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e Quantum phenomena



/.1 Energy quantization

-Feature of classical physics

Precisely specified motion and momenta at an
instant

«Continuous vibrational, rotational, and translation
modes of motion and enenrgy

classical physics doesn’t hold for a small world

-Failure of classical physics

black body radiation & the Planck distribution
*Heat capacities

*Atomic and molecular spectra



Physical Chemistry Fundamentals: Figure 7.1

Feature of
electromagnetic wave

-speed: light
-wavelength
-frequency
-wavenumber
-energy

-momentum
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Wavelength, 1




Physical Chemistry Fundamentals: Figure 7.2
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Black body radiation
Energy density

- o
ra?iiez}ac:‘cizn &(T) :.[o pA,T)dA

/v E(T) =Ve(T)

de(A,T) = p(A,T)dA

Container f
at a Density of state

temperature T
87K T
14

Classical model: oA, T) =

Rayleigh-Jeans law



-Energy distribution of black body (experiment)

Maximum
of p

Increasing
temperature

Energy distribution, p

-Wien displacement law

TA =, C,=144cmK

max §

-Stefan-Boltzmann law
E=aT?

M=ocT? o=56.7nW m2K*

Wavelength, 1



Physical Chemistry Fundamentals: Figure 7.5
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Figure 7.6
-Rayleigh-Jeans law:

8nkT
dE=.pdi = Y

based on classical mechanics

Rayleigh-J
|a?,3l R TP - 0, p — co: everything in the
dark will glow (UV catastrophe)

Experimental

Energy distribution, p

Wavelength, 1 As L — 0, p — 0 (why?)



Planck distribution: Figure 7.7 i ; i
: Planck distribution:

| 87hc
Short|wavelehgth linit: p(A4,T)=— o
No UV catastrophe A (e _1)
based on quantization of energy
E =nhv n=0,1.,2,...
S 1. AsA—0,p—0
E 2. Forlong 2,
S \ 87hc 87k T
< \ 25 (ehc//”tkt 1) — 2
Lon Wa e length limit for Iarge A, ehc//lkt 1
~Rayl -Jeans law AkT
By
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0 (" -1) 15(hc)*.



-Rayleigh-Jeans law: UV catastrophe

based on classical mechanics
(all oscillators share equally in the energy)

-Planck distribution:

based on quantization of energy E=nhv
(oscillators are excited only if they can acquire an
energy of at least Av.)

Stefan-Boltzmann and Wien law is successfully derived
from Planck distribution!!!



-heat capacities (close to 0K)

C,=3R (from U_=3RT)
However, this deviatesas T — 0

4

Einstein assumes
each atom oscillates with a single freq.

and the deviation can be successfully explained
(E is confined to discrete values: E=n/Av)



U, =3N,kT=3RT

oU
CV,m - [ m] = 3R
oT ),
3N, hv

m = ChvkT _ q The Einstein temperature, 6; =hv/k,

0. ebl2T
= 2 e
C\/,m = 3Rf f - T (eei:/T = 1}

At high T (T>>0),
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At low T (T<<6g),
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-Atomic and molecular spectra

-Molecular spectra:

Absorbing radiation at definite frequencies
due to electronic, vibrational, and
rotational excitation of SO,.

-Atomic spectra:
Radiation emitted by excited iron atom

Emission intensity
Absorption intensity

'y Wil

415 420 | |

200 240 280 320
Wavelength, A/nm Wavelength, A/nm




Spectroscopic transition

E3
hv=E3—E2>
E, /\/\/\/ AE — hV
Y
= hy=E,-E,
1B AVAVAVAVAVA g
< hv = E,~E,_
AAVAVAVAVAVATATATATATATATATATATA
E




11.2 Wave particle duality

-Photoelectric effect:
particle character of electromagnetic radiation
wave-like particle (photon)

-Diffraction:
wave character of particles
(de Broglie wave)



Kinetic energy of photoelectron, Ey

-particle character of electromagnetic radiation

- 2.09eV(1.69 x 10* cm™, 593 nm)
- 225 ¢V (1.81 x 10* cm™, 551 nm)
.~ 2.30 eV (1.86 x 10* cm™, 539 nm)

Increasing
work function

Frequency of incident radiation, v

Photoelectric effect

1. No e are ejected below a threshold freg.
-> phtoelectric effects occur only when hv>®

2. E, of ejected e increases linearly w/ freq
of incident radiation

-> AE =hv

3. Even at low light intensities, e are ejected
above a threshold freq.
->e- appears once the collision happens



Physical Chemistry Fundamentals: Figure 7.14

Energy needed to
remove electron
from a met

Energy, E

hv
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Kinetic energy of
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-wave character of particles: diffraction

Diffracted
electrons

Electron ‘e
beam

v

R . ..
Ni crystal



-De Broglie relation

Short wavelength, Long wavelength,
high momentum  low momentum 1=n

AW WA

How short?
for electron, 1012 m
See Ex 7.2

Figure 7.16



Physical Chemistry Fundamentals: Figure 7.17
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Scanning Probe Microscopy




/.3 Shrodinger equation

2 2
For 1-d systems: n- doY LV (X)Y = EY

2m dx®
. 2
For 3-d systems: _h_vij LV = EW
2m )
In general, HY = EY H — _h_vz +V (X)
2m
H : Hamiltonian operator
oY

Time-dep Shrodinger eqn. HY = jji ——
ot



Table 7.1

Table 7.1 The Schrodinger equation

For one-dimensional systems

W &y
~ L ¥ V) y=E
2m dx? =ty

Where V(x) is the potential energy of the particle and E is its total energy. For three-dimensional
systems

2
Sl Viy+ Vy=Ey
2m

where V may depend on position and V? (‘del squared’) is
SOl
ox> oy 07

In systems with spherical symmetry three equivalent forms are

VZ

1 1,

ror: r?

10 2ﬁ+i/\2
r’or or r?

2 2 1
e +——a +—=A?
orr ror r?

VZ

=——r

where
2
A=— : a—wL.Lisin 9i
sin’@ d¢’  sinf 00 06
In the general case the Schrodinger equation is written
Hy=Ey

where H is the hamiltonian operator for the system:

hz
H=——V*+V
2m
For the evolution of a system with time, it is necessary to solve the time-dependent Schrodinger
equation:
A 4
HY= iha—
ot




Using the Schrodinger egn to develop the de Broglie relation,

d? 2m
- e E-VIv  A=2n/k,

dXZ

1/2
2m(E - V)
172

y = el® = coskx + isinkx kz{

Since E-V is equal to E, k= (2mEg]/ ﬁz)llz,

¥ e
EK = kzﬁzlzm.
Ex =_P2/2m
——>  p=kh L Mo
e s 7 paadias ! S



/.4 The Born interpretation of the
wavefunction

-Normalization
-Quantization



Born interpretation of the wave function

. - : 2
Probability of finding a particle between x and x+dx W*W — ‘w‘

dx
(_

Probability PPy ‘\P‘z dx

= lyl2dx

Figure 7.18



If the wavefunction of a particle has the value y at some point r, then the
probability of finding the particle in an infinitesimal volume d7=dx dy dz at
that point is proportional to |y|* d=.

Figure 7.19



Wavefunction

Probability density

Figure 7.20



Normalization

szl//*l//dXZJ.
1

Jvva]”

For a normalized wavefunction,
jt//*t//dx =1 j v wdxdydz =1

(or [y ydz =1)

N =




r’sin 6 drd@éd¢ \
N .

Figure 7.21 Figure 7.22



Example 11.4 Normalizing a wavefunction
Normalize the wavefunction used for the hydrogen atom in Example 11.3.

Method We need to find the factor N that guarantees that the integral in
eqn 20 is equal to 1. Because the wavefunction is spherically symmetrical,
we work in spherical polar coordinates. A useful integral for calculations on
atomic wavefunctions is

3 nl
xtestidy =
an+l
0

where n! denotes a factorial: n! =n(n - 1)(n — 2) --- 1.

Answer The integration required is

et R ER L Je Sl L i
J Yy dr = N? J r2e=2rl% dr J sinH do J d¢
0 0 0

= N2 x a3 x: 2% 2 =ma3 N2
Therefore, for this integral to equal 1,

i 1/2
N= —3—

and the normalized wavefunction is

1/2
V= _1__ e‘r/ao

3
nag



Quantization [1]

(a) X (b)

(c) (d) Figure 7.23

Since it is 29 derivative.
But, delta ftn is valid!



Quantization [2]

A particle may possess only certain energies,
for otherwise its wave function would be physically unacceptable



/.5 The information in a wavefunction

-the probability density distribution
-Eigenvalues and eigenfunctions
-Construction of operators

-Hermittian operators

-Superpositions and expectation values



The information in a wave function

When V=0,

B n’ dy
2m dx®

Ey

Solution:

v =Ae"™ +Be™ E=




(a) The probability density

if B=0, |
W _ AeIkX

Then, where is the particle?
wl =(Ae™) (Ae™)=(Ae™)(Ae™)=|Af

Equal probability of finding the particles

Il//l 1
Im e* = sin kx

/\;/\5/\;/\

() Re e* = cos kx Figure 7.24 a




if A=B,
w = A(e™ +e™)=2Acoskx

Then, where is the particle?
| =(2Acoskx) (2Acoskx)=4|A" cos? kx

Node: particles will never be found

coS kx cOS?kx

7

g
.
e
e 7

(b) Figure 7.24 b

.




The probability density

. 2 . 2
wavefunction|” = |waveamplitude

‘2

4



(b) Operators, Eigenvalues and
eigenfunctions
h od?

eoperator H =— +V (X
P 2m dx? (x)

Hy =Ey 4. hamiltonian (operator)
-total E of a system

Eigenvalue



eEigenvalue equation

(Operator)(same function)=(constant factor)X(same function)

Ex. (Energy Operator) Xg=(energy)Xy

(Operator corresponding to an observable) w
=(constant factor) w



Illustration for orthogonality of eigen
functions

fx)

f (X) = (sin x)(sIn 2X)

X

Area =0

0 =#n/2 ® 3n/2 2xn



(c) Construction of Operators

Observables are represented by operators,

Position operators Momentum operators
X = XX p, =——
| dX
fi dy
DV =DV St U,
A A — 1 dx
N i ™

A 1kx ey :
TV el S insia Cameipete <A™ — iy
1 dx I 1




[io-

kx* ~ kx?
;. Ve
p; 1 (hd
E = _
2m 2m \ idx
R R hZ d2
E, +V(X)=-
V) 2m dx?

+V (X)

Wavefunction, v

h? d?
2m dx?

High
curvature,
high kinetic
energy

Low
curvature,
low kinetic
energy




KE of a particle is an average contribution from the entire space.

( \ ,
Region

/ contributes
high kinetic
energy

Region
contributes

low kinetic \\\

energy N

Wavefunction, y

Figure 7.26



Wave ftn of a particle in a potential decreasing towards right

c
i
©
c
=
o)
>
©
] }
Etotal
A
W E,
5 k
o
C
L E (V) .
i Figure 7.27
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(d) Hermitian operators

Hermiticity J‘gyi*Q Wde — (J-W;Q Widz—)*

Orthogonality... j Wi*Wde =0



(e) Superpositions and expectation values

EX. if @ =A cos kx
fidy ZﬁAdcoskx 2kM e

idx i dx i

'A sin kx .-
not an eigenfunction any more!!!

When the wavefunction of a particle is not an eigen function of an
operator, the property to which the operator corresponds does not have a
definite value.

= Yy T e

Particle Particle
with linear with linear
momentum  momentum
+kH —kfi

Linear combination! B
W =S T Ol & 05 z G Wk



Weighted mean of a series of observations

(Q)sz*dersz*wwdr: wJ y*ydr= o

(Q) =
J

-

)

! sk
(C1¥ + )" QAcq Yy + 6 9,) dT

(C1y; + ) (c 01y + Co, ) AT

= C‘Tclwlj Y1y, dr+ C§C2w2J Yoy, dr+ CTczwzJ Y1y, dt+ Cgclahj yoyy dr

Q) =|c,Po, + |, P 0,

Weighted mean of a series of observations

: the expectation value is the sum of the two
eigencalues weighted by the probabilities that
each one will be found in a series of measurements



/ : : : : :
1 When the momentum is measured, in a single observation one of the eigen-

values corresponding to the y, that contribute to the superposition will be found.

2 The probability of measuring a particular eigenvalue in a series of observations
is proportional to the square modulus (|c,|*) of the corresponding coefficient in the
linear combination.

3 The average value of a large number of observations is given by the expectation
\Value, (Q), of the operator Q corresponding to the observable of interest.

Expectation value () = Jw*flw dr

Ex. Mean kinetic energy
) N RV
E )= Ewdr=———
< k> jw k')” 2m l// dXZ

dr



1. When the momentum is measured, one of the
eigenvalue will be measured

2. Measuring an eigenvalue ~ Proportional to the
square of the modulus in the linear combinations

(Q) ¢ Py + | |P@

—

3. Average value = Expectation value

Q)= Jw*ﬁvf dr



Summary of Operators

eposition

emomentum
oKinetic E
ePotential E

eNote) Expectation value



/.6 The uncertainty principle



eHeisenberg uncertainty principle

In Quantum Mechanics, Position and momentum cannot be
predicted simultaneously

But, in Classical Mechanics,
Position and momentum can be predicted simultaneously

Ex. Particle travelling to the right -> position is unpredictable
But, the momentum is definite

'7” _ AeIkX
p, =k#
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< Location
of
particle

v

Wavefunction, v

Position, x

Wave function for a particle at a well-
defined location

21
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w \}’U UW o

| |

Position, x

An infinite humber of waves is needed to
construct the wavefunction of perfectly

localized partile.



Quantitative version of uncertainty principle

ApAqZ%h
ap={(p) (oY}, aa={{?)-(ay}

Note) p and g are the same direction

Standard deviation



More general version of uncertainty principle

Complementary observables~ they do not commute
él (ﬁzl//) a Qz (éﬂV)

commutator




oIf there are a pair of complementary observables,
(non-commuting)

The uncertainty principle should be applied!!!



Physical Chemistry Fundamentals: Table 7.2

Table 7.2* Constraints of the
uncertainty principle

Variable 1

Variable2 x y z p, p, P,

X N

y i

% n
Py -

P, L

p. N

* Pairs of observables that cannot be
determined simultaneously with arbitrary
precision are marked with a black rectangle;
all others are unrestricted.



/.7 Postulates of qguantum mechanics

-wave function

-Born interpretation
-Acceptable wave function
-Observables

-Uncertainty relation



Physical Chemistry Fundamentals: Mathematic Background 7.1
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Physical Chemistry Fundamentals: Mathematic Background 7.2

o fix)/LA

—_—
—_—
—




Physical Chemistry Fundamentals: Mathematic Background 7.3
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Physical Chemistry Fundamentals: Mathematic Background 7.4
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