4 Rank \& Solutions of Linear Systems

4.1 Rank

Recall G-J elimination. Elimination matrices are multiplied to put A into its reduced row echelon form.

$$
\text { i.e. } \mathrm{E}\left[\begin{array}{ll}
\mathrm{A} & \mathrm{I}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{R} & \mathrm{E}
\end{array}\right]
$$

If A is invertible,

$$
\mathrm{E}\left[\begin{array}{ll}
\mathrm{A} & \mathrm{I}
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
\mathrm{R} & \mathrm{E} \\
\mathrm{I} & \mathrm{~A}^{-1}
\end{array}\right]
$$

Example .

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{lll}
1 & 3 & 10 \\
2 & 6 & 20 \\
3 & 9 & 30
\end{array}\right] \quad \longrightarrow \quad \mathrm{R}=\left[\begin{array}{ccc}
1 & 3 & 10 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \uparrow \\
& A x=0 \text { is just one eqn., not three. } \\
& \left(\begin{array}{c}
1 \text { independent row } \\
1 \text { independent column }
\end{array}\right.
\end{aligned}
$$

The "true" size of A is given by its rank.
Definition. $\quad \operatorname{rank}(A)=$ the number of pivots.
Example . above example : $\operatorname{rank}(\mathrm{A})=1$
Let $\mathrm{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, then $\mathrm{A}=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \mathrm{u} & 3 \mathrm{u} & 10 \mathrm{u} \\ \mid & \mid & \mid\end{array}\right]=\mathrm{u}\left[\begin{array}{lll}1 & 3 & 10\end{array}\right]$
$\mathrm{C}(\mathrm{A})$ is 1-dim.

> rank(A)

Remark If A is $m \times n$, then $r \leq m$, and $r \leq n$.

- A has full row rank if every row has a pivot.

$$
(r=m, \text { No zero rows in } \mathrm{R}) \text { [}
$$

- A has full column rank if every column has a pivot.

$$
(r=n, \text { No free variables })[]
$$

$$
\begin{aligned}
\underset{\llcorner m \times n}{\mathrm{Ax}}=0 \longrightarrow & \mathrm{Rx}=0 \\
& \left\{\begin{array}{cc}
r & \text { pivot columns. } \\
n-r & \text { free variables. }
\end{array}\right. \\
\text { i.e } & \left\{\begin{array}{cc}
r & \text { indept eqns. } \\
n-r & \text { special solns (indpt). }
\end{array}\right.
\end{aligned}
$$

Example .

$$
A=\left[\begin{array}{ccccc}
1 & 3 & 0 & 2 & -1 \\
0 & 0 & 1 & 4 & -3 \\
1 & 3 & 1 & 6 & -4
\end{array}\right] \quad \longrightarrow \quad R=\left[\begin{array}{ccccc}
1 & 3 & 0 & 2 & -1 \\
0 & 0 & 1 & 4 & -3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$\operatorname{rank}(\mathrm{A})=2$
$A x=0($ or $R x=0)$ has two independent eqns.

Solution of

$$
\begin{aligned}
& \mathrm{Rx}=0=\left[\begin{array}{ccccc}
1 & 3 & 0 & 2 & -1 \\
0 & 0 & 1 & 4 & -3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right] \Leftarrow\left(\begin{array}{c}
x_{1}, x_{3}: \text { pivot variables } \\
x_{2}, x_{4}, x_{5}
\end{array}:\right. \text { free variables } \\
& \left\{\begin{array}{l}
(1) \quad \text { set } x_{2}=1, x_{4}=x_{5}=0 \text { then, } x_{1}=-3 \\
\Rightarrow \mathrm{~s}_{1}=(-3,1,0,0,0) \\
(2) \\
\text { set } x_{4}=1, x_{2}=x_{5}=0 \text { then, } x_{3}=-4, x_{1}=- \\
\Rightarrow \mathrm{s}_{2}=(-2,0,-4,1,0) \\
(3) \quad \text { set } x_{5}=1, x_{2}=x_{4}=0 \text { then, } x_{3}=3, x_{1}=1 \\
\Rightarrow \mathrm{~s}_{3}=(1,0,3,0,1)
\end{array}\right.
\end{aligned}
$$

\rightarrow Three independent solns. $\quad(n=5, r=2)$
$N(\mathrm{~A})$ is spanned by $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$
(Strang, page144)

4.2 $\quad \mathrm{Ax}=\mathrm{b} \neq 0$

- Suppose $m \times n$ matrix A has rank r.

Then the $n-r$ special solns solve $\mathrm{Ax}_{h}=0$.
And suppose we found a soln for $A \overline{\mathrm{x}_{p}=\mathrm{b}}$.
Then

$$
\mathrm{A}\left(\mathrm{x}_{h}+\mathrm{x}_{p}\right)=\mathrm{b}
$$

$$
\text { i.e. } \quad \mathrm{x}_{h}+\mathrm{x}_{p} \text { is a soln fot } \mathrm{Ax}=\mathrm{b}
$$

- If A is a square, invertaible matrix, the only vector in $N(\mathrm{~A})$ is $\mathrm{x}_{h}=0$.

And $\mathrm{Ax}_{p}=\mathrm{b}$ has only one soln $\mathrm{x}_{p}=\mathrm{A}^{-1} \mathrm{~b}$.

Example . $\mathrm{Ax}=\mathrm{b}$

$$
\left[\begin{array}{llll}
1 & 3 & 0 & 2 \\
0 & 0 & 1 & 4 \\
1 & 3 & 1 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
6 \\
7
\end{array}\right]
$$

Augmented matrix

$$
\left[\begin{array}{c|c}
\mathrm{A} & \mathrm{~b}
\end{array}\right]=\left[\begin{array}{cccc|c}
1 & 3 & 0 & 2 & 1 \\
0 & 0 & 1 & 4 & 6 \\
1 & 3 & 1 & 6 & 7
\end{array}\right]
$$

Elimination \downarrow

$$
\left[\begin{array}{llll|l}
1 & 3 & 0 & 2 & 1 \\
0 & 0 & 1 & 4 & 6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{R} & \mid \mathrm{d}
\end{array}\right]
$$

$\mathrm{Rx}_{h}=0:$ free variables x_{2}, x_{4}
(1) set $x_{2}=1, x_{4}=0$ then, $x_{1}=-3, x_{3}=0$

$$
\Rightarrow \mathrm{s}_{1}=(-3,1,0,0)
$$

(2) set $x_{4}=1, x_{2}=0$ then, $x_{1}=-2, x_{3}=-4$ $\Rightarrow \mathrm{s}_{2}=(-2,0,-4,1)$

Example .

$$
\begin{gathered}
{\left[\begin{array}{cc}
1 & 1 \\
1 & 2 \\
-2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]} \\
{\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{cc|c}
1 & 1 & b_{1} \\
1 & 2 & b_{2} \\
-2 & -3 & b_{3}
\end{array}\right]} \\
\Downarrow \text { elimination }
\end{gathered}
$$

$$
\begin{gathered}
{\left[\begin{array}{ll|c}
1 & 0 & b_{1}-b_{2} \\
0 & 1 & b_{2}-b_{1} \\
0 & 0 & b_{3}+2 b_{2}
\end{array}\right]} \\
\Downarrow \text { elimination } \\
{\left[\begin{array}{ll|c}
1 & 0 & 2 b_{1}-b_{2} \\
0 & 1 & b_{2}-b_{1} \\
0 & 0 & b_{3}+b_{1}+b_{2}
\end{array}\right]=[R \mid d]} \\
\Longrightarrow \text { Row3, For } A x=b \text { to be solvable, } b_{1}+b_{2}+b_{3}=0 \\
\quad \text { (otherwise, } x_{p} \text { does not exist) } \\
\Longrightarrow \text { Row1,2, The only particular solution }
\end{gathered}
$$

$$
x_{p}=\left[\begin{array}{c}
2 b_{1}-b_{2} \\
b_{2}-b_{1}
\end{array}\right]
$$

complete solution :

$$
X=x_{p}+x_{n}=\left[\begin{array}{c}
2 b_{1}-b_{2} \\
b_{2}-b_{1}
\end{array}\right]+\left[\begin{array}{l}
o \\
o
\end{array}\right]
$$

Note that every column has a pivot $\quad \Longrightarrow \quad r=n$ full column rank
$A=m \underbrace{\left[\begin{array}{l}n \\ \text { (tall and thin })\end{array}\right.}_{n} \quad \Longrightarrow$ elimination $\Longrightarrow \quad R=\left[\begin{array}{c}I(n \times n) \\ 0(m-n)\end{array}\right]$

- $x_{n}=0$ is the only nullspace solution. (no free variables, no special solutions)
- columns are linear independent!
- Every matrix A with full column $\operatorname{rank}(\mathrm{r}=\mathrm{n})$ has all these properties.

1. All columns are pivot columns.
2. No free variables or special solutions.
3. $\mathrm{N}(\mathrm{A})$ contains only the zero vector.
4. If $A x=b$ has a solution (it might not) then it has only one solution.

Example $\cdot\left(\begin{array}{c}x+y+z=3 \\ x+2 y-z=4\end{array}\right.$

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
1 & 2 & -1 & 4
\end{array}\right] \Longrightarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & 1 & -2 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & 3 & 2 \\
0 & 1 & -2 & 1
\end{array}\right]=[R \mid d]
$$

$R x_{h}=0:$ free variable x_{3}
set $x_{3}=1$, then $x_{1}=-3, x_{2}=2$
$\therefore \mathrm{s}=(-3,2,1)$
x_{p} has free variable $x_{3}=0 . x_{p}$ comes directly from d.
$\therefore x_{p}=(2,1,0)$
complete solution $\quad x=x_{p}+x_{n}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]+c\left[\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right]$

- Every matrix A with full row rank $(\mathrm{r}=\mathrm{m})$ has all these properties.

1. All rows have pivots, and R has no zero rows.
2. $A x=b$ has a solution for every right side b .
3. $C(A)=\mathbb{R}^{m}$
4. $n-r=n-m$ special solutions in $N(A)$
