3 Vector Space, Linear Independence

3.1 Vector Space

Definition. Vector Space : a nonempty set V of vectors such that with any two vectors all their linear combinations $C_{1} a+c_{2} b \in V\left(c_{1}, c_{2}=\right.$ any real numbers $)$, and all these vectors obey the following rules.
(a) $a+b=b+a$.
(b) $a+b)+c=a+(b+c)=a+b+c$.
(c) There is a unique zero vector such that $a+0=a$ for all a.
(d) For each a, there is a unique vector-a such that $a+(-a)=0$.
(e) $1 a=a$.
(f) $c_{1}\left(c_{2} a\right)=\left(c_{1} c_{2}\right) a=c_{1} c_{2} a$.
(g) $c_{1}(a+b)=c_{1} a+c_{2} b$.
(h) $\left(c_{1}+c_{2}\right) a=c_{1} a+c_{2} a$.

Example 1.

\mathbb{R}^{n}, The vector space that consists only of a zero vector, the vector space of all real n by n matrices, ...

Definition. Subspace of a vector space is a set of vectors (including 0) that satisfies the following. If v and w are vectors in the subspace and c_{1} is any scalar, then $v+w, c v$ is in the subspace.

Example 2. three-dimensional space \mathbb{R}^{3}.

- A plane through $(0,0,0)$ is a subspace of the full vector space \mathbb{R}^{3}.
- A line through $(0,0,0)$
- The single vector $(0,0,0)$
- The whole space \mathbb{R}^{3}

Definition. The column space of a matrix A : $C(A)$
$=$ all linear combinations of the columns
$=$ span of the columns

Note

- The combinations are all possible vectors $A x$.
- To solve $A x=b, \mathrm{~b}$ needs to be a combination of the columns.

$$
\therefore A x=b \text { is solvable iff } b \in C(A)
$$

- If A is m-by-n, columns belong to \mathbb{R}^{m}.

$$
\therefore C(A) \text { is a subspace of } \mathbb{R}^{m}
$$

Example 3.

$A=\left[\begin{array}{ll}1 & 0 \\ 4 & 3 \\ 2 & 3\end{array}\right] \quad A x=x_{1}\left[\begin{array}{l}1 \\ 4 \\ 2\end{array}\right]+x_{2}\left[\begin{array}{l}0 \\ 3 \\ 3\end{array}\right]$
$C(A)=$ plane in \mathbb{R}^{3}.

- $A x=b$ is solvable when b is on that plane.
- $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is in $C(A) \quad \therefore A x=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ solvable.

Example 4. In \mathbb{R}^{2},

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 4
\end{array}\right]
$$

- $C(I)=\mathbb{R}^{2} \quad(A x=b$ always solvable $)$
- $C(A)=$ all linear combinations of $c_{1}\left[\begin{array}{l}1 \\ 2\end{array}\right]+c_{2}\left[\begin{array}{l}2 \\ 4\end{array}\right]$
$=c_{0}\left[\begin{array}{l}1 \\ 2\end{array}\right] \quad\left(c_{0} \in \mathbb{R}\right)$
$\therefore C(A)$ is only a line.
($A x=b$ solvable only when b is on the line.)
- $C(B)=\mathbb{R}^{2} \quad($ every b is attainable)

But $B x=b=\left[\begin{array}{l}5 \\ 4\end{array}\right]$ has multiple solutions.
(2 eqns, 3 unknowns)

Definition. The row space of a matrix A : $R(A)$
$=$ all linear combinations of the vectors
$=$ span of the rows

- If A is m-by-n, rows belong to \mathbb{R}^{n}.
\therefore The row space is a subspace of \mathbb{R}^{n}.

Note

- The row space of $A=C\left(A^{T}\right)$

Definition. The null space of a matrix $A: N(A)$

$$
=\text { all solutions to } A x=0
$$

- If A is m-by-n, the solution vectors x are in \mathbb{R}^{n}.
$\therefore N(A)$ is a subspace of \mathbb{R}^{n}.
- Consider $A x=b$.

If $b \neq 0$, then the solutions do not form a subspace.
$(\because x=0$ is only a solution if $b=0$.)

Example 5.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

- $N(A)$ is the plane through the origin

$$
x+2 y+3 z=0
$$

- $s_{1}=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$ and $s_{2}=\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right]$ lie on the plane

$$
x+2 y+3 z=0
$$

All vectors on the plane are combinations of s_{1} and s_{2}.

Example 6.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 8
\end{array}\right] \Longrightarrow U=\left[\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right]: \text { all columns have pivots. } \\
N(A)=\{(0,0)\}
\end{gathered}
$$

Example 7.

$$
B=\left[\begin{array}{c}
A \\
2 A
\end{array}\right]
$$

Extra rows impose more conditions on the vectors x in the nullspace, i.e., $N(B)=\{(0,0)\}$

Example 8.

$$
\mathrm{C}=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{~B}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 2 & 2 & 4 \\
3 & 8 & 6 & 16
\end{array}\right]
$$

Now the solution vector x has 4 components.

$$
\left.\begin{array}{l}
\Longrightarrow U=\underbrace{\left[\begin{array}{llll}
1 & 2 & 2 & 4 \\
0 & 2
\end{array}\right.}_{\text {pivot cols }} \underbrace{0}_{\text {free cols }} 4
\end{array}\right] .
$$

Special solutions to $R x=0$:

$$
s_{1}=\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right], \quad s_{2}=\left[\begin{array}{c}
0 \\
-2 \\
0 \\
1
\end{array}\right]
$$

(The free variables x_{3}, x_{4} can be given any values whatsoever. Then the pivot variables x_{1}, x_{2} can be found by back substitution.)
All solutions are linear combination of s_{1} and s_{2}.

Note

- If A has more columns than rows, then $A x=0$ has more unknowns than equations, and it has nonzero solutions. (There must be free columns without pivots.)

$$
m \underbrace{[}_{n}]\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- $N(A)=N(U)=N(R)$

3.2 Linear Independence

Definition. Vectors v_{1}, \cdots, v_{n} are the linearly independent.
if. $x_{1} v_{1}+\cdots+x_{n} v_{n}=0$ only happens when all x's are zero.
(If a combination is 0 when the x's are not all zero, the vectors are dependent.)

- The columns of A are linear independent when the only solution to $A x=0$ is $x=0$.
- The columns of $A \in \mathbb{R}^{m \times n}$ are linear independent when the rank is $r=n$.
- n pivots and no free variables.
- only $\vec{x}=0$ is in the nullspace.
- Any set of n vectors in \mathbb{R}^{n} must be linearly dependent if $\mathrm{n}>\mathrm{m}$.

Definition. A basis for a vector space is a set of linearly independent vectors that span the space.

- v_{1}, \cdots, v_{n} are a basis for \mathbb{R}^{n} exactly when they are the columns of an $\mathrm{n}>\mathrm{n}$ invertible matrix.
Q. Given m vectors in \mathbb{R}^{n}, how do you find a basis for the space they span?

$$
m\left[\begin{array}{ccc}
- & v_{1} & - \\
- & v_{2} & - \\
- & \cdots & - \\
- & v_{n} & -
\end{array}\right]
$$

\Downarrow
eliminate to find the nonzero rows.
or, put them in columns \Longrightarrow find pivot columns.

