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• Quantum phenomena
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7.1 Energy quantization

-Feature of classical physics
•Precisely specified motion and momenta at an 
instant
•Continuous vibrational, rotational, and translation 
modes of motion and enenrgy

-Failure of classical physics
•black body radiation & the Planck distribution
•Heat capacities
•Atomic and molecular spectra

classical physics doesn’t hold for a small world
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Feature of 

electromagnetic wave

-speed: light

-wavelength

-frequency

-wavenumber

-energy

-momentum
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One of blackbody: Nuclear Reactor



Black body radiation
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-Energy distribution of black body (experiment)

-Wien displacement law

-Stefan-Boltzmann law
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Figure 7.6

-Rayleigh-Jeans law:

As  → 0,  → : everything in the 

dark will glow (UV catastrophe)

As  → 0,  → 0 (why?)

based on classical mechanics



Planck distribution: Figure 7.7

Long wave length limit

~Rayleigh-Jeans law

Short wavelength limit: 

No UV catastrophe
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Planck distribution:

based on quantization of energy

1. As  → 0,  → 0 

2. For long , 
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3. Stefan-Boltzmann Law
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-Rayleigh-Jeans law: UV catastrophe

-Planck distribution: 

based on quantization of energy E=nhv
(oscillators are excited only if they can acquire an 
energy of at least hv.)

based on classical mechanics
(all oscillators share equally in the energy)

Stefan-Boltzmann and Wien law is successfully derived 
from Planck distribution!!!



-heat capacities (close to 0K)

Cv=3R (from Um=3RT)
However, this deviates as T → 0

Einstein assumes 

each atom oscillates with a single freq. 

and the deviation can be successfully explained 
(E is confined to discrete values: E=nhν)



At high T (T>>E),

same as classical theory

At low T (T<<E),

as T → 0, fE → 0 



Figure 7.9

Debye formula: atoms oscillate over
a range of frequencies

Figure 7.8



-Atomic and molecular spectra
-Atomic spectra:
Radiation emitted by excited iron atom

-Molecular spectra:
Absorbing radiation at definite frequencies 
due to electronic, vibrational, and 
rotational excitation of SO2.



Spectroscopic transition

hvE 



11.2 Wave particle duality

-Photoelectric effect:
particle character of electromagnetic radiation
wave-like particle (photon)

-Diffraction: 
wave character of particles
(de Broglie wave)



-particle character of electromagnetic radiation

Photoelectric effect

1. No e- are ejected below a threshold freq.

-> phtoelectric effects occur only when hv>

2. Ek of ejected e- increases linearly w/ freq 
of incident radiation

->

3. Even at low light intensities, e- are ejected 
above a threshold freq.

->e- appears once the collision happens

hvE 
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Kinetic energy of 
ejected electron

Energy needed to 
remove electron 
from a metal



Figure 7.15

-wave character of particles: diffraction



Figure 7.16

How short?
for electron, 10-12 m
See Ex 7.2

-De Broglie relation
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Scanning Probe Microscopy



7.3 Shrödinger equation

For 1-d systems: 
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Table 7.1



Since E-V is equal to Ek

Using the Schrödinger eqn to develop the de Broglie relation,



7.4 The Born interpretation of the 
wavefunction

-Normalization
-Quantization



Probability of finding a particle between x and x+dx

Figure 7.18

2*  

dxdx
2* 

Born interpretation of the wave function



Figure 7.19



Figure 7.20



2 * 1N dx  

Normalization

1 2
*

1
N

dx 


 
 

For a normalized wavefunction,

* 1dx  
* 1dxdydz  

*(or 1)d   
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Figure 7.23

Since it is 2nd derivative. 
But, delta ftn is valid!

Quantization [1]



Quantization [2]

A particle may possess only certain energies, 
for otherwise its wave function would be physically unacceptable



7.5 The information in a wavefunction

-the probability density distribution
-Eigenvalues and eigenfunctions
-Construction of operators
-Hermittian operators
-Superpositions and expectation values



The information in a wave function

Solution: 
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Then, where is the particle?

if B=0,
ikxAe 

      
*2 2*ikx ikx ikx ikxAe Ae A e Ae A   

Equal probability of finding the particles

(a) The probability density

Figure 7.24 a



Then, where is the particle?

if A=B,

  2 cosikx ikxA e e A kx   

   
2 2* 22 cos 2 cos 4 cosA kx A kx A kx  

Node: particles will never be found

Figure 7.24 b
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2 2
wavefunction waveamplitude 

The probability density



(b) Operators, Eigenvalues and 
eigenfunctions

•operator
2 2

2
( )

2

d
H V x

m dx
  

H E  H : hamiltonian (operator)
-total E of a system

Eigenvalue



•Eigenvalue equation

(Operator)(same function)=(constant factor)X(same function)

(Operator corresponding to an observable) ψ
=(constant factor) ψ

Ex. (Energy Operator) Xψ=(energy)Xψ



Illustration for orthogonality of eigen
functions

)2)(sin(sin)( xxxf 

Area = 0



(c) Construction of Operators

 xx̂

Observables are represented by operators, 

dx

d

i
px


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Position operators Momentum operators
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KE of a particle is an average contribution from the entire space. 

Figure 7.26



Wave ftn of a particle in a potential decreasing towards right 

Figure 7.27
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(d) Hermitian operators

 ***

   dd ijji
Hermiticity

* 0i jd   Orthogonality…



(e) Superpositions and expectation values

Ex. if ψ A cos kx

When the wavefunction of a particle is not an eigen function of an 
operator, the property to which the operator corresponds does not have a 
definite value.

not an eigenfunction any more!!!

Linear combination!



Weighted mean of a series of observations

: the expectation value is the sum of the two
eigencalues weighted by the probabilities that 
each one will be found in a series of measurements

Weighted mean of a series of observations



Expectation value
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Ex. Mean kinetic energy



1. When the momentum is measured, one of the 
eigenvalue will be measured

2. Measuring an eigenvalue ~ Proportional to the 
square of the modulus in the linear combinations

3. Average value = Expectation value



Summary of Operators

•position

•momentum

•Kinetic E

•Potential E

•Note) Expectation value



7.6 The uncertainty principle



In Quantum Mechanics, Position and momentum cannot be 
predicted simultaneously

•Heisenberg uncertainty principle

ikxAe 

xp k

Ex. Particle travelling to the right -> position is unpredictable
But, the momentum is definite

But, in Classical Mechanics,
Position and momentum can be predicted simultaneously



Wave function for a particle at a well-
defined location

An infinite number of waves is needed to 
construct the wavefunction of perfectly 
localized partile.



1

2
p q  

Quantitative version of uncertainty principle

   
1 2 1 2

2 22 2,  p p p q q q     

Note) p and q are the same direction

Standard deviation
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Complementary observables~ they do not commute

commutator
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Uncertainty principle
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More general version of uncertainty principle

 ˆ ˆ, xx p iEx. 
1

2
p q  



The uncertainty principle should be applied!!!

•If there are a pair of complementary observables,
(non-commuting)
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7.7 Postulates of quantum mechanics

-wave function
-Born interpretation
-Acceptable wave function
-Observables
-Uncertainty relation
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