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Instruction Set Architecture

 An Abstract Data Type
 Objects ≡ Registers & Memory
 Operations ≡ Instructions

 Goal of Instruction Set Architecture Design
 To allow high-performance & low-cost implementations while 

satisfying constraints imposed by applications including operating 
system and complier
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Instruction Set Architecture as an ADT (Review)
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Instruction Set Architecture as an ADT (Review)
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Instruction Set Architecture as an ADT (Review)
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Instruction Set Architecture as an ADT (Review)
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Instruction Set Architecture as an ADT (Review)

Before Register and Memory

j 15

After Register and Memory

15
0

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
8
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

24
0

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
8
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

Assumptions
 8 bit ISA
 # of registers = 4 + PC (Program Counter)
 Memory size = 64B



Computer Architecture & Network Lab 8

Examples of ISAs and Implementations

 Instruction Set Architectures
 IBM System/360, IA-32 (x86), IA-64, MIPS, SPARC, Alpha, PA-

RISC, ARM, …
 Implementations

 IA-32 (x86)
− Intel: 8086, 8088, 80186, 80286, 80386, 80486, Pentium, Pentium 

Pro, Pentium II, Celeron, Pentium III, Pentium 4, …
− AMD: K5, K6, K6-II, K6-III, Athlon, Duron, …
− Cyrix: 80486, 5x86, 6x86,…

 IA-64: Itanium, Itanium 2, …
 Alpha: 21064, 21164, 21264, 21364, …
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History

 Hot topics in Computer Architecture
 High-level language computer architectures in the 1970s
 RISC architectures in the early 1980s
 Shared-memory multiprocessors in the late 1980s
 Out-of-order speculative execution processors in the 1990s
 Multi-core architectures in the 2000s

From “Single-Chip Multiprocessors: the Rebirth of Parallel Architecture” by Prof. Guri Sohi
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A Critical point in VLSI Technology

Source: www.icknowledge.com
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History of RISC Architecture

 Integration of processors on a single chip
 A critical point (“epoch”)
 Argued for different architectures (RISC)

− Small repertoire of instructions in a uniform format
− Pipelined execution
− Cache memory
− Load/store architecture

 More transistors allowed for different optimizations
 Large/multi-level caches
 Co-processors
 Superscalar
 etc
From “Single-Chip Multiprocessors: the Rebirth of Parallel Architecture” by Prof. Guri Sohi 
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MIPS Instruction Set Architecture

 One of the Pioneering RISC Instruction Set Architectures
 Small repertoire of instructions in a uniform format
 Pipelined execution
 Cache memory
 Load/store architecture

 Starts with a 32-bit architecture, later extended to 64-bit
 Even currently used in many embedded applications

 Game consoles – Nintendo 64, PlayStation, PlayStation 2, etc
 Network devices – IP phone, WLAN Access points, etc
 Residential Devices – High Definition TV, Digital Photo Frame,
 etc
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MIPS ISA State (Register & Memory)

2   words =
2   bytes
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MIPS Register Usage (Software Convention for Interoperability)

0     $zero  constant 0

1     $at  reserved for assembler

2     $v0  return values

3     $v1

4     $a0  arguments

5     $a1

6     $a2

7     $a3

8     $t0  temporary

· · ·

15   $t7

16     $s0  permanent

· · ·

23     $s7

24     $t8  temporary

25     $t9

26     $k0  OS kernel (reserved)

27     $k1

28     $gp global pointer 

29     $sp  stack pointer

30     $fp  frame pointer

31     $ra  return address

(For variables in a high-level 
language program)
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MIPS Instructions

 Arithmetic/Logic instructions
 Data Transfer (Load/Store) instructions
 Conditional branch instructions
 Unconditional jump instructions
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MIPS Instruction Format

Name                                            Fields Comments

Field size 6bits 5bits 5bits 5bits 5bits 6bits  All MIPS insturctions 32 bits

R-format op rs rt rd shamt funct  Arithmetic instruction format

I-format op rs rt             address/immediate  Transfer, branch, imm. format

J-format op               target address  Jump instruction format
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MIPS Integer Arithmetic Instructions

Category Instruction Example Meaning Comments

Arithmetic add add $s1, $s2, $s3 $s1 = $s2 + $s3  3 operands; exception possible

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100  + constant; exception possible

add unsigned addu $s1, $s2, $s3 $s1 = $s2 + $s3  3 operands; no exceptions

add immediate unsigned addiu $s1, $s2, 100 $s1 = $s2 + 100  + constant; no exceptions

subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3  3 operands; exception possible

subtract unsigned subu $s1, $s2, $s3 $s1 = $s2 - $s3  3 operands; no exceptions

set less than slt $s1, $s2, $s3 $s1 = ($s2 < $s3)  compare signed <

set less than immediate slti $s1, $s2, 100 $s1 = ($s2 < 100)  compare signed < constant

set less than unsigned sltu $s1, $s2, $s3 $s1 = ($s2 < $s3)  compare unsigned <

set less than immediate unsigned sltiu $s1, $s2, 100 $s1 = ($s2 < 100)  compare unsigned < constant
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MIPS Integer Arithmetic Instructions

Category Instruction Example Meaning Comments

Arithmetic multiply mult $s2, $s3 HI, LO ← $s2 x $s3 64 bit signed product

multiply unsigned multu $s2, $s3 HI, LO ← $s2 x $s3 64 bit unsigned product

divide div $s2, $s3 LO ← $s2 ÷ $s3, LO ← quotient 

HI ← $s2 mod $s3 HI ← remainder

divide unsigned divu $s2, $s3 LO ← $s2 ÷ $s3, Unsigned quotient

HI ← $s2 mod $s3 Unsigned remainder

move from HI mfhi $s1 $s1 ← HI Used to get copy of HI

move from LO mflo $s1 $s1 ← LO Used to get copy of LO
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MIPS Logical Instructions

Category Instruction Example Meaning Comments

Logical and and  $s1, $s2, $s3 $s1 = $s2 & $s3 Thee reg. operands; bit-by-bit AND

and immediate andi $s1, $s2, 100 $s1 = $s2 & 100 Bit-by-Bit AND reg with constant

or or    $s1, $s2, $s3 $s1 = $s2 | $s3 Thee reg. operands; bit-by-bit OR

or immediate ori   $s1, $s2, 100 $s1 = $s2 | 100 Bit-by-Bit OR reg with constant

xor xor  $s1, $s2, $s3 $s1 = $s2 xor  $s3 Logical XOR

xor immediate xori $s1, $s2, 10 $s1 = $s2 xor 10 Logical XOR w/ constant

nor nor $s1, $s2, $s3 $s1 = ┒($s2 ∨ $s3) Logical NOR

shift left logical sll   $s1, $s2, 10 $s1 = $s2 ≪ 10 Shift left by constant

shift right logical srl   $s1, $s2, 10 $s1 = $s2 ≫ 10 Shift right by constant

shift right arithmetic sra  $s1, $s2, 10 $s1 = $s2 ≫ 10 Shift right (sign extended)

shift left logical variable sllv  $s1, $s2, $s3 $s1 = $s2 ≪ $s3 Shift left by variable

shift right logical variable srlv  $s1, $s2, $s3 $s1 = $s2 ≫ $s3 Shift right by variable

shift right arithmetic variable srav $s1, $s2, $s3 $s1 = $s2 ≫ $s3 Shift right arithmetic by variable

load upper immediate lui    $s1, 40 $s1 = 40 ≪ 16 Places immediate into upper 16 bits
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MIPS Data Transfer (Load/Store) Instructions

Category Instruction Example Meaning Comments

Date store word sw  $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

 transfer store halfword sh  $s1, 100($s2) Memory[$s2 + 100] = $s1 Store only lower 16 bits

store byte sb  $s1, 100($s2) Memory[$s2 + 100] = $s1 Store only lowest byte

store float swc1$f1,100($s2) Memory[$s2 + 100] = $f1 Store FP word

load word lw   $s1, 100($s2) $s1 = Memory[$s2 + 100] Load word

load halfword lh    $s1, 100($s2) $s1 = Memory[$s2 + 100] Load halfword; sign extended

load half unsigned lhu  $s1, 100($s2) $s1 = Memory[$s2 + 100] Load halfword; zero extended

load byte lb    $s1, 100($s2) $s1 = Memory[$s2 + 100] Load byte; sign extended

load byte unsigned lbu  $s1, 100($s2) $s1 = Memory[$s2 + 100] Load byte; zero extended

load float lwc1 $f1,100($s2) $f1 = Memory[$s2 + 100] Load FP register

load upper immediate lui    $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits
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More about Loads and Stores

 All memory accesses are exclusively through loads and 
stores (load-store architecture)

 Alignment restriction
− Word addresses must be multiples of 4
− Halfword addresses must be multiples of 2

 Partial word (halfword or byte) loads from memory
− Sign-extended for signed operations
− Zero-extended for unsigned operations
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More about Loads and Stores

 Big Endian vs. Little Endian

dcba
MSB LSB

( at address 20 )

d
c
b
a

20
21
22
23

a
b
c
d

20
21
22
23

Big Endian Little Endian
(Macintosh, Sun SPARC) (DEC Station 3100, Intel 80x86)
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MIPS Conditional Branch Instructions

Category Instruction Example Meaning Comments

conditional branch branch on equal beq $s1, $s2, L if($s1==$s2) go to L Equal test and branch

branch on not equal bne $s1, $s2, L if($s1!=$s2) go to L Not equal test and branch
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MIPS Unconditional Jump Instructions

Category Instruction Example Meaning Comments

Unconditional jump jump j  2500 go to 10000 Jump to target address

jump register jr $ra go to $ra For switch, procedure return

jump and link jal 2500 $ra = PC + 4 For procedure call

go to 10000
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MIPS Addressing Modes

 Operand in instruction itself
 Immediate addressing

 Operand in register
 Register addressing

 Operand in Memory
 Base addressing

op rs rt Immediate

op rs rt rd ··· funct

Register

op rs rt Address

Register
WordHalfwordByte+

Registers

Memory
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MIPS Addressing Modes

 Instruction in memory
 PC-relative addressing (branch)

 Pseudo-direct addressing (jump)

op rs rt Address

Word
PC

op Address

4bits PC
Word

+

：

Memory

Memory
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MIPS Addressing Modes

 Instruction in memory
 Register (jump register)

Word

rsop Memory

Register
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Addressing Modes (Many not supported in MIPS)

Register Add R4, R5, R4 ← R5 + When a value is in a register.

Immediate or literal Add R4, R5, R4 ← R5 + For constants.

Displacement or 
based

Add R4, R5, R4 ← R5 + Accessing local variables.

Register deferred or 
indirect

Add R4, R5, R4 ← R5 + Accessing using a pointer or a computed address.

Indexed Add R3, R5, R3 ← R5 + Sometimes useful in array addressing 
R1=base of array, R2=index amount.

Direct or absolute Add R1, R5, R1 ← R5 + Sometimes useful for accessing static data: 
address constant may need to be large.

Memory indirect or 
memory deferred

Add R1, R5, R1 ← R5 + If R3 is the address of a pointer p, then mode 
yields *p.

Auto-increment Add R1, R5, R1 ← R5 + Useful for stepping through arrays within a loop. 
R2 pointers to start of array; each reference 
increments R2 by size of an element, d.

Auto-decrement Add R1, R5, 
R1 ← R5 + 

Same use as autoincrement. 
Autoincrement/decrement can also be used to 
implement a stack as push and pop.

Scaled or index Add R1, R5, R1 ← R5 + Used to index arrays. May be applied to any base 
addressing mode in some machines.

-(R2)

(R2)+

100(R2)[R3]

M[R2]

R3 R3

#3 3

(R1) M[R1]

100(R1) M[100+R1]

(R1+R2) M[R1+R2]

M[1001](1001)

@(R3) M[M[R3]]

M[R2]

R2 ← R2 + d

R2 ← R2 - d

M[100+R2+R3*d]

Addressing mode Example Instruction Meaning When used
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C vs. Assembly

C Assembly
f = (g + h) – (i + j);

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

f  is mapped to s0
g is mapped to s1
h is mapped to s2
i  is mapped to s3
j  is mapped to s4
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C vs. Assembly

C Assembly
g = h + A[i];

add $t1, $s4, $s4
add $t1, $t1, $t1
add $t1, $t1, $s3
lw    $t0, 0($t1)
add $s1, $s2, $t0

g is mapped to s1
h is mapped to s2
s3 contains the base 

address of array A[].
i is mapped to s4.
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C vs. Assembly

C Assembly
if (i == j)

f = g + h;
else 

f = g – h;

bne $s3, $s4, Else
add $s0, $s1, $s2
j      Exit

Else: sub $s0, $s1, $s2
Exit:

f  is mapped to s0
g is mapped to s1
h is mapped to s2
i  is mapped to s3
j  is mapped to s4
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C vs. Assembly

C Assembly

while (save[i] == k)
i = i + j;

Loop: add $t1, $s3, $s3
add $t1, $t1, $t1
add $t1, $t1, $s6
lw    $t0, 0($t1)
bne $t0, $s5, Exit
add $s3, $s3, $s4
j      Loop

Exit:
i  is mapped to s3
j  is mapped to s4
k is mapped to s5
s6 contains the base address 
of array save[].
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C vs. Assembly

C Assembly
switch (k) {

case 0: f = i + j;   break;
case 1: f = g + h; break;
case 2: f = g - h;  break;
case 3: f = i - j;    break;

}

slt     $t3, $s5, $zero
bne   $t3, $zero, Exit
slt     $t3, $s5, $t2
beq  $t3, $zero, Exit
add  $t1, $s5, $s5
add  $t1, $t1, $t1
add  $t1, $t1, $t4
lw     $t0, 0($t1)
jr      $t0

L0: add  $s0, $s3, $s4
j Exit

L1: add  $s0, $s1, $s2
j Exit

L2: sub  $s0, $s1, $s2
j Exit

L3: sub  $s0, $s3, $s4
Exit

f  is mapped to s0
g is mapped to s1
h is mapped to s2
i  is mapped to s3
j  is mapped to s4
k is mapped to s5
t2 contains 4
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Pseudo Instructions

 Pseudo instruction : Instructions that are available in assembly 
language but not implemented in hardware

 Pseudo instruction examples

move  $s1, $s2 add  $s1, $zero, $s2

blt       $s1, $s2, label slt    $at, $s1, $s2
bne  $at, $zero, label

abs     $s1, $s2 add  $s1, $zero, $s2
slt    $at,  $s2, $zero
beq  $at, $zero, L
sub  $s1, $zero, $s1

L:

Pseudo instruction Equivalent real instruction sequence
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