Objected-Oriented
Real-Time System Design

Motivations

Next-Generation real-time systems become

— Complicated

— Distributed

— Networked

Examples

— Military unmanned command/control system

— City-wide disaster monitoring and management system
— Hospital patient monitoring system

— Assisted-living

System specification is very difficult in traditional way
Object-Oriented Design Paradigm needed

Time-Driven vs Event-Driven(OO)

cruiseControlTask()

while(1){

read current speed; —

check brake pedal;

if (brakePressed) N
braking...

else{
compute control law;
write throttleValue; —|

sleep (100ms);

Time-Driven
SW Design

\

speed
sensor

Brake

Engine

p—

peed senso
module
Brake
module
Engine
module

Control
module

Event-Driven (OO)
SW Design

Object-Oriented Real-Time
Design Approach

» 0OO-design more naturally reflect the actual system

» Easy to think

» We can focus on each component and specify event-driven
operations with a stateChart

* Reusable
e Portable
* Flexible

e Extendable

Emerging RT designs use
OO paradigm

* Real-Time OO design support languages and tools

Chaos (Honeywell)

Cadena (Kansas State Univ.)

Geodesic (CMU)

ROOM: Real-Time Object Oriented Modeling
UML (Universal Modeling Language) — RT
Real-Time JAVA

Real-Time CORBA

» Even a small system follow OO paradigm

TinyOS (Set of commonly used object modules)

Cruise control system example

brake

brakePort

-Start with manual mode

-When Cruise lever set, goto
automaticControl mode

leverPart
- In automaticControl mode, regularly
check the current speed and actuate
the engine accordingly to maintain the

cruiseControl

throttiePart

setSpeed.

- In automaticControl mode, goto
P S manual mode when brakePressed,

s

throttle

{u] accelPressed, cruiseOff

specdometer

State Description of
the cruiseControl object

resume

initial

brakePressed
cruiseOf
ManualControl accelPressed AutomaticControl
-
L AutomaticControl
initial
- S |
Resuming Cruising

accelReleased

reachedCruising cruise

resume

| —

Transactions and timing constraints

At each rotation of drive shaft e .

Periodically invoked an calculate the
speed using the number of shaft
rotations in the previous period

(at every rotation of the wheels)

‘When 6000rpm

| Transaction/ ‘Stimulus | Response | Period / | Deadline |

Shaft Interrtipt (SI) shaftinterrupt | - (min) 10ms 10ms
Determine Speed tDS) | timeout speedValue 50ms 10ms
Control Loop (CL) timeout throttleValue 100ms 100ms

{[Enter Cruise (EC) § | cruise throttleValue - 200ms

Resume Cruise (RC) | | resume throttleValue - 200ms

il.Accel.Released (AR).X | accelReleased | throtileValue - 200ms

i| Brake Pressed (BP) { [\brakePressed | - - 50ms

i Accel Pressed (AP) i | awcelPressed | - - 150ms

{[Cruise Off (CO) cra?SgOﬁ' - - 100ms

\ Enter Automatic Control Mode
Enter Manual Control Mode

Message Sequence for Entering Cruise mode

time lever cruiseControl speedometer throttle

cruise -
| Periodically
calculate the
speed by
counting the
shaft-rotation
interrupts

cruise

speedRequest_

200ms

B >
speedValue

throttleValue

throtileValue
Yo I

Message Sequence for Cruise Control Loop

time cruiseControl speedometer throttle
|
Periodically
timeout (100m: calculate the speed

by counting the
shaft-rotation
interrupts

speedRequest

100ms
speedValue
throttieValue
:
‘ throttleValue
——————————————————————————————————— e

Message Sequence for Leaving Cruise Mode

time brake

brakePressed
———

50ms

cruiseControl

brakePressed

Challenge is
how to implement the system
and validate the timing

Real-Time theory (including schedulability analysis) is
built on Time-Driven Model

Real-Time Operating Systems have been evolved with
Time-Driven Model in mind

Mapping is required from OO-design to Time-driven
implementation over RTOS platform

How to reuse Real-Time Theory for the schedulability

check after the mapping?

Mapping Objects to RTOS threads

* Map a group of objects into an RTOS thread
— For example
« map speedometer object to a RTOS thread
« map all other objects to another RTOS thread
— Optimal mapping is a challenging problem
* Priority
— Transaction priority is determined based on e2e deadline. We give
higher priorities to the aborting transactions (BP,CO,AP > CL)

— Event priority is determined by the highest priority of the
transactions that it belongs to

— Thread priority: dynamically determined by the priority of event
currently being handled (RTOS will dispatch a thread according to
the thread priority)

— This is just heuristic. The optimal priority assignment is an open
issue.

Priorities of Cruise Control Transactions

| Transaction | Period | Deadline | Priority |

SI (min) 10 10 1
DS 50 10 2
CL 100 100 6
EC - 200 7
RC - 200 7
AR - 200 7
BP - 50 3
CcO - 100 4
AP - 150 5

- Consider each transaction as a Virtual Task.
- Our concern is whether each virtual task can meet its deadline
if it is executed on the above (thread implemented) run-time system

Schedulability Analysis

 Calculate the worst case response time of each
transaction

» High-priority transaction can be blocked by low-
priority event handling
— Blocking due to Run-To-Completion of a thread
BT = maxC:*" :: Thread(j) = Thread(i)
i

J’\Worst case event processing time that belongs to transaction j

— Sharing message queue (Mutual exclusi
* Revised response time equation f

A high priority thread will not be delayed
by a low priority thread due to preemptive
thread scheduling

However, it may blocked by the event
handling procedure of the same thread but
belonging to a different transaction.

R= > &C. +C, +B™®

[j
0 Tj

Response times for transactions

cruiseControl speedometer Other
Climeout = 2MS Cehaje =2ms . =2ms
Cspeedvalue = 10ms Climeout = 3mMs
', = 5ms (_.-}pé;d;;équﬁﬂ =3ms

S| (Shaft Interrupt): 2+3

DS (Determine Speed) : R = [%—‘2 +3+3

CL (Control Loop): R = {%—‘2 + [5—%13+ (2+3+10+2)+(5+3)

[Transaction | Period [Deadline | Priority | Execution [Blocking [Response |
Sl (min) 10 10 1 2 3 5
DS 50 10 2 3 3 8
CL 100 100 6 [T2+3+10+2) | 8(5+3) 36
EC - 200 7 W2+5+3+10+2) | 8(5+3) a3
RC 200 7 |2(2+5+3+10+2) | 8(G+3) 3
AR 200 7 22(2+5+3+10+2) | B(5+3) 43
BP 50 3 7(2+5) 10 26
Co 100 3 72+5) 10 35
AP 150 5 7(2+5) 10 44

Automate the Overall Design Flow

Infeasible

0O0O-based
system
pecificatio

Compiler

Executable
Code

Thread mapping

and

Schedulability

T

Run-Time
Libraries

Priority Assignment Analysis
Application ™\ Feasible
Code
; Code
Makefiles Generator

References

M. Saksena, P. Freedman, and P. Rodziewicz, “Guidelines
for Automated Implementation of Executable Object
Oriented Models for Real-Time Embedded Control
Systems, IEEE RTSS 1997

Z. Gu and Z. He, “Real-Time Scheduling Techniques for
Implementation Synthesis from Component-Based
Software Models, ACM SIGSOFT 2005

W. Deng, M. B. Dwyer, J. Hatcliff, G. Jung, Robby, and G.

Singh, “Model-checking Middleware-based Event-driven
Real-Time Embedded Software”, The 1%t International
Symposium on Formal Methods for Components and
Objects, 2003

T. E. Bihari and P. Gopinath, “Object-Oriented Real-Time
Systems: Concepts and Examples, Computer 1992

Still open problems

» Component chains in distributed resources?
e Communication costs?

10

