
1

Priority-Driven Scheduling of
Periodic Tasks (1)

- Chapter 6 -

Overview

• Reference Model Assumptions
• Fixed-priority vs. Dynamic Priority
• RM

– schedulable utilization bound
– time demand analysis

• EDF
– schedulable utilization bound
– time demand analysis
– The stability problem of EDF

2

Periodic Task Model
• A periodic task Ti is characterized by

– phase: θi

– Period: pi

– Execution time : ei

– Relative deadline: Di from the beginning of the period.

J11

θ1 d11 θ1+p1 d12 θ1+2*p1 d13 θ1+3*p1

J12 J13

•Default assumption: Di = pi. That is, a periodic task deadline is located at the end of
the period

0

(Power On)

Assumptions

• the tasks are independent
– for resource contention, Chapter 8

• there are no aperiodic and sporadic tasks
– for integrated scheduling, Chapter 7

• other assumptions
– can be preempted at any time
– context switch overhead is negligible

3

Classification of Scheduling
Algorithms (Review)

offline schedule

online schedule

Clock-driven

WRR

Priority-driven
(Work conserving)

fixed-priority
(e.g., RM, DM)

dynamic-priority
(e.g., EDF, LST,

FIFO, LIFO)

clairvoyant schedule

“Priority vs. Criticality”
• Priority: priority is the order we execute ready jobs.
• Criticality (Importance): represents the penalty if a task misses a

deadline (one of its jobs misses a deadline).

• Quiz: Which task should have higher priority?
• Task 1: The most import task in the system: if it does not get

done, catastrophic consequences will occur
• Task 2: An mp3 player: if it does not get done in time, the played

song will have a glitch

4

“Priority vs. Criticality”

• An important find in real-time computing theory is that
importance may or may not correspond to scheduling
priority.

• In the following example, giving the less important task
higher priority results in both tasks meeting their deadlines.

• Importance matters only when tasks cannot be scheduled
(overload condition), not when they can be scheduled.

Important job

Less important job

Dynamic Priority vs. Fixed Priority

• {T1=(p1=10, e1=4), T2=(p2=15, e2=8), T3=(p3=30, e3=2)}

Fixed Priority Schedule (RM)

Miss!

0 10 20 30

Dynamic Priority Schedule (EDF)

OK !

0 10 20 30

5

What are advantages of priority-
driven schedule over clock-driven?

• Scheduling decision is made online, and hence
flexible
– Jobs of a task doesn’t need to be released at the fixed

time (exact periodic)
• period = minimum inter-release time

– Tasks can dynamically enter and leave the system
• Good! BTW, how can we validate the timing

behavior?
– Predictability: can we say the system is schedulable a

priori?
– Fortunately, we have sound theory on the schedulability

of priority-driven schedule

OK, Let’s study such theory
- Is it enough to simply memorize important theorems? -

• Facts
– “RM is optimal”
– “DM is optimal”
– “The system is schedulable if U < n(21/n-1) according to RM schedule”
– “EDF is optimal”
– “The system is schedulable if U < 1 according to EDF schedule”

• Not that useful!
– Most facts are true under some limited conditions
– Our problem does not exactly meet those conditions
– Most of time, we cannot directly apply the fact to our problem

• Deep understanding
– how people developed the facts?
– how to prove the facts?
– how to change the facts for our problem?

6

Fixed-Priority Scheduling

• How to assign Priorities?
• How to check the schedulability?

Priority Assignment
• {T1=(p1=10, e1=4), T2=(p2=15, e2=7), T3=(p3=30, e3=4)}

J1,1 J1,2 J1,3 J1,4

J2,1 J2,2

T1

T2

T3

1

2

3 J3,1

Assignment 1

J1,1 J1,2 J1,3 J1,4

J2,1 J2,2

T1

T2

T3

2

1

3 J3,1

Assignment 2

10 20 30

15 30

0

0

0 30

10 20 30

15 30

0

0

0 30

7

Intuitive priority assignments

• Random – mostly perform poorly

• Functional Criticality (Semantic importance)
– T1 is a video display task
– T2 is a task monitoring and controlling patient’s blood pressure

• Urgency
– If all tasks are feasibly schedulable, the critical task doesn’t have to

be the highest priority task
– RM and DM are examples

Optimal Static Priority Algorithm

• RM (Rate Monotonic) is an optimal static priority
assignment for periodic tasks with deadlines at the end of
the period.
– Higher priority is assigned to a task with higher rate (inverse of

period)

• DM (Rate Monotonic) is an optimal static priority
assignment for periodic tasks with arbitrary relative
deadlines.
– Higher priority is assigned to a task with shorter relative deadline

8

What does optimality mean?

• Optimality: I am an optimal algorithm …..
• If I cannot find a feasible schedule, nobody else can!

• Quiz: EDF is optimal, RM is optimal too…….. Is RM as powerful as EDF
(why or why not)?

• RM is optimal under limited conditions
• fixed-priority domain
• deadlines are the end of periods

Proof of RM optimality
• Recall the swapping trick

– Any feasible schedule (static-priority) can be transformed to RM
feasible schedule!

• When saying a periodic task schedulable, we mean that
every job of this task will meet its deadline. Since a
periodic task can repeat itself endlessly, checking every job
is impractical, if not impossible.

• Fortunately, there is a shortcut.

9

The Critical Instant Theorem
• In static priority scheduling, the completion time of a job is the sum of

its own execution time plus the sum of preemptions from higher
priority tasks.

• Critical instant theorem claims that maximum preemption occurs
when all higher priority tasks line up at time 0. So if a job can make it
under maximum preemption, it can certainly make it when preemption
is lighter.

• Critical instant theorem: in static priority scheduling, a task is
schedulable if its first job meets its deadline, under the condition that all the
higher priority tasks and this task start at the same time, e.g., t = 0.

Critical Instant Theorem
• Proof:

Consider a set of periodic tasks ordered according to static priorities.
For the sake of simplicity, let’s consider RM.

Let Γ={T1,….,Tn} be a set of tasks ordered by increasing periods, with
Tn being the task with the longest period. According to RM, Tn will
also be the task with the lowest priority.

Notice that (see figure) the response time of Tn is delayed by the
interference of Ti with higher priority. Moreover, it is clear that
advancing the release time of Ti may increase the completion time of
Tn.

It follows that the response time of Tn is largest when it is released
simultaneously with Ti.

10

Critical Instant Theorem
low priority

task

high priority
task

Critical Instant Theorem

Repeating the argument for all Ti, i =
2,…,n-1, we prove that the worst response
time of a task occurs when it is released
simultaneously with all higher-priority tasks.
�

• What’s an important consequence of this
result?

11

Optimality of RM
(by using the Critical Instant Theorem)

J11 J12 J13

J21 J22 J23

J11 J12

J21

• Given two tasks, suppose that priorities are not
assigned according to RM and that the task set is
feasible

Swapping
J11 J12

J21

D1

D2

J11 J12

J21

D1

D2
t

•Move J11 to t = 0, meets release time requirement and J11 still meets its
deadline

•Since J21 + J11 = J11 + J21 = t < D1 < D2, J21 meets its deadline at D2.

•Since J11 meets its deadline and J21 meets its deadline, all the jobs in
both tasks will always meet their deadline (Why?)

12

Schedulability Check!
• Important for

– Offline design phase
• period selection
• algorithm selection
• identifying modules to be optimized

– Online admission phase (in dynamic real-time systems)
• periodic tasks are dynamically created by external events

– In case that the system becomes unschedulable by adding the new task,
we cannot admit it. Instead, we have to ring a warning alarm ASAP for
alternative action.

• control frequency and algorithm negotiation
• frame rate and QoS parameter negotiation in multimedia

Using Critical Instant Theorem

• A direct use of the critical instant theorem is the
exact schedulability test. It is also known as the
time demand analysis.

• We shall illustrate this by an example of 3 tasks

• {(e1 = 4, p1=10), (e2=4, p2=15), (e3=10, p3=35)}
and we are interested to know if task T3 can meet
its 1st deadline under rate monotonic scheduling
– Then, all T3 future deadlines can be met.

13

Formulation (Exact Analysis)

• Tasks are ordered according to their priority: T1 is the
highest priority task.

Test terminates when ri
k+1 > pi (not schedulable)

or when ri
k+1 = ri

k < pi (schedulable).

∑∑
=

−

=

+ =
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

i

j
jij

i

j j

k
i

i
k

i ere
p
rer

1

0
1

1

1 where,

The Exact Schedulability Test

•Basically, “Enumerate” the schedule
•“Task by Task” schedulability test

4 4 4 4

0 10 20 30

15 30

35

0

0

4 4 4

2 1 1 6

Q: Now, we can say Task 3 is schedulable.
Is this correct?

4.0),10,4(111 === Upe

27.0),15,4(222 === Upe

28.0),35,10(333 === Upe

14

4

0 10 20 30

15 30

35

0

0

4

10

r3
0 = 18

4.0),10,4(111 === Upe

27.0),15,4(222 === Upe

28.0),35,10(333 === Upe

4

0 10 20 30

15 30

35

0

0

4

2

r3
1 = 26

4

4

1 7

4.0),10,4(111 === Upe

27.0),15,4(222 === Upe

28.0),35,10(333 === Upe

15

4

0 10 20 30

15 30

35

0

0

4

2

r3
2 = 30

4

4

1 6

4

1

4.0),10,4(111 === Upe

27.0),15,4(222 === Upe

28.0),35,10(333 === Upe

Intuitions of Exact Schedulability Test

• Obviously, the response time of task 3 should
larger than or equal to e1+e2+e3

181044321

3

1

0
3 =++=++==∑

=

eeeer
j

j

16

Intuitions of Exact Schedulability Test

• Obviously, the response time of task 3 should larger than or equal to
e1+e2+e3

• The high priority jobs released in r3
0, should lengthen the response

time of task 3

181044321

3

1

0
3 =++=++==∑

=

eeeer
j

j

264
15
184

10
1810

2

1

0
3

3
1
3 =⎥⎥

⎤
⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

=
j

j j

e
p
rer

Intuitions of Exact Schedulability Test

• Keep doing this until either r3
k no longer increases or r3

k > p3

304
15
264

10
2610

2

1

1
3

3
2

3 =⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

=
j

j j

e
p
rer

304
15
304

10
3010

2

1

2
3

3
3

3 =⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

=
j

j j

e
p
rer Done!

17

How long should we enumerate the schedule?

4 4 4 4

0 10 20 30

15 30

35

0

0

4 4 4

2 1 1 6

Checking the critical instant is OK!!

Critical instant theorem: If a task meets its first deadline
when all higher priority tasks are started at the same time,
then this task’s future deadlines will always be met. The
exact test for a task checks if this task can meet its first
deadline[Liu73].

4.0),10,4(111 === Upe

27.0),15,4(222 === Upe

28.0),35,10(333 === Upe

Time Demand Graph

time

Demand

18

20

26

10 15

18

Time Demand Graph

time

Time
demand

18

26

30

30

35

2010 15

38

Class Exercise 1
Suppose that we have two tasks
• e1 = 3, p1 = 5
• e2 = 5, p2 = 14

• Use exact test to check the schedulability of task 2. Draw the schedule
timeline to confirm that

113
5
851

1

0
2

2
1
2 =⎥⎥

⎤
⎢⎢
⎡+=⎥

⎥

⎤
⎢
⎢

⎡
+= e

p
rer

143
5

1151
1

1
2

2
2

2 =⎥⎥
⎤

⎢⎢
⎡+=⎥

⎥

⎤
⎢
⎢

⎡
+= e

p
rer

• r2
0 = e1 + e2 = 3 + 5 = 8

143
5

1451
1

2
2

2
3

2 =⎥⎥
⎤

⎢⎢
⎡+=⎥

⎥

⎤
⎢
⎢

⎡
+= e

p
rer Done! the task set is schedulable

19

Class Exercise 1
Suppose that we have two tasks
• e1 = 3, p1 = 5
• e2 = 5, p2 = 14

• Can we add a task 3 with e3 = 1 and p3 = 50? What would be the
shortest period of p3 that it can still meet its deadlines? Apply the exact
test formulation to confirm that.

Class Exercise 1 (continued)
3

0 10 20 30

14 280

0

2

1

5 15

3

25 35 40

3 3

2 1

3 3 3 3 3

1 2 2
42

2 2 1

265
14
233

5
231

235
14
203

5
201

205
14
153

5
151

155
14
123

5
121

125
14
93

5
91

9153

2

1

4
3

3
5

3

2

1

3
3

3
4

3

2

1

2
3

3
3

3

2

1

1
3

3
2

3

2

1

0
3

3
1
3

3

1

0
3

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

=++==

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

j
j j

j
j j

j
j j

j
j j

j
j j

j
j

C
T
rCr

C
T
rCr

C
T
rCr

C
T
rCr

C
T
rCr

Cr

405
14
403

5
401

405
14
373

5
371

375
14
343

5
341

345
14
293

5
291

295
14
263

5
261

2

1

9
3

3
10
3

2

1

8
3

3
9

3

2

1

7
3

3
8
3

2

1

6
3

3
7

3

2

1

5
3

3
6

3

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

∑

∑

∑

∑

∑

=

=

=

=

=

j
j j

j
j j

j
j j

j
j j

j
j j

C
T
rCr

C
T
rCr

C
T
rCr

C
T
rCr

C
T
rCr

20

Formulation (Exact Analysis)

Quiz: Can we use the exact analysis formulation for non RM static priority
scheduling?

Quiz: Can we extend the exact analysis to tasks with deadlines less than periods?
How?

Quiz: Can we use the exact analysis for a task set where the critical instant never
occurs?

Class Exercise 2

Suppose that three tasks are scheduled under RMS
• e1 = 4, p1 = 10
• e2 = 6.1, p2 = 14
• e3 = 1, p3 = 70

• Is task 2 schedulable?
• How about task 3?

21

Class Exercise 2: Task 2

Task 2 is not schedulable!

1.101.640
2 =+=r

141.141.64
10

1.101
2 >=+⋅⎥⎥

⎤
⎢⎢
⎡=r

•e1 = 4, p1 = 10

•e2 = 6.1, p2 = 14

•e3 = 1, p3 = 70

Class Exercise 2: Task 3
0

1

2

3

4

4 6 . 1 1 1 1 . 1
1 1 . 1 1 1 . 14 6 . 1 1 1 5 . 1

1 0 1 4
1 5 . 1 1 5 . 14 6 . 1 1 2 1 . 2

1 0 1 4
2 1 . 2 2 1 . 24 6 . 1 1 2 5 . 2

1 0 1 4
2 5 . 2 2 5 . 24 6 . 1 1 2 5 . 2 7 0

1 0 1 4

a

a

a

a

a

= + + =

⎡ ⎤ ⎡ ⎤= + + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎡ ⎤ ⎡ ⎤= + + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎡ ⎤ ⎡ ⎤= + + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎡ ⎤ ⎡ ⎤= + + = <⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

Even Task 2 is not schedulable, Task 3 is schedulable.

It is a common mistake to assume that if a higher priority task is not
schedulable so are the lower priority tasks. Don’t make this mistake!

22

Summary of Exact Test
• Exact test is sufficient and necessary condition for the schedulability!

– when the critical instant actually occurs
– execution times and periods are constant as given
– applicable to non-RM priority assignment
– applicable even when the deadlines are shorter than the periods

• Still sufficient condition
– even if task phase never make critical instant
– execution times are smaller than the given values
– inter-release time is longer than the given periods

• Problems
– applicable only when execution times e and periods p are known
– high complexity – not practical for online admission control

