Electrical Systems I

Development of Integrated Vehicle Control System of "Fine-X" Which Realized Freer Movement.

Mitsuhisa Shida, Akira Matsui, Masayoshi Hoshino Integrated System Engineering Div.

Toyota Motor Corporation.

TOYOTA Freer Movement Control System

4Wheel independent drive 4wheel independent steering 4wheel independent braking By 'wheel-in-motor'

TOYOTA Freer Movement Control System

TOYOTA Freer Movement Control System

TOYOTA Freer Movement Control System for Auto-Parking

TOYOTA Freer Movement Control System for Auto-Parking

Autonomous Robot Vehicle

Autonomous Robot Vehicle

FINAL RENDERING

DESIGNDREAM

견마형 로봇 차량의 주행 제어 알고리즘

6WD6WS Vehicle

BLDC Wheel-in-Motor of 6WD6WS Vehicle

Configuration of 6WD6WS Vehicle

Sectional View of BLDC Motor

Video of 6WD/6WS Vehicle equipped with Wheelin Motor

Parallel & Circular Turning

평행_제자리선회.wmv

Remote Control

Remote_general_recent.avi

Autonomous Driving

Autonomous_path_tracking.avi

Hybrid and Electrical Vehicles

Advantages

- Minimized both costs and technical issues
- Even weight distribution
- Simplest packaging
- Improved vehicle chassis control

Wheel Wheel Engine TM FD Motor Wheel Wheel

Targets

- To maintain or improve on Euro 4 emissions
- To achieve a 30% overall reduction in CO₂ tail pipe emissions of the baseline vehicle operating with the same fuel, over the NEDC cycle as per EC/98/69 and EC/70/220 for vehicles less than 3500kg.
- Equivalent fuel economy ≥ 60mpg=25.4kpl (50% improvement in mpg on baseline vehicle)

Hybrid and Electrical Vehicles

Skoda Fabia (Compact SUV)

Hybrid 4WD Vehicle Configuration

Developed by MIRA (Skoda Fabia)

35 KW / 250 Nm Peak Torque

A total weight of around 150kg: motors = 2x45kg, inverters=2x15kg, structure=30kg 3:1 reduction belt drive

→ Peak torque = 750 Nm

4 WD In-wheel Electric Vehicle

Michelin Active Wheel with in-wheel motor, suspension and brake system

Electric vehicle equipped with Front two in-wheel motors

Electric vehicle equipped with four in-wheel motors

4 WD Electric Vehicle Combinations

Front/rear Two In-line Motors

• Front In-line Motor/Rear In-wheel motors

Four In-wheel Motors

Front Engine Drive/Rear Two In-wheel Motors

6WD Skid Steering Vehicle

Crusher APD

Crusher Unmanned Ground Vehicle
Testing Highlights

UNCLASSIFIED: Dist A.
Approved for public release

Crusher highlights.wmv

Autonomous Platform Demonstrator
(APD) Overview.wmv

8WD/4WS Vehicle Equipped with 8 In-wheel Motor AHED

AHED_8x8_vehicle_vedio.wmv

Basic Elements

- Active Elements: OP Amp etc.
 (Has transistors/amplifiers that require active source of power to work)
- Passive Elements: Inductor, Resistor, Capacitor etc. (Simply respond to an applied voltage or current.)
- Current: the rate of flow of charge
- Charge: (electric charge) the integral of current with respect to time [C]

$$i = \frac{dq}{dt}$$
 [ampere] = $\frac{[\text{coulomb}]}{[\text{sec}]}$

• Voltage: electromotive force needed to produce a flow of current in a wire [V] Change in energy as the charge is passed through a component.

$$[V] = [J/C]$$

Power: product of voltage and current

$$[W] = [J/Sec]$$

Basic Elements - Resistance

•Resistance: the change in voltage required to make a unit change in current.

Analogous to → Damping Element

$$R = \frac{Change \ in \ voltage}{Change \ in \ current} = \frac{[V]}{[A]} = [Ohm(\Omega)]$$

• Resistor

$$V_R = R \cdot i_R$$
 $R = \frac{V_R}{i_R}$

Basic Elements - Capacitance

•Capacitance: the change in the quantity of electric charge required to make a unit change in voltage.

Analogous to → Spring Element (Stores Potential Energy)

$$C = \frac{[Coulomb]}{[V]} = [Farad(F)]$$

• Capacitor: two conductor separated by non-conducting medium.

$$i = dq/dt, \quad e_c = q/C \quad \to i = C \frac{de_c}{dt}, \quad de_c = \frac{1}{C} i dt$$

$$\therefore e_c(t) = \frac{1}{C} \int_0^t i dt + e_c(0)$$

$$e_c \qquad \downarrow c \qquad \downarrow i(t)$$

$$I(s) = CsV(s), \quad V(s) = \frac{1}{Cs} I(s)$$

Basic Elements - Inductance

• Inductance: An electromotive force induced in a circuit, if the circuit lies in a time -varying magnetic field.

Analogous to → Inertia Element (Stores Kinetic Energy)

$$L = \frac{[V]}{[A/\sec]} = [Henry(H)]$$

• Inductor:
$$e_L = L \frac{di_L}{dt}$$
 $V(s) = LsI(s)$

$$\therefore i_L(t) = \frac{1}{L} \int_0^t e_L dt + i_L(0)$$
 $I(s) = \frac{1}{Ls} V(s)$

i(t)

Series & Parallel Resistance

• Series Resistance

$$e_1 = iR_1, \quad e_2 = iR_2$$

$$e = e_1 + e_2 = i(R_1 + R_2)$$

Series/Parallel Capacitance?

Parallel Resistance

$$-e_1 + e_2 = 0 \implies e_1 = e_2$$

$$i = i_1 + i_2 = \frac{e_1}{R_1} + \frac{e_2}{R_2} = e(\frac{1}{R_1} + \frac{1}{R_2}) = \frac{e}{R}$$

Kirchhoff's laws

1. The algebraic sum of the potential difference around a closed path equals zero.

$$-\upsilon_1-\upsilon_2+E=0$$

2. The algebraic sum of the currents entering (or leaving) a nod is equal to zero.

$$i_1 - i_2 - i_3 = 0$$

Current in = Current out

$$\rightarrow \quad i_1 = i_2 + i_3$$

Mathematical Modeling of Electrical Systems

The switch S is closed at t=0

At the instant that switch S is closed, the current i(0) = 0

Laplace Transformation : $L[sI(s) - i(0)] + RI(s) = \frac{E}{s}$

$$i(0) = 0 \longrightarrow (Ls + R)I(s) = \frac{E}{s}$$

$$I(s) = \frac{E}{s(Ls+R)} = \frac{E}{R} \left[\frac{1}{s} - \frac{1}{s + (R/L)} \right] \qquad 0.632 \frac{E}{R}$$

$$\therefore i(t) = \frac{E}{R} \left[1 - e^{-(R/L)t} \right]$$

Examples of Circuit Analysis

ex) R-L-C Circuit

$$-V_{L} - V_{R} - V_{C} + e(t) = 0$$

$$V_{L} = L \frac{di}{dt}, \quad V_{R} = iR, \quad V_{c} = \frac{1}{C} \int i \, dt + V_{C}(t)$$

$$\frac{dV_{c}}{dt} = \frac{1}{C} i$$

$$L \frac{di}{dt} + Ri = e(t) - V_{C}(t)$$

Laplace Transform,
$$(Ls + R + \frac{1}{Cs})I(s) = E(s)$$

$$\frac{I(s)}{E(s)} = \frac{1}{(Ls + R + \frac{1}{Cs})}$$

$$V_o(s) = \frac{\frac{1}{Cs}}{(Ls + R + \frac{1}{Cs})} E(s) = \frac{1}{(LCs^2 + RCs + 1)} E(s)$$

Step Response?

 $V_o(s) = \frac{1}{C_s}I(s)$

Complex Impedance

$$I(s) = \frac{E(s)}{Z(s)}$$

$$E(s) = Z(s)I(s)$$

Z(s): complex impedance

Complex Impedance

The complex impedance Z(s) of a two-terminal circuit is: the ratio of E(s) to I(s)

$$Z(s) = \frac{E(s)}{I(s)}, \qquad E(s) = Z(s)I(s)$$

$$E_1(s) = Z_1(s)I(s),$$
 $E_2(s) = Z_2(s)I(s)$

Direct derivation of transfer function, without writing differential equations first.

$$E(s) = E_1(s) + E_2(s)$$

$$= Z_1(s)I(s) + Z_2(s)I(s)$$

$$= (Z_1(s) + Z_2(s))I(s)$$

Complex Impedance

$$R$$
 R
 e

$$e = Ri$$
, $E(s) = RI(s)$

$$Z(s) = R$$

$$\frac{de}{dt} = \frac{1}{C}i$$

$$sE(s) = \frac{1}{C}I(s) \rightarrow E(s) = \frac{1}{Cs}I(s)$$

$$\therefore Z(s) = \frac{1}{Cs}$$

Inductance :
$$\underbrace{ \stackrel{i}{\longrightarrow} \stackrel{L}{\longleftarrow} \stackrel{L}{\longrightarrow} }_{e}$$

$$e = L\frac{di}{dt}, \qquad E(s) = Ls\,I(s)$$

$$\therefore Z(s) = Ls$$

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance $Z(s) = V(s)/I(s)$	Admittance $Y(s) = I(s)/V(s)$
— (— Capacitor	$v(t) = \frac{1}{C} \int_0^1 i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-\\\\- Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^1 v(\tau) \ d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Component	Force-velocity	Force-displacement	Impedence $Z_M(s) = F(s)/X(s)$
Spring $x(t)$ $f(t)$ K	$f(t) = K \int_0^t v(\tau) d\tau$	f(t) = Kx(t)	K
Viscous damper $x(t)$ $f(t)$	$f(t) = f_{\nu}\nu(t)$	$f(t) = f_{\nu} \frac{dx(t)}{dt}$	$f_{v}s$
Mass $x(t)$ $f(t)$	$f(t) = M \frac{dv(t)}{dt}$	$f(t) = M \frac{d^2 x(t)}{dt^2}$	Ms^2

Examples of Complex Impedance

Series Impedances

ex1)
$$\stackrel{i}{\longrightarrow} \stackrel{+}{\nearrow} \stackrel{R_{-}}{\longrightarrow} \stackrel{+}{\longrightarrow} \stackrel{L_{-}}{\longrightarrow} \stackrel{+}{\longrightarrow} \stackrel{C_{-}}{\longrightarrow}$$

$$e_{R} = iR, \quad e_{L} = L \frac{di}{dt}, \quad \frac{de_{C}}{dt} = \frac{1}{C}i$$

$$e = e_{R} + e_{L} + e_{C}$$

$$E(s) = E_{R}(s) + E_{L}(s) + E_{C}(s)$$

$$E(s) = E_R(s) + E_L(s) + E_C(s)$$

$$= RI(s) + LsI(s) + \frac{1}{cS}I(s)$$

$$= \left(R + Ls + \frac{1}{Cs}\right)I(s)$$

$$\therefore Z(s) = R + Ls + \frac{1}{Cs} = Z_R(s) + Z_L(s) + Z_C(s)$$

Examples of Complex Impedance

Parallel Impedances

$$i = i_L + i_R + i_C$$
 $E(s) = Z(s)I(s)$

$$I(s) = I_{L}(s) + I_{R}(s) + I_{C}(s)$$

$$= \frac{E(s)}{Z_{L}(s)} + \frac{E(s)}{Z_{R}(s)} + \frac{E(s)}{Z_{C}(s)}$$

$$= \left(\frac{1}{Z_{L}(s)} + \frac{1}{Z_{R}(s)} + \frac{1}{Z_{C}(s)}\right) E(s)$$

$$= \frac{1}{Z(s)} E(s)$$

$$\therefore Z(s) = \frac{1}{\frac{1}{Z_R(s)} + \frac{1}{Z_L(s)} + \frac{1}{Z_C(s)}} = \frac{1}{\frac{1}{Ls} + \frac{1}{R} + Cs}$$

Examples of Complex Impedance

Deriving transfer functions of Electrical circuits by the use of complex impedances.

$$E_i(s) = Z_1(s)I(s) + Z_2(s)I(s), \qquad E_o(s) = Z_2(s)I(s)$$

$$\begin{array}{c|c}
\hline
Z_{2}(s) & E_{0} \\
\hline
E_{0}(s) & E_{0}(s) \\
\hline
E_{i}(s) & Z_{1}(s) + Z_{2}(s)
\end{array}$$

$$\frac{E_o(s)}{E_i(s)} = \frac{Z_2(s)}{Z_1(s) + Z_2(s)}$$

$$Z_1(s) = L s + R, \quad Z_2(s) = \frac{1}{Cs}$$

$$\frac{E_o(s)}{E_i(s)} = \frac{\frac{1}{Cs}}{Ls + R + \frac{1}{Cs}} = \frac{1}{LCs^2 + RCs + 1}$$

Transfer Functions of Cascaded Elements

Consider two RC circuits

$$\frac{E_{o1}(s)}{E_{i1}(s)} = \frac{1}{R_1 C_1 s + 1} = G_1(s)$$

$$\frac{E_{o2}(s)}{E_{i2}(s)} = \frac{1}{R_2 C_2 s + 1} = G_2(s)$$

$$\frac{E_{o2}(s)}{E_{i1}(s)} = ?$$

Transfer Functions of Cascaded Elements Loading Effect

$$E_{i}(s) = \frac{1}{C_{1}s} \left[I_{1}(s) - I_{2}(s) \right] + R_{1}I_{1}(s), \quad \frac{1}{C_{1}s} \left[I_{2}(s) - I_{1}(s) \right] + R_{2}I_{2}(s) + \frac{1}{C_{2}s}I_{2}(s) = 0, \quad E_{o}(s) = \frac{1}{C_{2}s}I_{2}(s)$$

$$T.F : \frac{E_o(s)}{E_i(s)} = \frac{1}{(R_1C_1s+1)(R_2C_2s+1) + R_1C_2s} \neq \frac{1}{(R_1C_1s+1)(R_2C_2s+1)}$$

$$\therefore \frac{E_o(s)}{E_i(s)} \neq \frac{E_{o1}(s)}{E_{i1}(s)} \cdot \frac{E_{o2}(s)}{E_{i2}(s)} \longrightarrow \text{Loading effect}$$

Transfer Functions of Cascade Elements

Input Impedance, Output Impedance

$$G(s) = \frac{X_3(s)}{X_1(s)} = \frac{X_2(s)}{X_1(s)} \cdot \frac{X_3(s)}{X_2(s)} = G_1(s)G_2(s)$$

If the "input Impedance" of the second element is infinite, the output of the first element is not affected by connecting it to the second element.

Then,
$$G(s) = G_1(s)G_2(s)$$

Transfer Functions of Cascade Elements

Isolating Amplifier

This amplifier circuit has to

- Not affect the behavior of the source circuit.
- 2. Not be affected by the loading circuit.

$$V_i(s) = \frac{Z_i(s)}{Z_i(s) + Z_s(s)} V_s(s) \approx V_s(s)$$

This isolating amplifier circuit has to have

- 1. a very high input impedance,
- 2. very low output impedance

$$V_L(s) = Z_L(s)I_o(s) = \frac{Z_L(s)}{Z_o(s) + Z_L(s)}GV_o(s) \approx GV_o(s)$$

State-Space Mathematical Modeling of Electrical Systems

By Kirchhoff's voltage law

$$L\frac{di}{dt} + Ri + v_c = e_i, \quad \frac{dv_c}{dt} = \frac{1}{C}i, \quad e_o = v_c$$

Assume, initial condition is 0,

$$LsI(s) + RI(s) + V_c(s) = E_i(s), \qquad V_c(s) = \frac{1}{Cs}I(s)$$

$$T.F: \frac{E_o(s)}{E_i(s)} = \frac{1}{LCs^2 + RCs + 1}$$

State-Space Mathematical Modeling of Electrical Systems

Differential equation :
$$\ddot{e}_o + \frac{R}{L}\dot{e}_o + \frac{1}{LC}e_o = \frac{1}{LC}e_i$$

$$\ddot{e}_o + \frac{R}{L}\dot{e}_o + \frac{1}{LC}e_o = \frac{1}{LC}e_i$$

State variable :
$$x_1 = e_o$$
, $x_2 = \dot{e}_o$

Input and output :
$$u = e_i$$
, $y = e_o = x_1$

State-space equation:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{LC} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{LC} \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$