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hidden Markov model 

  doubly (or bivariate) stochastic process in which an 
underlying stochastic process that is not observable can 
only be observed through another stochastic process that 
produces a sequence of observations  
-  state process 
-  observation process  



a little story about HMM 
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HMM: definition   
λ = (S, V,A,B,Π)

set of states S = {s1, . . . , sN}

V = {v1, . . . , vM}set of observation symbols 

qt, t = 1, . . . , T : state at time t

state transition probabilities A = [aij ]
where aij � P (qt+1 = sj |qt = si),∀i, j = 1, . . . , N

observation probabilities B = [bi(m)]

ot, t = 1, . . . , T : observation at time t

initial state probabilities Π = [πi]
where πi � P (q1 = si)

where bj(m) � P (ot = vm|qt = sj),∀i = 1, . . . , N



stochastic constraints on HMM  
N�

j=1

aij = 1,∀i

N�

j=1

πi = 1,∀i



assumptions  

P (qt|q1 . . . qt−1) = P (qt|qt−1)
Markov assumption: 

output independence: 
P (ot|q1 . . . qt . . . qT , o1 . . . ot . . . oT ) = P (ot|qt)

multinomial observations: 

P (ot|qt = sj ,λ) =
M�

m=1

bj(m)rt
m

where rt
m =

�
1, if ot = vm

0, o.w.



3 fundamental problems  

likelihood problem: 
Given an HMM                         and an observation  
sequence O, determine the likelihood  

λ = (A,B,Π)
P (O|λ)

decoding problem: 
Given an HMM                         and an observation  
sequence O, discover the best hidden state sequence Q 

learning problem: 
Given an an observation sequence O, the set of states S,  
and the set of symbols V in the HMM, learn the HMM  
parameters A and B  

λ = (A,B,Π)



likelihood: probability evaluation 

P (O|Q,λ) =
T�

t=1

P (ot|qt,λ)

O � o1o2 . . . oT

Q � q1q2 . . . qT

P (O,Q|λ) = P (O|Q,λ)P (Q|λ)

=
T�

t=1

P (ot|qt,λ)
T�

t=1

P (qt+1|qt,λ)

P (O|λ) =
�

Q

P (O|Q,λ)P (Q|λ)

=
�

q1q2...qT

πq1bq1(o1)aq1q2bq2(o2) . . . aqT−1qT bqT (oT )



likelihood computation 
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likelihood: forward variable 

αt(j) � P (o1o2 . . . ot, qt = j|λ)

s1 

si 

sN 

t-1 

sj 

ot 

aij 

t 

αt(j) =

�
N�

i=1

αt−1(i)aij

�
bj(ot)



likelihood: forward algorithm 

1. Initialization 

α1(i) = πibi(o1), 1 ≤ i ≤ N

2. Induction 

αt+1(j) =

�
N�

i=1

αt(i)aij

�
bj(ot+1)

1 ≤ t ≤ T − 1

1 ≤ j ≤ N

3. Termination 

P (O|λ) =
N�

i=1

αT (i)



backward variable 

βt(i) � P (ot+1ot+2 . . . oT |qt = i,λ)
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βt(i) =
N�

j=1

aijbj(ot+1)βt+1(j)



backward procedure 

1. initialization 

2. induction 

βT (i) = 1, 1 ≤ i ≤ N

βt(i) =
N�

j=1

aijbj(ot+1)βt+1(j)

t = T − 1, T − 2, . . . , 1, 1 ≤ i ≤ N



decoding: Viterbi algorithm  

γt(i) � P (qt = i|O,λ) =
P (O, qt = i|λ)

P (O|λ)

=
P (O, qt = i|λ)

�N
i=1 P (O, qt = i|λ)

=
αt(i)βt(i)�N
i=1 αt(i)βt(i)

s1 

si 

sN 

t-1 

si 

ot 

t 

s1 

si 

sN 

t+1 



most likely state at time t 

q∗t = arg min
1≤i≤N

[γt(i)], 1 ≤ t ≤ T



Viterbi algorithm 

δt(i) � max
q1q2...qt−1

P (q1q2 . . . qt−1, qt = i, o1o2 . . . ot|λ)

δt+1(j) =
�
max

i
δt(i)aij

�
· bj(ot+1)

the state that maximizes              at time t - 1 δt−1(j)ψt(j) �



Viterbi algorithm 
1. initialization 

δ1(i) = πibi(o1), ψ1(i) = 0, 1 ≤ i ≤ N

2. recursion 
δt(j) = max

1≤i≤N
[δt−1(i)aij ] bj(ot)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ] , 2 ≤ t ≤ T, 1 ≤ j ≤ N

3. termination 
P ∗ = max

1≤i≤N
[δT (i)]

q∗T = arg max
1≤i≤N

[δT (i)]

4. path backtracking 
q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, . . . , 1



learning problem   
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Q = {Hot, Cold} 
O = {1, 3, 2, 2, 1, …}  

choose    such that its likelihood              is maximized λ P (O|λ)



learning problem  
ξt(i, j) � P (qt = i, qt+1 = j|O,λ)

=
P (qt = i, qt+1 = j, O|λ)

P (O|λ)

=
αt(i)aijbj(ot+1)βt+1(j)

P (O|λ)

=
αt(i)aijbj(ot+1)βt+1(j)�N

i=1

�N
j=1 αt(i)aijbj(ot+1)βt+1(j)

sj 

t+1 

si 

ot+1 

aij 

t 



learning problem  

γt(i) =
N�

j=1

ξt(i, j)

T−1�

t=1

γt(i) = expected # of transitions from state i in O 

T−1�

t=1

ξt(i, j) = expected # of transitions from state i  
to state j in O 



(re)estimation of an HMM parameters  

π̂i = expected frequency in state i at t = 1 = γ1(i)

âij = expected # of transitions from state i to state j 
expected # of transitions from state i 

=
�T−1

t=1 ξt(i, j)�T−1
t=1 γt(i)

b̂j(m) = expected # of times in state j and observing vm 
expected # of times from state j 

=

�
{t=1,...,T |ot=vm} γt(j)

�T
t=1 γt(j)



forward-backward algorithm (Baum-Welch)  
initialize A, B, and  
iterate until convergence 

E-step 
 

∀t, i, j

M-step 
 

Π

γt(i) =
αt(i)βt(i)�N
i=1 αt(i)βt(i)

,∀t, i

ξt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)�N

i=1

�N
j=1 αt(i)aijbj(ot+1)βt+1(j)

βt(i) � P (ot+1ot+2 . . . oT |qt = i, λ) =
N�

j=1

aijbj(ot+1)βt+1(j)

π̂i = γ1(i)

âij =
�T−1

t=1 ξt(i, j)�T−1
t=1 γt(i)

αt(j) � P (o1o2 . . . ot, qt = j|λ) =

�
N�

i=1

αt−1(i)aij

�
bj(ot)

b̂j(m) =

PT
t=1

s.t.ot=vm
γt(j)

�T
t=1 γt(j)



multiple training sequences  

X � {Ok}K
k=1

P (X|λ) .=
K�

k=1

P (Ok|λ)

π̂i =
�K

k=1 γk
1 (i)

K

âij =
�K

k=1

�T k−1
t=1 ξk

t (i, j)
�K

k=1

�T k−1
t=1 γk

t (i)

b̂j(m) =

�K
k=1

PT k

t=1
s.t.ok

t =vm
γk

t (j)
�K

k=1

�T k

t=1 γk
t (j)



model selection  

  tuning the topology of an HMM 
-  zeroing out some impossible (or unnecessary) transitions:  

aij = 0  
-  moving forward only: aij = 0, for j < i  
-  no big jumps: aij = 0, for j > i + τ 

  # of states 
-  determined using prior information  
-  can be fine-tuned by cross validation by checking the likelihood 

of validation sequences  



finite mixture 

aij
.= wj , j = 1, . . . , N, ∀i

P (ot = vm) =
N�

j=1

P (ot = vm|qt = sj)P (qt = sj)

=⇒ P (qt = sj) = wj

=⇒ P (ot = vm) =
N�

j=1

bj(m) · wj



continuous observation densities  

P (ot|qt = sj) ∼ N (µj ,σ
2
j )

M-step equations: 

µ̂j =
�

t γt(j)ot�
t γt(j)

σ̂2
j =

�
t γt(j)(ot − µ̂j)2�

t γt(j)



earthquake example  
(source: D. W. Chambers, et al., Hidden Markov model forecasting of earthquakes)  
  T = 1227 earthquakes in southern California in 1932 - 

2004 
  (s1, s2, s3) = (short, moderate, long) time between 

earthquakes 
  o1, o2, …, oT are the actual inter-event times 
-  ot: # days between earthquakes t-1 and t  

  given qt = si, ot follows an exponential distribution with 
mean θi s.t. θ1 < θ2 < θ3 



earthquake example  
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earthquake: forecasting problem   

Given an HMM with parameters (A, θ1, θ2, θ3, Π), and the 
observations up to the present, find the forecast density: 

p(ot+1 = x|o1o2 . . . ot,λ)

=
3�

i=1

p(ot+1 = x, qt+1 = si|o1o2 . . . ot,λ)

=
3�

i=1

p(ot+1 = x|qt+1 = si, o1 . . . ot,λ) · p(qt+1 = si|o1 . . . ot,λ)

=
3�

i=1

1
θi

e−
x
θi · p(qt+1 = si|o1 . . . ot,λ)

=
3�

i=1

1
θi

e−
x
θi ·

�3
j=1 αt(j) · aji
�3

j=1 αt(j)
=

3�

i=1

1
θi

e−
x
θi · p(qt+1 = si, o1 . . . ot|λ)

p(o1 . . . ot|λ)



earthquake: forecasting problem  
P (ot+1 ≤ x|o1o2 . . . ot,λ)

=
3�

i=1

(1− e−
x
θi ) ·

�3
j=1 αt(j) · aji
�3

j=1 αt(j)



earthquake: the results  

  θ1 = 1.3, θ2 = 17.42, θ3 = 27,92 
  1226 forecasts were made to find the probability of 

another earthquake within 7 days  
  proportion of times an earthquake did actually occur 

within 7 days: 

[.28, .32) [.32, .36) [.36, .50) [.50, 1] 
proportion .292 .300 .421 .625 



classification 

  set of HMMs, each one modeling the sequences 
belonging to one class  

arg max
i

P (λi|O) =
P (O|λi)P (λi)�
j P (O|λj)P (λj)



numerical issues  

  scaling α and β 
-  for large t, αt(i) computation will exceed the precision range 

(even in double precision)  
  smoothing  
-  symbol vm that does not appear in the training sequence will 

make bj(m) = 0 

  imbalance between emission and transition probabilities 
-  bj(m) << aij  
-  P(O|λ) becomes mostly influenced by bj(m) 



HMM for Hot Topic Detection 
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user state mining for games   
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automatic composition of Mozart style music  
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