
- Stress path method (Lambe 1964, 1967)
- Settlement estimation based on realistic deformation characteristics measured from stress path tests which **duplicate field stress paths and probable deformation modes** of soil elements.
- A rational experimental approach to more exact estimation of field settlement.
- -Typical stress path of saturated clay deposits under foundation loading

→ Not K_o stress condition $\Delta \sigma_h \neq K_o \Delta \sigma_v$

→ Not 1D deformation mode $\varepsilon_h \neq 0$ (lateral strain occurs)

* Stress state in p'-q diagram

 $I : K_0$ initial state

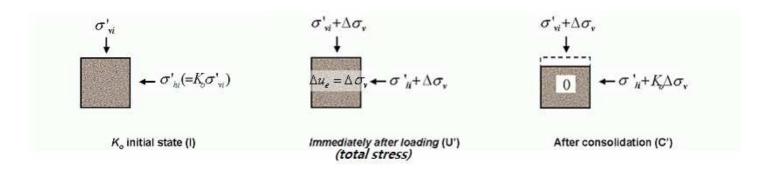
$$(\frac{\sigma_{vi}^{'}+\sigma_{hi}^{'}}{2},\frac{\sigma_{vi}^{'}-\sigma_{hi}^{'}}{2})$$

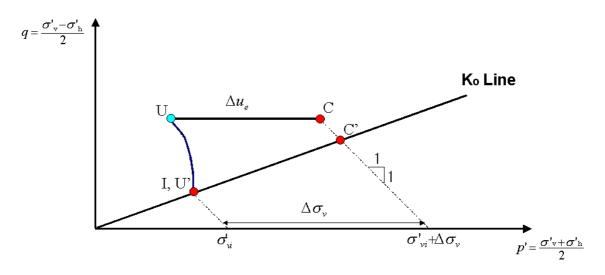
U: Immediately after loading

$$\left(\frac{\sigma_{vi}^{'}+\sigma_{hi}^{'}}{2}+\frac{\Delta\sigma_{v}+\Delta\sigma_{h}}{2}-\Delta u_{e},\frac{\sigma_{vi}^{'}-\sigma_{hi}^{'}}{2}+\frac{\Delta\sigma_{v}-\Delta\sigma_{h}}{2}\right)$$

C: After consolidation

$$\left(\frac{\sigma_{vi} + \sigma_{hi}}{2} + \frac{\Delta\sigma_{v} + \Delta\sigma_{h}}{2}, \frac{\sigma_{vi} - \sigma_{hi}}{2} + \frac{\Delta\sigma_{v} - \Delta\sigma_{h}}{2}\right)$$


IU: Undrained path


ightarrow immediate strain (ε_{vu}) ightarrow immediate settlement (S_i)

UC: Consolidation path

ightarrow consolidation strain (ε_{vc}) ightarrow consolidation settlement (S_c)

1D oedometer test

U'C': Consolidation path of oedometer test.

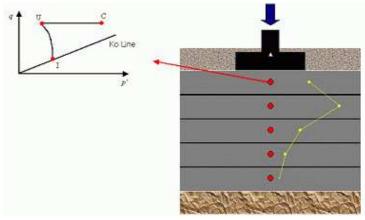
- \rightarrow 1D consolidation strain $(\varepsilon_{\mbox{\tiny $vc-1D$}})$ with no lateral strain
- ightarrow 1D consolidation settlement (S_{c-1D})
- Skempton and Bjerrum modification
 - → 1D deformation mode of oedometer test
 - ightarrow Governing stress increment : not $\Delta \sigma_{_{V}}$ but $\Delta u_{_{e}}$.
 - \rightarrow S&B consolidation strain : $\varepsilon_{vc-SB} = \varepsilon_{vc-1D} \times \frac{\Delta u_e}{\Delta \sigma_v}$
 - \rightarrow S&B consolidation settlement (S_{c-SB})

- Methods that are commonly used to predict field settlement $(S_t = S_i + S_c)$
 - ① 1D consolidation settlement (S_{c-1D}).
 - ② Immediate settlement + 1D consolidation settlement $(S_i + S_{c-1D})$.

 (Not correct theoretically)
 - ③ Immediate settlement + S & B consolidation settlement $(S_i + S_{c-SB})$.
 - \Rightarrow Unrealistic K_o stress path and 1D deformation mode are assumed.
 - ⇒ Can be expected to give an erratic approximation of field settlement
- Stress path method
 - Lambe (1964, 1967)
 - Settlement estimation based on realistic deformation characteristics measured from stress path tests which duplicate field stress paths and probable deformation modes of soil elements.
 - A rational experimental approach to more exact estimation of field settlement.

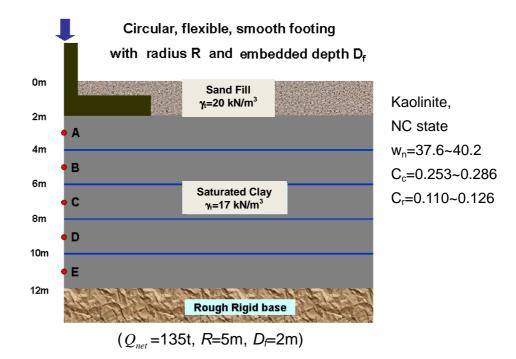
i) Procedures

For a given structure,


- ① Divide subsoils into several layers and select average point of each layer.
- 2 Determine field stress paths of the average points.
 - $\rightarrow K_0$ initial state $(\sigma_{vi}, \sigma_{hi})$.
 - \rightarrow Stress increment ($\Delta \sigma_{v}$, $\Delta \sigma_{h}$) \Leftrightarrow the elastic theory.
- 3 Duplicate the field stress paths in the laboratory.
 - → Undisturbed samples.
 - → TX tests for axisymmetric deformation mode (circular or square footing).
 - → PS tests for plane strain deformation mode (strip footing, embankment).
 - \rightarrow Measure vertical strains (ε_{vu} , ε_{vc}).

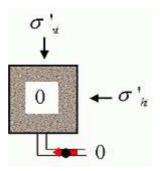
Instantaneous loading \rightarrow possibility to break soil structure. (misleading deformation mode) but providing ε_{vu} and ε_{vc} , separately.

Stress rate loading \rightarrow not breaking soil structure. but not providing ε_{vu} and ε_{vc} , separately.

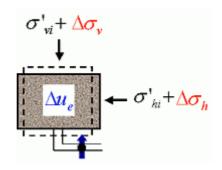

4 Estimate settlements by integrating the vertical strains with depth.

$$S_i = \int \varepsilon_{vu} dz = \sum \varepsilon_{vu} \Delta z$$
 $S_c = \int \varepsilon_{vc} dz = \sum \varepsilon_{vc} \Delta z$ $S_t = S_i + S_c$

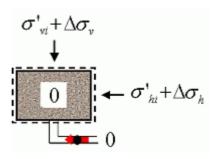
SNU Geotechnical and Geoenvironmental Engineering Lab.


ii) Application example

- ① Divide subsoils into several layers and select average point of each layer.
- 2 Determine field stress paths of the average points.


	Initial state		Stress increments			
	σ_{vi} (kPa)	$\sigma_{\scriptscriptstyle hi}^{\scriptscriptstyle \cdot}$ (kPa)	$\Delta\sigma_{_{\scriptscriptstyle u}}$ (kPa)	$\Delta\sigma_{\scriptscriptstyle h}$ (kPa)	$\Delta \sigma_{v} - \Delta \sigma_{h}$ (kPa)	
Α	47.20	23.60	16.86	10.03	6.83	
В	61.60	30.80	15.19	4.30	10.89	
С	76.00	38.00	12.24	2.40	9.84	
D	90.40	45.20	9.89	2.74	7.51	
Е	104.80	52.40	8.14	4.83	3.31	

- 3 Duplicate the field stress paths in the laboratory (stress path test).
 - 1st step: back pressure saturation → saturation of test specimen.
 - 2nd step : K_0 consolidation \rightarrow duplication of initial state (I).
 - \rightarrow Slowly increase vertical stress up to σ_{vi} with $\varepsilon_{h}=0$ condition by controlling cell pressure or
 - ightarrow Slowly Increase vertical and horizontal stresses up to σ_{vi} and $\sigma_h = K_0 \sigma_{vi}$.



- 3rd step: undrained loading → duplication of undrained path (IU).
 - ightarrow Increase vertical and horizontal stresses by $\Delta\sigma_{_{v}}$ and $\Delta\sigma_{_{h}}$ under undrained condition.

 How to increase? (stress control (what rate), step loading)
 - \rightarrow Measure immediate strains ε_{vu} , ε_{hu} and excess pore pressure Δu_e .

- 4th step: consolidation → duplication of consolidation path (UC).
- \rightarrow Dissipate Δu_e by opening drainage value.
- ightarrow Measure consolidation strains $\; arepsilon_{\scriptscriptstyle vc} \;$ and $\; arepsilon_{\scriptscriptstyle hc} \, .$

· Test results

 $S_t = S_i + S_c = 135.74$ mm

	E _{vu} (%)	E _{hu} (%)	Δu_e (kPa)	\mathcal{E}_{vc} (%)	$arepsilon_{hc}$ (
А	1.118	-0.559	13.70	0.428	0.25
В	<u>3.465</u>	<u>-1.733</u>	13.75	0.317	0.17
С	0.771	-0.386	6.85	0.123	0.07
D	0.286	-0.143	4.84	0.092	0.04
Е	0.088	-0.044	5.55	0.099	0.05

\mathcal{E}_{vc} (%)	ε_{hc} (%)
0.428	0.252
0.317	0.175
0.123	0.070
0.092	0.045
0.099	0.053

\mathcal{E}_{vt} (%)	\mathcal{E}_{ht} (%)
1.546	-0.307
3.782	<u>-1.558</u>
0.894	-0.316
0.378	-0.098
0.187	0.009

4 Estimate settlements by integrating the vertical strains with depth.

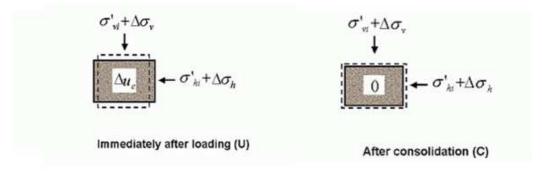
$$S_i = \int \varepsilon_{vu} dz = (1.118 + 3.465 + 0.771 + 0.286 + 0.088) / 100 \times 2000 = 114.56 \text{mm}$$

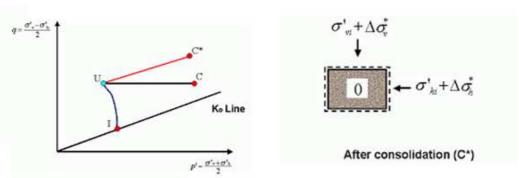
$$S_c = \int \varepsilon_{vc} dz = (0.428 + 0.317 + 0.123 + 0.092 + 0.099) / 100 \times 2000 = 21.18 \text{mm}$$

	_			4.1	41 1
	$\mathbf{n} \cdot \mathbf{n}$	narican	With	conventional	mathada
	, , , , , , , , , ,	Dalison	vviiii	CONVENIONAL	11110005
••••	, – – – – – – – – – – – – – – – – – – –	panoon	*****	COLLEGIA	moundad

	Stress path method			Oedometer	S&B
	\mathcal{E}_{vu} (%)	\mathcal{E}_{vc} (%)	\mathcal{E}_{vt} (%)	\mathcal{E}_{vc-1D} (%)	\mathcal{E}_{vc-SB} (%)
Α	1.118	0.428	1.546	1.292	1.050
В	3.465	0.317	3.782	0.877	0.794
С	0.771	0.123	0.894	0.548	0.307
D	0.286	0.092	0.378	0.367	0.180
Е	0.088	0.099	0.187	0.259	0.177
	$S_i = 114.56$ mm	$S_c = 21.18$ mm	$S_t = 135.4 \text{mm}$	S_{c-1D} =66.86mm	S_{c-SB} =50.16mm

1

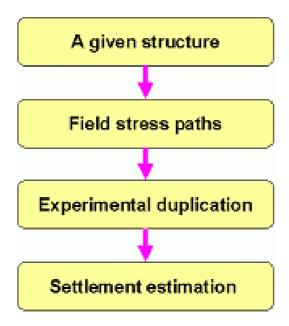

(very closely related to the increment of loading (or loading rate))


If field conditions are far from being 1D,

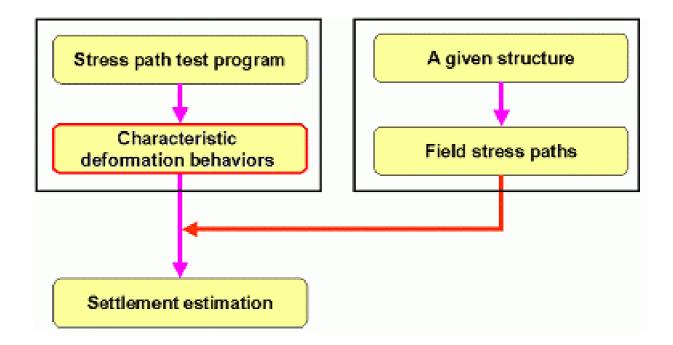
- $\bullet \ \ S_{c\text{--}1D} \ \ < \ S_t \ \leftarrow \ \text{Based on total settlement}$
 - $\ \, \cdots \ \, S_{c\text{--}1D} \, \to \text{Underestimation of field total settlement}.$
- S_{c-1D} > S_{c-SB} > S_c \leftarrow Based on consolidation settlement
 - $\ \, \dot{\cdot} \quad S_i + S_{c\text{--}1D} \ \, \longrightarrow \text{Overestimation of field total settlement}.$
 - $\ \, \because \ \ \, S_{\scriptscriptstyle i} + S_{\scriptscriptstyle c-SB} \ \, \to \text{Overestimation of field total settlement}.$
 - \rightarrow But closer to field total settlement than $\ S_i + S_{c-1D} \, .$

- iv) Limitations of stress path method
 - 1 Applicability of the elastic theory.
 - Soils do not behave as linear elastic materials.
 - $\bullet \Delta \sigma_{v}$ and $\Delta \sigma_{h}$ estimated based on the elastic theory may be erratic.

 - → Harr (1977) proposed an alternative approach using probabilistic theory.
 - → However, no other way
 - 2 Change of stress increments during consolidation.



- Decrease of Poisson's ratio ($\nu_u = 0.5 \rightarrow \nu_d = 0.1 \sim 0.4$) \rightarrow Decrease of $\Delta \sigma_h$
- Realistic inclined consolidation path UC* can not be duplicated using the conventional stress path testing scheme. (Why?)


- An efficient stress path testing scheme was newly devised by Kim (2004).
- → Back pressure equalization followed by actively-controlled consolidation.
- → Any arbitrary consolidation path can be duplicated.
- → Exact Deformations of a tested consolidation path can be continuously measured by stress controlled test under drained condition. (One path by One test)
- 3 Too excessive experimental work.
 - A number of laborious tests are required for every structure.
 - Different types of structures require mostly different series of tests.
 - Various design alternatives can not be easily examined.
 - Modification of design factors during construction can not be readily reflected.

* Conventional Stress Path Method

SNU Geotechnical and Geoenvironmental Engineering Lab.

• A more practical approach of stress path method was proposed by Kim (2004).

- → Characteristic behaviors of deformation which can cover all probable field stress paths are evaluated in advance by an economically-designed experimental program.
- → Settlements of various structures or design alternatives can be routinely estimated without additional tests by simply substituting their corresponding field stress paths into the characteristic behaviors.
- → Practicality of the proposed approach was maximized in the manner of minimizing experimental effort required to establish the characteristic behaviors of deformation.

^{*} Effect of initial effective state → can be solved by employing normalized engineering properties concept.