
Computer Architecture

Multi-cycle Implementation

Computer Architecture & Network Lab 2

Outline

 Disadvantages of the Single-cycle implementation
 Long cycle time, too long for all instructions except for the slowest

(lw instruction)
 Inefficient hardware utilization with unnecessarily duplicated

resources
 Multi-cycle implementation

 Partition execution into small steps
 Process each step in one cycle
 Different numbers of cycles for different instructions

− Example
 R-format instruction (4 cycles): (1) Instruction fetch (2) Instruction decode/register

fetch (3) ALU operation (4) Register write
 Load instruction (5 cycles): (1) Instruction fetch (2) Instruction decode/register fetch

(3) address computation (4) memory read (5) Register write

Computer Architecture & Network Lab 3

Multiple-cycle Concept

 Reduce resource requirements by using the same
resource for different purposes during different cycles
 Single memory unit for instructions and data
 Single ALU

 Use temporary registers to store intermediate results
during execution
 Instruction register (IR), A register, B register, ALUOut

register, Memory data register (MDR)
 Partition criteria: at most one of the following operations

 Memory access
 Register file access
 ALU operation

Computer Architecture & Network Lab 4

Multiple-cycle Datapath

PC

Address

MemData

memory

Read
data 1

Read
data 2

Registers

0
M
U
X
1

Write
data

ALU
Zero
ALU

result

0
M
U
X
1

Write
data

0
M
U
X
1

Shift
left 2

M
U
X

0
1
2
3

0
M
U
X
1

A

B

Memory
Data

Register

Instruction
[31-26]

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

Sign
extend

ALUOut

M
U
X

0

1

2

Read
register1

Read
register2

Write
register

4

Shift
left 2

Instruction
[15-0]

Instruction
[15-11]

16 32

26 28

PC[31-28]

Jump
address[31-0]Instruction[25-0]

Computer Architecture & Network Lab 5

Overview of Multi-cycle Execution

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Computer Architecture & Network Lab 6

Instruction Fetch Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Computer Architecture & Network Lab 7

Instruction Fetch Step

PC

Address

MemData

memory

Read
data 1

Read
data 2

Registers

0
M
U
X
1

Write
data

ALU
Zero
ALU

result

0
M
U
X
1

Write
data

0
M
U
X
1

Shift
left 2

M
U
X

0
1
2
3

0
M
U
X
1

A

B

Memory
Data

Register

Instruction
[31-26]

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

Sign
extend

ALUOut

M
U
X

0

1

2

Read
register1

Read
register2

Write
register

4

Shift
left 2

Instruction
[15-0]

Instruction
[15-11]

16 32

26 28

PC[31-28]

Jump
address[31-0]Instruction[25-0]

Computer Architecture & Network Lab 8

Instruction Decode/Register Fetch Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Computer Architecture & Network Lab 9

Instruction Decode/Register Fetch Step

PC

Address

MemData

memory

Read
data 1

Read
data 2

Registers

0
M
U
X
1

Write
data

ALU
Zero
ALU

result

0
M
U
X
1

Write
data

0
M
U
X
1

Shift
left 2

M
U
X

0
1
2
3

0
M
U
X
1

A

B

Memory
Data

Register

Instruction
[31-26]

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

Sign
extend

ALUOut

M
U
X

0

1

2

Read
register1

Read
register2

Write
register

4

Shift
left 2

Instruction
[15-0]

Instruction
[15-11]

16 32

26 28

PC[31-28]

Jump
address[31-0]Instruction[25-0]

Computer Architecture & Network Lab 10

R-format Execution Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Computer Architecture & Network Lab 11

R-format Execution Step

PC

Address

MemData

memory

Read
data 1

Read
data 2

Registers

0
M
U
X
1

Write
data

ALU
Zero
ALU

result

0
M
U
X
1

Write
data

0
M
U
X
1

Shift
left 2

M
U
X

0
1
2
3

0
M
U
X
1

A

B

Memory
Data

Register

Instruction
[31-26]

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

Sign
extend

ALUOut

M
U
X

0

1

2

Read
register1

Read
register2

Write
register

4

Shift
left 2

Instruction
[15-0]

Instruction
[15-11]

16 32

26 28

PC[31-28]

Jump
address[31-0]Instruction[25-0]

Computer Architecture & Network Lab 12

R-format Completion Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Computer Architecture & Network Lab 13

R-format Completion Step

PC

Address

MemData

memory

Read
data 1

Read
data 2

Registers

0
M
U
X
1

Write
data

ALU
Zero
ALU

result

0
M
U
X
1

Write
data

0
M
U
X
1

Shift
left 2

M
U
X

0
1
2
3

0
M
U
X
1

A

B

Memory
Data

Register

Instruction
[31-26]

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

Sign
extend

ALUOut

M
U
X

0

1

2

Read
register1

Read
register2

Write
register

4

Shift
left 2

Instruction
[15-0]

Instruction
[15-11]

16 32

26 28

PC[31-28]

Jump
address[31-0]Instruction[25-0]

Computer Architecture & Network Lab 14

Load/Store Address Computation Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Computer Architecture & Network Lab 15

Load/Store Address Computation Step

PC

Address

MemData

memory

Read
data 1

Read
data 2

Registers

0
M
U
X
1

Write
data

ALU
Zero
ALU

result

0
M
U
X
1

Write
data

0
M
U
X
1

Shift
left 2

M
U
X

0
1
2
3

0
M
U
X
1

A

B

Memory
Data

Register

Instruction
[31-26]

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

Sign
extend

ALUOut

M
U
X

0

1

2

Read
register1

Read
register2

Write
register

4

Shift
left 2

Instruction
[15-0]

Instruction
[15-11]

16 32

26 28

PC[31-28]

Jump
address[31-0]Instruction[25-0]

Computer Architecture & Network Lab 16

Load Memory Access Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Computer Architecture & Network Lab 17

Load Memory Access Step

PC

Address

MemData

memory

Read
data 1

Read
data 2

Registers

0
M
U
X
1

Write
data

ALU
Zero
ALU

result

0
M
U
X
1

Write
data

0
M
U
X
1

Shift
left 2

M
U
X

0
1
2
3

0
M
U
X
1

A

B

Memory
Data

Register

Instruction
[31-26]

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

Sign
extend

ALUOut

M
U
X

0

1

2

Read
register1

Read
register2

Write
register

4

Shift
left 2

Instruction
[15-0]

Instruction
[15-11]

16 32

26 28

PC[31-28]

Jump
address[31-0]Instruction[25-0]

Computer Architecture & Network Lab 18

Load Completion Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Computer Architecture & Network Lab 19

Load Completion Step

PC

Address

MemData

memory

Read
data 1

Read
data 2

Registers

0
M
U
X
1

Write
data

ALU
Zero
ALU

result

0
M
U
X
1

Write
data

0
M
U
X
1

Shift
left 2

M
U
X

0
1
2
3

0
M
U
X
1

A

B

Memory
Data

Register

Instruction
[31-26]

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

Sign
extend

ALUOut

M
U
X

0

1

2

Read
register1

Read
register2

Write
register

4

Shift
left 2

Instruction
[15-0]

Instruction
[15-11]

16 32

26 28

PC[31-28]

Jump
address[31-0]Instruction[25-0]

Computer Architecture & Network Lab 20

Store Memory Access Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Computer Architecture & Network Lab 21

Store Memory Access Step

PC

Address

MemData

memory

Read
data 1

Read
data 2

Registers

0
M
U
X
1

Write
data

ALU
Zero
ALU

result

0
M
U
X
1

Write
data

0
M
U
X
1

Shift
left 2

M
U
X

0
1
2
3

0
M
U
X
1

A

B

Memory
Data

Register

Instruction
[31-26]

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

Sign
extend

ALUOut

M
U
X

0

1

2

Read
register1

Read
register2

Write
register

4

Shift
left 2

Instruction
[15-0]

Instruction
[15-11]

16 32

26 28

PC[31-28]

Jump
address[31-0]Instruction[25-0]

Computer Architecture & Network Lab 22

Branch Completion Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Computer Architecture & Network Lab 23

Branch Completion Step

PC

Address

MemData

memory

Read
data 1

Read
data 2

Registers

0
M
U
X
1

Write
data

ALU
Zero
ALU

result

0
M
U
X
1

Write
data

0
M
U
X
1

Shift
left 2

M
U
X

0
1
2
3

0
M
U
X
1

A

B

Memory
Data

Register

Instruction
[31-26]

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

Sign
extend

ALUOut

M
U
X

0

1

2

Read
register1

Read
register2

Write
register

4

Shift
left 2

Instruction
[15-0]

Instruction
[15-11]

16 32

26 28

PC[31-28]

Jump
address[31-0]Instruction[25-0]

Computer Architecture & Network Lab 24

Jump Completion Step

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Computer Architecture & Network Lab 25

Jump Completion Step

PC

Address

MemData

memory

Read
data 1

Read
data 2

Registers

0
M
U
X
1

Write
data

ALU
Zero
ALU

result

0
M
U
X
1

Write
data

0
M
U
X
1

Shift
left 2

M
U
X

0
1
2
3

0
M
U
X
1

A

B

Memory
Data

Register

Instruction
[31-26]

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

Sign
extend

ALUOut

M
U
X

0

1

2

Read
register1

Read
register2

Write
register

4

Shift
left 2

Instruction
[15-0]

Instruction
[15-11]

16 32

26 28

PC[31-28]

Jump
address[31-0]Instruction[25-0]

Computer Architecture & Network Lab 26

Summary of Multi-cycle Steps

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Computer Architecture & Network Lab 27

CPI of the Multi-cycle Implementation

 Number of clock cycles
 Loads : 5
 Stores : 4
 R-format instructions : 4
 Branches : 3
 Jumps : 3

 Instruction mix
 22% loads, 11% stores, 49% R-format instructions, 16%

branches, and 2% jumps
 CPI = 0.22 x 5 + 0.11 x 4 + 0.49 x 4 + 0.16 x 3 + 0.02 x 3 = 4.04

Computer Architecture & Network Lab 28

Multiple-cycle Implementation (with control signals added)

Computer Architecture & Network Lab 29

Finite State Machine

 Finite state machine
 There are a finite set of possible machine states
 The machine has two functions

−next state function dependent on current state and input values
−output function dependent on current state and input values

 Two kinds of state machines
−Moore machine has output based only on current state
−Mealy machine has output based on current state and input values
−We use a Moore machine

Current state Next-state
function

Output
function

Next
state

Inputs

Outputs

Clock

Computer Architecture & Network Lab 30

High-Level Control Flow

 Common 2-clock sequence to fetch/decode any instruction
 Separate sequence of 1 to 3 clocks to execute specific types

of instruction

Computer Architecture & Network Lab 31

Finite State Machine Diagram

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg = 0
MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst=0
RegWrite

MemtoReg=1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

(O
p

=
' J'

)

(O
p

=
' L

W
')

4

0
1

9862

753

Start

Computer Architecture & Network Lab 32

Finite State Machine Controller

Computer Architecture & Network Lab 33

PLA Implementation

 Outputs and next state are
calculated by sum of products of
inputs and current state

 Columns in AND plane form
products
 one column per unique product

term
 Rows in OR plane form sum
 Programmed by placing transistors

at intersection of row and column
according to logic function

 When the inputs are fully decoded
(2N columns), a PLA is logically
equivalent to a ROM

 Optimization can be automated

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

AND
Plane

OR
Plane

Computer Architecture & Network Lab 34

Exceptions and Interrupts

 Exception: an unexpected event from within the processor that traps
into an operating system service routine
 Arithmetic overflow
 Undefined instruction
 System call

 Interrupt: an event that comes from outside of the processor that also
traps into an operating system service routine
 I/O device request (I/O completion)

 Handling of exceptions and interrupts in MIPS
 Saves PC (the address of the offending instruction) in EPC

(exception program counter)
 Records the reason for the exception or interrupt in the CAUSE

register
 Jumps to the operating system service routine
 rfe (return from exception) instruction restores the PC from EPC

Computer Architecture & Network Lab 35

Summary

 Disadvantages of the Single-cycle implementation
 Long cycle time, too long for all instructions except for the slowest
 Inefficient hardware utilization with unnecessarily duplicated resources

 Multiple-cycle implementation
 Partition execution into small steps of comparable duration
 Process each step in one cycle

 Three general forms of control implementation
 Random logic
 PLA
 Microcode Clock

cycle time

CPI

Single-cycle
implementation

Multi-cycle
implementation

Pipelined implementation
(next class)

	Computer Architecture
	Outline
	Multiple-cycle Concept
	Multiple-cycle Datapath
	Overview of Multi-cycle Execution
	Instruction Fetch Step
	Instruction Fetch Step
	Instruction Decode/Register Fetch Step
	Instruction Decode/Register Fetch Step
	R-format Execution Step
	R-format Execution Step
	R-format Completion Step
	R-format Completion Step
	Load/Store Address Computation Step
	Load/Store Address Computation Step
	Load Memory Access Step
	Load Memory Access Step
	Load Completion Step
	Load Completion Step
	Store Memory Access Step
	Store Memory Access Step
	Branch Completion Step
	Branch Completion Step
	Jump Completion Step
	Jump Completion Step
	Summary of Multi-cycle Steps
	CPI of the Multi-cycle Implementation
	Multiple-cycle Implementation (with control signals added)
	Finite State Machine
	High-Level Control Flow
	Finite State Machine Diagram
	Finite State Machine Controller
	PLA Implementation
	Exceptions and Interrupts
	Summary

