
Chapter 8.

Quantum theory:
Techniques and applications

-Translational (Vk=0)
-Vibrational
-Rotational
-Techniques and approximation



Translational motion

8.1 A particle in a box
8.2 Motion in two and more dimensions
8.3 Tunnelling



8.1 A particle in a box



What is “a particle in a box”?

A particle (mass: m) is confined,

Outside the wall: infinite potential
Inside the wall: zero potential

Ex) 
-a gas molecule in 1-d container
-Electronic structure of a metal or 
conjugated molecule



Energy and wavefunction of a particle in a box
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How about momentum?
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Properties of the solutions (a particle in a box)

: Figure 8.2





The average value of the linear momentum of a particle in a box: 
<p>=0

The average value of p2 of a particle in a box: 
<p2>=0



Existence of zero point E:
(for classical mechanics: lowest E is 0.)

1. Location is not completely indefinite.

Momentum is non-zero.

KE is non-zero.

2. ψ is curved. -> non-zero KE
(0 at walls. But, smooth, continuous, and non-zero everywhere)



Separation E,

For free particles, Translation E is not quantized any more.

-> the particles are not confined any more!



When n becomes infinite,

-The particles are not bounded any more.
-the probability becomes more uniform.
-Classical mechanics emerges.

Correspondence principle



Orthogonality and the bracket notation

Dirac bracket notation

Kronecker delta
Orthonormal

Wave functions corresponding to different energies are orthogonal



Figure 8.3

The first five normalized wave function of a particle in a box



Figure 8.4

The first two normalized 
wave function of a 
particle in a box and the 
corresponding probability 
distribution



8.2 Motion in two and more dimensions



a particle in a 2-d box Figure 8.5







a particle in a 3-d box



Figure 8.6



Degeneracy in a 2-d box

Degenerate: the same Energy

Ex) for 2-d: square 
box (ψ1,2= ψ2,1)

Figure 8.7



8.3 Tunnelling

Very important for light particles
: electrons, muons, and moderate for protons

Ex. Isotope dep. Rxn rate
p. 336

STM (p. 337)



When E<V, the wave function does not decay to „0‟ abruptly!

No oscillation

Figure 8.8



For, x<0, V=0

(0<x<L, E<V)

(since V-E>0…)

To the right of the barrier, x>L

(for x>L, V=0)



Figure 8.9



Figure 8.10

Continuity of Wavefunction and its slope at the boundary 



The wavefunction and its slope should be continuous,

(at x=0) (at x=L)

(at x=0) (at x=L)

• B‟=0
after the barrier no particles travelling to the left
Note. We cannot say B≠0.



Transmission probability

For high wide barriers,

2

2

'A
T

A


E V 

1L 



E<V: E>V

Classically T=0

1 2(2 )L mV

Classically T=1

Figure 8.11



T exponentially decreases with     and
1 2mL



A particle in a square well potential of finite depth

•Difference from an infinitely deep well case: finite 
number of bound states

Deeper and wider: greater the # of the states

a potential well of finite depth
Two lowest bound-state of 
wavefunctions for a particle in a 
potential well of finite depth





Scanning Probe Microscopy



Physical Chemistry Fundamentals: Figure 8.16



Vibrational motion

8.4 The energy levels
8.5 The wavefunctions



8.4 The energy levels

Harmonic motion of a particle
(w/ restoring force)
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Parabolic Potential E of a harmonic oscillator
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• Displacement at equilibrium

• Narrowness dep. on k:

larger k, narrower the wall

-> stronger confinement

Figure 8.17



• For the typical molecular oscillator:

E0~30 zJ (10-21J)

• Zero point E is non-zero.

-position is not completely uncertain

-momentum and KE is non-zero

-particle fluctuates around eq. position

Note) Classical Mechanics allows the particle 
to be perfectly still.Figure 8.18



8.5 The wavefunctions

Difference betw. Particle in a box and Harmonic 
motion of a particle

1. In the oscillator, ψ →0 more slowly at large x.

(P.E. is proportional to x2.)

2. K.E. of the oscillator and curvature of the wave 
function depends on x in a more complex way



The form of the wavefunctions

(Fig 19 and 20)

(Fig 21)



Hermite polynomial

(orthogonal!!!

Not normalized yet.)



(largest probability at eq)

Graph of Gaussian curve Waveftn and probability distribution for 
lowest E of a harmonic oscillaotr



(Fig 21)

Waveftn and probability 
distribution for the first excited 
state of a harmonic oscillaotr

Figure 8.21



The first 5 wavefunction

• The number of nodes 
are equal to ν.

• Even v : symmetrical

• Odd v : antisymmetrical

Figure 8.22



The first 5 probability distribution

• Largest amplitude at 
high quantum numbers 
(see 20), 

near the turning point 
of CM motion (Ek=0 or 
V=E).

In Classical Mechanics, 
the particle becomes 
slowest.

• At x=0, the particle is 
least likely to be found

(it travels most rapidly)

Figure 8.23



The properties of the oscillators

Expectation value

Dirac‟s braket 
notation

' Or Matrix element

the same states

Ex. for harmonic oscillator,



The mean potential E

Since total E is 
1

2
 
 

 
 

KE and PE is equal… Special case of virial theorem

Virial theorem: if V=axb, then



An oscillator can be found even at V>E!!!

Beyond its classical limit, p~0.079

(these tunnelling probabilities are indep. of 
mass and force const.

Macroscopic oscillator (such as pendulum) 
are in state with very high quantum 
number -> p(V>E)~0

But, for molecules are normally in their vib 
gnd state: p(V>E)~significant



In classical mechanics,

(E=V=kx2/2, Ek=0)

Probability that an oscillator is stretched beyond its CM turning point,



Rotational motion

8.6 Rotation in 2-d: the particle on a ring
8.7 Rotation in 3-d: the particle on a 
sphere
8.8 Spin



8.6 Rotation in 2-d: 

the particle on a ring
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Figure 8.24



Qualitative origin of quantized rotation

Not acceptable
: not single valued
and destructive

Acceptable
:constructive

Figure 8.25



Figure 8.26



Cylindrical coordinate



Cyclic boundary condition



Shorter the wavelength,
Angular momentum (z-axis)
the larger in steps of h/2

Real parts of the waveftns 
of a particle on a ring

Figure 8.28





Definition of angular momentum

Angular momentum operator

in cylindrical coordinate,



Probability density of a particle in a definite state of 
angular momentum~uniform 

Figure 8.30



8.7 Rotation in 3-d

: e- in atoms
Rotating molecules



• Two cyclic BC

• Two quantum numbers

• V=0

• r: constant

Waveftn of a particle on a surface



The Schrodinger equation

Laplacian
or del squared
or nabla squared

colatitude

azimuth



Since r is constant,

Justification 8.6



Same as 8.4 Associated Legendre ftn

w/ cyclic BC: l (quantum number) appears
ml is restricted by l



Orbital angular momentum
quantum number
l : 0,1,2,3…

Magnetic quantum number
ml : l, l -1, …,-l

Spherical harmonics

, ll mY







Note: most probable location of particles
migrates towards xy plane as       increases

•ml doesn‟t affect E
•2l+1 degeneracy

lm

Figure 8.34



Angular momentum

Number of node    w/ l

Higher momentum, Higher Ek

More nodal lines cut the equator 
(note: the curvature is greater in the direction)



Space Quantization [1]

• For a given l,

Angular momentum for z-

axis: 2l +1

• Discrete range of 
orientations

• The orietation of rotating 
body is quantized

Figure 8.35



Figure 8.36

Space Quantization [2]

• Beam of 
silver atom

• Magnetic field

• Classically expected

• Observation



The vector model [1]

• No reference to x,y axis

• Once lz is known, lx and ly can‟t be known

(due to uncertainty principle)

• lz is known, lx and ly are complementary

(they are not commute)



Physical Chemistry Fundamentals:

Figure 8.37

The vector model [2]

Schematic diagram

Better schematic diagram



8.8 Spin

: not the actual spin motion
interact w/ magnetic field

Stern and Gelach observed two band
(2l +1=2…l =1/2 ? … s instead l )



Spin quantum number: s
Spin magnetic quantum number: ms

for electron: 
s=1/2
ms=1/2 (  ), -1/2 (  )

Figure 8.38



• Electron, proton and neutron: spin ½  
particles (s=1/2)

with the angular momentum of (3/4)1/2

Despite the mass difference, they have the 
same spin angular momentum

(In CM, proton and neutrons should spin 
slower.)



• Photon:

Spin 1 particles (s=1)

with the angular momentum of (2)1/2

zero rest mass

zero charge

an energy hv

linear momentum hv/c

speed: c



• Fermion: 
particles with half-integral spins
All the elementary particles that constitutes matter

ex) electron and protons

• Boson: 
particles with integral spins
fundamental particles that are responsible for the 

forces that binds fermions together

ex) photons (transmit EM forces that binds 
together electrically charged particles)

• Matter: is an assembly of fermions held together 
by bosons



Table 8.3


