Fusion Reactor Technology I (459.760, 3 Credits)

Prof. Dr. Yong-Su Na (32-206, Tel. 880-7204)

Introduction

Text Book

- B. B. Kadomtsev, "Tokamak Plasma: A Complex Physical System", Institute of Physics Publishing, Bristol and Philadelphia (1992)
- L. C. Woods, "Theory of Tokamak Transport New Aspects for Nuclear Fusion Reactor Design", WILEY-VCH (2006)
- A. A. Harms, K. F. Schoepf, G. H. Miley, D. R. Kingdon, "Principles of Fusion Energy", World Scientific Publishing Co. Pte. Ltd. (2000)
- R. O. Dendy, "Plasma Physics: An Introductory Course", Cambridge U niversity Press (February 24, 1995)

Reference

 J. Wesson, "Tokamaks", Oxford University Press, 3rd Edition (2004)

Introduction

Evaluation

- Attendance: 10%
- Homework & Presentation: 30%
- Midterm exam: 30%
- Final exam: 30%

Contents

- Week 1. Magnetic Confinement
- Week 2. Fusion Reactor Energetics (Harms 2, 7.1-7.5)
- Week 3. How to Build a Tokamak (Dendy 17 by T. N. Todd)
- Week 4. Tokamak Operation (I): Startup
- Week 5. Tokamak Operation (II):

Basic Tokamak Plasma Parameters (Wood 1.2, 1.3) Week 7-8. Tokamak Operation (III): Tokamak Operation Mode Week 9-10. Tokamak Operation Limits (I): Plasma Instabilities (Kadomtsev 6, 7, Wood 6) Week 11-12. Tokamak Operation Limits (II): Plasma Transport (Kadomtsev 8, 9, Wood 3, 4) Week 13. Heating and Current Drive (Kadomtsev 10) Week 14. Divertor and Plasma-Wall Interaction

Contents

Week 1. Magnetic Confinement

Week 2. Fusion Reactor Energetics (Harms 2, 7.1-7.5)

Week 3. How to Build a Tokamak (Dendy 17 by T. N. Todd)

Week 4. Tokamak Operation (I): Startup

Week 5. Tokamak Operation (II):

Basic Tokamak Plasma Parameters (Wood 1.2, 1.3) Week 7-8. Tokamak Operation (III): Tokamak Operation Mode Week 9-10. Tokamak Operation Limits (I): Plasma Instabilities (Kadomtsev 6, 7, Wood 6) Week 11-12. Tokamak Operation Limits (II): Plasma Transport (Kadomtsev 8, 9, Wood 3, 4) Week 13. Heating and Current Drive (Kadomtsev 10)

Week 14. Divertor and Plasma-Wall Interaction

To build a sun on earth

Equilibrium in the sun

Plasma on earth much, much smaller & tiny mass!

Magnetic confinement

Closed Magnetic Systems Toroidal Field (TF) coil Magnetic field idal direction Applying toroidal magnetic field ion 3.5 T in KSTAR, 5.3 T in ITER

14

Magnetic field

ion

Magnetic field of earth?

0.5 Gauss = 0.00005 T

15

What kind of drift motions?

Where does the gradient come from?

 $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$

$$R = R_0 + r \cos \theta$$

$$Z = r \sin \theta$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$

$$\oint \mathbf{B}_{\phi} \cdot d\mathbf{l} = \mu_0 N I_c$$

$$B_{\phi}(R) = \frac{\mu_0 N I_c}{2\pi R} = \left(\frac{R_0}{R}\right) B_{\phi}(R_0)$$

$$= \frac{B_{\phi}(R_0)}{1 + (r/R_0)\cos\theta} = \frac{B_{\phi}(R_0)}{1 + \varepsilon\cos\theta}$$
$$= B_{\phi}(r,\theta)$$

$$\mathbf{v}_{D,R} = \frac{mv_{\parallel}^2}{qB_0^2} \frac{\mathbf{R}_0 \times \mathbf{B}_0}{R^2}$$
$$\mathbf{v}_{D,\nabla B} = \pm \frac{1}{2} v_{\perp} r_L \frac{\mathbf{B} \times \nabla B}{B^2}$$
$$= \frac{mv_{\perp}^2}{2qB} \frac{\mathbf{B} \times \nabla B}{B^2}$$

$$\mathbf{v}_{D} = \frac{m}{q} \frac{1}{R_{0}B_{\phi}(R_{0})} \left[v_{\parallel}^{2} + \frac{v_{\perp}^{2}}{2} \right] \mathbf{e}_{Z}$$

17

Electric field, E

Poloidal magnetic field required Plasma current → Tokamak

Pulsed Operation

• The plasma shape can be modified by PF coil currents.

Invented by Tamm and Sakharov in 1952

Cutaway of the Toroidal Chamber in Artsimovitch's Paper Research on Controlled Nuclear Fusion in the USSR

Toroidalnaja kamera magnitnaja katushka (Toroidal chamber magnetic coil)

http://www.splung.com/content/sid/5/page/fusion

JET (Joint European Torus): $R_0 = 3 \text{ m}$, a = 0.9 m, 1983-today

JET (Joint European Torus): $R_0 = 3 \text{ m}$, a = 0.9 m, 1983-today

Impurity radiation typically peaks at temperature less than 100 eV, so that clean, hot plasmas radiates mostly from the peripheral regions.

THE PHYSICS OF FLUIDS

VOLUME 1, NUMBER 4

JULY-AUGUST, 1958

The Stellarator Concept*

LYMAN SPITZER, JR. Project Matterhorn, Princeton University, Princeton, New Jersey (Received May 27, 1958)

The basic concepts of the controlled thermonuclear program at Project Matterhorn, Princeton University are discussed. In particular, the theory of confinement of a fully ionized gas in the magnetic configuration of the stellarator is given, the theories of heating are outlined, and the bearing of observational results on these theories is described.

Stellarator Invented by Lyman Spitzer, Jr. in Princeton in 1951

Wendelstein 7-X, Germany

3D configuration!

Plasma

Plasma Parameter *R*: 5.5 m <a>: 0.53 miota: 5/6 - 5/4 $n_e(0)_{max}$: 3*10²⁰ m⁻³ $T_e(0)_{max}$: 5 keV $<\beta>: < 5 \%$

Divertor

Components inside plasma vessel

- 10 Divertor units
 - + target elements (10 MW/m²)
 - + baffle elements (0.5 MW/m²)
 - + control coils
 - + cryo pumps

First wall with B_4C coating (0.2 MW/m²) Diagnostics

- Design for steady state operation -

Parameter

Volume: 110 m³ Surface: 200 m² Vacuum: $< 10^{-8}$ mbar Mass: 35 t Tolerances < 2 mm

Superconducting Coils

Coils

NbTi superconductor (> 3.4 K) Induction on axis: 2.5 T (< 3T) Induction at coil: 6.8 T at 17.8 kA Stored magnetic energy: 600 MJ

Parameter

50 non-planar coils, 5 types 20 planar coils, 2 types, variation 5 modules, 2 sym. halfmodules⁴⁸

Welded connections between coils

+ 150x400 -> 400x1000 mm²

Thermal insulation on all warm surfaces of the cryostat 51

Schematic View

Parameter

Machine height: 4.5 m Machine diameter: 16 m Machine mass: 725 t Cold mass: 425 t

Heating power: 15 - 30 MW Nominal pulse length: 30 min

What a complex system it is!

Tokamak .VS. Stellarator

	Advantage	Disadvantage
Tokamak	 Simple 2D structure, so relatively easy to analyze and fabricate the device The most studied and successful up to now (mainstream in the roadmap to a feasible fusion reactor) 	 Need an external current drive (inductive or non-inductive) for plasma current generation & steady-state operation Subject to plasma current-driven instabilities and disruptions
Stellerator	 No external current drive necessary, so inherently steady-state operation possible Relatively free from plasma current-driven instabilities and disruptions 	 Complicated 3D structure, so difficult to analyse and fabricate the device Large system size required with a high aspect ratio Subject to large neoclassical transport at low collisionality existence of boostrap current

Burning Plasma Requirements

