Chapter 8.

Quantum theory:
Techniques and applications

-Translational (V,=0)
-Vibrational

-Rotational

-Techniques and approximation



Translational motion

8.1 A particle in a box

8.2 Motion in two and more dimensions
8.3 Tunnelling



8.1 A particle in a box



What is “a particle in a box™?

Potential energy, V

IWall

iWaII

A particle (mass: m) is confined,

Outside the wall: infinite potential
Inside the wall: zero potential

EX)

-a gas molecule in 1-d container
-Electronic structure of a metal or
conjugated molecule



Energy and wavefunction of a particle in a box
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How about momentum?
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Properties of the solutions (a particle in a box)
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The average value of the linear momentum of a particle in a box:
<p>=0

The average value of p? of a particle in a box:
<p?>=0



Existence of zero point E: o h®
(for classical mechanics: lowest E is 0.) - 8ml?

1. Location is not completely indefinite.
Momentum is non-zero.

g

KE IS non-zero.

2. Y is curved. -> non-zero KE
(0 at walls. But, smooth, continuous, and non-zero everywhere)



Separation E,
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For free particles, Translation E is not quantized any more.

-> the particles are not confined any more!
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When n becomes infinite,
-The particles are not bounded any more.

-the probability becomes more uniform.
-Classical mechanics emerges.

Correspondence principle



Orthogonality and the bracket notation

Wave functions corresponding to different energies are orthogonal

J Yoy, dt=0

Dirac bracket\notation
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’ ~ Kronecker delta
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The first five normalized wave function of a particle in a box
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Wavefunction, v




The first two normalized
wave function of a
particle in a box and the
corresponding probability
distribution




8.2 Motion in two and more dimensions



a particle in a 2-d box

L1

Particle A two-dimensional square well. The
confined particle is confined to the plane bounded by
to surface impenetrable walls. As soon as it touches the
walls, its potential energy rises to infinity.
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a particle in a 3-d box
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(a) (c)

The wavefunctions for a particle confined to a rectangular surface depicted as contours
of equal amplitude. (a) n, = 1, n, = 1, the state of lowest energy, (b)n, =1,n,=2,(c)n,=2,n,=1,
and (d)n, =2,n,=2.



Degeneracy in a 2-d box

Degenerate: the same

Ex) for 2-d: square
box (Wy,2= Wa,1) S\

(b)




8.3 Tunnelling

Very important for light particles
: electrons, muons, and moderate for protons

Ex. Isotope dep. Rxn rate
p. 336

STM (p. 337)



When E<V, the wave function does not decay to ‘0" abruptly!

Av No oscillation
> \
£ X v
e
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A particle incident on a barrier from the
left has an oscillating wavefunction, but inside
the barrier there are no oscillations (for E < V).
If the barrier is not too thick, the wavefunction
is nonzero at its opposite face, and so
oscillations begin again there. (Only the real
component of the wavefunction is shown.)



For, x<0, V=0
y=Ae** 4+ Be ™  kH = (2mE)'?

h? d%y

- — + Vy = Ey (0<x<L, E<V)
2m dx?

=Ce* +De**  xh={2m(V-E)}'? (since V-E>O0...)
14

To the right of the barrier, x>L
y=Ae* +Be ™  kHi=(2mE)Y? (for x>L, V=0)



Incident
wave

N

Transmitted
wave

Wavefunction, v

Figure 8.9




Figure 8.10

Wavefunction, v

X

Continuity of Wavefunction and its slope at the boundary



The wavefunction and its slope should be continuous,
A+B=C+D  Ce* +De* =A’e*l + B¢ M

(at x=0) (at x=L)

ikA —ikB = xC — xD xCeXl — xDe XL = jkA’e'¥t — jkB’e ¥
(at x=0) (at x=L)

o B'=0
after the barrier no particles travelling to the left
Note. We cannot say B+0.



Transmission probability
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For high wide barriers, Ll >>1

T =16¢(1 — g)e™*~



Classically T=0 Classically T=1
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Wavefunction, y

T exponentially decreases with L and m"?

Heavy Light
particle particle

The wavefunction of a heavy particle
decays more rapidly inside a barrier than that
of a light particle. Consequently, a light particle
has a greater probability of tunnelling through
the barrier.



A particle in a square well potential of finite depth

_ o Two lowest bound-state of
a potential well of finite depth wavefunctions for a particle in a
potential well of finite depth

AN
./
N

n=1

Potential energy, V

Potential energy, V

0 Location, x L

0 Location, x L

eDifference from an infinitely deep well case: finite

number of bound states N _ 1< BMVDTE
h |

Deeper and wider: greater the # of the states



Scan

Tunnelling current




Scanning Probe Microscopy

Eigler et al., 1BM Research



Figure 8.16




Vibrational motion

8.4 The energy levels
8.5 The wavefunctions



8.4 The energy levels

Harmonic motion of a particle
(w/ restoring force)

F—x=-—vv -2
dx
v -k
2
il dt//

'I\\ y = E
>m dx= ¥ 4



Potential energy, V

Parabolic Potential E of a harmonic oscillator

- of kx?

e Displacement at equilibrium

e Narrowness dep. on k:
larger k, narrower the wall
-> stronger confinement

|

Displacement, x
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Allowed energies, E

Potential energy

-
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Displacement, x

E..—-E =lw
1/2
t:';.:(l‘+-%)ﬁ(r) w=|— =100 sy o
™ m
' ] .
li(, = Sﬁ.(!)

e For the typical molecular oscillator:
E,~30 zJ (10%1])

e /Zero point E is non-zero.
-position is not completely uncertain
-momentum and KE is non-zero
-particle fluctuates around eq. position

Note) Classical Mechanics allows the particle
to be perfectly still.



8.5 The wavefunctions

Difference betw. Particle in a box and Harmonic
motion of a particle

1.In the oscillator, ¥ —0 more slowly at large x.
(P.E. is proportional to x2.)

2. K.E. of the oscillator and curvature of the wave
function depends on x in @ more complex way



The form of the wavefunctions

w(x) = N x (polynomial in x) x (bell-shaped Gaussian function)

- 1/4
X H4
(x)= N H (v)e Y2 = o =
W, (X) +H () y = (mk}

Wo(x) — Noe"-"zfz = NOC—XA/Z(XZ

wi(x) = N2e™*/*" (Fig 19 and 20)

wi(x) = Ny x 2ye 2 (Fig 21)



Hermite polynomial

The Hermite polynomials are solutions
of the differential equation

H) - 2yH)+2vH, =0

where primes denote differentiation.
They satisfy the recursion relation

H,,+2yH,-2vH, ;=0
An important integral is

0 if vv#v

, Myt ain {RU-’-Z"U! ifv=v

v o0

(orthogonal!!!
Not normalized yet.)

Table 8.1 The Hermite polynomials

H,(y)

v H,(y)

0 1

1 2y

2 49> -2

3 8y> — 12y

4 16y* — 48y* + 12

5 32y° — 160y° + 120y

6 64y° — 480y* + 720y% — 120

The Hermite polynomials are solutions of the
differential equation

H? —2yH’ +2vH,=0

where primes denote differentiation. They
satisfy the recursion relation

H, ., —2yH +2vH _,=0

An important integral is

B : 0 iff
J HU,Hve‘y‘dyz{ 5t

/2! ifv =v
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Displacement, y = X/«

Waveftn and probability distribution for
lowest E of a harmonic oscillaotr



Wavefunction, v

wy(x) = Ny x 2ye¥ > (Fig 21)

w2
Waveftn and probability
distribution for the first excited
v state of a harmonic oscillaotr
\
—4 -2 0 2 4

Displacement, y = x/o



he first 5 wavefunction

.

012

/ e The number of nodes

VAN p—
\ / e Odd v: antisymmetrical

-4 -2 0 2 4
Displacement, y = X/«

Wavefunction, y




The first 5 probability distribution

e |argest amplitude at
0V high quantum numbers
(see 20),

near the turning point
of CM motion (E,=0 or
V=E).

In Classical Mechanics,
the particle becomes
slowest.

Probability
density

L,

Displacement

2 e At x=0, the particle is

least likely to be found
(it travels most rapidly)



The properties of the oscillators

Expectation value () = l w Qy, dx

Dirac’s braket W'|1Q|v) = ’ v Quy, dx
notation .

Or Matrix element €2 .
the same states (Q) = (| Q|v)

Ex. for harmonic oscillator,

5 f
(x)=0 x*)=(v+ %



The mean potential E

4
V) = oy = 40+ £ | = 30+ o

Since total E is (U+%)hw

<V> = ‘%If,.

(Ex) = 3E,
KE and PE is equal... Special case of virial theorem

Virial theorem: if V=ax®, then

2(Ey) = b(V)



An oscillator can be found even at V>E!!!

Beyond its classical limit, p~0.079

(these tunnelling probabilities are indep. of
mass and force const.

Macroscopic oscillator (such as pendulum)
are in state with very high quantum
number -> p(V>E)~0

But, for molecules are normally in their vib
gnd state: p(V>E)~significant



In classical mechanics,
the turning point, x,,, (E=V=kx?/2, E.=0)

" 2E 2F v
X‘[‘l.. = ?. or xlp == P ”

Probability that an oscillator is stretched beyond its CM turning point,

P= l i dx |
Iy, o= (h*fmk)"/=

, 1/2
r l e
X ’ 2(v + 5)fiw , :
. a2 tp ) 2 ( (21, + 1)1,.2

& o l o’k ]

For the state of lowest energy (v =0), y,, = 1

Pi= ( i dx = fk’Nﬁ{ eV dy erf z=1=—| €7 dy
Jx ” A& Sl
P=1(1-erf1)=1(1-0.843)=0.079



Rotational motion

8.6 Rotation in 2-d: the particle on a ring
8.7 Rotation in 3-d: the particle on a

sphere
8.8 Spin



8.6 Rotation in 2-d:

the particle on a ring



V=0 E=E,

Jz - angular momentum

hr
J =xpr=+—
7 P )

| =mr?: moment of inertia

2 2 2
E:—p j— JZ 2 :JZ
2m 2mr 21




Qualitative origin of quantized rotation

Second circuit  First circuit

Wavefunction, v

0

Wavefunction, 74

(b)

N

[
AV

\AM/
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First, second,... circuits °

Not acceptable
: not single valued
and destructive

Acceptable
:constructive



Figure 8.26 (2m)'/2



Cylindrical coordinate

.
e
.,
.
e
-
-
..
-
..
.
.
-
.
"




1 @*

. 2 3 10
2m| ox2 | dy? b=t ——
- ox:  o9y: or? roar réoo°
y
A2 g2
H=- —_—
2mr? d¢?
a X B
2I dg¢?
2 ;
d=“y B _2IE .
do? fi2
eim,w (ZIE)I{.’.
—— —_— +
Wm, ((D) (ZTC) 1/2 m, - #
eim,(q>+2n) eim,q)e;Zrtim, ‘
= - = 2mm
W’”((‘p + 2m) (271:)]/2 (27‘:)1/2 W"'z(q))e (

Cyclic boundary condition v(¢ + 21 = (o).

Vi, (@ + 27) = (=1)*™y/(9)



Real parts of the waveftns
> of a particle on a ring

Im| =2

> Shorter the wavelength,
Iml=1 Angular momentum (z-axis)
the larger in steps of h/2r



Angular
momentum

The basic ideas of the vector
representation of angular momentum:
the magnitude of the angular momentum is
represented by the length of the vector, and
the orientation of the motion in space by the
orientation of the vector (using the right-hand
screw rule).



Definition of angular momentum
|, =Xp.—¥D.

Angular momentum operator
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Probability density of a particle in a definite state of
angular momentum~uniform
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8.7 Rotation in 3-d

: € In atoms
Rotating molecules



Waveftn of a particle on a surface

e Two cyclic BC

; U

e Two quantum numbers
»

o \/=0

e r: constant




The Schrodinger equation
colatitude _
Laplacian
azimuth or del squared
or nabla squared

, 0% 9%  9?

2m dax%  dy? 09z?

w(6, ¢) = O(6)D(¢)



Justification 8.6

8% 19 2 in
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1 0% (OD) 1 9 . _ o@O)
+ ———SIN 0 —
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~ 2 e
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Same as 8.4

Associated Legendre ftn

w/ cyclic BC: /(quantum number) appears
m,is restricted by /



Orbital angular momentum
quantum number
/:0,1,2,3...

Magnetic quantum number
m,: /[ /-1, ..,-/

Spherical harmonics
YI

1m|

Table 8.2 The spherical harmonics
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The spherical harmonics are orthogonal and
normalized in the following sense:

T rZrt
f YI‘-m[(e’(p)* Yhn,( 9’¢)Sin9 de d¢ = 6”6"1,')",
0’0

An important ‘triple integral’ is

T r2n

J Y (6,0)Y,.,,(6,0)Y,,,(6,0)sin0 d0 d¢
00
=0 unless m/ =mj|+m,

and we can form a triangle with sides of lengths
I”,I'yand [ (suchas 1,2,and 3 or 1, 1, and 1, but
not 1,2, and 4).



The spherical harmonics are orthogonal and
normalized in the following sense:

n[2n i
J J Yy'm; (0- ¢).Yl,m,(6' ¢)Sil19d9-d¢ o al'lzam;m,
0J0O

An important ‘triple integral’ is

® [2r . ,
J f Y (6, 9)" Vi (6, 9)Y, 1, (6. 9)sin 0 A6 dg
0Jo

=0 unless m; =m{ +m,and 1", I, and | can form
a triangle. |



=0, m,=0

I=1,m,=0

I=2,m,=0

A representation of the wavefunctions

‘of a particle on the surface of a sphere which
emphasizes the location of angular nodes: dark

- and light shading correspond to different signs

- of the wavefunction. Note that the number of
nodes increases as the value of | increases. All
these wavefunctions correspond tom; = 0; a
path round the vertical z-axis of the sphere
does not cut through any nodes.

1=3,m,=0

I=4,m=0




A more complete representation of the wavefunctions for1=0, 1, 2, and 3. The

distance of a point on the surface from the origin is proportional to the square modulus of
0 the amplitude of the wavefunction at that point.

Note: most probable location of particles
e migrates towards xy plane as |M, | increases

ﬁZ
E=ll4 10— =012 .
31

em,doesn’t affect E
o2|+1 degeneracy



Angular momentum

S angular momentum |

Magnitude of angular momentum = {l(I + 1) \1/24
1=0,1,2,...
z-component of angular momentum = mfi

my=1,1-=1,...,-1

Wim (@, ¢)  Number of node | w/ /

Higher momentum, Higher E,
More nodal lines cut the equator
(note: the curvature is greater in the direction)



Space Quantization [1]

e For agiven /, \

Angular momentum for z-
axis: 2/+1

@ m =0 >

o Discrete range of
orientations

e The orietation of rotating
body is quantized

The permitted orientations of angular
momentum when [ = 2. We shall see soon that
this representation is too specific because the
azimuthal orientation of the vector (its angle
around z) is indeterminate.




Space Quantization [2]

e Magnetic field /

e Beam of /
silver atom <

e (lassically expected

e (Observation

(c)




The vector model [1]

o No reference to x,y axis
e Once / is known, £ and / can’t be known
(due to uncertainty principle)

 / is known, £ and / are complementary
(they are not commute)



The vector model [2]

Schematic diagram

(a)

Better schematic diagram

(b)

+1



8.8 Spin

: not the actual spin motion
interact w/ magnetic field

Stern and Gelach observed two band
(2/+1=2.../=1/27? ... siinstead /)
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In quantum number: s
n magnetic quantum number: m,

for electron:
s=1/2

me=1/2 (1), -1/2 ()

An electron spin (s = ) can take only
two orientations with respect to a specified
axis. An « electron (top) is an electron with
m, =++; a B electron (bottom) is an electron
with m, = —%. The vector representing the spin
angular momentum lies at an angle of 55° to
the z-axis (more precisely, the half-angle of
the cones is arccos(+)"?).



e Electron, proton and neutron: spin 2
particles (s=1/2)
with the angular momentum of (3/4)1/2p

Despite the mass difference, they have the
same spin angular momentum

(In CM, proton and neutrons should spin
slower.)



e Photon:

Spin 1 particles (s=1)

with the angular momentum of (2)/2 #
Zero rest mass

zero charge

an energy hv

linear momentum Av/c

speed: C



e Fermion:
particles with half-integral spins
All the elementary particles that constitutes matter

eX) electron and protons

e Boson:

particles with integral spins

fundamental particles that are responsible for the
forces that binds fermions together

ex) photons (transmit EM forces that binds
together electrically charged particles)

e Matter: is an assembly of fermions held together
by bosons



Table 8.3 Properties of the angular momentum of an electron

Quantum number Symbolt  Values Specifies

Orbital angular momentum [ 0,1,2,...F Magnitude, {/(/+ 1)}2h
Magnetic m Li-1,...,-1 Component on z-axis, m;h
Spin s % Magnitude, {s(s+ 1)}"#
Spin magnetic m, i% Component on z-axis, m i
Total* j I+s1+s—1,...,|1-s] Magnitude, {j(j+ 1)}"?h
Total magnetic m; Hhi=1,...5=j Component on z-axis, m,h

*To combine two angular momenta, use the Clebsch—Gordan series (see Section 9.10a):
J=htiph =2l
" For many-electron systems, the quantum numbers are designated by upper-case letters (L, M;,, S, My, etc.).

* Note that the quantum numbers for magnitude (I, s, j, etc.) are never negative.



