
Traditional DIY approach

DIY approach

• Do everything by yourself
– Design hardware

• CPU, Peripherals
• I/O and Memory address mapping

– Entire software
• ROM Bios or Monitor program
• Interrupt processing
• Application functions
• In charge of entire CPU control flow

com1

Video adaptor

RTC

8253
8259

1 K Interrupt Vector Table

Expansion Card
BIOS

System BIOS

Video RAM

HW Config. (x86 PC)
0x00000000

1M=0x000fffff
…Up to 4 G

=0xffffffff

0x00010000

0x00020000

0x00030000

0x00040000

0x00050000

0x00060000

0x00070000

0x00080000

0x00090000

0x000a0000

0x000b0000

0x000c0000

0x000d0000

0x000e0000

0x000f0000

32 bit protected mode
addressing area

Start at
0x000ffff0

0x000

Video
adaptor

8259
IRQ

controller

0x020
0x030

8253
Interval
Timer

0x040

mc146818
RTC

0x070

0x3C0

…

COM1

0x3f8

References
• Detail mapping and control is each component specific
• For more details, refer

– Memory map:
http://www.osdata.com/system/physical/memmap.htm
http://savage.net.au/Ron/html/hex-ram-tutorial.html

– Port map:
http://members.tripod.com/~oldboard/assembly/ports.html

– CMOS RTC:
http://members.tripod.com/~oldboard/assembly/cmos_ram.html
http://sunsite.lanet.lv/ftp/mirror/x2ftp/msdos/programming/serial/rtc

– VGA Adaptor:
http://www.osdever.net/FreeVGA/vga/vga.htm

Boot sequence (PC)

• Power on: processor jumps to 0xffff0
• Jumps to ROM BIOS start point
• Check and initialize hardware
• Retrieve and/or store BIOS data (e.g, boot device order)
• Load the Master Boot Sector from the primary boot device
• Jump to the loaded boot code
• Now OS specific (Boot loader, DOS, Windows, Linux)

Boot sequence
(Embedded system)

• Power on: processor jumps to a specific address depending
on microprocessor

• Jump to monitor ROM start point
• Check and initialize hardware
• Set the interrupt vector table with corresponding handlers
• Start executing a “super loop”
• Everything is managed inside of the super loop during the

system life time

Our first embedded real-time system
(stepping motor controller)

• Super loop approach with Real-Time Clock
support
– Initialize mc146818rtc so that it generates

periodic interrupts
– Register RTC (IRQ8) interrupt handler
– Super loop keeps doing

• if an event happens, turn the motor one step

External Interrupts (IRQs)

INT no. IRQ no. Function

Ref. The undocumented PC: A Programmer’s guide to I/O, CPUs, and Fixed
Memory Areas

0-7h CPU Divide error, etc.
8h 0 System Timer 8253
9h 1 Keyboard
Ah 2 IRQ Cascading
Bh 3 COM2
Ch 4 COM1
Dh 5 Hard disk
Eh 6 Floppy disk
Fh 7 Printer

INT no. IRQ no. Function

10-67h BIOS BIOS or OS
70h 8 CMOS RTC
71h 9 General use
72h 10 General use
73h 11 General use
74h 12 Mouse port
75h 13 Math co-proc.
76h 14 Primary Hard disk
77h 15 General use

VAL

Peripheral device control
(ex, mc146818rtc)

• IO mapped IO vs Memory mapped IO
• outp_b(byteValue, IOport), byteVariable = inp_b(IOport)

– macro using inline assembly “out” and “in”

addressing reg.

mc146818rtc

A reg.
B reg.
C reg.

0x70

0x71

A 0
7 6 5 4 3 2 1 0

1 00

32768Hz f=32768/(2VAL-1)

B x 1 0 0 x x x x

C x x x x xx x x

periodic int (IRQ8)

Clear IRQ flag

Register Interrupt Handler
(ex. CMOS RTC interrupt handler)

• Interrupt vector table access (DOS: getvect, setvect)
– Direct access to the table entry address

• In our linux environment (32 bit protected mode, virtual
address), direct access is difficult

• Let’s get help from RtLinux functions
• #include <rtl_core.h>
• int rtl_request_irq(unsigned int irq, unsigned int (*handler)());
• int rtl_free_irq(unsigned int irq);
• int rtl_hard_enable_irq(unsigned int irq);
• int rtl_hard_disable_irq(unsigned int irq);

• Interrupt handler
• unsigned int handler(unsigned int irq, struct pt_regs *regs);
• Increase a counter and set EVENT if one step time has been passed

Super Loop

• Infinite loop – while(1){}
• Check if the EVENT (one step time) happened
• If so, call “motor(id, x, y)” and clear EVENT

How to take the full control in Linux
environment?

• Make our super loop as a kernel module
• insmod superloop.o
• Entry and Exit function of a kernel module

– int init_module(void)
– int cleanup_module(void)

• Inside of init_module, implement the super loop
• The super loop will take the full control
• Anything else (such as linux service) cannot be done
• To kill your module Reboot the system (Sorry ^--^)

– So… please “sync” first before inserting superloop.o to avoid loss of
your data

Project assignment

• Using the super loop approach, implement a system that
controls two motors: 1) the first motor should take one turn
(4 steps) at every 4 sec, and 2) the second motor should take
four turns at every 1sec. Run it in text-mode. The program
should print the number of turns of each motor at every 10
sec. Wait for 500 sec (measure 500 sec with your watch)
and see the number of turns matches with your expectation.
Discuss about it!

