# **Computer Architecture**

Lecture 1 Introduction

### Why do you want to study Computer Architecture?

#### Because....You won't graduate if you don't take this course.

- Because....You want to design the next great instruction set.
  - Instruction set architecture has largely converged, especially in the desktop/server/laptop space.
  - Dictated by powerful market forces (Intel/ARM).
- Because....You want to become a computer architect and design the next great computer systems.
- Because....The design, analysis, implementation concepts that you will learn are vital to all aspects of computer science and engineering – operating systems, computer networks, compiler, programming languages
- Because....The course will equip you with an intellectual toolbox for dealing with a host of systems design challenges.

From Prof. Fernando C. Colon Osorio's lecture notes

# **Course Goals**

#### Understand

- Interfaces
  - Instruction Set Architecture ("The Hardware/Software Interface")
- Engineering methodology/ Correctness criteria/ Evaluation methods/ Technology trends involved in the following design techniques
  - Pipelining
  - Cache
  - Multiprocessor
    - Cache Coherence
    - Synchronization
    - Interconnection Network

# Interface

| Atlas      | Reverse Dictionar |   | Rhyming Dictionary    |
|------------|-------------------|---|-----------------------|
| Dictionary | Thesaurus         | I | Unabridged Dictionary |

3 entries found for **interface**. To select an entry, click on it.

| interface[1,noun]        | Go |
|--------------------------|----|
| interface[2,verb]        |    |
| graphical user interface |    |

Main Entry: <sup>1</sup>in-terface ♠) Pronunciation: 'in-t&r-"fAs Function: *noun* Date: 1882 1 : a surface forming a common boundary of two bodies, spaces, or phases <an oil-water *interface*> 2 a : the place at which independent and often unrelated systems meet and act on or communicate with each other <the man-machine *interface*> b : the means by which <u>interaction</u> or communication is achieved at an interface - interfacial ♠) /"in-t&r-'fA-sh&l/adjective

Source : http://www.webster.com

### Abstract Data Type (ADT) as an Example of Interface

- Abstract data type : A set of data values (state) and associated operations that are precisely specified independent of any particular implementation
- ADT Example : stack



### Abstract Data Type (ADT) as an Example of Interface

Operations viewed as state transformation



### Abstraction

• (Before)

#### (After)



Jeff Kramer, "Is Abstraction the Key to Computing," Communications of ACM, April 2007, Vol. 50, No. 4, pp. 37 - 42.

### Abstraction

• (Before)



#### (After)



### Abstraction

#### • (Before)

#### (After)

| -   | A       | B    | C   | D          | E          | F           | G            | н            | 1             | J   | К    |
|-----|---------|------|-----|------------|------------|-------------|--------------|--------------|---------------|-----|------|
| 1   | Element | *P1  | *P2 | Atomic Num | Atomic Mas | Atomic Radi | Ionic Radiu: | Ionization E | Electronega - | ·C1 | *C2  |
| 2   | Ac      | 140  | 0   | 89         | 227        | 200         | 126          | 51           | 11            | 62  | 56   |
| 3   | Ag      | 630  | 80  | 47         | 107        | 144         | 129          | 75           | 18            | 124 | 40   |
| 4   | Al      | 750  | 160 | 13         | 27         | 143         | 67           | 60           | 16            | 28  | 25   |
| 5   | Ar      | 1050 | 160 | 18         | 39         | 98          | 154          | 158          | 32            | 176 | 51   |
| 6   | As      | 870  | 120 | 33         | 75         | 120         | 72           | 98           | 22            | 115 | 33   |
| 7   | At      | 990  | 40  | 85         | 210        | 140         | 76           | 95           | 22            | 119 | 22   |
| 8   | Au      | 630  | 40  | 79         | 197        | 144         | 99           | 91           | 25            | 131 | 22   |
| 9   | в       | 750  | 200 | 5          | 10         | 85          | 41           | 83           | 20            | 101 | 8    |
| 10  | Ba      | 80   | 40  | 56         | 137        | 222         | 149          | 51           | 8             | 46  | 56   |
| 11  | Be      | 80   | 200 | 4          | 9          | 112         | 59           | 93           | 15            | 82  | 15   |
| 12  | Bi      | 870  | 40  | 83         | 209        | 150         | 117          | 73           | 20            | 140 | 27   |
| 13  | Br      | 990  | 120 | 35         | 79         | 114         | 182          | 118          | 30            | 161 | 44   |
| 14  | C       | 810  | 200 | 6          | 12         | 77          | 30           | 113          | 25            | 82  | 1    |
| 15  | Ca      | 80   | 120 | 20         | 40         | 197         | 114          | 60           | 10            | 70  | 51   |
| 16  | Cd      | 690  | 80  | 48         | 112        | 151         | 109          | 90           | 17            | 113 | 43 - |
| 17  | CI      | 990  | 160 | 17         | 35         | 100         | 167          | 130          | 32            | 173 | 47   |
| 18  | Co      | 500  | 120 | 27         | 59         | 125         | 83           | 79           | 18            | 120 | 30   |
| 19  | Cr      | 320  | 120 | 24         | 52         | 128         | 75           | 68           | 17            | 91  | 28   |
| 20  | Cs      | 20   | 40  | 55         | 132        | 265         | 181          | 39           | 7             | 7   | 56   |
| 21  | Cu      | 630  | 120 | 29         | 63         | 128         | 87           | 76           | 19            | 118 | 32   |
| 22  | F       | 990  | 200 | 9          | 19         | 72          | 119          | 173          | 40            | 39  | 1    |
| 23  | Fe      | 440  | 120 | 26         | 55         | 126         | 83           | 79           | 18            | 115 | 32   |
| 24  | Fr      | 20   | 0   | 87         | 223        | 269         | 194          | 40           | 6             | 1   | 56   |
| 25  | Ga      | 750  | 120 | 31         | 69         | 135         | 76           | 60           | 18            | 89  | 31   |
| 26  | Ge      | 810  | 120 | 32         | 72         | 122         | 87           | 79           | 20            | 118 | 33   |
| 27  | H       | 20   | 240 | 1          | 1          | 32          | 0            | 136          | 22            | 40  | 1    |
| 28  | He      | 1050 | 240 | 2          | 4          | 31          | 93           | 246          | 32            | 1   | 1    |
| 20  | Lif     | 200  | 40  | 70         | 179        | 159         | 95           | 70           | 12            | 95  | 14   |
| 30  | Ha      | 690  | 40  | 90         | 200        | 153         | 116          | 103          | 20            | 147 | 27   |
| 31  | 1.9     | 990  | 80  | 53         | 126        | 199         | 206          | 105          | 20            | 153 | 14   |
| 30  | In      | 750  | 80  | 49         | 114        | 167         | 94           | 58           | 17            | 03  | 40   |
| 22  | le .    | 500  | 40  | 77         | 192        | 136         | 94           | 90           | 22            | 116 | 95   |
| 3.4 | K       |      | 120 | 10         | 192        | 207         | 150          | 49           | 64            | 97  | 20   |
| 25  | Ke      | 1050 | 120 | 36         | 03         | 112         | 160          | 140          | 30            | 163 | 47 - |

| Group # | 1        | 2        | 3        | 4         | 5         | 6         | 7         | 8         | 9         | 10        | 11        | 12         | 13         | 14         | 15         | 16         | 17         | 18         |
|---------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|
| Period  |          |          |          |           |           |           |           |           |           |           |           |            |            |            |            |            |            |            |
| 1       | 1<br>H   |          |          |           |           |           |           |           |           |           |           |            |            |            |            |            |            | 2<br>He    |
| 2       | 3<br>Li  | 4<br>Be  |          |           |           |           |           |           |           |           |           |            | 5<br>B     | 6<br>C     | 7<br>N     | 8<br>0     | 9<br>F     | 10<br>Ne   |
| 3       | 11<br>Na | 12<br>Mg |          |           |           |           |           |           |           |           |           |            | 13<br>Al   | 14<br>Si   | 15<br>P    | 16<br>S    | 17<br>Cl   | 18<br>Ar   |
| 4       | 19<br>K  | 20<br>Ca | 21<br>Sc | 22<br>Ti  | 23<br>V   | 24<br>Cr  | 25<br>Mn  | 26<br>Fe  | 27<br>Co  | 28<br>Ni  | 29<br>Cu  | 30<br>Zn   | 31<br>Ga   | 32<br>Ge   | 33<br>As   | 34<br>Se   | 35<br>Br   | 36<br>Kr   |
| 5       | 37<br>Rb | 38<br>Sr | 39<br>Y  | 40<br>Zr  | 41<br>Nb  | 42<br>Mo  | 43<br>Tc  | 44<br>Ru  | 45<br>Rh  | 46<br>Pd  | 47<br>Ag  | 48<br>Cd   | 49<br>In   | 50<br>Sn   | 51<br>Sb   | 52<br>Te   | 53<br>     | 54<br>Xe   |
| 6       | 55<br>Cs | 56<br>Ba | •        | 72<br>Hf  | 73<br>Ta  | 74<br>W   | 75<br>Re  | 76<br>Os  | 77<br>Ir  | 78<br>Pt  | 79<br>Au  | 80<br>Hg   | 81<br>TI   | 82<br>Pb   | 83<br>Bi   | 84<br>Po   | 85<br>At   | 86<br>Rn   |
| 7       | 87<br>Fr | 88<br>Ra | **       | 104<br>Rf | 105<br>Db | 106<br>Sg | 107<br>Bh | 108<br>Hs | 109<br>Mt | 110<br>Ds | 111<br>Rg | 112<br>Uub | 113<br>Uut | 114<br>Uuq | 115<br>Uup | 116<br>Uuh | 117<br>Uus | 118<br>Uuo |

Jinwook Seo, "Information Visualization Design for Map Use on Future Mobile Devices (Presentation at Samsung Electronics, Dec. 8, 2008)

# Instruction Set Architecture (ISA)



"…the attributes of a [computing] system as seen by the programmer, i.e. the conceptual structure (state) and functional behavior (operations), as distinct from the organization of the data flow and controls, the logical design, and the physical implementation."

- Amdahl, Blaauw, and Brooks, 1964













# **Design Techniques**

#### Design Techniques

- Engineering methodology
- Correctness criteria
- Evaluation methods
- Technology trends

# **Design Techniques**



## **Design Techniques**



#### **Cache Coherence, Synchronization, Interconnection network**

# Engineering methodology

- Rule 1 : Identify and optimize the common case
- Rule 2 : Make the rare case correct and reasonably fast

## Correctness criteria

- Examples
  - Pipelined execution : pipelined execution of instructions is correct if the results is as if the instructions were executed sequentially
  - Cache memory : execution of instructions on a system with cache memory is correct if the results is as if the instructions were executed on the same system but without cache memory
  - We'll see a lot of as if's

## Performance Evaluation Methods

#### Performance types

- Time
  - response time
  - execution time
- Rate
  - throughput : MIPS, MFLOPS
  - bandwidth : Mbps
- Ratio
  - relative performance

# **Technology Trends**

| 1965                                                          | 1977                                                                                               | 1998                                                                                                                 | 2005                                                                                                          |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                                               |                                                                                                    |                                                                                                                      |                                                                                                               |
|                                                               |                                                                                                    |                                                                                                                      | Destination                                                                                                   |
| IBM System 360/50                                             | DEC VAX 11/780                                                                                     | Apple iMac                                                                                                           | Pentium4                                                                                                      |
| 0.15 MIPS                                                     | 1 MIPS(peak)<br>0.5 MIPS(estimated)                                                                | 700 MIPS(peak)<br>427 MIPS(estimated)                                                                                | ~15000 MIPS(peak)<br>~6000 MIPS(estimated)                                                                    |
| 0.15 MIPS<br>64 KB<br>\$1M                                    | 1 MIPS(peak)<br>0.5 MIPS(estimated)<br>1 MB<br>\$200K                                              | 700 MIPS(peak)<br>427 MIPS(estimated)<br>32 MB<br>\$1229(September 1998)                                             | ~15000 MIPS(peak)<br>~6000 MIPS(estimated)<br>512 MB                                                          |
| 0.15 MIPS<br>64 KB<br>\$1M                                    | 1 MIPS(peak)<br>0.5 MIPS(estimated)<br>1 MB<br>\$200K                                              | 700 MIPS(peak)<br>427 MIPS(estimated)<br>32 MB<br>\$1229(September 1998)                                             | ~15000 MIPS(peak)<br>~6000 MIPS(estimated)<br>512 MB<br>< \$1000                                              |
| 0.15 MIPS<br>64 KB<br>\$1M<br>\$6.6M per MIPS<br>\$16M per MB | 1 MIPS(peak)<br>0.5 MIPS(estimated)<br>1 MB<br>\$200K<br>\$200K to \$400 per MIPS<br>\$200K per MB | 700 MIPS(peak)<br>427 MIPS(estimated)<br>32 MB<br>\$1229(September 1998)<br>\$1.75 to \$2.90 per MIPS<br>\$38 per MB | ~15000 MIPS(peak)<br>~6000 MIPS(estimated)<br>512 MB<br>< \$1000<br>\$0.07 to \$0.17 per MIPS<br>< \$2 per MB |

# A "Big" Picture



Randy H. Katz, "Tech Titans Building Boom," IEEE Spectrum, Vol. 46, No. 2, Feb. 2009, pp. 36 – 39.

# A "Big" Picture



Randy H. Katz, "Tech Titans Building Boom," IEEE Spectrum, Vol. 46, No. 2, Feb. 2009, pp. 36 – 39.

### **Embedded Processors**



### **Embedded Processors**



From "Flash and the Embedded Space" by Grady Lambert

### Embedded Processing Example



From Prof. Behrooz Parhami's lecture notes

## Automotive Electronic System



From "Design of Embedded Systems: Methodologies, Tools and Applications" by Alberto Sangiovanni-Vincentelli

# **Technology Trends**

Five components of a computer system



# **Chip Manufacturing Process**



### **Processor Performance Trends**



#### Performance Improvements by Advances on Lithography (VLSI) Technology



# Processor Computations/Energy Trends



J. G. Koomey, et al. "Outperforming Moore's Law" IEEE Spectrum, Vol. 47, No. 3, Mar. 2010, pp. 68 – 68.

### **Processor Clock Rate/Power Trends**



# **DRAM Technology Trends**



### **Transistors Per Die Trends**



# Lithography Technology Trends



# Die Size Trends



# **Defect Density Trends**



# **Die Cost and Yield**

### Die Cost $\propto$ f (Die size<sup>4</sup>)



20 Defects 20 Bad Die 264 Gross Die 92% Yield

> 20 Defects 16 Bad Die 54 Gross Die 70% Yield

### Hard-Disk Technology Trends



Source: IBM HDD Evolution by Ed Grochowski at Almaden

Disk density: 1.50x - 1.60x per year (4x in three years)

### Hard-Disk Technology Trends



"Will Hard drives Finally Stop Shrinking?" by Linda Dailey Paulson (IEEE Computer, May 2005)

## Future Outlook of Flash Memory



Source: Scott Deutsch (SanDisk), "Bringing Solid State Drives to Mainstream Notebooks," Flash Memory Summit 2007.

### Internet Technology Trends



Source: Lawrence G. Roberts, Beyond Moore's Law: Internet Growth Trends, IEEE COMPUTER JANUARY 2000, pp. 117-119

## Pitfalls of Computer Technology Forecasting

- DOS addresses only 1 MB of RAM because we cannot imagine any applications needing more." Microsoft, 1980
- "640K ought to be enough for anybody." Bill Gates, 1981
- "Computers in the future may weigh no more than 1.5 tons." *Popular Mechanics*
- "I think there is a world market for maybe five computers." Thomas Watson, IBM Chairman, 1943
- "There is no reason anyone would want a computer in their home." Ken Olsen, DEC founder, 1977
- "The 32-bit machine would be an overkill for a personal computer." Sol Libes, *ByteLines*

From Prof. Behrooz Parhami's lecture notes