
Computer SW and HW

2

Information in Computer Systems

 Every Info. is a Sequence of bits.
– Source Program: Sequence of bits (Text file)

#include <stdio.h>

int main()

{

printf(“hello, world\n”);

}

i n c l u d e <sp> < s t d i

35 105 110 99 108 117 100 101 32 60 115 116 100 105

– Executable Program: Sequence of bits (Binary file)

.&##A.+?@@^

3

Source Program vs. Executable Program

 unix> gcc -o hello hello.c
– compiler (gcc) translates the source program to the

executable program

 Compiling phases

Pre-

processor
(cpp)

hello.i Compiler
(cc1)

hello.s Assembler
(as)

hello.o Linker
(ld)

hellohello.c

Source

program

(text)

Modified

source

program

(text)

Assembly

program

(text)

Relocatable

object

programs

(binary)

Executable

object

program

(binary)

printf.o

– Preprocessing phase: Modify the original C program
according to directives (e.g., #include)

– Compilation phase: translate to assembly-language program

– Assembly phase: translate to relocatable object program

– Linking phase: merge with other pre-compile object file and
result in the executable program

4

How the executable program runs on
a computer?

 unix> ./hello

 hello, world

 unix>

 To understand what happens here, let’s take a look at
the hardware organization of a computer

5

Main

memory
I/O

bridge
Bus interface

ALU

Register fileCPU

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for

other devices such

as network adapters

hello executable

stored on disk

PC

Hardware Organization

6

Hardware Organization
 Buses

– a collection of electrical conduits

– number of conduits = bus width = number of bits = word

– Intel Pentium (32bits), Sun SPARCS (64bits), embedded controllers
(8bits or 16bits)

 I/O Devices

– system’s connection to the external world

– Input (Keyboard, Mouse), Output (display), Storage of data and
program (disk)

– Each I/O device is connected to the I/O bus by either a controller
or an adapter

• controller: chip set in the device itself or on the motherboard

• adapter: card that plugs into a slot of the motherboard

 Main Memory

– a temporary storage device that holds both a program and the data
it manipulates while the program is executing the program

– Physically, a collection of DRAM chips

– Logically, a linear array of bytes

7

Hardware Organization
 Processor

– the engine that interprets and executes instructions stored in
main memory

– A word size register called the Program Counter always
points a machine instruction to be executed next

– After power-on, the processor repeats

• reads the instruction from the memory pointed by PC

• interprets the bits in the instruction

• perform some simple operation (load, store, calculate, I/O read,
I/O write, Jump) dictated by the instruction

• update the PC to point the next instruction

add
02
sub
01

Memory

Bus interface

ALU

Register fileCPU

PC

mul
00

8

Executing Instructions

 Repeat fetch-execute cycles

– Program Counter (PC) always points the next instruction addr.

– 인출-실행 명령 주기 fetch-execution instruction cycle

1. 인출 fetch: 주소(PC)에 의거하여 명령어 인출

2. 실행 execute: 가져온 명령어가 요구하는 일을 수행

① PC가 가리키는 곳으로부터 명령을 인출

③ 명령의 해석(디코딩) 및 실제주소의 계산

② PC를 한 명령만큼 앞으로 (PC ← PC + n)

④ 명령에 명시된 피연산자를 인출

⑤ 명령의 실행

⑥ 계산결과의 저장

9

Running the hello program

Main

memory
I/O

bridge
Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

MouseKeyboard Display

Disk

I/O bus Expansion slots for

other devices such

as network adapters

PC

"hello"

User

types

"hello"

Shell program is executing its instructions, reading characters (“./hello”)

from keyboard into a register and storing them in memory

10

Running the hello program
After enter, the shell program load the executable “hello” file by

executing a sequence of instructions that copies the code and data in
the hello object file from disk to memory (using DMA)

Main

memory
I/O

bridge
Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

MouseKeyboard Display

Disk

I/O bus Expansion slots for

other devices such

as network adapters

hello executable

stored on disk

PC

hello code

"hello,world\n"

11

Running the hello program
Then, the processor begins executing the instructions in the hello
program that copy the bytes in the “hello, world\n” string from memory

to the register file, and from there to the display device

Main

memory
I/O

bridge
Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for

other devices such

as network adapters

hello executable

stored on disk

PC

hello code

"hello,world\n"

"hello,world\n"

12

Caches Matter
 Program execution

– moving information (code and data) from one place to another

– Much of this copying is overhead that slow down the “real work” of
the program

– How to make these copy operations run as fast as possible?

 Physical laws
– larger storage devices are slower than smaller storage devices

– faster devices are more expensive to build than their slower counter
part

– e.g., disk drive 100 times larger than main memory (10,000,000
times longer read time than memory)

- smaller faster storage devices (caches)

Main

memory

(DRAM)

Memory

bridge
Bus interface

L2 cache

(SRAM)

ALU

Register file

CPU chip

Cache bus System bus Memory bus

L1

cache

(SRAM)

13

Generalizing the Cache Idea: Memory Hierarchy

 storage at one level serves as a cache for storage at the next
lower level.

Registers

On-chip L1

cache (SRAM)

Main memory

(DRAM)

Local secondary storage

(local disks)

Larger,

slower,

and

cheaper

(per byte)

storage

devices

Remote secondary storage

(distributed file systems, Web servers)

Local disks hold files

retrieved from disks on

remote network servers.

Off-chip L2

cache (SRAM)

L1 cache holds cache lines

retrieved from the L2 cache.

CPU registers hold words retrieved

from cache memory.

L2 cache holds cache lines

retrieved from memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,

and

costlier

(per byte)

storage

devices

14

Application Program vs. HW

 Think about the scenario where application program
directly control all HW resources

 Why we need pre-build system software layer (like
operating system)?

application SW

System Software
(e.g., Operating System)

HW

15

Operating System

 Note! our “hello” example does not directly access
display or disk directly.

 Rather, it relies on the services provided by the
operating system.

 OS’s two primary purposes

– to protect the hardware from misuse by runaway applications

– to provide applications with simple and uniform mechanisms
for manipulating complicated and often widely different low-
level hardware devices

Application programs

Processor Main memory I/O devices

Operating system

Software

Hardware

16

Abstractions provided by an Operating System

 Files: abstractions for I/O devices

 Virtual Memory: abstraction for both the main memory
and disk I/O devices

 Processes: abstractions for the processor, main
memory and I/O devices

Processor Main memory I/O devices

Processes

Files

Virtual memory

17

Processes

 A process is the operating system’s abstraction for a running
program

 The OS provides the illusion that the program is the only one
running on the system

 Multiple processes can run concurrently on the same system,
but each process appears to have exclusive use of the hardware

 To give this illusion, the OS saves the context (PC, register files,
memory contents) and switches among contexts of different
processes - context switches

shell

process

hello

process

Application code

Time

Context

switch

Context

switch

OS code

Application code

OS code

Application code

18

Virtual Memory

 Virtual memory is an
abstraction that provides
each process with the
illusion that it has
exclusive use of main
memory.

 Each process has the
same uniform view of
memory, virtual address
space.

 The basic idea is to store
the contents of a
process’s virtual memory

on disk and then load
subset of the contents
into the main memory as
needed using the main
memory as a cache for
the disk

Kernel virtual memory

Memory mapped region for

shared libraries

Run-time heap

(created at runtime by malloc)

User stack

(created at runtime)

Unused
0

Memory

invisible to

user code
0xc0000000

0x08048000

0x40000000

Read/write data

Read-only code and data

Loaded from

the
hello

executable

file

printf()

function

0xffffffff

19

Networked Computer System

 The network can be viewed as just another I/O device (from the
individual system’s viewpoint) by the support of OS

Main

memory
I/O

bridge
Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Monitor

Disk

I/O bus

Expansion slots

Network

adapter

Network

PC

Local

telnet

client

Remote

telnet

server

2. Client sends "hello"

string to telnet server 3. Server sends "hello"

string to the shell, which
runs the hello program,

and sends the output

to the telnet server4. Telnet server sends
"hello, world\n" string

to client

5. Client prints
"hello, world\n"

string on display

1. User types
"hello" at the

keyboard

20

Summary

 Information in Computer Systems (bits)

 Transform the source code to the executable. What does it mean?

 What happens when we run a program?

– Understanding the hardware organization

– Understanding the information flow along the HW resources

 Performance consideration - memory hierarchy

 Marriage of application program and hardware - intermediate layer
(system software)

 Operating system as a peace maker

– processes

– virtual memory

– files

– network

