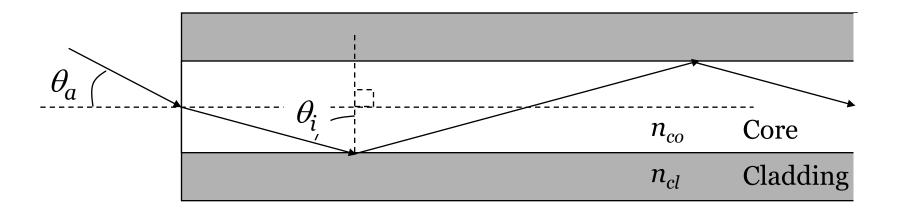
Guided waves and optical fibres

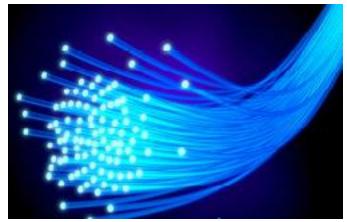

Dr Yoonchan Jeong

School of Electrical Engineering, Seoul National University

Office: 302-523 (temporary), Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953

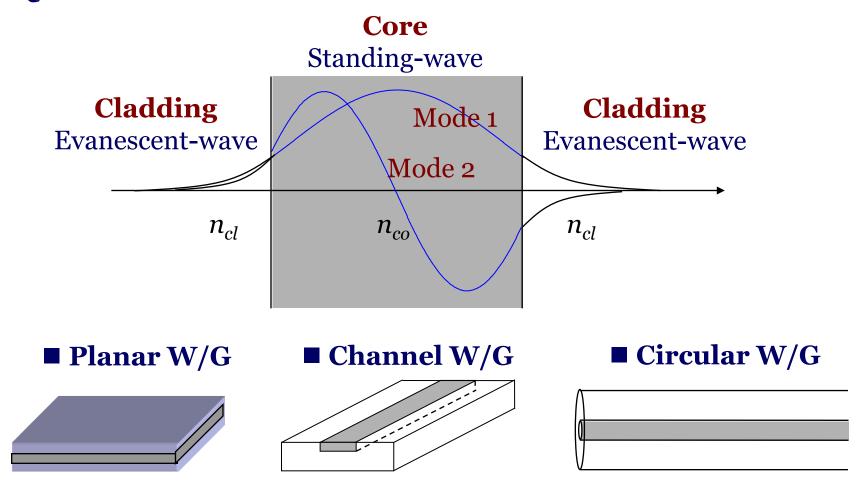
Email: yoonchan@snu.ac.kr

Optical Waveguides



☐ Total Internal Reflection

 $\theta_i > \theta_c = \sin^{-1}(\frac{n_{cl}}{n_{co}})$ If the incident angle is greater than θ_c


☐ Numerical Aperture

$$NA = n_o \sin \theta_a \approx \theta_a = \sqrt{n_{co}^2 - n_{cl}^2}$$

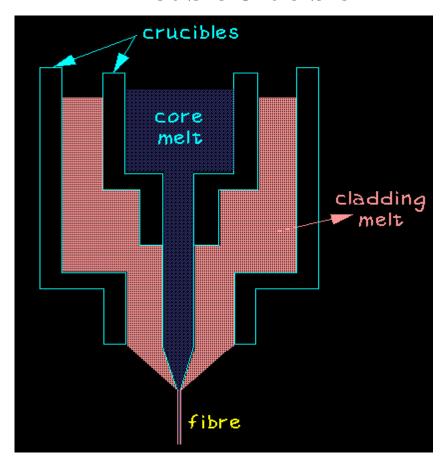
Optical Waveguides

☐ Quantized Mode State

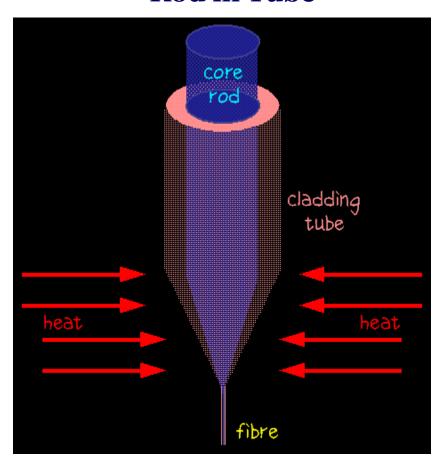
Optical Fibers

■ A flexible optically transparent fiber, as of glass or plastic, through which light can be transmitted by successive internal reflection

■ Optical Fiber Cable



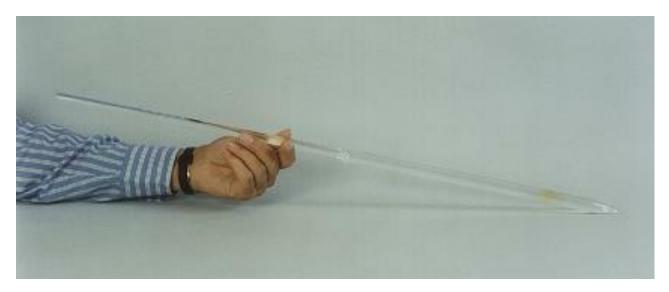
■ Structure of Optical Fiber


Optical Fiber Fabrication

■ Double Crucible

Directly drawing

■ Rod in Tube


Preform and drawing

Preform Fabrication

□ Deposition Techniques

- Modified chemical vapor deposition (MCVD)
- Plasma-enhanced modified chemical vapor deposition (PMCVD)
- Outside vapor deposition (OVD)
- Axial vapor deposition (AVD)

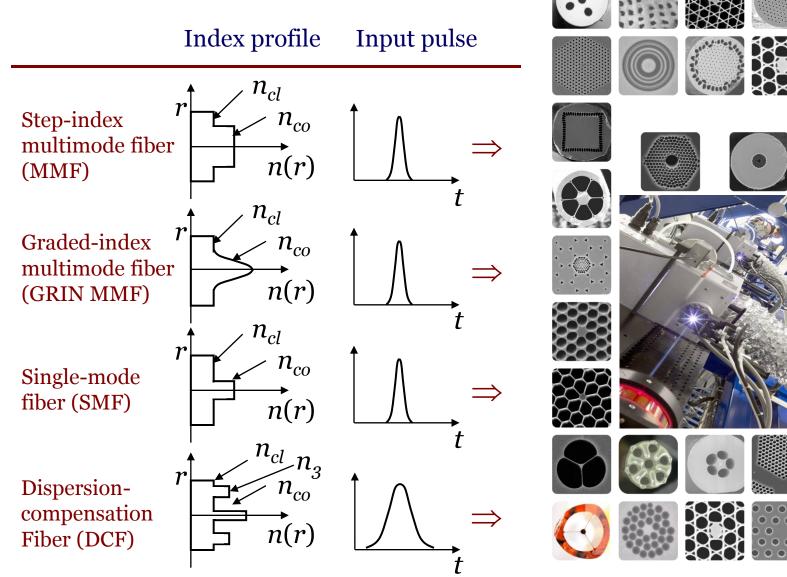
■ 2 cm × 1 m Preform

Preform Fabrication by MCVD

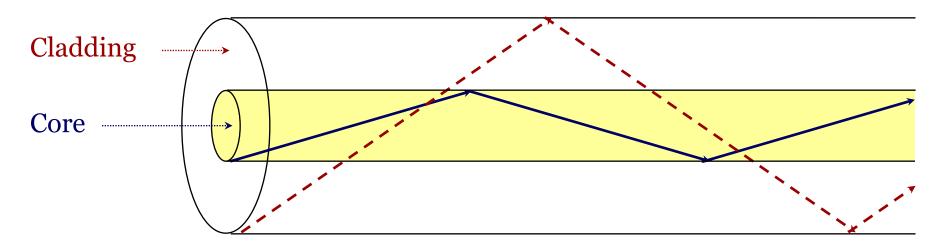
■ Dopants: GeO₂, P₂O₅, ErCl₃, Nd₂O₃

Drawing and Spooling

Source: http://www.vislab.usyd.edu.au/photonics/


□ Procedure

- Drawn from the Preform
- Quality checked
- Coated for protectionStored on a spool


Source: www.orc.soton.ac.uk

Optical Fibers

Single-Mode Fiber

Air or Jacket -----

: Core mode

----: Cladding mode

Core Mode

☐ Mode Expansion

Core
$$(r \le r_{co})$$

$$E_z = a_{co}J_v(h_{co}r)$$

$$H_z = b_{co}J_v(h_{co}r)$$

$$\to E_r, E_\phi, H_r, H_\phi$$
where $h_{co} = \sqrt{k_o^2 n_{co}^2 - \beta^2}$

Cladding $(r \ge r_{co})$

$$E_{z} = a_{cl}K_{v}(h_{cl}r)$$

$$H_{z} = b_{cl}K_{v}(h_{cl}r)$$

$$\rightarrow E_{r}, E_{\phi}, H_{r}, H_{\phi}$$

$$where h_{cl} = \sqrt{\beta^{2} - k_{o}^{2}n_{cl}^{2}}$$

note : $\exp[i(\omega t - \beta z + \nu \phi)]$: omitted

- Continuity condition of tangential fields at $r = r_{co}$
 - \Rightarrow Core-bounded mode

Exact Core Mode

Mode Expansion

Core
$$(r \le r_{co})$$

$$E_z = a_{co}J_v(h_{co}r)$$

$$H_z = b_{co}J_v(h_{co}r)$$

$$\to E_r, E_\phi, H_r, H_\phi$$
where $h_{co} = \sqrt{k_o^2 n_{co}^2 - \beta^2}$

Cladding
$$(r_{co} < r \le r_{cl})$$

$$E_{z} = a_{cl}K_{v}(h_{cl}r) + c_{cl}I_{v}(h_{cl}r)$$

$$H_{z} = b_{cl}K_{v}(h_{cl}r) + d_{cl}I_{v}(h_{cl}r)$$

$$\rightarrow E_{r}, E_{\phi}, H_{r}, H_{\phi}$$

$$Where h_{cl} = \sqrt{k_{o}^{2}n_{cl}^{2} - \beta^{2}}$$

$$Air (r > r_{cl})$$

$$E_{z} = a_{ai}K_{v}(h_{ai}r)$$

$$H_{z} = b_{ai}K_{v}(h_{ar}r)$$

$$\rightarrow E_{r}, E_{\phi}, H_{r}, H_{\phi}$$

$$where h_{cl} = \sqrt{\beta^{2}}$$

$$Air (r > r_{cl})$$

$$E_z = a_{ai} K_v (h_{ai} r)$$

$$H_z = b_{ai} K_v (h_{ar} r)$$

$$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$$

$$where h_{ai} = \sqrt{\beta^2 - k_o^2 n_{ai}^2}$$

note: $\exp[i(\omega t - \beta z + \nu \phi)]$: omitted

- \blacksquare Continuity condition of tangential fields at $r=r_{co}$, $r=r_{cl}$
 - \Rightarrow Core-bounded mode

Cladding Mode

Mode Expansion

Core
$$(r \le r_{co})$$

$$E_z = a_{co}J_v(h_{co}r)$$

$$H_z = b_{co}J_v(h_{co}r)$$

$$\to E_r, E_\phi, H_r, H_\phi$$
where $h_{co} = \sqrt{k_o^2 n_{co}^2 - \beta^2}$

Cladding
$$(r_{co} < r \le r_{cl})$$

$$E_z = a_{cl}J_v(h_{cl}r) + c_{cl}Y_v(h_{cl}r)$$

$$H_z = b_{cl}J_v(h_{cl}r) + d_{cl}Y_v(h_{cl}r)$$

$$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$$

$$Where h_{cl} = \sqrt{k_o^2 n_{cl}^2 - \beta^2}$$

$$Air (r > r_{cl})$$

$$E_z = a_{ai}K_v(h_{ai}r)$$

$$H_z = b_{ai}K_v(h_{ar}r)$$

$$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$$

$$where h_{cl} = \sqrt{k_o^2 n_{cl}^2 - \beta^2}$$

$$where h_{cl} = \sqrt{\beta^2}$$

$$Air (r > r_{cl})$$

$$E_z = a_{ai} K_v (h_{ai} r)$$

$$H_z = b_{ai} K_v (h_{ar} r)$$

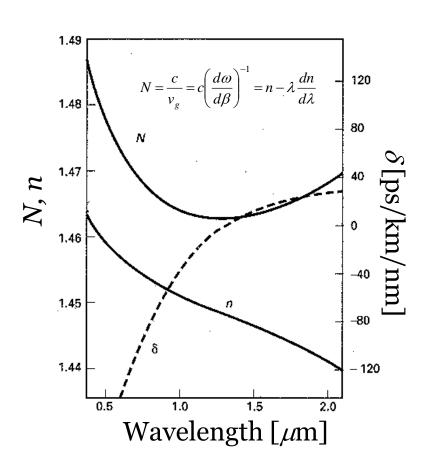
$$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$$

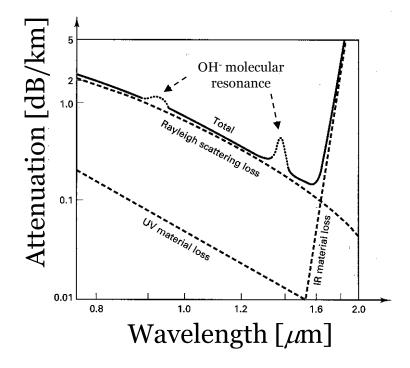

$$where h_{ai} = \sqrt{\beta^2 - k_o^2 n_{ai}^2}$$

note: $\exp[i(\omega t - \beta z + \nu \phi)]$: omitted

- Continuity condition of tangential fields at $r = r_{co}$, $r = r_{cl}$
 - ⇒ Cladding-bounded mode

Effective Index of Core Mode


\square As a function of V parameter


■ $V < 2.405 \Rightarrow$ Single-mode operation

Dispersion and Attenuation in SMF

☐ Dispersion and Attenuation vs. Wavelength

- 1.3 μ m: Zero dispersion
- 1.5 μ m: Minimum loss

Attenuation in SMF

☐ Causes of Attenuation

- Absorption

Intrinsic absorption: ultraviolet and infrared

Absorption by impurities: OH- and transition metal

Absorption by atomic defects

- Scattering

Rayleigh scattering prohibits the use of wavelength below 0.8 μ m, which is proportional to $1/\lambda^4$.

- Geometrical effects

Bending loss

Typically, the attenuation in SMF is 0.2 dB/km.

Dispersion in SMF

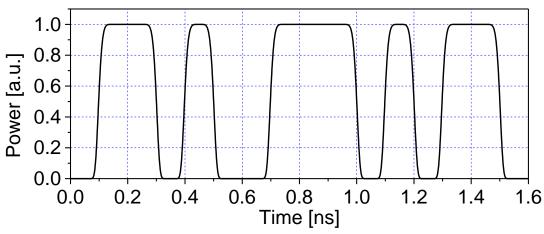
☐ Types of Dispersion

- Intermodal dispersion Pulse spreading in multimode fiber
- Intramodal dispersion

Material dispersion

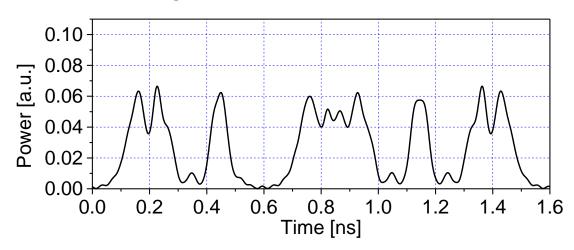
Waveguide dispersion: usually *smaller* than material dispersion

Short wavelength: The effective index is close to n_{core} .

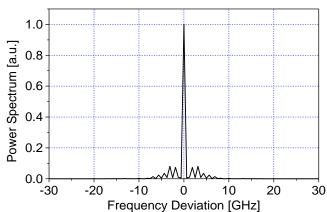

Long wavelength: The effective index is close to $n_{cladding}$.

Recall V parameter!

Dispersion is a problem in fiber communications: It eventually limits the *bandwidth* of the fiber.


Data Transmission in SMF

■ Initial Optical Pulses (10 Gbps, o dBm)



- Group velocity dispersion (GVD)
- ⇒ Frequency chirp
- Nonlinear effect
- ⇒ Four-wave mixing (FWM)

■ After 50-km Transmission

■ Power Spectrum

Nonlinearities in Fibers

☐ Stimulated Raman Scattering (SRS)

A stimulated effect in which the energy from a photon incident on a molecule delivers parts of its energy to <u>mechanical vibration</u> of the molecule and part into reradiated light (*Stokes light*) of longer wavelength than the incident light

☐ Stimulated Brillouin Scattering (SBS)

A stimulated effect (highly directional) due to interaction between the traveling light wave, composed of photons, and *a traveling sound wave* that it induces, which can be considered as composed of quantum sound particles, *phonons*

☐ Four-Wave Mixing (FWM)

Third-order cross-product of electric field.

 $f_i - f_j - f_k \Rightarrow$ frequency mixing, interfering effect in WDM