Hidden Markov Models 464.561A Models and Technologies for Information Services

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Eng. Seoul National University

3/27/11

hidden Markov model

- doubly (or bivariate) stochastic process in which an underlying stochastic process that is not observable can only be observed through another stochastic process that produces a sequence of observations
 - state process
 - observation process

a little story about HMM

HMM: definition $\lambda = (S, V, A, B, \Pi)$ set of states $S = \{s_1, \ldots, s_N\}$ set of observation symbols $V = \{v_1, \ldots, v_M\}$ state transition probabilities $A = [a_{ij}]$ where $a_{ij} \triangleq P(q_{t+1} = s_j | q_t = s_i), \forall i, j = 1, \dots, N$ $q_t, t = 1, \ldots, T$: state at time t observation probabilities $B = [b_i(m)]$ where $b_i(m) \triangleq P(o_t = v_m | q_t = s_i), \forall i = 1, \dots, N$ $o_t, t = 1, \ldots, T$: observation at time t initial state probabilities $\Pi = [\pi_i]$ where $\pi_i \triangleq P(q_1 = s_i)$

stochastic constraints on HMM

$$\sum_{j=1}^{N} a_{ij} = 1, \forall i$$

$$\sum_{j=1}^{N} \pi_i = 1, \forall i$$

assumptions

Markov assumption: $P(q_t|q_1...q_{t-1}) = P(q_t|q_{t-1})$

output independence: $P(o_t|q_1 \dots q_t \dots q_T, o_1 \dots o_t \dots o_T) = P(o_t|q_t)$

multinomial observations:

$$P(o_t | q_t = s_j, \lambda) = \prod_{m=1}^{M} b_j(m)^{r_m^t}$$
where $r_m^t = \begin{cases} 1, & \text{if } o_t = v_m \\ 0, & \text{o.w.} \end{cases}$

3 fundamental problems

likelihood problem: Given an HMM $\lambda = (A, B, \Pi)$ and an observation sequence *O*, determine the likelihood $P(O|\lambda)$

decoding problem: Given an HMM $\lambda = (A, B, \Pi)$ and an observation sequence O, discover the best hidden state sequence Q

learning problem:

Given an an observation sequence O, the set of states S, and the set of symbols V in the HMM, learn the HMM parameters A and B

likelihood: probability evaluation

$$\begin{split} O &\triangleq o_1 o_2 \dots o_T \\ Q &\triangleq q_1 q_2 \dots q_T \\ P(O|Q,\lambda) &= \prod_{t=1}^T P(o_t|q_t,\lambda) \\ P(O,Q|\lambda) &= P(O|Q,\lambda) P(Q|\lambda) \\ &= \prod_{t=1}^T P(o_t|q_t,\lambda) \prod_{t=1}^T P(q_{t+1}|q_t,\lambda) \\ P(O|\lambda) &= \sum_Q P(O|Q,\lambda) P(Q|\lambda) \\ &= \sum_{q_1 q_2 \dots q_T} \pi_{q_1} b_{q_1}(o_1) a_{q_1 q_2} b_{q_2}(o_2) \dots a_{q_{T-1} q_T} b_{q_T}(o_T) \end{split}$$

likelihood computation

 $P(313|\lambda) = P(313, CCC|\lambda) + P(313, CCH|\lambda) + P(313, HHC|\lambda) + \dots$

 $P(313, HHC) = P(H|q_0) \times P(H|H) \times P(C|H) \times P(3|H) \times P(1|H) \times P(3|C)$

likelihood: forward variable

$$\alpha_{t}(j) \triangleq P(o_{1}o_{2} \dots o_{t}, q_{t} = j|\lambda)$$

$$\alpha_{t}(j) = \left[\sum_{i=1}^{N} \alpha_{t-1}(i)a_{ij}\right] b_{j}(o_{t})$$

$$s_{1}$$

$$\vdots$$

$$s_{i}$$

likelihood: forward algorithm

1. Initialization

$$\alpha_1(i) = \pi_i b_i(o_1), 1 \le i \le N$$

2. Induction

$$\alpha_{t+1}(j) = \begin{bmatrix} N \\ \sum_{i=1}^{N} \alpha_t(i) a_{ij} \end{bmatrix} b_j(o_{t+1}) \qquad \begin{array}{l} 1 \le t \le T-1 \\ 1 \le j \le N \end{array}$$

3. Termination

$$P(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

backward variable

$$\beta_t(i) \triangleq P(o_{t+1}o_{t+2}\dots o_T | q_t = i, \lambda)$$
$$\beta_t(i) = \sum_{j=1}^N a_{ij}b_j(o_{t+1})\beta_{t+1}(j)$$

backward procedure

1. initialization

$$\beta_T(i) = 1, \ 1 \le i \le N$$

2. induction

$$\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

$$t = T - 1, T - 2, \dots, 1, \ 1 \le i \le N$$

decoding: Viterbi algorithm

most likely state at time t

$$q_t^* = \arg\min_{1 \le i \le N} [\gamma_t(i)], \ 1 \le t \le T$$

Viterbi algorithm

$$\delta_t(i) \triangleq \max_{q_1 q_2 \dots q_{t-1}} P(q_1 q_2 \dots q_{t-1}, q_t = i, o_1 o_2 \dots o_t | \lambda)$$

$$\delta_{t+1}(j) = \left[\max_i \delta_t(i) a_{ij}\right] \cdot b_j(o_{t+1})$$

 $\psi_t(j) \triangleq$ the state that maximizes $\delta_{t-1}(j)$ at time t - 1

Viterbi algorithm

1. initialization

$$\delta_1(i) = \pi_i b_i(o_1), \ \psi_1(i) = 0, \ 1 \le i \le N$$

2. recursion

$$\delta_t(j) = \max_{1 \le i \le N} \left[\delta_{t-1}(i) a_{ij} \right] b_j(o_t)$$

$$\psi_t(j) = \arg \max_{1 \le i \le N} \left[\delta_{t-1}(i) a_{ij} \right], 2 \le t \le T, \ 1 \le j \le N$$

3. termination

$$P^* = \max_{1 \le i \le N} [\delta_T(i)]$$
$$q_T^* = \arg \max_{1 \le i \le N} [\delta_T(i)]$$

4. path backtracking

$$q_t^* = \psi_{t+1}(q_{t+1}^*), \ t = T - 1, T - 2, \dots, 1$$

learning problem

choose λ such that its likelihood $P(O|\lambda)$ is maximized

learning problem

learning problem

$$\gamma_t(i) = \sum_{j=1}^N \xi_t(i,j)$$

 $\sum_{t=1}^{T-1} \gamma_t(i) =$ expected # of transitions from state *i* in *O*

 $\sum_{t=1}^{T-1} \xi_t(i,j) = \frac{\text{expected } \# \text{ of transitions from state } i}{\text{to state } j \text{ in } O}$

(re)estimation of an HMM parameters

 $\hat{\pi}_i$ = expected frequency in state *i* at $t = 1 = \gamma_1(i)$

 $\hat{a}_{ij} = \frac{\text{expected \# of transitions from state } i \text{ to state } j}{\text{expected \# of transitions from state } i}$ $= \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$

$$\hat{b}_{j}(m) = \frac{\text{expected } \# \text{ of times in state } j \text{ and observing } v_{m}}{\text{expected } \# \text{ of times from state } j}$$
$$= \frac{\sum_{\{t=1,\dots,T \mid o_{t}=v_{m}\}} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

forward-backward algorithm (Baum-Welch)

initialize A, B, and Π iterate until convergence

E-step	M-step
$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{\sum_{i=1}^N \alpha_t(i)\beta_t(i)}, \forall t, i$	$\hat{\pi}_i = \gamma_1(i)$
$\sum_{i=1}^{N} \alpha_t(i) \beta_t(i)$ $\frac{\xi_t(i,j) =}{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}$ $\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$ $\forall t, i, j$	$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$ $\hat{b}_j(m) = \frac{\sum_{t=1}^{T} \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}$
orall t, i, j	$\sum_{t=1}^{I} \gamma_t(j)$

$$\alpha_t(j) \triangleq P(o_1 o_2 \dots o_t, q_t = j | \lambda) = \left[\sum_{i=1}^N \alpha_{t-1}(i) a_{ij}\right] b_j(o_t)$$

$$\beta_t(i) \triangleq P(o_{t+1} o_{t+2} \dots o_T | q_t = i, \lambda) = \sum_{j=1}^N a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

multiple training sequences

model selection

- tuning the topology of an HMM
 - zeroing out some impossible (or unnecessary) transitions: $a_{ij} = 0$
 - moving forward only: $a_{ij} = 0$, for j < i
 - no big jumps: $a_{ij} = 0$, for $j > i + \tau$
- # of states
 - determined using prior information
 - can be fine-tuned by cross validation by checking the likelihood of validation sequences

finite mixture

$$P(o_t = v_m) = \sum_{j=1}^{N} P(o_t = v_m | q_t = s_j) P(q_t = s_j)$$
$$a_{ij} \doteq w_j, \ j = 1, \dots, N, \ \forall i$$
$$\implies P(q_t = s_j) = w_j$$
$$\implies P(o_t = v_m) = \sum_{j=1}^{N} b_j(m) \cdot w_j$$

continuous observation densities

$$P(o_t | q_t = s_j) \sim \mathcal{N}(\mu_j, \sigma_j^2)$$

M-step equations:

$$\hat{\mu}_j = \frac{\sum_t \gamma_t(j) o_t}{\sum_t \gamma_t(j)}$$

$$\hat{\sigma}_j^2 = \frac{\sum_t \gamma_t(j)(o_t - \hat{\mu}_j)^2}{\sum_t \gamma_t(j)}$$

earthquake example

(source: D. W. Chambers, et al., Hidden Markov model forecasting of earthquakes)

- T = 1227 earthquakes in southern California in 1932 2004
- $(s_1, s_2, s_3) = ($ short, moderate, long) time between earthquakes
- *o*₁, *o*₂, ..., *o*_T are the actual inter-event times
 *o*_t: # days between earthquakes *t*-1 and *t*
- given $q_t = s_i$, o_t follows an exponential distribution with mean θ_i s.t. $\theta_1 < \theta_2 < \theta_3$

earthquake example

earthquake: forecasting problem

Given an HMM with parameters (A, θ_1 , θ_2 , θ_3 , Π), and the observations up to the present, find the forecast density:

$$\begin{split} p(o_{t+1} = x | o_1 o_2 \dots o_t, \lambda) \\ &= \sum_{i=1}^3 p(o_{t+1} = x, q_{t+1} = s_i | o_1 o_2 \dots o_t, \lambda) \\ &= \sum_{i=1}^3 p(o_{t+1} = x | q_{t+1} = s_i, o_1 \dots o_t, \lambda) \cdot p(q_{t+1} = s_i | o_1 \dots o_t, \lambda) \\ &= \sum_{i=1}^3 \frac{1}{\theta_i} e^{-\frac{x}{\theta_i}} \cdot p(q_{t+1} = s_i | o_1 \dots o_t, \lambda) \\ &= \sum_{i=1}^3 \frac{1}{\theta_i} e^{-\frac{x}{\theta_i}} \cdot \frac{p(q_{t+1} = s_i, o_1 \dots o_t | \lambda)}{p(o_1 \dots o_t | \lambda)} = \sum_{i=1}^3 \frac{1}{\theta_i} e^{-\frac{x}{\theta_i}} \cdot \frac{\sum_{j=1}^3 \alpha_t(j) \cdot a_{ji}}{\sum_{j=1}^3 \alpha_t(j)} \end{split}$$

earthquake: forecasting problem

 $P(o_{t+1} \le x | o_1 o_2 \dots o_t, \lambda) = \sum_{i=1}^3 (1 - e^{-\frac{x}{\theta_i}}) \cdot \frac{\sum_{j=1}^3 \alpha_t(j) \cdot a_{ji}}{\sum_{j=1}^3 \alpha_t(j)}$

earthquake: the results

- $\theta_1 = 1.3, \, \theta_2 = 17.42, \, \theta_3 = 27,92$
- 1226 forecasts were made to find the probability of another earthquake within 7 days
- proportion of times an earthquake did actually occur within 7 days:

	[.28, .32)	[.32, .36)	[.36, .50)	[.50, 1]
proportion	.292	.300	.421	.625

classification

• set of HMMs, each one modeling the sequences belonging to one class

$$\arg\max_{i} P(\lambda_{i}|O) = \frac{P(O|\lambda_{i})P(\lambda_{i})}{\sum_{j} P(O|\lambda_{j})P(\lambda_{j})}$$

numerical issues

- scaling α and β
 - for large t, $\alpha_t(i)$ computation will exceed the precision range (even in double precision)
- smoothing
 - symbol v_m that does not appear in the training sequence will make $b_j(m) = 0$
- imbalance between emission and transition probabilities
 - $b_j(m) << a_{ij}$
 - $P(O|\lambda)$ becomes mostly influenced by $b_j(m)$

HMM for Hot Topic Detection

 df_i

user state mining for games

automatic composition of Mozart style music

readings

- K. Seymore, A. McCallum, and R. Rosenfeld, "Learning Hidden Markov Model Structure for Information Extraction," *Proc. AAAI Workshop on Machine Learning for Information Extraction*, 1999.
- A. Srivastava, et al., "Credit Card Fraud Detection Using Hidden Markov Model," *IEEE Trans. Dependable and Secure Computing*, vol. 5, no. 1, pp. 37-48, 2008.
- S. M. Siddiqi and A. W. Moore, "Fast Inference and Learning in Large-State-Space HMMs," *Proc. 22nd Int'l Conf. Machine Learning*, 2005.
- O. Netzer, J. M. Lattin, and V. Srinivasan, "A Hidden Markov Model of Customer Relationship Dynamics," *Marketing Science*, vol. 27, no. 2, pp. 185-204, 2008.
- M. J. Zaki, C. D. Carothers, and B. K. Szymanski, "VOGUE: A Variable Order Hidden Markov Model with Duration Based on Frequent Sequence Mining," *ACM Trans. Knowledge Discovery from Data*, vol. 4, no. 1, 2010.
- J. Kleinberg, "Bursty and Hierarchical Structure in Streams," *Proc.* 8th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, 2002.

references

- E. Alpaydin, *Introduction to Machine Learning*, The MIT Press, 2004.
- O. C. Ibe, *Markov Processes for Stochastic Modeling*, Academic Press, 2009.
- F. Jelinek, *Statistical Methods for Speech Recognition*, The MIT Press, 1997.
- D. Jurafsky and J. H. Martin, *Speech and Language Processing*, 2nd Ed., Prentice Hall, 2009
- T. Koski, *Hidden Markov Models for Bioinformatics*, Kluwer Academic Publishers, 2001.
- L. Rabiner and B-H. Juang, *Fundamentals of Speech Recognition*, Prentice Hall, 1993.
- W. Zucchini and I. L. MacDonald, *Hidden Makov Models for Time Series: An Introduction Using R*, CRC Press, 2009.

