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H-modes: Limitations

Stability of H-mode plasmas related safety factor profile: q(r)

H-mode, g-profile qo < 1: Sawtooth instability, periodic

flattening of the pressure in the core

Jos=3g| q =3/2andq = 2:
Neoclassical Tearing Modes (NTMs):

q=3/2 - limit the achievable 8 = 2,p/B?

_________________ - degrade confinement (+ disruptions)

« often triggered by sawteeth.

0 0.5 1 ® ITER work point is chosen
r/a conservatively: 8,<1.8 !

Periodic collapses of
the ETB (ELMSs)

Qgs (< 1/1,) = 3: Safe operation at max. /5




Edge Localised Mode (ELM)
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8. Edge Localized Modes

As already discussed in Sec. 2 and in the previous section, the H-phase is repeatedly inter-
rupted by a new MHD phenomenon which severely limits the plasma temperatures and R values
attainable during this high-confinement mode. (The existence of this mode was already reported
in ref. /1/.). Since the location of this MHD-phenomenon - as we will see - 1s at the plasma
periphery, we call it the edge localized mode (ELM).
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2 over the entire plasma. H-mode energy confmemem times are found to scale linearly with
current, but to have little dependence on plasma density and absorbed beam power (Pyyp<3.41MW).

The confinement is degraded by_a fast growing mode localized at the plasma edge that may be
identified as a kink or tearing mode driven unstable by the high current densities at the cdge.




n=3

n=2

n=1 M
. AE = hv
+Ze

- H-alpha (H,) is a specific red visible spectral line created by
hydrogen with a wavelength of 656.28 nm, which occurs when a
hydrogen electron falls from its third to second lowest energy
level.

- It is difficult for humans to see H-alpha at night, but due to the
abundance of hydrogen in space, H-alpha is often the brightest
wavelength of visible light in stellar astronomy.

http://en.wikipedia.org/wiki/H-alpha



http://upload.wikimedia.org/wikipedia/commons/5/55/Bohr-atom-PAR.svg
http://en.wikipedia.org/wiki/File:Emission_spectrum-H.png

/ Edge Localised Mode (ELM)

« Edge Localised Modes (ELMs)

- First observed upon discovery of the H-mode in auxiliary heated
divertor plasmas in ASDEX (1984)

- Subsequently universally observed in all divertor tokamaks and
also in limiter tokamaks in certain operational regimes

- localized in the plasma edge region (defined roughly as
comprising the last 5% of the closed flux surfaces) of a tokamak

- MHD instability in the plasma edge occurs when the edge Vp
exceeds a critical threshold — loss of edge confinement
— temporary reduction of the ¥p — eventual recovery of the Vp
— recurrence of the ELM

- This cycle, which continues indefinitely in a sustained H-mode
discharge is a ubiquitous feature of such long pulse H-mode
plasmas: ELMing (or ELMy) H-mode.

—



/ Edge Localised Mode (ELM)

« Edge Localised Modes (ELMs)

- Characteristic sharp periodic increases in D, (or H,) en
the divertor or limiter region caused by a temporary brs
the H-mode edge confinement barrier (reduction of V¢

— Plasma particles and energy are expelled, and the en ™

recycling increases D, emission.

- ELMs also accompanied by various edge reaion fluctua 25 mo 2

15

10

]

(=1

|
[ia]

(both magnetic and kinetic) and localized ’
bursts of MHD activity, including magnetic

precursors (e.g. directly observable change
in the edge region plasma temperature n, 3
and density profiles and energy content) ™
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/ Edge Localised Mode (ELM)

e Example of sawteeth and ELMs JET, Pulse 52022

}Z, -....q.ﬂ{ Y «mJ\um«\um‘

ey
O —
R
i
- Bl —
— DBI/JS-SXR<38:011/1
L= — DE/JS-SXR<SE:010/1

— DPB/JE SXR-=5S8:006/1

EEFD EUROCPFEAN FUBION DEVELOPMENT AGREBEEMENT
A /3




y MAST (1

MEGA-AMPERE SPHERT CAL TOKAMAE

1 separatrix

Confined
plasma

x-point

divertor

’\ / plates

Quiet phase

|
ol __E e
w i w
W | @ @
@ =S @
et @ =
[« o o

Pressure builds Pressure suddenly Strong radiation
up at the edge from the divertor

8 o » Fast cameras in MAST
L A5 _8 X allow identifying the
filaments detaching form
plasma at high speed
(~several km/s)

pressure
pressure

>
)=
@
g
W\ o
[<¥]
oy




/ Edge Localised Mode (ELM)

« ELM Oscillations
- Current driven (peeling mode) and pressure driven
(ballooning mode) combined instability




. Critical Vp in ETB region reached

%

/ Edge Localised Mode (ELM)

 ELM Oscillations
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/ Edge Localised Mode (ELM)

* Peeling-Ballooning model for ELM cycle

normalised edge current density

0 02 04 06 08 1 1.2 1.4

normalised edge pressure gradient

J. W. Connor et al, Physics of Plasmas 5 2687 (1998)




/ Edge Localised Mode (ELM)

Edge current density

* Peeling-Ballooning model for ELM cycle

- The ELM cycle starts with a low
pressure gradient as a result of the
previous ELM crash that has removed
the edge pressure “pedestal”.

® - Due to the edge transport barrier,
the edge pressure pedestal develops
quickly (1).
- The growth of the pedestal stops at
the so called “ballooning stability”
Curent limit (2).
buildsup - Due to the pressure pedestal, the
@) bootstrap current — which is
proportional to the pressure and
temperature gradients - starts to
grow. Eventually, the bootstrap
current destabilizes an effect known
as “ideal peeling” which leads to an
ELM crash (3) and the loss of the edge
Edge pressure gradient pressure pedestal (4).
- The cycle then restarts from the
beginning.

JG06.315-2c
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model for ELM cycle ASDEX Upgrade.

ASDEX Upgrade H Zohm et. al., H-mode WS 2003

Radial magnetic field, coil close to plasma

a.u.

near vessel wall|

Mirnov coil

a.u.

> 06 W’"‘w' w(]' T (in gradlentil egion) lw
k> r i [ ;
04 mr*‘w“ i “ww .wﬂmn" M““"""ﬁﬂ._"“.,“.\‘\m‘ ml‘\ ’ m“""""“Wh"M,"""ﬁ || p LT _“'\‘W._"}Jr'#l’f 5
02E . . ) TN ) g
10 : - P—
T e WMMMM" PR
o l"«w-wﬁ T T g :g

aE |I
U_?: [ Te .(pedeStaI.top) | . . . . . . E
o 38E Peripheral line density 3

€37

"2 30 ASDEX Upgrade #17713 3
3.92 3.94 3.96 308 4.00

time [s]




o b —

Edge Localised Mode (ELM)

e Non-linear MHD simulations with JOREK reproduce the formation
of multiple filaments expulsed from plasma

t = 2650 7,1 t = 2700 7, t = 2890 7,

Evolution of n = 6 ballooning mode

Huysmans, Czarny, NF 47 659 (2007)




Standard ELM dynamics
In the KSTAR visualized
by an ECEI system*

* GS Yun et al, PRL 2011

(1) Initial Growth
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(2) Saturation
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(3) Transient Period

Very short (< 50 us) period preceding the crash. The filaments
almost disappear and then re-emerge with a reduced m

(4) ELM Crash = Multiple bursts of the filaments

The first burst during an ELM crash event
6T./T.

0.6

- L]

P04

-10

-15

20
215 220 225 215 220 225 215 220 225 215 220 225 215 220 225
R (cm) R (cm)

A narrow finger- Particles/heat transport

like structure through the finger
develops

Filaments elongate
poloidally E>

* GS Yun et al, PRL 2011



Another burst during the same ELM crash event

215 220 225 215 220 225 215 220 225 215 220 225 215 220 225
R (cm) R (cm)

« Fast burst <50 ps

« Localized burst zone (both poloidally and toroidally)

« Convective and localized transport

« Poloidal rotation of the burst point slows down
compared to the rest of the flament region.

* GS Yun et al, PRL 2011
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/ Edge Localised Mode (ELM)

* Type of ELMs

- Several types with different amplitudes, frequencies and power
dependencies

- At least three major types of ELMs have been defined.

- In a given experiment, the level of the plasma heating power, P,
or, more directly, the net power reaching the plasma edge
Pegge = P — P5q is @ key factor in determining the ELM type.




Edge Localised Mode (ELM)

* Type of ELMs

- ‘dithering' ELMs: For heating input or edge power levels at the
corresponding L-H transition threshold. These are believed to be
transitions back and forth between L-mode and H-mode.

- Type III (or ‘small’): small amplitude, high frequency, occurring
when the flow of power to the plasma edge is only a little
above the L-H transition threshold. Their frequency decreases with
pOWEer.

- ELM free: instabilities absent. As the power increases further, the
type III ELMs tend to disappear and an ELM free H-mode may be
encountered. Sometimes leading to the accumulation of heavy
impurities in the central region of plasma

- Type I (sometimes called ‘giant’): high amplitude, low frequency
when the power flow substantially exceeds the threshold. Their
frequency increases with increasing power.

22
—




Edge Loca
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Time (s)

 Divertor region D, intensity in a typical DIII-D plasma with slowly

increasing NBI power

- Low amplitude type III ELMs appear after the L-H transition, when

low NBI power is applied, and disappear as power is slowly increased.
- Larger type I ELMs with increasing frequency appear at high power.

ITER Physics Basis, Nuclear Fusion 39 2295 (1999)

o




* Type of ELMs

/ Edge Localised Mode (ELM)

\ Lkm

(r=38.5 cm)

B,8=0°)

115 116 117

* During the H-L transition phase

L-mode confinement occurs.

118 1.19 1.20 1.21
t(s)

' ASDEX Upgrade

- Frequency of relaxation oscillations grows gradually, the amplitude
decays, and towards the end of the ELM a transition from H- to

24
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/ Edge Localised Mode (ELM)

 Type of ELMs
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power with significant effect (lowering) no effect on height of (ETB)
25
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/ Edge Localised Mode (ELM)

ELMs: H-mode operational diagram
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- Boundaries indicating different types of confinement regime marked

- The limiting bound of edge pressure (nT) corresponds closely to the
predicted Vp for onset of ideal MHD ballooning limit for type I ELMs.

- Discharges can sit at the ballooning limit for some time before an
ELM occurs — suggesting the need for an additional trigger, such as
a low-n edge localized ‘peeling” mode.

—

' ASDEX Upgrade

26



Edge Loca

« Type Il (or ‘grassy’) ELMs
Type | ELM (Safety factor 3.9, Triangularity 0.2)
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Safety factor

- confinement not degraded, relatively small impurity accumulation,

lower heat load on divertor

- associated with strongly shaped tokamaks at high edge pressure
when there is access to 2"d stability at the plasma edge.

- High values of the parameter s/g? in the plasma edge appear
to be the principal factor in determining the onset of type II ELMs.

JT-60U =
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« Type Il (or ‘grassy’) ELMs
T ' ; Turbule_nt mag_nej:ic
Oé Ny also constant fluctuations coincide
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- ELM behaviour constant over pulse

Blue: New
#66476

Red:Previous
experiment
#62430

- Very fine scale activity: distinct ELMs almost indistinguishable




| ASDEX Upgrade

<ne>/nGW
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Time (S)

® No sawteeth, good confinement, and By~ 3.5, T, ~ T,
<n.>/ngy ~ 0.88, averaged over 3.6 seconds (~ 50 ).
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Edge Localised Mode (ELM)

A

e Control of ELMs: Pellet pace making  ASDEX Upgrade |
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1st Paper: P. T. Lang et al, Nuclear Fusion 43 1110 (2003)




/ Edge Localised Mode (ELM)

e Control of ELMs: RMP (Resonant Magnetic Perturbation)

FPublished online: 21 May 2006; doi:10.1038/nphys312

A critical issue for fusion-plasma research is the erosion of

Edge Stabi | ity and transpc the first wall of the experimental device due to impulsive

' heating from repetitive edge magneto-hydrodynamic
resonant magnetlc pertur instabilities known as ‘edge-localized modes’ (ELMs).

Here, we show that the addition of small resonant

CO”iSionless tOkamak plas magnetic field perturbations completely eliminates ELMs

while maintaining a steady-state high-confinement

TODD E. EVANS'™, RICHARD A. MOYER?, KEITH H. BURRELL', (H-mode) plasma. These perturbations induce a chaotic
ILON JOSEPH2, ANTHONY W. LEONARD?, THOMAS H. OSBORN behaviour in the magnetic field lines, which reduces
MICHAEL J. SCHAFFER?, PHILIP B. SNYDER', PAUL R. THOMA the edge pressure gradient below the ELM instability

AND WILLIAM P. WEST? threshold. The pressure gradient reduction results from
" General Atomics, San Diego, California 92186-5608, USA a reduction in the particle content of the plasma, rather
*University of California, San Diego, California 92093-0417, USA than an increase in the electron thermal transport.
3Lawrence Livermore National Laboratory, Livermore, California 94551-0808, USA L. . . . .

“Association EURATOM-CEA, CEA Cadarache, F-13108, St. Paul Lez Durance, France This is inconsistent with the predictions of stochastic
*Sandia National Laboratories, Albuquerque, New Mexico 87185, USA electron heat transport theory. These results provide a

*e-mail: @fusion.gat. . . . .
e-mall:evanstiusion.gat.com first experimental test of stochastic transport theory in a

highly rotating, hot, collisionless plasma and demonstrate
a promising solution to the critical issue of controlling edge

instabilities in fusion-plasma devices.

nature physics | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

© 2006 Nature Publishing Group 32
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/ Edge Localised Mode (ELM)
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iIsed Mode (ELM)

e Control of ELMs: RMP (Resonant Magnetic Perturbation)

Edge Loca
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/ Edge Localised Mode (ELM)

e Control of ELMs: RMP (Resonant Magnetic Perturbation)
- RMPs can be destabilizing and/or stabilizing
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Courtesy from Jong-kyu Park (PPPL) -
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