Computability and Formal
Languages

Chang-Gun Lee (cglee@snu.ac.kr)
Assistant Professor
The School of Computer Science and Engineering

Seoul National University

Russell’s Paradox

Is 1t always possible to clearly specify the characteristic of
elements 1n a set (so that a computer can enumerate them)?

P = {x|x 1s a high school student in Illinois}

Q={x|x 1s a perfect square}

R={x|{a,b} & x}

S={x|x €x}

It 1s not always the case that we can precisely specify the elements

of a set by specifying the properties of the elements in the set. 2
Russell’s paradox.

Russell’s Paradox (Examples)

There 1s a barber 1n a small village. He will shave everybody who
does not shave himself.

There were two craftsmen, Bellini and Cellini, from Florence.
Whatever Bellini made, he always put a true inscription on it. On
the other hand, whatever Cellin1 made, he always put a false
inscription on it. If they were only craftsmen around, what would
you say 1f it was reported that the following sign was discovered?
“This sign was made by Cellin1”

Noncomputability

We want to show that there are tasks no computer can perform

How?

Can we write a computer program that checks 1f a program ever
stops for a given program and data?

Program (P)
+ —> T
Data (D)
P+D — s T
P+P
p—> C T’
P—> Q

Print WILL STOP, stops
Print WILL NOT STOP, stops

If P+D will stop, enters an infinite loop
If P+D will not stop, stops

If P+P will stop, enters an infinite loop
If P+P will not stop, stops

If P will stop, enters an infinite loop
If P will not stop, stops

If Q will stop, enters an infinite loop
If Q will not stop, stops

Languages in Math

« LetA={a,b,c,d, ..., X,y, z} denote the 26-letter English alphabet.

— A n-letter word is a list (ordered set) of n letters.

— In the context of languages, we often use the terms sequences, strings, or
sentences (of letters) interchangeably with the term ordered n-tuple (list of
size n).

— A"or {ab,c.d, ..., X,y,z}" set of all sequences of n letters from A

— Aor {ab,c,d, .., x,y,z}: set of all sequences of letters from A
» For example, the set of all the names in a telephone directory is a subset of A*

e LetB={a,b,....y,z,A,B,...Y,Z, ., ;7 }
— A sentence in the English language is a sequence (or list) in B
— Where 1s John?

e LetC={A,B,..,Y,Z0,1,2,..,89,+ - %/ . =}

— A statement in a programming language is a sequence in C”

Formal Definition of Languages

Definition: Let A be a finite set which 1s the alphabet of the
lagguage. A language (over the alphabet A) is a subset of the set

For example, let A={a,b,c}. The following sets are all languages
over the alphabet A.

— L, = {a, aa, ab, ac, abc, cab}

— L, = {aba, aabaa}

L=

— L,={alcbl|1>1}
Since languages are defined as sets of strings (or lists or
sequences), all set operations can be applied to languages

— If L, is the English language and L, is the French language, L, U L, will be
the set of all sentences someone who speaks both English and French can
recognize.

— As other examples, note that
@bl li>j=nufab’[1<i<ji= {@b'|izj,i,j=1
@b'cl|i, j2linfa'blc’|i, j>1}= {a'b'c'|[i>1
@b'lizj>n@{@b’ [1<i<ji= {@b'lizj,ij=1
@bl |i,j>11-{a'b' |i>1} = @bl i=j,i,j>1

Formal Definition of Languages

Definition: Let A be a finite set which 1s the alphabet of the
lagguage. A language (over the alphabet A) is a subset of the set

For example, let A={a,b,c}. The following sets are all languages
over the alphabet A.

— L, = {a, aa, ab, ac, abc, cab}

— L, = {aba, aabaa}

L=

— L,={alcbl|1>1}
Since languages are defined as sets of strings (or lists or
sequences), all set operations can be applied to languages

— If L, is the English language and L, is the French language, L, U L, will be
the set of all sentences someone who speaks both English and French can
recognize.

— As other examples, note that
@bl li>j=nufab’[1<i<ji= {@b'|izj,i,j=1
@b'cl|i, j2linfa'blc’|i, j>1}= {a'b'c'|[i>1
@b'lizj>n@{@b’ [1<i<ji= {@b'lizj,ij=1
@bl |i,j>11-{a'b' |i>1} = @bl i=j,i,j>1

How to specify a language?

A language is a set of strings, and hence two ways to specify the
set

— exhaustive listing of all strings
— describing the properties that characterize all strings

For any non-trivial language, the above two ways do not work!

Furthermore, for may applications, we are interested mostly in

— Given the specification of a language, automatically generate one or more
strings in the language

— Given the specification of a language, determine whether a given string is in
the language

Any way to describe a language that will facilitate us in solving the above
problems?

Let’s try to specify a language by a grammar!

How to specify a language?

A language is a set of strings, and hence two ways to specify the
set

— exhaustive listing of all strings

— describing the properties that characterize all strings

For any non-trivial language, the above two ways do not work!

Furthermore, for may applications, we are interested mostly in

— Given the specification of a language, automatically generate one or more
strings in the language
— Given the specification of a language, determine whether a given string is in
the language
Any way to describe a language that will facilitate us in solving the above
problems?

Let’s try to specify a language by a grammar!=> A class of grammars
known as “phrase structure grammars”

D

SRR e

10.
11.
12.
13.
14.
15.
16.

Grammar 1n English

A sentence is a noun-phrase followed by a transitive-verb-phrase
and another noun-phrase.

A sentence is a noun-phrase followed by an intransitive-verb-
phrase.

A noun-phrase is an article followed by a noun.
A noun-phrase is a noun.
A transitive-verb-phrase is a transitive-verb.

An intransitive-verb-phrase is an intransitive-verb followed by an
adverb.

An Intransitive-verb-phrase is an intransitive-verb.
An article is a.

An article 1s the.

A noun is dog.

A noun 1s cat.

A transitive-verb is chases.

A transitive-verb is meets.

An Intransitive-verb is runs.

An adverb is slowly.

An adverb is rapidly.

Grammar in English

sentence = noun-phrase transitive-verb-phrase noun-phrase
sentence = noun-phrase intransitive-verb-phrase
noun-phrase = article noun

noun-phrase - noun

transitive-verb-phrase - transitive-verb
Intransitive-verb-phrase = intransitive-verb adverb.
Intransitive-verb-phrase = intransitive-verb.

article =2 a

article - the

noun - dog

noun - cat

transitive-verb - chases

transitive-verb - meets

Intransitive-verb = runs

adverb - slowly

adverb = rapidly the dog meets a cat

dog chases cat
the cat runs slowly

Wl

Phrase Structure Grammar

It consists of four items
A set of terminals T (like a, the, dog, cat, slowly, etc.)

A set of nonterminals N (like sentence, noun-phrase, noun,
article, etc.)

A set of productions P (A production is a form of o =)

Among all the nonterminals in N, there is a special nonterminal
that 1s referred to as the starting symbol (like sentence)

Process of generating a sentence

* Once we are given a grammar, we can generate the sentences in
the language as follows:

— Begin with the starting symbol as the current string (of terminals and
non-terminals)

— If any portion of the current string matches the left-hand side of a
production, replace that portion by the right-hand side of the
production

— Any string of “only” terminals obtained by repeating step 2 is a
sentence in the language.

sentence =» noun-phrase intransitive-verb-phrase
=>»noun-phrase intransitive-verb adverb
=>»noun-phrase intransitive-verb rapidly
=>»noun-phrase runs rapidly

=>article noun runs rapidly

=>article dog runs rapidly

=>»a dog runs rapidly

Example (1)

« We want to construct a grammar for the language
— L = {aaaa, aabb, bbaa, bbbb}

T={a,b}, N={S} T={a,b}, N={S,A}
S—>aaaa S>AA

S—>aabb A-aa

S—>bbaa A-bb

S—>bbbb

Example (2)

« We want to construct a grammar for the language
— L= {aib?]i>1}

T={a,b}, N={S}
S—>aSbb
S—>abb

Example (3)

« We want to construct a grammar for the language
— L= {x[x&{a,b}", the number of a’s in x is a multiple of 3}

T={a,b}, N={S,A,B}
S—>bS

S—>b

S—2>aA

A—2>bA

A—>aB

B—->bB

B—>aS

B—>a

Example (4)

e Suppose we are given a grammar in which T={a,b} and
N={S,A,B}, with S being the starting symbol. Let the set of
productions be

S—>aB
S—2>bA
A—2a
A—2aS
A—2>bAA
B-2>b
B—->bS
B—>aBB

* What is this language?

— all strings of a’s and b’s in which the number of a’s equals the number of b’s

Example (5)

- Let T={A,B,C,D,+,*,(,),=} and N={asgn_stat, exp, term, factor,
Id}, with asgn_ stat being the starting symbol.

C=A+D*(D+B)

- 1 asgn_stat=»id=exp=>»id=exp+term=>»
asg n_State |d—exp id=exp+term*factor=>id=exp+term*(exp)=>»
exp%exp+te rm id=exp+term*(exp+term)=»

id=exp+term*(exp+factor)=>»
exp%term id=exp+term*(exp+id)=>»
term—>term*factor id=exp+term*(exp+B)>
id=exp+term*(term+B)=>»
term->factor id=exp+term*(factor+B)=>»
factor->(exp) id=exp+term*(id+B)>
factor~>id id=exp+term*(D+B)=»
id=exp+factor*(D+B)=>»
Id2A id=exp+id*(D+B)=>»
- id=exp+D*(D+B)=>»
Id>B id=term+D*(D+B)=>»
Id=>C id=factor+D*(D+B)=»
- id=id+D*(D+B)=>»
1d>D id=A+D*(D+B)=» C=A+D*(D+B)

Types of Grammars and Languages

A and B denote arbitrary nonterminals, a and b denote arbitrary
terminals, and « and £ denote arbitrary strings of terminals and
nonterminals.

Type-3 grammar
— A—a
— A—>aB

Type-2 grammar

— A2«
Type-1 grammar

— a=2P (length of B is larger than or equal to the length of o)
Type-0 grammar

— no restriction on the productions
type-0

type-0 language
type-1

type-2

type-1 language
type-3
type-2 language

type-3 language

Some questions?

» Are there languages that are not type-0 language?
— affirmative

« How about all the programming languages?
— all of them are (almost) type-2 languages

* This is how a compiler for a programming language works
— to understand and analyze a sentence.

