   (7.2-6) 

So the state model is 
 

 ( )0

                  0
x( 1) x( ) w( ), w( ) (0, )

1     1

m

m

T

T

m

e
n n n n N Q .     (7.2-7) 

eβ

−Ω

−Ω

⎡ ⎤
⎢ ⎥+ = +⎢ ⎥−
⎢ ⎥Ω⎣ ⎦

∼

 
The carrier signal is then 
 
 ( ) [ ]( )0 0 0 0c( ) (x( )) cos ( ) cos 0 1 x( ) .n n A nT n A nT n     (7.2-8) γ θ= = Ω + = Ω +
 
Finally, the output equation becomes 
 

 
2

v( ) (x( )) v( ), v( ) 0,
T

cz n n n n R
σ

γ
⎛ ⎞

= + =⎜ ⎟⎟ .        (7.2-9) ⎜
⎝ ⎠

∼
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Note that the state and input dynamics of Eq. (7.2-7) are linear, but the output Eq. (7.2-9) is nonlinear. 
Hence we need to linearize Eq. (7.2-9). Applying the EKF approximation to Eq. (7.2-8) or Eq. (7.2-1), 
we obtain 
 

 
( )

[ ]( )
0 0

0 0

ˆˆ( ) (x ( )) 0 sin ( )

ˆ                          0 sin 0 1 x ( ) .

H n J n A nT n

A nT n

γ θ− −

−

⎡ ⎤= = − Ω +⎣ ⎦
⎡ ⎤= − Ω +⎣ ⎦

 

 
The a posteriori state estimate Eq. (7.1-11) becomes 
 

 
[ ]( )

( )
0 0

0 0

ˆ ˆ ˆx( ) x ( ) ( ) z( ) cos 0 1 x ( )

ˆˆ       x ( ) ( ) z( ) cos ( )

n n K n n A nT n

n K n n A nT nθ

− −

− −

⎡ ⎤= + − Ω +⎣ ⎦
⎡ ⎤= + − Ω +⎣ ⎦

 

 
with 
 
 ˆ ˆx ( ) x( 1)n n− Φ −  =
 ( ) ( 1) TP n P n Q− = Φ − Φ +  

 
1

( ) ( ) ( ) ( ) ( ) ( )T TK n P n H n H n P n H n R
−− −⎡ ⎤= +⎣ ⎦  

 ( ) ( ) ( ) ( ) ( )P n P n K n H n P n− −= − . 
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The demodulated message is then 
[ ]ˆ ˆm( ) 1 0 x( )n n= .  

With no a priori information, we may initialize the EKF with 
 
 [ ]x̂(0) 0 0 T=  
 (0) , 0P Iα α= > . 
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Example 7.1 Frequency Demodulation 
 

0

0

0

9

2

carrier amplidude 1

carrier frequency 100 MHz

message bandwidth 15 KHz

frequency modulation index 5

sampling frequency 250 MHz

sampling period 1/ 9 10 9 ns

variance of process noise 0

m

s

s

wc

A

f

f

f

T f

β

σ

−

= =

= =

= =

= =

= =

= = = × =

= =
2 12 2

.01

variance of measurement noise 4 10 (after discretization, 0.001)vc vσ σ−= = × =

 

 

The carrier signal-to-noise ratio is 
 

2
0

10 2
10 log 27 dB.

2c
v

A
SNR

σ

⎛ ⎞⎟⎜ ⎟= ≈⎜ ⎟⎜ ⎟⎜⎝ ⎠
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7.3 Unscented Kalman Filter 
 
Unscented Transformations 
 
Suppose that x  is a 1nn ×  random vector that is transformed by a nonlinear n functio

( )y h x= . Further assumed is that the pdf of x  is symmetric around its mean and ( )h x  is smooth. 
Choose 2n points  sigma ( )ix  as follows: 
 

 ( )
( )

( ) ( )

( )

( )

1, ,2

1, ,

1, ,

i i

T
i

i
T

n i

i

x x x i n

x nP i n

x nP i n+

= + =

= =

= − =

� "

� "

� "

         (7.3-1) 

 
where 
 

 
( )

( )
the matrix square root of  such that 

the th row of .

T

i

nP nP nP nP nP

nP i nP

= =

=
 

 
Mean approximation – Suppose that we have a vector x  with a known mean x  and covariance P, 
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a nonlinear function ( )y h x= , and we want to appproximate the mean of y . Let the transformed 
sigma points be computed by 
 
 ( ) ( )( ) 1, ,2i iy h x i n .         (7.3-2) = = "
 
Suppose that the approximated mean of y  denoted as uy  is computed as follows 
 

 
( )

( )

( ) ( )

( ) ( )

2
( ) ( )

1

2
( )

1

2
2

1

2
2

1

1    1, ,2
2
1 1    

2 2!
1 1    

2 2!

i i

i i

n
i i

u
i

n
i

i

n

x x
i

n

x x
i

y W y

y i n
n

h x D h D h
n

h x D h D h
n

=

=

=

=

=

= =

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

∑

∑

∑

∑

� �

� �

"

"

"

       (7.3-3) 

 

where ( )
( )

1

( )j

kn
k j

ix
i i

x x

D h x h x
x=

=

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠
∑�
�  and x x x= −� . 
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Notice that since ( ) ( ) ( 1, , )j n jx x j n+= − =� � "  according to Eq. (7.3-1), for any odd power term, we 
have 
 

 ( )

( )

( )

2 12 2
2 1 ( )

1 1 1

2 12 2 1( )
2 1

1 1

2 12 2 1( )
2 1

1 1

( )

              ( )

              ( )

         

j

kn n n
k j

ix
j j i i

x x

kn n kj
i k

j i i x x

kn n kj
i k

i j i x x

D h x h x
x

x h x
x

x h x
x

+

+

= = =
=

+
+

+
= = =

+
+

+
= = =

⎡ ⎤⎛ ⎞∂⎢ ⎥= ⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦
⎡ ⎤∂

= ⎢ ⎥
∂⎢ ⎥        (7.3-4) 

⎣ ⎦
⎡ ⎤∂
⎢ ⎥=

∂⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∑

∑ ∑

�
�

�

�

   0.=
 
Eq. (7.3-3) can be expressed 
 

 
( )

( )

( ) ( )

( ) ( ) ( )

2
2 4

1

2 2
2 4 6

1 1

1 1 1
2 2! 4!
1 1 1 1 1  .
2 2! 2 4! 6!

i i

i i i

n

u x x
i

n n

x x x
i i

y h x D h D h
n

h x D h D h D h
n n

=

= =

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

∑

∑ ∑

� �

� � �

"

"
    (7.3-5) 
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Look at the second term on the right side of Eq. (7.3-5) 
 

 

( )

22 2
2 ( )

1 1 1

22
( ) ( )

1 , 1

22
( ) ( )

, 1 1

1 1 1 1 ( )
2 2! 2 2!

1                    ( )
4

1                    ( )
4

        

i

n n n
k

ix
i k i i

x x

n n
k k

i j
k i j i j x x

n n
k k

i j
i j k i j x x

D h x h x
n n x

x x h x
n x x

x x h x
n x x

= = =
=

= = =

= = =

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

∂
=

∂ ∂

∂
=

∂ ∂

∑ ∑ ∑

∑∑

∑∑

�
�

� �

� �

2
( ) ( )

, 1 1

1            ( )
2

n n
k k

i j
i j k i j x x

x x h x
n x x= = =

∂
=

∂ ∂∑∑ � �

      (7.3-6) 

 
where we have again used the fact from Eq. (7.3-1) that ( ) ( ) ( 1, , )k k nx x k+= − =� � " n . Substitute for ( )k

ix�  
and )(k

jx�  from Eq. (7.3-1) in Eq. (7.3-6) to obtain 
 

 ( ) ( )
2 2

( ) ( )

, 1 1 , 1 1

1 ( ) 1 ( )
2 2

n n n n
k k

i j ki kji j k i j ki j i jx x x x

h x h xx x nP nP
n x x n x x= = = == =

∂ ∂
=

∂ ∂ ∂ ∂∑∑ ∑∑� �  
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( ) ( ) ( )
2

, 1 1

2

, 1

1 ( )  or 
2

1 ( ) .
2

n nT

ij ijik kji j ki j x x

n

ij
i j i j x x

h xnP nP nP nP nP nP nP
n x x

h xP
x x

= ==

= =

∂ ⎛ ⎞= = =⎜ ⎟∂ ∂ ⎝ ⎠

∂
=

∂ ∂

∑ ∑

∑
 (7.3-7) 

 
Eq. (7.3-5) can therefore be written as 
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Now, note that the true mean of y  can be written by 
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since { } { }3 0x xE D h E D h= = = . The second term on the right side of Eq. (7.3-9) can be written � � "
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=
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∑

∑

∑

� �
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We therefore see that y  can be written from Eq. (7.3-9) as 
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Comparing this with Eq. (7.3-8), we see that uy  (the approximated mean of y ) matches the true 
mean of y  correctly up to the third order. 
 
Covariance approximation - Suppose that we have a vector x  with a known mean x  and 
covariance P, a nonlinear function ( )y h x= , and we want to appproximate the covariance of y . 
Denote the approximation as uP  and propose the following equation 
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2
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i
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P W y y y y

y y y y
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∑

∑
        (7.3-12) 

 
Expanding Eq. (7.3-12) using the Taylor series and Eq. (7.3-5) gives 
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(7.3-13) 

 
Some of the terms in the above equation are zero as noted because ( ) ( ) ( 1, , )i n ix x i+= − =� � " n . 
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Expanding Eq. (7.3-13) gives 
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Recall that i n

j
( ) ( )i
jx x += −� �  and i n( ) ( )i

k kx x += −� �  for n1, ,i = " . The covariance approximation becomes 
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=
 
Now, note that the true covariance of y  can be written by 
 

 ( )( ){ }T

yP E y y y y= − −  
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The first term on the right side of the above equation can be written as 
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Substitute Eq. (7.3-17) into Eq. (7.3-16) to obtain 
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    (7.3-18) 

 
Comparing this with Eq. (7.3-15), we see that uP  (the approximated covariance of y ) matches the 
true covariance of y  correctly up to the third order. 
 
The Unscented Kalman Filter 
 
Based on the unscented transformations, the unscented Kalman filter (UKF) algorithm can be 
constructed. 
 

1. We have an n-state discrete-time nonlinear system given by 
 

( ) ( )1 , , 0,k k k k k kx f x u w w Q+ = + ∼  
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( ) ( ), 0,k k k k k .       (7.3-19) z h x v v= + ∼

2. The UKF is initialized as follows 

R
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( )( ){ }+
       (7.3-20) 
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x E x

P E x x x x

+

+ +

=

= − −0 0 0 0 0

3. The following time update equations are used to propagate the state estimate and covariance 
from one measurement time to the next. 

 

(a) To propagate from time step ( 1)k −  to , first choose sigma points k ( )
1

i
kx −  as specified 

in Eq. (8.3-1) with appropriate changes 
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      (7.3-21) 

 
(b) Use the known nonlinear system equation ( )f ⋅  to transform the sigma points into ( )i

kx  
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vectors as shown in Eq. (7.3-2) with appropriate changes 
 

( )( ) ( )
1,

i i
k k kx f x u= .        (7.3-22) −

(c
 

) Combine the ( )i
kx  vectors to obtain the a priori state estimate at time  based on Eq. 

(7.3-3) 
k

 
2

( )

1

1ˆ ˆk2k
i

n
ix x− = ∑n =

(d) Estimate the a priori error covariance as shown in Eq. (7.3-12). However, we should 
add  to the end of the equation to take the process noise into account 

.         (7.3-23) 
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P x x x x Q− − −

n −
=

4. Now that the time update equations are done, we implement the measurement update the 
equations. 

= − −∑ + .     (7.3-24) 

 

(a) Choose sigma points ( )i
kx  as specified in Eq. (7.3-1) with appropriate changes 
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      (7.3-25) 

 
(b) Use the known nonlinear measurement equation ( )h ⋅  to transform the sigma points 

into ( )ˆ i
kz  vectors (predicted measurements) as shown in Eq. (7.3-2) 

 
( )( ) ( )ˆˆ i i

k .         (7.3-26) k
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z h x=

 
) Combine the ( )ˆ i

kz  vectors to obtain the predicted measurement at time  based on Eq. 
(8.3-3) 

k

 
2

( )

1

1ˆ ˆkz .         (7.3-27) 
2k

i

n
iz = ∑n =

(d) Estimate the covariance of the predicted measurement as shown in Eq. (7.3-12). 
However, we should add  to the end of the equation to take the measurement noise 
into account 

 

kR
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(e) Estimate the cross covariance between ˆkx−  and ˆkz  based on Eq. (7.3-12) 
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(f) The measurement update of the state estimate can be performed using the normal 
Kalman filter equations 
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k xz z

k k k k k

T
k k k z k

K P P

x x K z z

P P K P K

−

+ −

+ −

=

= + −

= −

        (7.3-30) 

 
This completes the UKF algorithm which has a similar form with the EKF. Note that the EKF is based 
on linearization while the UKF is based on the unscented transformations which are more accurate 
than linearization for propagating means and covariances. 
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7.4 Particle Filter 
 
Monte Carlo Integration 
 
The Monte Carlo (MC) estimate of integral 
 
  ( ) ( )I f x p x dx= ∫           (7.4-1) 
 
is the sample mean 
 

  ( )
1

1 N
i

N
i

I f x
N =

= ∑           (7.4-2) 

 
where ( )f x  is an arbitrary function of x and  is the probability density. If the samples ( )p x ix  are 
independent then NI  is an unbiased estimate and according to the law of large numbers NI  will 
almost surely converge to I. If the variance of ( )f x , 
 
  ( )22 ( ) ( )f x I p x dxσ = −∫  
 
is finite, then the central limit theorem holds and the estimation error converges in distribution 
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  ( ) ( )2lim 0,NN
N I I N σ

→∞
− ∼ . 

 
Importance Sampling 
 
Suppose that we do not exactly know ) and we can only generate samples from a density (p x ( )xπ  
which is similar to ( )p x . Employing ( )xπ  Eq. (7.4-1) can be written 
 

  ( )( ) ( ) ( ) ( )
( )

p xI f x p x dx f x x dx       (7.4-3) 
x
π

π
= =∫ ∫

 
A Monte Carlo estimate of I is computed by generating  independent samples 1N � { }; 1, ,ix i N= "  
distributed according to )(xπ  and forming the weighted sum 
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N
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where 
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(
i

i
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xπ
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Normalizing , Eq. (7.4-4) can be expressed ( )iq x�
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where the normalized weights ( )iq x  are given by 
 

  ( ) ( )
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1

i
i

N
j

j

q x
q x

q x
=

=

∑

�

�
.          (7.4-7) 

 
In the above, )(xπ  is called the importance density, ( )iq x�  the importance weights, and ( )iq x  the 
normalized importance weights. 
 
Sequential Importance Sampling 
 
Let { }, 0, ,k jX x j= = " k  represent the sequence of all target states up to time k. The joint posterior 
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density at time k is denoted by ( )k kp X Z , and its marginal is ( )k kp x Z . Let { }
1

,
Ni i

k k i
X q

=
 denote a 

random measure that characterizes the joint posterior ( )k kp X Z , where { }, 1i
kX i = , , N"  is a set of 

support points with associated weights { }, 1, ,i
kq i N= " . Then, the joint posterior density at k can be 

approximated as follows, 
 

  ( ) ( )k
1

N
i

k k k k
i

p X Z q X Xδ
=

≈∑ i− .        (7.4-8) 

 
( )kZkp XWe therefore have a discrete weighted approximation of the true posterior, . The 

normalized weights  are chosen using the principle of importance sampling described earlier. If the 
samples  were drawn from an importance density 

i
kq

i
kX ( )k kX Z , then according to Eq. (7.4-5) π

 

  
( )
( )

i
k ki

k i
k k

p X Z
q

X Zπ
∝ .          (7.4-9) 

 
( )1Suppose at time step  we have samples constituting an approximation to 1k − 1k kp X Z− − . With the 

reception of measurement  at time k, we wish to approximate kz ( )kkp X Z  with a new set of 
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samples. If the importance density is chosen to factorize such that 
 
  ( ) ( ) ( ) ( )1 1 1 1, ,k k k k k k k k k kX Z x X Z x X Z X Zπ π π π− − −= = −    (7.4-10) 
 
Then one can obtain samples ( )i

k k kZ  by augmenting each of the existing samples X Xπ∼

( )1 1 1kZ −  with the new state i
k kX Xπ− −∼ ( )1,

i
k k k kx x X Zπ −∼ . To derive the weight update equation, 

the pdf ( )k kp X Z  is first expressed using the Bayes’ rule 
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( ) ( ) ( )1 1 1k k k k k kp z x p x x p X Z− −∝ −      (7.4-12) 
 
By substituting Eqs. (7.4-10) and (7.4-12) into Eq. (7.4-9), the weight update equation can then be 
shown to be 
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      (7.4-13) 

 
Furthermore, if ( ) ( )1 1,,k k k k k kx X Z x x zπ π− = − , i.e., Markov process, then the importance density 
becomes only dependent on the 1kx −  and . The modified weight is then kz
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and the posterior filtered density ( )k kp x Z  can be approximated as 
 

  ( ) ( )
1

N
i i− .        (7.4-15) k k k k k

i
p x Z q x xδ

=

≈∑
 
It can be shown that as , the approximation, Eq. (7.4-14), approaches the true posterior 
density 

N →∞
( )k kp x Z . 

 
Particle Filtering 
 
Consider a nonlinear system described by the equations 
 

  
( )

( )
1 ,

,
k k k k

k k k k

x f x w

z h x v
+ =

=
          (7.4-16) 

 
where k is the time index, kx  is the state,  is the process noise,  is the measurement, and  kw kz kv
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is the measurement noise.  and  are assumed to be independent and white with known pdf’s. 
The particle filtering is to numerically implement a Baysian estimation using the sequential 
importance sampling. 

kw kv

 
At the beginning of the estimation problem, we randomly generate a given number N state vectors 
based on the initial pdf ( )p x  which is assumed to be known. These state vectors are called particles 
and are denoted as )

0

1,0 ( ) ,i (x i N . At each time step  we propagate the particles to the 
next time step using the process equation ( )

+ = " 1,2, ,k = "
f ⋅  

 
  )( )1 1 1( ) ), 1, ,i i i

k k k k( (x f x w− − −− = = "i N       (7.4-17) +

 
where each  noise vector is randomly generated on the basis of the known pdf of 1

i
kw − 1kw − . 

 
Now, we want to talk about obtaining the normalized weights . Referring to Eq. (7.4-14), compute 

 from evaluating 

i
kq

i
kq ( )( )xi i

k kp z − . Thus it may be called as the relative likelihood. For example, if 

( )kxkz h= kv+  and , then for a specific measurement , (0, )kv N R∼ *z
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Next we resample the particles from the computed weights. That is, we compute a brand new set of 
particles )i (kx +  that are randomly generated on the basis of i . One straightforward way to obtain 

 is as follows: 
kq

( )i
kx +

 
1. Generate a random number r that is uniformly distributed on . 

i

[0,1]
2. Accumulate kq  into a sum, one at a time, until the accumulated sum is greater than r. That is, 

1

1

j

r
−

=

m
k

m

q <∑  but r . The new particle )
1

j
m
kq

=

≥
m
∑ (i

kx +  is then set equal to the old particle )(j
kx − , 

i.e., 
 

( ) ( ) with probability ( , 1, , )i j
k k jx x q i j+ = − = " N .    (7.4-19) 

 
 This is illustrated in Fig. 7.4-1. 

 40



 
            Figure 7.4-1 Illustration of resampling in the particle filter. 
 
For example, if a random number 0.3r =  is generated from a distribution that is uniform on 

, the smallest vajue of j for which r  is . Therefore the resampled particle is 

set equal to ) . 

[0,1]
1

j

m
q

=
∑ m

k ≥ 3j =

3(kx −
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The Particle Filter 
 

1. The system and measurement equations are given as follows 
 

( )
( )

1 ,

,
k k k k

k k k k

x f x w

z h x v
+ =

=
          (7.4-20) 

 
 where kw  and  are assumed to be independent and white with known pdf’s. kv
 

2. Randomly generate N initial particles on the basis of the pdf ( )0p x  and denote them as 
)0

i ( ) ( 1, ,x i N

3. For 

+ = " . 
 

1,2, ,k = "  do the following. 
 

(a) Perform the time propagation step to obtain a priori particles ( )i
kx −  

 
( )1 1 1( ) ( ), ( 1, ,i i i

k k k k )x f x w i N− − −− = + = " .      (7.4-21) 
 

(b) Compute the relative likelihood  of each particle i
kq ( )i

kx −  conditioned on the 
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measurement kz . This is done by evaluating the pdf ( )( )i i
k kp z x −  on the basis of the 

nonlinear measurement equation and the pdf of the measurement noise. 
 

(c) Scale the relative likelihoods obtained in the previous step as follows 
 

1

i
i k
k N

j
k

j

qq
q

=

=

∑
 

 
    Now the sum of all the likelihoods is equal to one. 
 

(d) Generate a set of a posteriori particles ( )i
kx +  on the basis of the relative likelihoods 

. This is called the resampling step (for example, see Fig. 7.4-1) i
kq

 
(e) Using the set of particles )(i

kx + , we can compute the mean and covariance, 
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1
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1
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E x z x
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Cov x z x E x z x E x z
N
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∑

∑
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The Extended Kalman Particle Filter 
 

1. The system and measurement equations are given as follows 
 

( )
( )

1 ,

,
k k k k

k k k k

x f x w

z h x v
+ =

=
          (7.4-20) 

 
 where k  and  are assumed to be independent and white with known pdf’s. w kv

2. Randomly generate N initial particles on the basis of the pdf 
 

( )0p x  and denote them as 0 ( )ix +  
and their covariances )0 0( ) ( )iP ( 1, ,P i = " N . + = +

3. For 
 

1,2, ,k = "  do the following. 
 

(a) Perform the time propagation step to obtain a priori particles )(i
kx −  and covariances 
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(i
kP −)  using 

 
( )

( )

1

1 1 1

1 1 1 1k

1

( )

( )

i

( )

( ),

( )

( 1, , )
i
k

i i i
k k k k

Ti i i i
k k k k

k
x x

x f x w

P F P

f
x−

− =

− =

∂
= =
∂

F Q

F i N
−

− − −

− − −

= +

+

+ +

"

−        (7.4-23) 

   
where each 1

i
kw −  noise vector is randomly generated on the basis of the known pdf of 

w . 1k−

 
(b) Update the a priori particles and covariances to obtain a posteriori particles and 

covariances 
 

( ) ( )( )
( )

1

( ) ( )

i
k

i
k

x x

T Ti i i i i i
k k k k k k k

hH
x

K P H H P H R

= −

−

∂
=
∂

= − − +

  

( )( ) ( ) ( )i i i i
k k k k kx x K z h x⎡ ⎤+ = − + − −⎣ ⎦        (7.4-24) 
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(c) Compute the relative likelihood i
kq  of each particle ( )i

kx −  conditioned on the 
measurement kz . This is done by evaluating the pdf ( )( )i i

k kp z x −  on the basis of the 
nonlinear measurement equation and the pdf fo the measurement noise. 

(f) Now we have a set of a posteriori particles ( )i
kx +  and covariances )(i

kP + . We can 
compute any desired statistical measure of this set of particles. 

(e) Refine the set of a posteriori particles ( )i
kx +  and covariances ( )i

kP +  on the basis of 
the relative likelihoods . This is the resampling step. 

(d) Scale the relative likelihoods obtained in the previous step as follows 

Now the sum of all the likelihoods is equal to one. 
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