
1

Priority-Driven Scheduling of
Periodic Tasks
- Chapter 6 –

(Dynamic Priority (2))

Summary
• All of the above schedulability check works only under limited

conditions
– Preemptable at any time
– Context switch overhead is negligible
– Scheduling decision is made immediately upon jobs release and

completion
• Practical Issues

– What if the deadline is earlier than the period?
– What if there is a non-preemptable code section (e.g., system call)?
– What if the context switch overhead is not negligible?
– Tick scheduling?
– Precedence constraints

2

EDF with deadlines less than periods
• Quiz: can you find an easy but sufficient schedulability

condition for a task set with deadlines less than periods?

period decrease ;1

timeexecution increase ;1

1

1

≤

≤
−+

<

∑

∑

=

=

n

j j

j

n

j j

jjj

ii

D
e

p
Dpe

pD

Non-preemptable code section

• a non-preemptable code section (NPS) of a low priority
task blocks high priority task
– How to take this into account in utilization bound check?

 tasks)all(for check single ;1max

)for task (only check by task task ;1

/* if /*max

 deadline relativeshorter with job ablock can
 deadline relativelonger with jobOnly :

11

1

1

≤+

≤+

<<=

==

=

+=

∑

∑

j

j
n

j

n

j j

j

i

i
n

j j

j

kij

n

iji

ii

kk

p
b

p
e

i
p
b

p
e

kiDDNPSb

DJ
DJTheorem

3

Earlier deadline and Non-
preemptable code section

 tasks)all(for check single ;1
),min(

max
),min(

)for task (only check by task task ;1
),min(),min(

11

1

≤+

≤+

==

=

∑

∑

ji

j
n

j

n

j jj

j

ii

i
n

j jj

j

pD
b

pD
e

i
pD

b
pD

e

Precedence constraints

• Precedence relation says you can’t start until your
predecessor has done.

• Basically, each task cannot start before its predecessors
and cannot be preempted by its successors

J1

J2

J3

J4
[0,7],3

[2,5],1

[1,6],2

[3,7],1

4

Precedence constraints
• There exists an elegant way to handle precedence

constraints:
– The basic idea is to transform a set Γ of dependent

tasks into a set Γ* of independent tasks by an adequate
modification of timing parameters

– Then, tasks are scheduled by EDF algorithm

Effective Release Times

• Modification of the release times:
– A job’s start time cannot be earlier than the minimum

finishing time of its predecessors
– Hence, rb

*= max (rb, ra + Ca)

Ca

Cb

Ja

Jb

Ja

Jb

rb

ra da

db

5

Effective Release Times
• The algorithm that modifies the release times:

1. For any initial node of the precedence graph, set ri
* = ri

2. Select a task Ti such that its release time has not been modified but the
release time of any immediate predecessors Th have been modified. If
no such task exists, exit

3. Set ri
*= max [ri, max(rh

* + Ch)]
4. Return to step 2 J1

J2

J4 J5

J3

J6

Effective Deadlines
• Modification of the deadlines:

– A job’s finishing time cannot be later than the
maximum start time of its successors

– Hence, da
*= min (da, db - Cb)

Ca

Cb

Ja

Jb

Ja

Jb

rb

ra da

db

6

Effective Deadlines
• The algorithm that modifies the deadlines:

1. For any terminal node of the precedence graph, set di
* = di

2. Select a task Ti such that its deadline has not been modified but the
deadline of any immediate successor Tk have been modified. If no such
task exists, exit

3. Set di
*= min [di, min(dk

* - Ck)]
4. Return to step 2 J1

J2

J4 J5

J3

J6

Effective Release Times & Deadlines

• Given a set of arbitrary release times and deadlines, if
we revise them according to these two rules, the
resulting deadlines and release times are said to be
effective release times and effective deadlines.

J1

J2

J3

J4
[0,7],3

[2,5],1

[1,6],2

[3,7],1

7

Effective Release Times &
Deadlines

• The swapping trick still works with effective
release times and deadlines in a single CPU with
preemptive scheduling.

• To do EDF under general precedence relations
– Get effective release times and deadlines
– Assign priorities according to EDF

• EDF keeps its optimality under precedence
constraints when tasks are preemptable

Optimality of Effective EDF
under precedence constraints

• Theorem: If there exists a feasible schedule
(meet all release times, deadlines,
precedence constraints), effective EDF
schedule (EDF schedule with effective
release times and deadlines) is also feasible

Note 1: effective EDF does not care about precedence constraints!

Note 2: To show effective EDF schedule is feasible, we have to show all
release times, deadlines and precedence constraints are met.

8

How to prove the optimality?

J1 J2

J3

[r1,d1],C1

[r3,d3],C3

[r2,d2],C2

r1 d1

r2 d2

r3 d3

A feasible schedule

How to prove the optimality?

J1 J2

J3

[r1,d1],C1

[r3,d3],C3

[r2,d2],C2

r1 d1

r2 d2

r3 d3

A feasible schedule

r1 d1
*

r2
* d2

r3 d3

After 1st swapping

r2
*=max(r2, r1+C1)

d1
*=min(d1, d2-C2)

Swapping does not violate any deadline

Why? ______________

9

How to prove the optimality?

J1 J2

J3

[r1,d1],C1

[r3,d3],C3

[r2,d2],C2

r1 d1

r2 d2

r3 d3

A feasible schedule

r1 d1
*

r2
* d2

r3 d3

The effective EDF schedule

r2
*=max(r2, r1+C1)

d1
*=min(d1, d2-C2)

Precedence constraints are
automatically met –why?

How to prove the optimality?

J1 J2

J3

[r1,d1],C1

[r3,d3],C3

[r2,d2],C2

r1 d1

r2 d2

r3 d3

A feasible schedule

r1 d1
*

r2
* d2

r3 d3

effective EDF schedule is feasible!

r2
*=max(r2, r1+C1)

d1
*=min(d1, d2-C2)

Precedence constraints are
automatically met –why?
All predecessor can start earlier than successors
since ____________

Any successor CANNOT start before the
completion of all predecessor because _________

The resulting schedule
after swapping is
feasible

10

Static Priority Scheduling vs. EDF

• Which one is more popular in the real-time market?
• You can’t beat 100% schedulability, can you? Strangely

enough, static priority scheduling algorithm with
schedulability significantly less than 100% has taken over
the world of real-time computing. Why?

• What prevents EDF becoming popular?
– 1) EDF has small marketing budget and it loses the marketing war.

Sometimes inferior technology wins, isn’t it?
– 2) There is a dark side of EDF.

The Stability Problem

There is a dark side (serious problem) with EDF.

• When a system becomes overloaded and not all the tasks can meet
their deadlines, it is important to keep meeting deadlines of critical
tasks. This is an easy problem for fixed priority scheduling.
Unfortunately, there is no low complexity solution for this problem
under EDF since each job’s priority is changing and it is expensive to
keep track the execution states during runtime.

• Fortunately, in certain applications, the penalty of missing a deadline
can be lessened by application level measures, for example, dropping a
B frame in video is ok. Even in feedback control, there are new results
that “soften” the deadline. So EDF will become more popular.

