Electro-optic effect

Dr Yoonchan Jeong School of Electrical Engineering, Seoul National University Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953 Email: yoonchan@snu.ac.kr

Nonlinear polarisation

Constitutive relations

 $\mathbf{D} = \boldsymbol{\varepsilon} \mathbf{E} = \boldsymbol{\varepsilon}_o \mathbf{E} + \mathbf{P},$

 $\mathbf{P} = \varepsilon_o \chi \mathbf{E}$

Origin of nonlinear response

Related to anharmonic motion of bound electrons under the influence of an applied field.

$$\mathbf{P} = \varepsilon_o \chi \mathbf{E} = \varepsilon_o \left(\chi^{(1)} \mathbf{E} + \chi^{(2)} \mathbf{E} \mathbf{E} + \chi^{(3)} \mathbf{E} \mathbf{E} \mathbf{E} + \cdots \right)$$

Note: $\chi^{(2)}$ is non-zero only for media that lack an inversion symmetry (centrosymmetry).

Linear electro-optic effect

Also called **Pockels** effect: Refractive index change linearly proportional to the external electric field, i.e. $\Delta n \propto E_{ext}$.

Recall
$$P = \varepsilon_o \chi E = \varepsilon_o \left(\chi^{(1)} E + \chi^{(2)} E E + \chi^{(3)} E E E + \cdots \right)$$

For $\Delta n = C_L E_{ext}$, $C_L \sim 10^{-12} \text{ m/V}$

Friedrich Carl Alwin Pockels (1865 - 1913)

Quadratic electro-optic effect

Also called *Kerr* effect: Refractive index change quadratically proportional to the external electric field, i.e. $\Delta n \propto E_{ext}^2$.

Recall
$$P = \varepsilon_o \chi E = \varepsilon_o \left(\chi^{(1)} E + \chi^{(2)} E E + \chi^{(3)} E E E + \cdots \right)$$

For $\Delta n = C_Q E_{ext}^2$, $C_Q \sim 10^{-18} \text{ m}^2/\text{V}^2$

Kerr constant: $\Delta n = K\lambda E^2$

e.g. $K = 5.1 \times 10^{-14} \text{ m/V}^2$ for water

John Kerr (1824-1907)

Intensity dependent refractive index: $\Delta n = n_2 I$, where $I = \frac{1}{2} \varepsilon_0 cn |E|^2$ e.g. $n_2 \sim 3 \times 10^{-20} \text{ m}^2/\text{W}$ for silica glass

Electro-optic amplitude modulator

Electro-optic phase modulator

Source: Thorlabs

-

Electro-optic modulator (Fabry-Perot filter)

 λ_{m+1}

 λ_m

Wavelength

 λ_{m-1}

Charles Fabry (1867-1945) Alfred Perot (1863-1925)

For the maximum transmission:

$$2kL = 2\frac{2\pi L}{\lambda}n_1 = 2m\pi, \ m = 1, 2, 3, \cdots$$
$$\lambda_m = \frac{2L}{m}n_1$$
voltage applied:

$$\lambda_m = \frac{2L}{m} (n_1 + C_L E_{ext})$$

7

Electro-optic beam deflector

Source: Optical Waves in Crystals, A. Yariv and P. Yeh

Electro-optic Q-switch

Source: Optical Waves in Crystals, A. Yariv and P. Yeh

Electro-optic property of liquid crystal

Liquid crystals

- Liquid crystal phases: smectic, nematic, and cholesteric
- Nematic LC: uniaxial dipole moment
 - \Rightarrow dynamic director alignment along the applied electric field
- Switching time: ~msec

Twisted nematic LC in liquid crystal displays (LCD's)

Applicable to fiber-optic devices?

LC-filled hollow fiber

Initial Alignment of nematic LC

Director alignment of nematic LC

- Highly dependent on the liquid crystals-capillary interface interaction
- Silica: longitudinal direction, borosilicate capillaries: radial direction

LC fiber grating with a comb electrode

Comb electrode

- Periodically patterned electrode with openings

Electrically controllable director alignment

- Periodical modulation of director alignment
- Controllable long-period gratings

Anisotropic mode couplings in the LC core

Permittivity tensor according to director alignment

$$\varepsilon_{xyz}(\theta) = \varepsilon_o \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} \cdot \begin{pmatrix} n_o^2 & 0 & 0 \\ 0 & n_o^2 & 0 \\ 0 & 0 & n_e^2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$$
$$\varepsilon_{r\phi z}(\theta, \phi) = \varepsilon_o \begin{pmatrix} \cos\phi & \sin\phi & 0 \\ -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \varepsilon_{xyz}(\theta) \cdot \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Permittivity perturbation $\Rightarrow \Delta \varepsilon_{r\phi z}(\theta, \phi) = \varepsilon_{r\phi z}(\theta, \phi) - \varepsilon_{r\phi z}(0, 0)$

Mode couplings

- Long-period regime: a fundamental HE_{11} core mode \Leftrightarrow cladding modes
- Cladding modes to be coupled: $TM_{0m}^{cl}, TE_{0m}^{cl}, HE_{1m}^{cl}, HE_{2m}^{cl}, HE_{3m}^{cl}$

 \Leftarrow Non-symmetric azimuthal φ-variation in $\Delta \varepsilon_{r\phi z}(\theta, \phi)$

LC-filled hollow fiber

LC-filling: MLC-6295

Fiber image

Director check

Far-field image

□ Properties of MLC-6295

- Smectic/Nematic turning point: -30 °C, clearing point +101 °C
- n_o: 1.4772, n_e: 1.5472 @ 20 °C, 589 nm

Director alignment check

- Visibility detection under a microscope between crossed polarizers
- Uniform director alignment to the direction of fiber axis

Experimental layout

Experimental apparatus

- Broadband source: EDFA ASE
- Comb electrode

Period of openings: 483 μ m, effective grating length: 15.5 mm

- Applied voltage: 0 ~ 250 V

Long-period LC fiber grating

□ Spectral responses according to applied voltages

Long-period LC fiber grating

Normalized spectral responses

Experiments

Simulations

Simulations

- Based on the discretized coupled-mode theory in anisotropic media
- Resonant couplings to the 3rd and 4th TM cladding modes

Nonlinear response of fiber gratings

S

Nonlinear Coupled-Mode Theory

$$\nabla \cdot (E' \times H_p^* + E_p^* \times H') = -i\omega E_p^* \cdot (\Delta \varepsilon_L + \Delta \varepsilon_{NL})E', \quad (p = 1, 2, ...)$$
$$\Delta \varepsilon_{NL(q)} = \varepsilon_o \frac{3}{4} \chi^{(3)}(r, \phi, z) \cdot \sum_s \alpha_{(q,s)} |E_s(t, z)|^2 |\hat{e}_s|^2, \alpha_{(q,s)} = \begin{cases} 1 & (q = s), \\ 2 & (q \neq s). \end{cases}$$

Efficiency of All-Optical Switching in Fiber Gratings

- Conditions for high efficiency: Large nonlinear spectral shift & Rapid spectral modulation band

- Nonlinear spectral shift:
$$\frac{\Delta \lambda_s}{\lambda} \approx \frac{n_{2,eff} I_{eff}}{\Delta n_g}$$

FBG: Steep spectral modulation slope but small spectral shift LPFG: Large spectral shift but slow spectral modulation slope \Rightarrow Cascaded LPFG's

Nonlinear response of LPFGs

SPM Regime

All-Optical Gating Mode

- Normally white mode (Case I)
- Normally black mode (Case II)

XPM Regime

Nonlinear transmission of wave packets

Y. Jeong and B. Lee, IEEE J. Quantum Electron., 35(9),1284 (1999).

Cascaded LPFGs

Spectral Response of Cascaded LPFG's

Wavelength [nm]

Y. Jeong, S. Baek, and B. Lee, IEEE PTL, 12(9), 1216 (2000).

Linear spectra of cascaded LPFGs

Experimental arrangement

Experiments

- Signal wave: Tunable LD @1565.2 nm (Case I), @1564.8 nm (Case II)
- Pump wave: Q-switched Nd:YAG laser (1 kHz)

Experimental results

 $\Delta \lambda_s \sim 0.12 \text{ nm/(GW/cm^2)}$