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latent Dirichlet allocation (LDA)  

�  generative probabilistic model for collections of discrete 
data  
-  3-level hierarchical Bayesian model  

�  documents are represented as random mixtures over latent 
topics  
-  each topic is characterized by a distribution over words 
-  documents can be associated with multiple topics   
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definitions 

�  word 
-  an item from a vocabulary 
-  indexed by {1, …, V} 
-  v-th word: represented as V-vector w s.t. wv = 1 and wu = 0 for  

�  document 
-  sequence of N words  
-  denoted by  
-  wn: n-th word in the sequence  

�  corpus 
-  collection of M documents 
-  denoted by  

u �= v

w = (w1, w2, . . . , wN )

D = {w1, . . . ,wM}
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generative process for a document  

1.  choose 
2.  choose 
3.  for each of the N words wn: 
①  choose a topic 
②  choose a word wn from                     , a multinomial probability 

conditioned on the topic zn     

N ∼ Poisson(ξ)
θ ∼ Dir(α)

zn ∼ Multinomial(θ)
p(wn|zn,β)
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assumptions 

�  dimension of topic variable z: k  
-  = dimension of Dirichlet distribution 

�  parameter matrix for word probabilities: 
-  size:  

�  k dimensional Dirichlet rv   
-  can take values in the (k-1)-simplex 

-    is a k-vector with components  
-         is the Gamma function 
-  note: k-vector    lies in the (k-1)-simplex if   

β

k × V
βij = p(wj = 1|zi = 1)

θ

θ θ ≥ 0,
k�

i=1

θi = 1

p(θ|α) =
Γ(

�k
i=1 αi)�k

i=1 Γ(αi)
θα1−1
1 · · · θαk−1

k

α αi > 0
Γ(x)
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graphical model representation  
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joint distribution  

p(θ, z,w|α, β) = p(θ|α)
N�

n=1

p(zn|θ)p(wn|zn,β)

where 

p(zn|θ) = θi for the unique i s.t. zi
n = 1
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w

�    : topic mixture  
�    : set of N topics  
�    : set of N words  

z
θ



document & corpus distributions  

p(w|α, β) =
�

p(θ|α)

�
N�

n=1

�

zn

p(zn|θ)p(wn|zn,β)

�
dθ

p(D|α, β) =
M�

d=1

�
p(θd|α)

�
Nd�

n=1

�

zdn

p(zdn|θd)p(wdn|zdn,β)

�
dθd
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p(w|θ, β) =
�

z

p(z|θ)p(w|z,β) : word distribution 



relationship with other latent variable models 

�  unigram model 
�  mixture of unigrams  
�  pLSI (probabilistic latent semantic indexing)  
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unigram model  

�  assumes a single multinomial distribution  

p(w) =
N�

n=1

p(wn)
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mixture of unigrams  

�  each document is generated by first choosing a topic z and 
then generating N words independently from the 
conditional multinomial p(w|z)  

p(w) =
�

z

p(z)
N�

n=1

p(wn|z)
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pLSI  

�  document d and word wn are conditionally independent 
given an unobserved topic z  
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p(d, wn) = p(d)
�

z

p(wn|z)p(z|d)



geometric interpretation  
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under LDA for 3 words and 4 topics  p(w|θ, β)



geometric interpretation  
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3 topics and 3 words 



inference  

�  posterior distribution of the hidden variables given a 
document  

�  intractable to compute in general =>  
-  variational approximation  
-  Laplace approximation 
-  Markov chain Monte Carlo  
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p(θ, z|w,α,β) =
p(θ, z,w|α, β)

p(w|α, β)



parameter estimation  

�  given                                  , find                that maximize 
the log likelihood of the data:   

�  intractable to compute =>  
-  variational EM procedure  
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D = {w1, . . . ,wM} α and β

l(α, β) =
M�

d=1

log p(wd|α, β)



example  

17 



example  
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Microblogs with Topic Models,” ICWSM 2010. 
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