Fusion Reactor Technology I (459.760, 3 Credits)

Prof. Dr. Yong-Su Na (32-206, Tel. 880-7204)

Contents

- Week 1. Magnetic Confinement
- Week 2. Fusion Reactor Energetics (Harms 2, 7.1-7.5)
- Week 3. How to Build a Tokamak (Dendy 17 by T. N. Todd)
- Week 4. Tokamak Operation (I): Startup
- Week 5. Tokamak Operation (II):

Basic Tokamak Plasma Parameters (Wood 1.2, 1.3) Week 7-8. Tokamak Operation (III): Tokamak Operation Mode Week 9-10. Tokamak Operation Limits (I): Plasma Instabilities (Kadomtsev 6, 7, Wood 6) Week 11-12. Tokamak Operation Limits (II): Plasma Transport (Kadomtsev 8, 9, Wood 3, 4) Week 13. Heating and Current Drive (Kadomtsev 10) Week 14. Divertor and Plasma-Wall Interaction

Contents

Week 1. Magnetic Confinement

- Week 2. Fusion Reactor Energetics (Harms 2, 7.1-7.5)
- Week 3. How to Build a Tokamak (Dendy 17 by T. N. Todd)
- Week 4. Tokamak Operation (I): Startup
- Week 5. Tokamak Operation (II):

Basic Tokamak Plasma Parameters (Wood 1.2, 1.3) Week 7-8. Tokamak Operation (III): Tokamak Operation Mode Week 9-10. Tokamak Operation Limits (I): Plasma Instabilities (Kadomtsev 6, 7, Wood 6) Week 11-12. Tokamak Operation Limits (II):

Plasma Transport (Kadomtsev 8, 9, Wood 3, 4)

Week 13. Heating and Current Drive (Kadomtsev 10)

Week 14. Divertor and Plasma-Wall Interaction

- Sources of stresses (in decreasing order of importance)
- Disruption-induced currents
- Thermal gradients
- Air pressure
- Human malpractice
- Diagnostic loads
- Currents induced during plasma start-up
- Diagnostic flange bolting

- Disruption-induced currents
- Arising when the plasma terminates rapidly
- Commutating plasma current into the vessel
- Reacting with the externally imposed poloidal fields, giving rise to inward pressures on the vessel: ~ 1 bar (several hundred kPa)
- The commutated current getting around port-holes causing regions of high current density
 - \rightarrow crossing of the toroidal field
 - \rightarrow producing very large local stresses
- VDE (Vertical Displacement Event): scraping off up to ~20% of the toroidal plasma current where it flows helically (halo current)
 - → resulting in large currents crossing the toroidal field within components mounted inside the vessel
 - \rightarrow severely stressing the mountings

How to achieve a high strength vessel?

- Toroidally continuous thick metal vessel
- Low loop resistance
 - \rightarrow large currents induced during plasma start-up
 - → creating a vertical field which inhibits the gas break-down unless compensated
- Gapping the vessel
- Requiring robust insulating joint of high vacuum specification
- Need to consider the plasma disruption effects on coils and structural components
- Putting the vacuum vessel outside the PFCs
- Having difficulties with maintaining the vacuum standard, given the large number of components and the range of materials selected for items mounted inside the vessel

COMPASS-D vacuum vessel:

Continuous welded inconel (frequently adopted in smooth vessel designs due to its high resistivity and mechanical strength and reliable low permeability) 3 mm thick

- Why high vacuum standard needed in a tokamak?
- To keep the radiated power and loop voltage low
- Operation difficult with base pressures above about $2x10^{-7}$ torr of H₂O+CO
- Better than about 5×10^{-8} torr, the plasma behaviour depending on the conditions of the walls, limiters and divertors particularly for plasmas with hydrogen isotopes due to plasma chemistry causing H₂O, OH, CH₄, etc to be produced and then dissociated in the bulk plasma

- Routes to a high vacuum standard
- The achievement of an all-metal set of vacuum seals, welded wherever reasonable
- The avoidance of materials with high vapour pressures (e.g. brass, plastics, etc.)
- The avoidance of trapped volumes
 - (e.g. in screw threads and between mating surfaces)
- The banning of marker pens and crack-detecting dye penetrants for use inside the vessel
- The avoidance of the use of cleaning fluids with tightly binding high *Z* elements (e.g. the ubiquitous chlorine)
- The prohibition of direct skin contact with anything destined to go in the vacuum system

- Routes to a high vacuum standard
- The baking of components of the vessel itself during manufacture (e.g. to 400 $^{\circ}\text{C}$)
- The baking of everything that goes inside the vessel to whatever temperature it will tolerate (e.g. 200°C)
- The specification and preservation of mirror-bright interior surfaces (perhaps including electropolishing the vessel interior surfaces)
- The avoidance, or protection of, plastics to which the plasma has a line of sight
- Cf. Materials like stainless steel, inconel or aluminium stay clean because they form very thin stable oxide layers which inhibit further atmospheric corrosion
 - \rightarrow The oxides readily reduced by energetic hydrogen

- \bullet Glow discharge cleaning after baking at \sim 15 $\mu A cm^{\text{-}2}$
- In hygrogen (creating water which is pumped away):
 loading the vessel with hydrogen
- In methane (or methane-hydrogen, etc.) to create a graphitic of carbide layer smothering any oxides, etc.: loading the walls with hydrogen
- In helium to get the hydrogen out (the helium diffuses out subsequently since it is chemically inert)
- In trimethyl boron $B(CH_3)^3$ to create a carbon-boron-carbide layer (apparently even better than simple carbonisation because of the lower Z)
- In diborane (with care since this is a highly toxic and explosive gas) to lay down a high boron content layer, claimed by some to be more effective than the trimethyl boron approach

- Gettering using titanium or chromium
- Ti, Cr having a strong affinity for oxygen and many other impurities and an almost magical effect on the plasma behaviour even in a dirty system with a natural base pressures above about $5x10^{-7}$ torr of H₂O+CO+various hydrocarbons
- Gettering over a large fraction of the vessel interior to a thickness of about a monolayer every shot or so
- Long term disadvantages such as coating over windows and flaking of loose titanium

• Pumps

	Advantages	Disadvantages
Diffusion pump	 Fairly cheap Available in many size 	 Backstream oil vapour cooling baffles Liquid nitrogen cold traps need to be added resulting in undesirable system complexity

 Diffusion and TMPs are generally backed by mechanical pumps:
 450 torr I s⁻¹ TMPs backed by a 400 m³h⁻¹ Rootes pump and a 40 m³h⁻¹ rotary pump used in a typical small machine

Cryopump	- High pumping speed	 Expensive Operational problem such as spontaneous dumping if over loaded
Getter pump	- Good performance with very simple installation requirements (just a local heater to regenerate the active surface)	- Limited lifetime