
Computer Architecture

MIPS Instruction Set Architecture

Computer Architecture & Network Lab 2

Instruction Set Architecture

 An Abstract Data Type
 Objects ≡ Registers & Memory
 Operations ≡ Instructions

 Goal of Instruction Set Architecture Design
 To allow high-performance & low-cost implementations while

satisfying constraints imposed by applications including operating
system and complier

Computer Architecture & Network Lab 3

Instruction Set Architecture as an ADT (Review)

Before Register and Memory

add r1, r2, r3

20
2
1

r3

12
8

r2
r1
r0

PC

63

24
23
22

0
2
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)

After Register and Memory

Registers

Memory

21
2

20

r3

12
8

r2
r1
r0

PC

63

24
23
22

0
2
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

Assumptions
 8 bit ISA
 # of registers = 4 + PC (Program Counter)
 Memory size = 64B

Computer Architecture & Network Lab 4

Instruction Set Architecture as an ADT (Review)

Before Register and Memory

lw r2, 1(r0)

After Register and Memory

22
2

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
2
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

21
2

20

r3

12
8

r2
r1
r0

PC

63

24
23
22

0
2
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

Assumptions
 8 bit ISA
 # of registers = 4 + PC (Program Counter)
 Memory size = 64B

Computer Architecture & Network Lab 5

Instruction Set Architecture as an ADT (Review)

Before Register and Memory

sw r3, 0(r0)

After Register and Memory

23
2

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
8
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

22
2

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
2
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

Assumptions
 8 bit ISA
 # of registers = 4 + PC (Program Counter)
 Memory size = 64B

Computer Architecture & Network Lab 6

Instruction Set Architecture as an ADT (Review)

Before Register and Memory

beq r0, r1, 2

After Register and Memory

24
2

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
8
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

23
2

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
8
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

Assumptions
 8 bit ISA
 # of registers = 4 + PC (Program Counter)
 Memory size = 64B

Computer Architecture & Network Lab 7

Instruction Set Architecture as an ADT (Review)

Before Register and Memory

j 15

After Register and Memory

15
0

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
8
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

24
0

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
8
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

Assumptions
 8 bit ISA
 # of registers = 4 + PC (Program Counter)
 Memory size = 64B

Computer Architecture & Network Lab 8

Examples of ISAs and Implementations

 Instruction Set Architectures
 IBM System/360, IA-32 (x86), IA-64, MIPS, SPARC, Alpha, PA-

RISC, ARM, …
 Implementations

 IA-32 (x86)
− Intel: 8086, 8088, 80186, 80286, 80386, 80486, Pentium, Pentium

Pro, Pentium II, Celeron, Pentium III, Pentium 4, …
− AMD: K5, K6, K6-II, K6-III, Athlon, Duron, …
− Cyrix: 80486, 5x86, 6x86,…

 IA-64: Itanium, Itanium 2, …
 Alpha: 21064, 21164, 21264, 21364, …

Computer Architecture & Network Lab 9

History

 Hot topics in Computer Architecture
 High-level language computer architectures in the 1970s
 RISC architectures in the early 1980s
 Shared-memory multiprocessors in the late 1980s
 Out-of-order speculative execution processors in the 1990s
 Multi-core architectures in the 2000s

From “Single-Chip Multiprocessors: the Rebirth of Parallel Architecture” by Prof. Guri Sohi

Computer Architecture & Network Lab 10

A Critical point in VLSI Technology

Source: www.icknowledge.com

Computer Architecture & Network Lab 11

History of RISC Architecture

 Integration of processors on a single chip
 A critical point (“epoch”)
 Argued for different architectures (RISC)

− Small repertoire of instructions in a uniform format
− Pipelined execution
− Cache memory
− Load/store architecture

 More transistors allowed for different optimizations
 Large/multi-level caches
 Co-processors
 Superscalar
 etc
From “Single-Chip Multiprocessors: the Rebirth of Parallel Architecture” by Prof. Guri Sohi

Computer Architecture & Network Lab 12

MIPS Instruction Set Architecture

 One of the Pioneering RISC Instruction Set Architectures
 Small repertoire of instructions in a uniform format
 Pipelined execution
 Cache memory
 Load/store architecture

 Starts with a 32-bit architecture, later extended to 64-bit
 Even currently used in many embedded applications

 Game consoles – Nintendo 64, PlayStation, PlayStation 2, etc
 Network devices – IP phone, WLAN Access points, etc
 Residential Devices – High Definition TV, Digital Photo Frame,
 etc

Computer Architecture & Network Lab 13

MIPS ISA State (Register & Memory)

2 words =
2 bytes

30

32

0x0000 0000

0xffff ffff

Register Memory

$31

$0
$1

PC

HI
LO

0

Computer Architecture & Network Lab 14

MIPS Register Usage (Software Convention for Interoperability)

0 $zero constant 0

1 $at reserved for assembler

2 $v0 return values

3 $v1

4 $a0 arguments

5 $a1

6 $a2

7 $a3

8 $t0 temporary

· · ·

15 $t7

16 $s0 permanent

· · ·

23 $s7

24 $t8 temporary

25 $t9

26 $k0 OS kernel (reserved)

27 $k1

28 $gp global pointer

29 $sp stack pointer

30 $fp frame pointer

31 $ra return address

(For variables in a high-level
language program)

Computer Architecture & Network Lab 15

MIPS Instructions

 Arithmetic/Logic instructions
 Data Transfer (Load/Store) instructions
 Conditional branch instructions
 Unconditional jump instructions

Computer Architecture & Network Lab 16

MIPS Instruction Format

Name Fields Comments

Field size 6bits 5bits 5bits 5bits 5bits 6bits All MIPS insturctions 32 bits

R-format op rs rt rd shamt funct Arithmetic instruction format

I-format op rs rt address/immediate Transfer, branch, imm. format

J-format op target address Jump instruction format

Computer Architecture & Network Lab 17

MIPS Integer Arithmetic Instructions

Category Instruction Example Meaning Comments

Arithmetic add add $s1, $s2, $s3 $s1 = $s2 + $s3 3 operands; exception possible

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 + constant; exception possible

add unsigned addu $s1, $s2, $s3 $s1 = $s2 + $s3 3 operands; no exceptions

add immediate unsigned addiu $s1, $s2, 100 $s1 = $s2 + 100 + constant; no exceptions

subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 3 operands; exception possible

subtract unsigned subu $s1, $s2, $s3 $s1 = $s2 - $s3 3 operands; no exceptions

set less than slt $s1, $s2, $s3 $s1 = ($s2 < $s3) compare signed <

set less than immediate slti $s1, $s2, 100 $s1 = ($s2 < 100) compare signed < constant

set less than unsigned sltu $s1, $s2, $s3 $s1 = ($s2 < $s3) compare unsigned <

set less than immediate unsigned sltiu $s1, $s2, 100 $s1 = ($s2 < 100) compare unsigned < constant

Computer Architecture & Network Lab 18

MIPS Integer Arithmetic Instructions

Category Instruction Example Meaning Comments

Arithmetic multiply mult $s2, $s3 HI, LO ← $s2 x $s3 64 bit signed product

multiply unsigned multu $s2, $s3 HI, LO ← $s2 x $s3 64 bit unsigned product

divide div $s2, $s3 LO ← $s2 ÷ $s3, LO ← quotient

HI ← $s2 mod $s3 HI ← remainder

divide unsigned divu $s2, $s3 LO ← $s2 ÷ $s3, Unsigned quotient

HI ← $s2 mod $s3 Unsigned remainder

move from HI mfhi $s1 $s1 ← HI Used to get copy of HI

move from LO mflo $s1 $s1 ← LO Used to get copy of LO

Computer Architecture & Network Lab 19

MIPS Logical Instructions

Category Instruction Example Meaning Comments

Logical and and $s1, $s2, $s3 $s1 = $s2 & $s3 Thee reg. operands; bit-by-bit AND

and immediate andi $s1, $s2, 100 $s1 = $s2 & 100 Bit-by-Bit AND reg with constant

or or $s1, $s2, $s3 $s1 = $s2 | $s3 Thee reg. operands; bit-by-bit OR

or immediate ori $s1, $s2, 100 $s1 = $s2 | 100 Bit-by-Bit OR reg with constant

xor xor $s1, $s2, $s3 $s1 = $s2 xor $s3 Logical XOR

xor immediate xori $s1, $s2, 10 $s1 = $s2 xor 10 Logical XOR w/ constant

nor nor $s1, $s2, $s3 $s1 = ┒($s2 ∨ $s3) Logical NOR

shift left logical sll $s1, $s2, 10 $s1 = $s2 ≪ 10 Shift left by constant

shift right logical srl $s1, $s2, 10 $s1 = $s2 ≫ 10 Shift right by constant

shift right arithmetic sra $s1, $s2, 10 $s1 = $s2 ≫ 10 Shift right (sign extended)

shift left logical variable sllv $s1, $s2, $s3 $s1 = $s2 ≪ $s3 Shift left by variable

shift right logical variable srlv $s1, $s2, $s3 $s1 = $s2 ≫ $s3 Shift right by variable

shift right arithmetic variable srav $s1, $s2, $s3 $s1 = $s2 ≫ $s3 Shift right arithmetic by variable

load upper immediate lui $s1, 40 $s1 = 40 ≪ 16 Places immediate into upper 16 bits

Computer Architecture & Network Lab 20

MIPS Data Transfer (Load/Store) Instructions

Category Instruction Example Meaning Comments

Date store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

 transfer store halfword sh $s1, 100($s2) Memory[$s2 + 100] = $s1 Store only lower 16 bits

store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Store only lowest byte

store float swc1$f1,100($s2) Memory[$s2 + 100] = $f1 Store FP word

load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Load word

load halfword lh $s1, 100($s2) $s1 = Memory[$s2 + 100] Load halfword; sign extended

load half unsigned lhu $s1, 100($s2) $s1 = Memory[$s2 + 100] Load halfword; zero extended

load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Load byte; sign extended

load byte unsigned lbu $s1, 100($s2) $s1 = Memory[$s2 + 100] Load byte; zero extended

load float lwc1 $f1,100($s2) $f1 = Memory[$s2 + 100] Load FP register

load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

Computer Architecture & Network Lab 21

More about Loads and Stores

 All memory accesses are exclusively through loads and
stores (load-store architecture)

 Alignment restriction
− Word addresses must be multiples of 4
− Halfword addresses must be multiples of 2

 Partial word (halfword or byte) loads from memory
− Sign-extended for signed operations
− Zero-extended for unsigned operations

Computer Architecture & Network Lab 22

More about Loads and Stores

 Big Endian vs. Little Endian

dcba
MSB LSB

(at address 20)

d
c
b
a

20
21
22
23

a
b
c
d

20
21
22
23

Big Endian Little Endian
(Macintosh, Sun SPARC) (DEC Station 3100, Intel 80x86)

Computer Architecture & Network Lab 23

MIPS Conditional Branch Instructions

Category Instruction Example Meaning Comments

conditional branch branch on equal beq $s1, $s2, L if($s1==$s2) go to L Equal test and branch

branch on not equal bne $s1, $s2, L if($s1!=$s2) go to L Not equal test and branch

Computer Architecture & Network Lab 24

MIPS Unconditional Jump Instructions

Category Instruction Example Meaning Comments

Unconditional jump jump j 2500 go to 10000 Jump to target address

jump register jr $ra go to $ra For switch, procedure return

jump and link jal 2500 $ra = PC + 4 For procedure call

go to 10000

Computer Architecture & Network Lab 25

MIPS Addressing Modes

 Operand in instruction itself
 Immediate addressing

 Operand in register
 Register addressing

 Operand in Memory
 Base addressing

op rs rt Immediate

op rs rt rd ··· funct

Register

op rs rt Address

Register
WordHalfwordByte+

Registers

Memory

Computer Architecture & Network Lab 26

MIPS Addressing Modes

 Instruction in memory
 PC-relative addressing (branch)

 Pseudo-direct addressing (jump)

op rs rt Address

Word
PC

op Address

4bits PC
Word

+

：

Memory

Memory

Computer Architecture & Network Lab 27

MIPS Addressing Modes

 Instruction in memory
 Register (jump register)

Word

rsop Memory

Register

Computer Architecture & Network Lab 28

Addressing Modes (Many not supported in MIPS)

Register Add R4, R5, R4 ← R5 + When a value is in a register.

Immediate or literal Add R4, R5, R4 ← R5 + For constants.

Displacement or
based

Add R4, R5, R4 ← R5 + Accessing local variables.

Register deferred or
indirect

Add R4, R5, R4 ← R5 + Accessing using a pointer or a computed address.

Indexed Add R3, R5, R3 ← R5 + Sometimes useful in array addressing
R1=base of array, R2=index amount.

Direct or absolute Add R1, R5, R1 ← R5 + Sometimes useful for accessing static data:
address constant may need to be large.

Memory indirect or
memory deferred

Add R1, R5, R1 ← R5 + If R3 is the address of a pointer p, then mode
yields *p.

Auto-increment Add R1, R5, R1 ← R5 + Useful for stepping through arrays within a loop.
R2 pointers to start of array; each reference
increments R2 by size of an element, d.

Auto-decrement Add R1, R5,
R1 ← R5 +

Same use as autoincrement.
Autoincrement/decrement can also be used to
implement a stack as push and pop.

Scaled or index Add R1, R5, R1 ← R5 + Used to index arrays. May be applied to any base
addressing mode in some machines.

-(R2)

(R2)+

100(R2)[R3]

M[R2]

R3 R3

#3 3

(R1) M[R1]

100(R1) M[100+R1]

(R1+R2) M[R1+R2]

M1001

@(R3) M[M[R3]]

M[R2]

R2 ← R2 + d

R2 ← R2 - d

M[100+R2+R3*d]

Addressing mode Example Instruction Meaning When used

Computer Architecture & Network Lab 29

C vs. Assembly

C Assembly
f = (g + h) – (i + j);

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

f is mapped to s0
g is mapped to s1
h is mapped to s2
i is mapped to s3
j is mapped to s4

Computer Architecture & Network Lab 30

C vs. Assembly

C Assembly
g = h + A[i];

add $t1, $s4, $s4
add $t1, $t1, $t1
add $t1, $t1, $s3
lw $t0, 0($t1)
add $s1, $s2, $t0

g is mapped to s1
h is mapped to s2
s3 contains the base

address of array A[].
i is mapped to s4.

Computer Architecture & Network Lab 31

C vs. Assembly

C Assembly
if (i == j)

f = g + h;
else

f = g – h;

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit:

f is mapped to s0
g is mapped to s1
h is mapped to s2
i is mapped to s3
j is mapped to s4

Computer Architecture & Network Lab 32

C vs. Assembly

C Assembly

while (save[i] == k)
i = i + j;

Loop: add $t1, $s3, $s3
add $t1, $t1, $t1
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
add $s3, $s3, $s4
j Loop

Exit:
i is mapped to s3
j is mapped to s4
k is mapped to s5
s6 contains the base address
of array save[].

Computer Architecture & Network Lab 33

C vs. Assembly

C Assembly
switch (k) {

case 0: f = i + j; break;
case 1: f = g + h; break;
case 2: f = g - h; break;
case 3: f = i - j; break;

}

slt $t3, $s5, $zero
bne $t3, $zero, Exit
slt $t3, $s5, $t2
beq $t3, $zero, Exit
add $t1, $s5, $s5
add $t1, $t1, $t1
add $t1, $t1, $t4
lw $t0, 0($t1)
jr $t0

L0: add $s0, $s3, $s4
j Exit

L1: add $s0, $s1, $s2
j Exit

L2: sub $s0, $s1, $s2
j Exit

L3: sub $s0, $s3, $s4
Exit

f is mapped to s0
g is mapped to s1
h is mapped to s2
i is mapped to s3
j is mapped to s4
k is mapped to s5
t2 contains 4

Computer Architecture & Network Lab 34

Pseudo Instructions

 Pseudo instruction : Instructions that are available in assembly
language but not implemented in hardware

 Pseudo instruction examples

move $s1, $s2 add $s1, $zero, $s2

blt $s1, $s2, label slt $at, $s1, $s2
bne $at, $zero, label

abs $s1, $s2 add $s1, $zero, $s2
slt $at, $s2, $zero
beq $at, $zero, L
sub $s1, $zero, $s1

L:

Pseudo instruction Equivalent real instruction sequence

	Computer Architecture
	Instruction Set Architecture
	Instruction Set Architecture as an ADT (Review)
	Instruction Set Architecture as an ADT (Review)
	Instruction Set Architecture as an ADT (Review)
	Instruction Set Architecture as an ADT (Review)
	Instruction Set Architecture as an ADT (Review)
	Examples of ISAs and Implementations
	History
	A Critical point in VLSI Technology
	History of RISC Architecture
	MIPS Instruction Set Architecture
	MIPS ISA State (Register & Memory)
	MIPS Register Usage (Software Convention for Interoperability)
	MIPS Instructions
	MIPS Instruction Format
	MIPS Integer Arithmetic Instructions
	MIPS Integer Arithmetic Instructions
	MIPS Logical Instructions
	MIPS Data Transfer (Load/Store) Instructions
	More about Loads and Stores
	More about Loads and Stores
	MIPS Conditional Branch Instructions
	MIPS Unconditional Jump Instructions
	MIPS Addressing Modes
	MIPS Addressing Modes
	MIPS Addressing Modes
	Addressing Modes (Many not supported in MIPS)
	C vs. Assembly
	C vs. Assembly
	C vs. Assembly
	C vs. Assembly
	C vs. Assembly
	Pseudo Instructions

