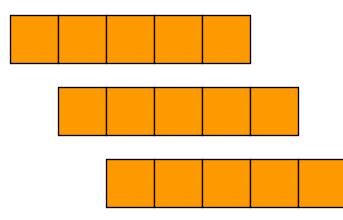

Computer Architecture

Pipelining Basics

Sequential Processing

Pipelined Processing

Basic Steps of Execution


- 1. Instruction fetch step (IF)
- 2. Instruction decode/register fetch step (ID)
- 3. Execution/effective address step (EX)
- 4. Memory access (MEM)
- 5. Register write-back step (WB)

Pipelined Instruction Execution

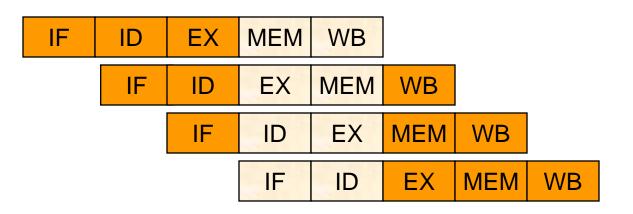
Sequential Execution

Pipelined Execution

ADD \$3, \$1, \$2

SUB \$4, \$5, \$6

AND \$7, \$8, \$9


Basic Pipeline

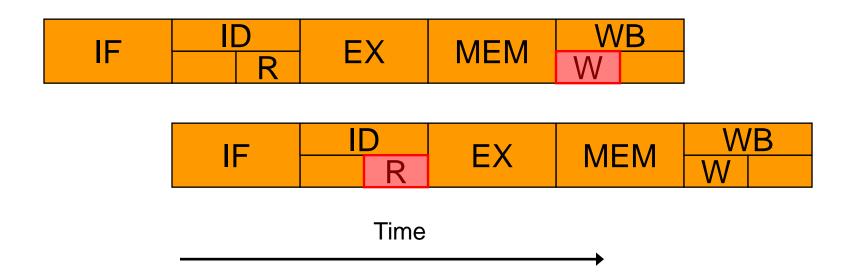
	Clock number									
Instruction number	1	2	3	4	5	6	7	8	9	
Instruction i	IF	ID	EX	MEM	WB					
Instruction $i + 1$		IF	ID	EX	MEM	WB				
Instruction $i + 2$			IF	ID	EX	MEM	WB			
Instruction $i + 3$				IF	ID	EX	MEM	WB		
Instruction $i + 4$					IF	ID	EX	MEM	WB	

Major Hurdles of Pipelining

- Structural Hazard
- Data Hazard
- Control Hazard

Structural Hazard

Instruction	Clock number										
number	1	2	3	4	5	6	7	8	9		
Load Instruction	IF	ID	EX	MEM	WB						
Instruction i + 1		IF	ID	EX	MEM	WB					
Instruction i + 2			IF	ID	EX	MEM	WB	WB			
Instruction i + 3					IF	ID	EX	MEM	WB		
Instruction i + 4						IF	ID	EX	MEM		


Solutions to Structural Hazard

Resource Duplication

- example
 - Separate I and D caches for memory access conflict
 - Time-multiplexed or multi-port register file for register file access conflict

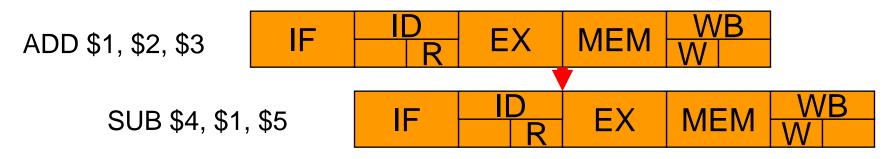
Data Hazard (RAW hazard)

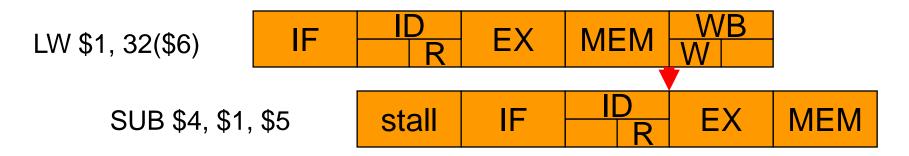
ADD \$1, \$2, \$3 SUB \$4, \$1, \$5

Solutions to Data Hazard

- Freezing the pipeline
- Internal) Forwarding
- Compiler scheduling

Freezing The Pipeline


ALU result to next instruction


Load result to next instruction

(Internal) Forwarding

ALU result to next instruction (Stall X)

Load result to next instruction (Stall 1)

Control Hazard

Caused by PC-changing instructions (Branch, Jump, Call/Return)

Branch instruction	IF	ID	EX	MEM	WB					
Branch successor		IF	stall	stall	IF	ID	EX	MEM	WB	
Branch successor + 1						IF	ID	EX	MEM	WB
Branch successor + 2							IF	ID	EX	MEM
Branch successor + 3								IF	ID	EX
Branch successor + 4									IF	ID
Branch successor + 5										IF

For 5-stage pipeline, 3 cycle penalty 15% branch frequency. CPI = 1.45

Solutions to Control Hazard

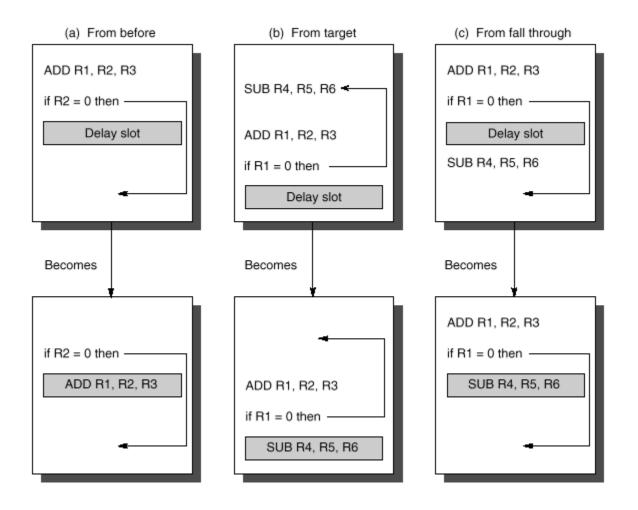
- Optimized branch processing
- Branch prediction
- Delayed branch

Optimized Branch Processing

- 1. Find out branch <u>taken or not</u> early \rightarrow simplified branch condition
- 2. Compute branch target address early
 - \rightarrow extra hardware

Branch Prediction

Predict-not-taken


Untaken branch instruction	IF	ID	EX	MEM	WB				
Instruction $i + 1$		IF	ID	EX	MEM	WB			
Instruction $i + 2$			IF	ID	EX	MEM	WB		
Instruction $i + 3$				IF	ID	EX	MEM	WB	
Instruction $i + 4$					IF	ID	EX	MEM	WB
Taken branch instruction	IF	ID	EX	MEM	WB				
Instruction $i + 1$		IF	idle	idle	idle	idle			
Branch target			IF	ID	EX	MEM	WB		
Branch target + 1				IF	ID	EX	MEM	WB	
Branch target + 2					IF	ID	EX	MEM	WB

Delayed Branch

Semantics of delayed branch

Untaken branch instruction	IF	ID	EX	MEM	WB				
Branch delay instruction $(i + 1)$		IF	ID	EX	MEM	WB			
Instruction $i + 2$			IF	ID	EX	MEM	WB		
Instruction $i + 3$				IF	ID	EX	MEM	WB	
Instruction $i + 4$					IF	ID	EX	MEM	WB
Taken branch instruction	IF	ID	EX	MEM	WB				
Branch delay instruction $(i + 1)$		IF	ID	EX	MEM	WB			
Branch target			IF	ID	EX	MEM	WB		
Branch target + 1				IF	ID	EX	MEM	WB	
Branch target + 2					IF	ID	EX	MEM	WB

Delayed Branch

