Spring Semester, 2011 Energy Engineering 에너지공학

Basic information, unit & concept of energy

Ref. Textbook (AJ), Ch. 1. Introduction SS, Ch. 1

Definition & forms of energy

<u>Energy</u>: the capacity or capability to do work <u>Forms of energy</u>

biofuels (e.g., wood)	mass
chemical	mechanical-kinetic
electrical	mechanical-potential
gravitational	nuclear
heat (thermal)	radiation
magnetic	sound

<u>Energy conversion</u>: transformations between different forms of energy conversion efficiency \rightarrow input > output : < 100%

e.g., solar cell ~ 10% (radiant to electrical) automobile engine ~25% (chemical to thermal, thermal to mechanical) fuel cell ~60% (chemical to electrical) secondary battery ~75% (chemical to electrical, electrical to chemical)

History of energy technology

Archimedes' screw: water from river/flooded mine, grain from ship...

Runner blade (moving)

Hanging garden of Babylon (하늘정원)

Guide vane (fixed)

Waterwheels: ancient, common in Europe by 1000 AD

Fourneyron turbine (ch. 4): 1832

James Watt: reduce heat loss in the piston chamber (~80%)

James Joule: heat & mechanical energy are equivalent, energy is conserved (1840s)

Nicholas Carnot (1824): maximum possible efficiency of an ideal heat engine depends only on hot & cold temperatures between which it operates

Thermodynamics and heat energy

Heat: a form of energy

Quantity of heat (Q)

1 calorie: heat to raise 1 g of water through 1°C

1 BTU (British thermal unit): 1 pound (lb) of water through 1°F

Mechanical equivalent of heat

1 cal = 4.186 J 1 BTU = 7718 ft lb = 252 cal = 1054.7 J ~ 0.293 kWh

Ideal heat engine (heat-work converter)

 $Q_H - Q_L = W (1^{st} \text{ law of thermodynamics})$ $\eta = \text{work output / work input} = W/Q_H = 1 - Q_L/Q_H$

Efficiency

2nd law of thermodynamics: no system in a closed cycle can convert all the heat from a heat reservoir into the same amount of work

"<u>Carnot efficiency</u>" (theoretical maximum efficiency) (Carnot cycle) $\eta_{carn} = 1 - T_L/T_H$ T: absolute temperature (K)

e.g., 600°C fluid to 100°C via mechanical work converter max. efficiency = 1 - 373/873 = 57.3%

Practical heat engine: most efficient engine ~2/3 of Carnot efficiency automobile petrol engine ~25%, diesel engine ~35% Michael Faraday (early 19 centruey)

Electromagnetic induction: current is induced across a rotating copper disk between a strong magnet

→ introducing of electric lighting Joseph Swan (1860), Thomas Edison (1879)

1881, 1st world electric power station (Edison): 160 kW

- Intense rivalry between Edison's direct current system(직류) & AC system(교류) (George Westinghouse) → AC system became adopted worldwide
- 1st large-scale hydroelectric power station (1895): Niagara Falls using Fourneyron turbines
- Nuclear power station (late 1950s): more popular after Arab-Israeli War (1973). Slow down after incidents at Three-Mile Island (USA, 1979) & Chernobyl (Ukraine, 1986)

Alternating energy technologies after oil price shocks of the 1970s

Power

Power: the time rate of doing work or of expending energy

Power = energy/time = work/time

Instantaneous power	P = dW/dt
Average power	$\mathbf{P} = \mathbf{W}/\mathbf{t}$

Unit: watt (W) = J/s1 horsepower (HP) = 746 W

Power ratings of various devices & animals1018 W solar power input to earth1012 W electricity capacity in USA (2000)109 W large electric power plant107 W train105 W automobile1000 W horse100 W man/woman resting0.1~1 W Si solar cell0.01 W human heart

e.g., 5933000 BTU = 6259 MJ = 6259 MWs = 6259/3600 MWh (1.739 MWh) 1 kWh = 1000 x 60 x 60 = $3.6 x 10^6$ J ~ 3411 BTU ~ 859.6 Kcal

cf. 1 barrel = 42 US gallons ~ 0.136 tonnes ~ 159 L

Fuel equivalence: 1 tonnes oil ~ 1.5 tonnes hard coal ~ 3 tonnes lignite ~ 12000 kWh

Million tonnes of oil equivalent (1 Mtoe = 41.9 PJ) MW(mega-), GW,(giga-) TW(tera-), PW(peta-), EW(exa-): 10^{6} , 10^{9} , 10^{12} , 10^{15} , 10^{18} W

History of energy technology: Power scales

Treadwheel (AD 0) 0.2 kW Strong horse 0.7 kW Newcomen steam engine (1712) 4 kWFourneyron water turbine (1832) 30 kW Steam engine (1900) 1000 kW Wind turbine (1942) 1300 kW Boeing 747 gas turbine (1969) 60000 kW Nuclear power station (1992) $1.2 \times 10^6 \text{ kW}$ 3.9 x 10⁶ kW Coal power station (1986)

Global energy trends

1.2

4.1

5.3

1.4

6.8

Population(x 109) Power per capita (kW) Total power (kW)

- Developed countries 1992 Less developed Total
- Developed 2025 Less developed Total 8.2

- 9.0 7.5 1.1 4.5 13.5 3.8 5.3
 - 2.2 15.0 20.3

Energy stored within the fossil fuels

Fossil fuels: coal, oil-shale, petroleum, natural gas Estimates of the rates of use and the years of fossil-fuel reserves remaining: reserve/production (R/P) ratio Increased R/P ratio: new discovery

Primary fuel shares (% of total)

Oil 39.2 36.4 34.4 Gas 23.0 23.8 25.5 Coal 23.8 25.3 26.1 Nuclear 6.5 5.7 5.4 Renewables 7.6 8.9 8.7 Past Future Oil	
Gas 23.0 23.8 25.5 Coal 23.8 25.3 26.1 Nuclear 6.5 5.7 5.4 Renewables 7.6 8.9 8.7 Past Future Oil Oil	
Coal 23.8 25.3 26.1 Nuclear 6.5 5.7 5.4 Renewables 7.6 8.9 8.7 Past Future Oil Past Oil	
Nuclear 6.5 5.7 5.4 Renewables 7.6 8.9 8.7 Remaining:Future Oil	
Renewables7.6 8.9 8.7 Remaining: 250 PastFuture Oil	
Remaining: 250 Past Future Oil	
Remaining: 200 – Oil	-
Oil 40 yrs	
Gas 70 yrs	
Coal 250 yrs	-
Hubbert's peak: oil production peak $50 - Renewables$	-
at 1970s. Bell-shaped peak	

CO₂ emission

Risks associated with energy systems

Annual CO₂ emission: 8 billion tonnes (2010), 9.8 billion (2020) $56\%\uparrow\&100\%\uparrow$ than 1990 level

1998 Kyoto Protocol agreement

CO₂ emission from various sources (life cycle analysis)

	CO ₂ emission (kg/kWh)
Wood	1.5
Coal	0.8-1.05
Natural gas	0.43
Nuclear power	0.006
Photovoltaic	0.06-0.15
Hydroelectric	0.004
wind power	0.003-0.022

 CO_2 emission: oil > coal

Gases emissions and the greenhouse effect

Fig. 2.21. World greenhouse gas emissions [12]. $CH_4 = methane$; $N_2O = nitrogen oxide$; $CO_2 = carbon dioxide$; CFCs = chlorofluorocarbons.

Global warming

Energy Resources and Energy Use

Energy input to the earth

Solar radiation and annual variation

-solar constant (at atmospheric boundary): 1377 W/m² (Jan. & July 3-4% difference) -Earth radiation rate = 1377 x π x r² = 1377 x π x (6.324 x 10⁶)² = 1.73 x 10¹⁷ W -Total input radiation(W_{annual}) = 365.25 x 24 x 3600 x 1.73 x 10¹⁷ = 5.46 x 10²⁴ J -Year 2000, W_{world consumption} = 8752.4 mtoes = 8752.4 x 12 x 10⁹ kWh = = 8752.4 x 12 x 10⁹ x 3.6 x 10⁶ J = 3.781 x 10²⁰ J

-Year 2000: energy input > primary energy consumption (14,440 times)

<u>Terrestrial energy from inside the earth</u> -energy flow from the interior earth to its surface: 0.063 W/m2 -Total: 0.063 x $4\pi r^2 \sim 3.2 x 10^{13}$ W

Tidal (gravitational) input energy: 3 x 1012 W

Energy flow upon the earth from natural sources

~47% of incoming solar radiation (8.1 x 10^{16} W): absorbed by oceans, land, atmosphere

~23% (4 x 10¹⁶ W): hydrological cycle (evaporation, rivers...)

~0.21% (3.7 x 10^{14} W): ocean and atmospheric convection and circulations \rightarrow wind, wave, ocean current motion

~0.0023% (4 x 10¹³ W): photosynthesis

(cf. annual energy of photosynthesis ~ world commercial energy consumption (~10²⁰ J))

Energy outflow from the Earth

~30% of the incoming solar radiation (5.2 x 10^{16} W): reflected back into space in the form of short-wave radiation ~47% (8.1 x 10^{16} W): converted to low-grade heat & then re-radiated as long-wavelength radiation

Fig. 2.1. Rate of energy flow diagram for the earth [1].

Units and dimensional analysis