
1

Device Driver
for Serial Communication

RTOS Support
• NOT necessarily responsible everything
• RTOS system calls

Interrupt Management
rtl_request_irq
rtl_free_irq
rtl_hard_enable_irq
rtl_hard_disable_irq

Time Management
clock_gethrtime
clock_gettime
clock_settime
gethrtime
nanosleep

Task Management
pthread_create
pthread_setschedparam// pri. sched
pthread_make_periodic_np
pthread_wait_np
pthread_delete_np
pthread_cancel
pthread_join

Task Communication
FIFO
Shared Memory
Signal

Mutual Exclusion
Lock
Semaphore

Device drivers
rt_com
rtsock

2

Various Devices

• Serial com (UART – RS232)
• Parallel com
• Ethernet card (TCP/IP – socket

interface)
• CAN bus
• CDMA communication chip set
• LCD

Device driver (1)

• Simplify the access to devices
– Hide device specific details as much as

possibile
– Provide a consistent way to access

different devices
• ioctl(), read(), write()

3

Device Driver (2)

• Writing a device driver
– Understand basic physical mechanism
– Understand supporting HW chips
– Implement standard interface functions

• Register necessary interrupt handlers
• Define internal data structure (message

buffer)
• Implement standard interface functions

– ioctl, read, write

Device Driver (2)

• A device driver USER only needs to
know (standard) interface functions
without knowledge of physical
properties of the device

• A device driver DEVELOPER needs
to know physical details and provides
the interface functions as specified

4

Let’s take serial com as an
example

• Physical communication mechanism
– RS-232:widely used industrial standard

pin
1 DCD asserted when the modem detects a

“carrier”from the other end

name function

2 RD Serial data input

3 TD Serial data output

4 DTR DTE (UART) ready to establish a link

5 SG Signal ground

6 DSR DCE (modem) ready to establish a link

7 RTS DTE (UART) ready to exchange data

8 CTS DCE (modem) ready to exchange data

9 RI Asserted when modem detects a ringing
signal from the PSTN

One word communication
(8bit data, no parity, 1 stop bit)

PC
(rtLinux) Robot

TD

RD

Serial cable

Start bit
8-bit data
word 1 bit stop

bit

• Why we need start bit in asynchronous communication
even when the both sides use the same baud rate?

5

Program controls bit level timing?
(think about 115200 bps)

• UART (8250 and compatibles) will help

16550 UART

addr

data

IRQ4

control
registers

TD

RD

Convert
to serial

Convert
to parallel

Serial communication is possible by
touching UART registers

• Port Addresses & IRQ’s (standard PC)

• Table of registers

6

Divisor Latch Low/High Bytes
(program Baud Rate Generator)

Interrupt Enable Register (IER) and
Interrupt Identification Register (IIR)

• IER

• IIR (read only)

7

FIFO Control Register (FCR)

• FCR (write only)

Line Control Register (LCR)

• LCR

8

Line Status Register (LSR)

• LSR (read only)

Modem Control Register (MCR)

• MCR

9

Modem Status Register (MSR)

• MSR (read only)

• For more details, see
http://www.beyondlogic.org/serial/serial.htm

10

How the driver should work?

• Three standard interface functions
– rt_com_setup: configure serial com parameters
– rt_com read: read data received from COM

• int rt_com_read(com, char *ptr, byteCountToBeRead);

– rt_com write: write data to be transmitted to COM
• void rt_com_write(com, char *ptr, byteCountToBeWritten);

How the driver should work?

• Real-Time response!
– Non-blocked I/O (cf. Blocked I/O)

• “Blocking until the read/write is actually done” is not good for real-
time.

• Return immediately even if the operation is partially done and let the
rest done whenever UART is ready.

• This allows RT_Thread make a decision with the partial result.
– Use internal data structure (message buffer (cf. HW buffer))

ISRobuf[0x1000]

ibuf[0x1000]

To serial

txBuf

txBuf empty

rxBuf data ready

To serial

UART

rxBuf

rt_com_write()

rt_com_read()

11

Driver Initialization

• Initialize the internal data structure
• Register IRQ4 (COM1) and IRQ3 (COM2) Interrupt

Service Routines (ISRs)
– rtl_request_irq(irq, isr);
– rtl_hard_enable_irq(irq);

• Setup UART
– Initial setup
– Setup can be changed later by Rt thread (rt_com_setup)

Source code

12

rt_com_setup

• Input parameters: com, baud, parity, stopbits, wordlength
• Operations

– Disable all UART interrupts – IER
– Clear all status registers – IIR, LSR, MSR, ReceiverBuffer
– Setup baud rate – DivisorLatchLow, DivisorLatchHigh
– Setup stopbits, parity, wordlength – LCR
– Assert RS-232 signals DTR and RTS – MCR
– Interrupt enable for “receive data” and “receive line status change

(if LSR changes)” – IER
– Enable fifo – FCR

Source code

13

rt_com_read

• Input parameters: com, dataBuf, byteCountToBeRead
• Operations

– rt_com_irq_off: enter critical section
– Copy from “rt_com ibuf” to “dataBuf” up to actualByteCount =

min(byteCountToBeRead, byteCountReadyInBuffer)
– rt_com_irq_leave: leave critical section
– Return “actualByteCount”

• Note: No blocking inside rt_com_read

Source code

14

rt_com_write

• Input parameters: com, dataBuf, byteCountToBeWritten
• Operations

– rt_com_irq_off: enter critical section
– Copy data from “dataBuf” to “rt_com obuf” (no of bytes =

byteCountToBeWritten)
– Enable UART interrupt “Transmitter Holding Register Empty” –

IER
– rt_com_irq_leave: leave critical section

• Note: No blocking inside rt_com_write

Source code

15

ISR

• Triggered by “line-status-change”, “receive-data-ready”,
and “transmit-holding-buffer-empty”

• Operations
– Check if received data is ready in Rx HW buffer – LSR

• While there is a byte in Rx HW buffer, copy it to “rt_com ibuf”
– Check if there is a room in “transmit-holding-buffer” – LSR

• If rt_com obuf is not empty (data to be transmitted), copy up to 16
(Tx HW buffer size) bytes to Tx HW buffer

• If rt_com obuf becomes empty (no more data to be transmitted),
disable “transmit-holding-buffer-empty” interrupt – IER

Source code
Check if received data is
ready

Check if txHW buffer is
empty

16

User only needs to know

• Three standard interface functions
– rt_com_setup: configure serial com parameters
– rt_com read: read data received from COM

• int rt_com_read(com, char *ptr, byteCountToBeRead);

– rt_com write: write data to be transmitted to COM
• void rt_com_write(com, char *ptr, byteCountToBeWritten);

