Chapter 12. Spectroscopy 1: rotational
and vibrational spectra

-General features of spectroscopy
-Pure rotational spectra
-The vibrations of diatomic molecules

- The vibrations of polyatomic molecules
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General features of molecular spectroscopy

12.1 Experimental techniques
12.2 Selection rules and transition
moments
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Raman spectroscopy
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Experimental techniques

eSources of radiation

*The dispersing element
eFourier transform technique
eDetectors

eResolution

eSample
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eEmission spectroscopy and absorption spectroscopy are
practically the same

eEmission spectroscopy:

transition from higher E (E,) to lower E (E,), and
emits excess E as a photon

-> usually, UV, VIS, near IR, and x-ray spectroscopy

eAbsorption spectroscopy
transition from lower E to higher E
-> molecular rotations and molecular vibrations

hv=E, - E,

A

General layout of absorption spectrometer

Reference Detector

SourceO - /

Beam
combiner

Sample



Sources of radiation

-terminology: polychromatic vs. monochromatic

ecommercial spectrometer:
black-body radiation (wide range of frequencies)

efar-IR: 34~200 cm!
mercury arc inside quartz envelope

emid-IR: 200~4000 cm-!
Nernst filament (oxide of Zr, Yt, Th ...) or globlar (SiC)
T of filament: 1200~2000K

*\W filament: when heat to 3000K
A: 320 nm~2500 nm
quartz-W-halogen lamp is used for the extension of life
(decompose and replenish W filament)

egas discharge lamp: common source of UV and VIS radiation

electrical discharges make gas molecules excited
and, the gas molecules emit UV or VIS

ex. Xe lamp or high P Xe lamp...(heated to 6000 K)
D, lamp: 200-400nm
Hg, Ne, Kr...

eKlystron and gun diode: microwave radiation
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Experimental
stations

Radiation

esynchrotron: high flux e-beam g

ewide ranges including IR and x-ray

Linear K
accelerator 10 m_: Electron

-
- "'. beam
Booster

synchrotron




Synchrotron facility
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The dispersing element [diffraction gratings ]

ediffraction gratings
-glass or ceramic plate into which fine grooves have been
cut and covered with a reflective coating

constructive interference ~ Bragg’s Law

Scattered e \To detector

beam Incident  Scattered 4

Incident Anpmind bearms

beam

Diffraction
grating

Diffraction grating

2010-11-15



2010-11-15

Fourier transform techniques

stime <-> freq
ereal space <-> inverse space

Intensity, /(v)

Sing|e freq_ several freq.

Raman spectroscopy

eStokes radiation:
- 1 out of 107 incident photons collide with molecules
-> lower E -> low freq Stokes shift

eAnti-Stokes radiation:
-other incident photon may collect E
-> higher E -> high freq anti-Stokes shift

*Rayleigh radiation:
-radiation scattered into forward direction w/o change of freq.

eLasers need to be used:
1. shift in freq is very small
2. intensity of scattered radiation is low

eFT-Raman: scattered radiation, intensity max at the freq at the
Stokes and anti-Stokes shift

*FT-IR: absorbtion

-> both of them are “complementary” due to different selection rules



Arrangement of Raman spectroscopy

Source
I
Sample
Monochromator
Detector

or interferometer

Selection rules and transition moments [1]

-as in atomic spectra

nﬁ=<ﬂnli>=J wipy dr

-from the time-dependent perturbation theory
transition rate oc s, ‘2
oc stimulated absorption or emission

oc intensity
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no dipole moment associated
From 1sto 2s  With the charge migration

electric dipole forbidden

(a)

ANy

From 1s to 2p

dipole associated with
the charge migration

P
N

(b)

Selection rules and transition moments [2]

-gross selection rule

specifies general features of a molecule

-specific selection rule

specifies in terms of quantum number

2010-11-15
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Detector: radiation -> electric current or V
ephotomultiplier tube (PMT): photoelectric effect, very sensitive

ephotodiode: not very sensitive,

light-induced e- transfer rxn create mobile charge carrier
-avalanche photodiode: improving sensitivity by applying large Vdifference
-charge coupled device (CCD):
two dimensional array up to 6 million small photodiode detector

emercury-cadmium-telluride (MCT) detector:
-photovoltaic device: potential difference changes on IR

edeterated triglycine sulfate (DTGS) detector:
-pyroelectric device: capacitance is sensitive to T

oCrystal diode: microwave detector
-Ge, Si, GaAs

Pure rotation spectra

12.4 Moments of inertia

12.5 The rotational energy levels
12.6 Rotational transitions

12.7 Rotational Raman spectra

12.8 Nuclear statistics and rotational
states
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— 2 2
I=3m,x2+3m,x2

Moments of inertia

12.6 The definition of moment of inertia. In
this molecule there are three identical atoms
attached to the B atom and three different but
mutually identical atoms attached to the C
atom. In this example, the centre of mass lies
on an axis passing through the B and C atom,
and the perpendicular distances are measured
from this axis.

Conventionally,

1>, =1,

12.7 An asymmetric rotor has three different
moments of inertia; all three rotation axes
coincide at the centre of mass of the molecule.
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Table 12.1 Moments of inertia®

1. Diatomic molecules

* In cach case, m s the total mass of the molecule.

Rigid rotors:
bodies that do not distort
under rotation

2 equal
moments of inertia Linear

1

(3 zero) b

Spherical
3 equal el
moments of inertia
2 equal Symmetric
moments of inertia ™"
(3rd non-zero)

Asymmetric : /f 1 .

rotor g
I,/l \Ib

Qg
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The rotational E levels

—1 2. 1 24 1 2
E=3l07 + shw, + 3lo;

21, 21, 21

Spherical rotors
all three inertia are equal.

s LR _P
21 21

JF=JJ+R* J=0,1,2, ..

E = J( +1)§ J=0,1,2, ...

2
hB=1-  rotational constantp = "
21 4nel

E=hBJ(J+1) ]=0,1,2, ...

rotational term F(J)=BJ(J+1)

F(J)-F(J-1)=28

15
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Energy
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12.9 The rotational energy levels of a linear
or spherical rotor. Note that the energy
separation between neighbouring levels
increases as J increases.
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Symmetric rotors

ex. two inertia are equal.
=) principal axis: unique axis, different inertia

oblate: I;,>I, pancake, CgH,
prolate: I;<I, cigar, CH;Cl

B+ Ji 272472472
A e A R
P Sl A Y U S B I
S T TR T E TR T L
A h B= h
4rcl, 4rcl

F(J.K)=BJ(J + 1) + (A - B)K?
J=0,1,2, ...
K=0,%1,...,4

A=B ->spherical rotor

K=+],
angular momentum
comes from the principal axis

(b) K=0

K=0, no angular momentum
~around the principal axis

note) sign of K: opposite direction of rotation -> degeneracy

Linear rotors

-rotation occurs around an axis only perpendicular

to the line of atom

(*0’ angular momentum around the line)

HN)=BJ(J+1) J=0,1,2,...

K=0 F(J.K)=BJ(J+1)+(A-BK?

2010-11-15
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Degeneracies

ecach level is doubly degenerate
due to K (except K=0)
(K and —K has the same E.)

eangular momentum of a symmetric rotor:
M,%,M,; =0,+1,...+J

«all 2J+1 orientations of the rotating molecules
have the same E

ein total, 2(2J+1) degeneracy (K+0)

¢(2]J+1) degeneracy (K=0)

«for a spherical rotor: (A=B)
-(2J+1) degeneracies from orientation in space
-(2J+1) degeneracies from orientation

wrt an arbitrary axis of a molecule

overall degeneracy: (2J+1)2

the Stark effect

*Splitting of E level due to by an electric field

edegeneracy associated with M; is partly removed by e-field

ofor a linear rotor

E(J. M) = heBJ(J + 1) +al], M)u*E?

O JU+1-3M
W M) = g+ 0] - e + 9

oE state with M; is dep on the square
of the permanent electric dipole moment ()
-> u can be measured due to Stark effect

Field
on

2010-11-15
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Centrifugal distortion

emolecules are not really rigid.

srotation stretches the bond and increases
the moment of inertia

scentrifugal distortion reduces B

and E level are closer Centrifugal

force

F(J)=B(J+1) =D *(J+1)°

eCentrifugal distortion constant ~—

-D, becomes large when the bond is
easily stretched.

-for diatomic molecules,
4B

,:‘,2

Ds

Rotational transitions

by applying oscillating e-field (Stark modulation)
, rotational transition is examined

-rotational selection rules

for a pure rot spectrum, a molecule must be polar
(a polar molecule possess a fluctuating dipole when rotating)

homonuclear diatomic molecule, symmetrical linear molecule,
spherical molecule (not distorted by rotation)
-> rotationally inactive

2010-11-15
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-rotational selection rules

AJ=+1  AM;=0,4#1

< [ e

==
O—o

Photon

| =2

-same sense as the spin
-Rotating polar molecule of the incoming photon
~oscillating dipole
~oscillation of EM filed

—

e

An important ‘triple integral’
involving the spherical harmonics is

x [2%
[ I Y, (0.0, (6.0)Y;,(6 9)sin6dods = 0
oJo

unless m;=m{+m;and 1”,1’, and | can
form a triangle.

-transition intensity (J+1 <->J)

+1
|y P = [—2{1 - 1]#3 -1z for J>1

more polar molecules, more intense

for symmetric molecules, AK=0 (additional selection rule)
-> when the electric dipole moment // principal axis, the molecule
cannot be accelerated.
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-The appearance of
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Frequency —»

rotational spectra
Wj+1e))=2BJ+1) J=0.1.2,.. 2
GU+161H=2ﬁj+U—4DwHH3
very small
-separation 2B
Population of a rotational E level:
-Boltzmann distribution o
N, o Ng;e 5k 5
&
degeneracy =
P (L1
m\2neB) 2

-Rotational Raman spectra

Gross selection rule for rotational Raman transition:

the molecule must be anisotropically polarizable

polarizability

u=aFE
N
E-field

selection rule

Linear rotors: AJ=0,%2

I
o

Symmetric rotors: AJ=0,+1,+2;  AK

\

Distortion

E-filed

~distortion

~dipole moment
~anisotropic polarizability
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Justification

gross selection rule
Hing = ¢E(t) = aE cos w;t
o= ay+ Aa cos 2wt
o Aa=op - o
. [at
Hing= (0 + Acx cos 2doxt) X (E cos w;t)

= 0yE cos w;t + EAo cos 2wt cOs o;t

= 0,y E cos it + 5 EAa{cos(w; + 2wg)t + cos(w; — 20y )t}
W\t 2wy

AJ =+2.

specific selection rule

Hing,x = Hy sin 6 cos @

Hingy =M, sSin Bsin ¢

Hind.: = )U: cos 6

‘E,.=Esin 6 cos ¢ E,=Esin #sin ¢ F.=Tcos 0

Uing =0, E, sin @cos 0+ a, E, sin Osin ¢ + o E, cos 6= o, ‘E sin*6+ o E cos*6

—_J1 2 4
Hing =937 30, +3

PRS- -
%1 AGY, (0. 0) | E

N
Yo N Minal Yy u, )
(;]—305" + %Oﬂ_ ) Yj_.‘.\r. .|YJ.. -‘1._.> Ao Y,l,,.\r.., 1Y;0Y) 1, 0

Je—J,=0 Je=Ji=%2  Aoz0.
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-Raman spectroscopy

Stokes line, higher rotational state (AJ=+2) ‘
VJ+2e])=v—{F(J+2)-F()}=¥-2B2]+3) 3|
e % ’
wd ln
+
[
anti-Stokes line, =R s
scattered photon with increased E | i
(AJ=-2) £
~ - = Stokes < ' Anti-Stokes
W-2«])=v,+{F(J)-F(J-2)}=v,+2B(2]-1) lines 3 lines
>
B i
5_’)’
separation of adjacent lines
in Stokes and anti-Stokes region: 4B

— I, —— bond lengths

Frequency —>

16.8 Nuclear statistics and rotational states

Nuclear statistics:
Selective occupation of rotational states
(from Pauli principle)

ex. rot spectrum of CO,
2<-0,4<-2, .. not 5<- 3, 3<-1

Pauli principle:
-two identical fermion label exchange -> opposite sign
-two identical boson label exchange -> same sign

Only even values of Js are permissible since O is boson.
when a CO, rotates 180°, two identical O nuclei (spin 0 boson) are

interchanged, overall waveftn are the same. But, rotational waveftn
change sign by (-1)

2010-11-15
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alternation in intensity

< >

— H\H’lb il Mn
- o

\\4__/ Rotational Raman spectrum of a

J=0
diatomic molecule with 2 identical
Symmtries of rotational wavefunctions spin-1/2 nuclei

for homonuclear diatomic molecule with spin I,

Number of ways of achieving odd ] _ [(I + 1)/I for half-integral spin nuclei
Number of ways of achieving even ]| I/(I + 1) for integral spin nuclei

The interchange
of two identical fermion nuclei 0 @

Rotate
rotation (1)’ by, 150

c
Change in sign =
of the overall Q o 5
wavefunction P
(&)
. h
interchange e
of unlike spins | antiparallel

© 0 —
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When hydrogen is cooled,

Lowest rotational state
of ortho-hydrogen

i

Thermal
relaxation

J=0 X $ é_

Lowest rotational state
of para-hydrogen

Slow process, slow release of E

parallel nuclear spin:

it cannot exist with J=0

(it just rotates even at low T and

has an effective rotational zero-point E)

not lig.

paired nuclear spin

-Making lig hydrogen (from ortho to para)

pass hydrogen over a metal surface:
the molecule adsorb as atoms, and then recombine
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