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Outline

 Disadvantages of the Single-cycle implementation
 Long cycle time, too long for all instructions except for the slowest 

(lw instruction)
 Inefficient hardware utilization with unnecessarily duplicated 

resources
 Multi-cycle implementation

 Partition execution into small steps
 Process each step in one cycle
 Different numbers of cycles for different instructions

− Example
 R-format instruction (4 cycles): (1) Instruction fetch (2) Instruction decode/register 

fetch (3) ALU operation (4) Register write
 Load instruction (5 cycles): (1) Instruction fetch (2) Instruction decode/register fetch 

(3) address computation (4) memory read (5) Register write
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Multiple-cycle Concept

 Reduce resource requirements by using the same 
resource for different purposes during different cycles
 Single memory unit for instructions and data
 Single ALU

 Use temporary registers to store intermediate results 
during execution
 Instruction register (IR), A register, B register, ALUOut 

register, Memory data register (MDR)
 Partition criteria: at most one of the following operations

 Memory access
 Register file access
 ALU operation
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Multiple-cycle Datapath
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Overview of Multi-cycle Execution

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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Instruction Fetch Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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Instruction Fetch Step
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Instruction Decode/Register Fetch Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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Instruction Decode/Register Fetch Step
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R-format Execution Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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R-format Execution Step
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R-format Completion Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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R-format Completion Step
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Load/Store Address Computation Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR



Computer Architecture & Network Lab 15

Load/Store Address Computation Step
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Load Memory Access Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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Load Memory Access Step
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Load Completion Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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Load Completion Step
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Store Memory Access Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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Store Memory Access Step
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Branch Completion Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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Branch Completion Step
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Jump Completion Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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Jump Completion Step
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Summary of Multi-cycle Steps

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR
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CPI of the Multi-cycle Implementation

 Number of clock cycles
 Loads : 5
 Stores : 4
 R-format instructions : 4
 Branches : 3
 Jumps : 3

 Instruction mix
 22% loads, 11% stores, 49% R-format instructions, 16% 

branches, and 2% jumps
 CPI = 0.22 x 5 + 0.11 x 4 + 0.49 x 4 + 0.16 x 3 + 0.02 x 3 = 4.04
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Multiple-cycle Implementation (with control signals added)
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Finite State Machine

 Finite state machine
 There are a finite set of possible machine states
 The machine has two functions

−next state function dependent on current state and input values
−output function dependent on current state and input values

 Two kinds of state machines
−Moore machine has output based only on current state
−Mealy machine has output based on current state and input values
−We use a Moore machine

Current state Next-state
function

Output
function

Next
state

Inputs

Outputs

Clock
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High-Level Control Flow

 Common 2-clock sequence to fetch/decode any instruction
 Separate sequence of 1 to 3 clocks to execute specific types 

of instruction
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Finite State Machine Diagram
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Finite State Machine Controller
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PLA Implementation

 Outputs and next state are 
calculated by sum of products of 
inputs and current state

 Columns in AND plane form 
products
 one column per unique product 

term
 Rows in OR plane form sum
 Programmed by placing transistors 

at intersection of row and column 
according to logic function

 When the inputs are fully decoded 
(2N columns), a PLA is logically 
equivalent to a ROM

 Optimization can be automated
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Exceptions and Interrupts

 Exception: an unexpected event from within the processor that traps 
into an operating system service routine
 Arithmetic overflow
 Undefined instruction
 System call

 Interrupt: an event that comes from outside of the processor that also 
traps into an operating system service routine
 I/O device request (I/O completion)

 Handling of exceptions and interrupts in MIPS
 Saves PC (the address of the offending instruction) in EPC 

(exception  program counter)
 Records the reason for the exception or interrupt in the CAUSE 

register
 Jumps to the operating system service routine
 rfe (return from exception) instruction restores the PC from EPC
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Summary

 Disadvantages of the Single-cycle implementation
 Long cycle time, too long for all instructions except for the slowest
 Inefficient hardware utilization with unnecessarily duplicated resources

 Multiple-cycle implementation
 Partition execution into small steps of comparable duration
 Process each step in one cycle

 Three general forms of control implementation
 Random logic
 PLA
 Microcode Clock 

cycle time

CPI

Single-cycle 
implementation

Multi-cycle 
implementation

Pipelined implementation
(next class) 
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