Electrical Systems I

Development of Integrated Vehicle Control System of "Fine-X" Which Realized Freer Movement.

Mitsuhisa Shida, Akira Matsui, Masayoshi Hoshino Integrated System Engineering Div. Toyota Motor Corporation.

TOYOTA Freer Movement Control System

4Wheel independent drive
4 wheel independent steering 4 wheel independent braking
By 'wheel-in-motor'

TOYOTA Freer Movement Control System

TOYOTA Freer Movement Control System

TOYOTA Freer Movement Control System for Auto-Parking

TOYOTA Freer Movement Control System for Auto-Parking

Autonomous Robot Vehicle

Autonomous Robot Vehicle

FINAL RENDERING

desicndream

견마형 로봇 차량의 주행 제어 알고리즘

6WD6WS Vehicle

6WD6WS Vehicle

BLDC Wheel-in-Motor of 6WD6WS Vehicle

Configuration of 6WD6WS Vehicle

Sectional View of BLDC Motor

Video of 6WD/6WS Vehicle equipped with Wheelin Motor

평행_제자리선회.wmv

Remote Control

Remote_general_recent.avi

Autonomous Driving

Autonomous_path_tracking.avi

Hybrid and Electrical Vehicles

- Advantages

- Minimized both costs and technical issues
- Even weight distribution
- Simplest packaging
- Improved vehicle chassis control

- Targets

- To maintain or improve on Euro 4 emissions
- To achieve a 30\%overall reduction in CO_{2} tail pipe emissions of the baseline vehicle operating with the same fuel, over the NEDC cycle as per EC/98/69 and EC/70/220 for vehicles less than 3500kg.
- Equivalent fuel economy $\geq 60 \mathrm{mpg}=\mathbf{2 5 . 4 \mathrm { kpl }}$ (50\%improvement in mpg on baseline vehicle)

Hybrid and Electrical Vehicles

Skoda Fabia (Compact SUV)

Hybrid 4WD Vehicle Configuration

Developed by MRA (Skoda Fabia)
35 KW / 250 Nm Peak Torque
1400 cc 100 HP ICE

A total weight of around 150kg motors $=\mathbf{2 \times 4 5 k g}$ inverters $=2 \times 15 \mathrm{~kg}$, structure $=30 \mathrm{~kg}$

3:1 reduction belt drive
\Rightarrow Peak torque $=750 \mathrm{Nm}$

4 WD In-wheel Electric Vehicle

Michelin Active Wheel with in-wheel motor, suspension and brake system

Electric vehicle equipped with Front two in-wheel motors

Electric vehicle equipped with four in-wheel motors

4 WD Electric Vehicle Combinations

- Front/rear Two In-line Motors

- Four In-wheel Motors

- Front In-line Motor/Rear In-wheel motors

- Front Engine Drive/Rear Two In-wheel Motors

6WD Skid Steering Vehicle

Crusher

Crusher Unmanned Ground Vehicle

Tesing Highlights

APD

Autonomous Platform Demonstrator (APD) Overview.wmv

8WD/4WS Vehicle Equipped with 8 In-wheel Motor AHED

AHED_8x8_vehicle_vedio.wmv

Basic Elements

- Active Elements: OP Amp etc.
(Has transistors/amplifiers that require active source of power to work)
- Passive Elements: Inductor, Resistor, Capacitor etc.
(Simply respond to an applied voltage or current.)
- Current : the rate of flow of charge
- Charge : (electric charge) the integral of current with respect to time [C]

$$
i=\frac{d q}{d t} \quad[\text { ampere }]=\frac{[\text { coulomb }]}{[\mathrm{sec}]}
$$

- Voltage : electromotive force needed to produce a flow of current in a wire [V]

Change in energy as the charge is passed through a component.

$$
[\mathrm{V}]=[\mathrm{J} / \mathrm{C}]
$$

- Power: product of voltage and current

$$
[\mathrm{W}]=[\mathrm{J} / \mathrm{Sec}]
$$

Basic Elements - Resistance

-Resistance : the change in voltage required to make a unit change in current.

$$
\begin{array}{r}
\text { Analogous to } \rightarrow \text { Damping Element } \\
R=\frac{\text { Change in voltage }}{\text { Change in current }}=\frac{[V]}{[A]}=[\operatorname{Ohm}(\Omega)]
\end{array}
$$

- Resistor

$$
V_{R}=R \cdot i_{R} \quad R=\frac{V_{R}}{i_{R}}
$$

Basic Elements - Capacitance

-Capacitance: the change in the quantity of electric charge required to make a unit change in voltage.

Analogous to \rightarrow Spring Element (Stores Potential Energy)

$$
C=\frac{[\text { Coulomb }]}{[V]}=[\text { Farad }(F)]
$$

- Capacitor: two conductor separated by non-conducting medium.

$$
\begin{aligned}
& \quad i=d q / d t, \quad e_{c}=q / C \rightarrow i=C \frac{d e_{c}}{d t}, \quad d e_{c}=\frac{1}{C} i d t \\
& \therefore e_{c}(t)=\frac{1}{C} \int_{0}^{t} i d t+e_{c}(0) \\
& \quad I(s)=C s V(s), \quad V(s)=\frac{1}{C s} I(s)
\end{aligned}
$$

Basic Elements - Inductance

- Inductance: An electromotive force induced in a circuit, if the circuit lies in a time -varying magnetic field.

Analogous to \rightarrow Inertia Element (Stores Kinetic Energy)

$$
L=\frac{[V]}{[A / \mathrm{sec}]}=[\operatorname{Henry}(H)]
$$

- Inductor: $\quad e_{L}=L \frac{d i_{L}}{d t}$

$$
V(s)=\operatorname{LsI}(s)
$$

$$
\therefore i_{L}(t)=\frac{1}{L} \int_{0}^{t} e_{L} d t+i_{L}(0) \quad I(s)=\frac{1}{L s} V(s)
$$

$i(t)$

Series \& Parallel Resistance

- Series Resistance

- Parallel Resistance

Series/Parallel Capacitance?

Kirchhoff's laws

1. The algebraic sum of the potential difference around a closed path equals zero.

$$
-v_{1}-v_{2}+E=0
$$

2. The algebraic sum of the currents entering (or leaving) a nod is equal to zero.

$$
\begin{aligned}
& i_{1}-i_{2}-i_{3}=0 \\
& \text { Current in }=\text { Current out } \\
& \rightarrow \quad i_{1}=i_{2}+i_{3}
\end{aligned}
$$

Mathematical Modeling of Electrical Systems

The switch S is closed at $\mathrm{t}=0$
$E-L \frac{d i}{d t}-R i=0 \quad$ or $\quad L \frac{d i}{d t}+R i=E$
At the instant that switch S is closed, the current $\quad i(0)=0$

Laplace Transformation : $\quad L[s I(s)-i(0)]+R I(s)=\frac{E}{s}$
$i(0)=0 \rightarrow(L s+R) I(s)=\frac{E}{s}$
$I(s)=\frac{E}{s(L s+R)}=\frac{E}{R}\left[\frac{1}{s}-\frac{1}{s+(R / L)}\right]$
$\therefore i(t)=\frac{E}{R}\left[1-e^{-(R / L) t}\right]$

Examples of Circuit Analysis

ex) R-L-C Circuit

$$
\begin{aligned}
& -V_{L}-V_{R}-V_{C}+e(t)=0 \\
& V_{L}=L \frac{d i}{d t}, \quad V_{R}=i R, \quad V_{c}=\frac{1}{C} \int i d t+V_{C}(t) \\
& \frac{d V_{c}}{d t}=\frac{1}{C} i \\
& L \frac{d i}{d t}+R i=e(t)-V_{C}(t)
\end{aligned}
$$

Laplace Transform, $\quad\left(L s+R+\frac{1}{C s}\right) I(s)=E(s)$

$$
\frac{I(s)}{E(s)}=\frac{1}{\left(L s+R+\frac{1}{C s}\right)}
$$

$V_{o}(s)=\frac{1}{C s} I(s)$
$V_{o}(s)=\frac{\frac{1}{C s}}{\left(L s+R+\frac{1}{C s}\right)} E(s)=\frac{1}{\left(L C s^{2}+R C s+1\right)} E(s)$
Step Response?

Complex Impedance

Z(s) : complex impedance

Complex Impedance

The complex impedance $\mathrm{Z}(\mathrm{s})$ of a two-terminal circuit is : the ratio of $\mathrm{E}(\mathrm{s})$ to $\mathrm{I}(\mathrm{s})$

Direct derivation of transfer function,
without writing differential equations first.

$$
\begin{aligned}
E(s) & =E_{1}(s)+E_{2}(s) \\
& =Z_{1}(s) I(s)+Z_{2}(s) I(s) \\
& =\left(Z_{1}(s)+Z_{2}(s)\right) I(s)
\end{aligned}
$$

Complex Impedance

$$
Z(s)=R
$$

e

$$
e=R i, \quad E(s)=R I(s)
$$

$$
\frac{d e}{d t}=\frac{1}{C} i
$$

$$
s E(s)=\frac{1}{C} I(s) \rightarrow E(s)=\frac{1}{C s} I(s)
$$

$$
\therefore Z(s)=\frac{1}{C s}
$$

Inductance :

$$
e=L \frac{d i}{d t}, \quad E(s)=L s I(s)
$$

$$
\therefore Z(s)=L s
$$

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance $Z(s)=V(s) / I(s)$	Admittance $Y(s)=I(s) / V(s)$
$H($ Capacitor	$v(t)=\frac{1}{C} \int_{0}^{1} i(\tau) d \tau$	$i(t)=C \frac{d v(t)}{d t}$	$v(t)=\frac{1}{C} q(t)$	$\frac{1}{C s}$	Cs
Resistor	$v(t)=R i(t)$	$i(t)=\frac{1}{R} v(t)$	$v(t)=R \frac{d q(t)}{d t}$	R	$\frac{1}{R}=G$
	$v(t)=L \frac{d i(t)}{d t}$	$i(t)=\frac{1}{L} \int_{0}^{1} v(\tau) d \tau$	$v(t)=L \frac{d^{2} q(t)}{d t^{2}}$	Ls	$\frac{1}{L s}$

$\begin{array}{ccc} & & \text { Impedence } \\ \text { Force-velocity } & \text { Force-displacement } & Z_{M}(s)=F(s) / X(s)\end{array}$
$f(t)=K \int_{0}^{t} v(\tau) d \tau$

$$
f(t)=K x(t)
$$

K

Viscous damper

$$
\begin{equation*}
f(t)=f_{v} v(t) \tag{v}
\end{equation*}
$$

$$
f(t)=f_{v} \frac{d x(t)}{d t}
$$

$$
f(t)=M \frac{d v(t)}{d t}
$$

$$
f(t)=M \frac{d^{2} x(t)}{d t^{2}}
$$

$M s^{2}$

Examples of Complex Impedance

Series Impedances

ex1)

$$
e_{R}=i R, \quad e_{L}=L \frac{d i}{d t}, \quad \frac{d e_{C}}{d t}=\frac{1}{C} i
$$

$$
e=e_{R}+e_{L}+e_{C}
$$

$$
E(s)=E_{R}(s)+E_{L}(s)+E_{C}(s)
$$

$$
=R I(s)+L s I(s)+\frac{1}{c S} I(s)
$$

$$
=\left(R+L s+\frac{1}{C s}\right) I(s)
$$

$\therefore Z(s)=R+L s+\frac{1}{C s}=Z_{R}(s)+Z_{L}(s)+Z_{C}(s)$

Examples of Complex Impedance

Parallel Impedances

ex2)

$$
\begin{gathered}
i=i_{L}+i_{R}+i_{C} \quad E(s)=Z(s) I(s) \\
I(s)=I_{L}(s)+I_{R}(s)+I_{C}(s) \\
=\frac{E(s)}{Z_{L}(s)}+\frac{E(s)}{Z_{R}(s)}+\frac{E(s)}{Z_{C}(s)} \\
=\left(\frac{1}{Z_{L}(s)}+\frac{1}{Z_{R}(s)}+\frac{1}{Z_{C}(s)}\right) E(s) \\
=\frac{1}{Z(s)} E(s) \\
\therefore Z(s)=\frac{\frac{1}{Z_{R}(s)}+\frac{1}{Z_{L}(s)}+\frac{1}{Z_{C}(s)}}{}=\frac{1}{\frac{1}{L s}+\frac{1}{R}+C s}
\end{gathered}
$$

Examples of Complex Impedance

Deriving transfer functions of Electrical circuits by the use of complex impedances.

$$
\begin{aligned}
& E_{i}(s)=Z_{1}(s) I(s)+Z_{2}(s) I(s), \quad E_{o}(s)=Z_{2}(s) I(s) \\
& \frac{E_{o}(s)}{E_{i}(s)}=\frac{Z_{2}(s)}{Z_{1}(s)+Z_{2}(s)}
\end{aligned}
$$

ex)

$$
\begin{aligned}
& \frac{E_{o}(s)}{E_{i}(s)}=\frac{Z_{2}(s)}{Z_{1}(s)+Z_{2}(s)} \\
& Z_{1}(s)=L s+R, \quad Z_{2}(s)=\frac{1}{C s} \\
& \frac{E_{o}(s)}{E_{i}(s)}=\frac{\frac{1}{C s}}{L s+R+\frac{1}{C s}}=\frac{1}{L C s^{2}+R C s+1}
\end{aligned}
$$

Transfer Functions of Cascaded Elements

Consider two RC circuits

$$
\frac{E_{01}(s)}{E_{i 1}(s)}=\frac{1}{R_{1} C_{1} s+1}=G_{1}(s)
$$

$$
\frac{E_{o 2}(s)}{E_{i 2}(s)}=\frac{1}{R_{2} C_{2} s+1}=G_{2}(s)
$$

$$
\frac{E_{02}(s)}{E_{i 1}(s)}=\text { ? }
$$

Transfer Functions of Cascaded Elements Loading Effect

$$
E_{i}(s)=\frac{1}{C_{1} s}\left[I_{1}(s)-I_{2}(s)\right]+R_{1} I_{1}(s), \quad \frac{1}{C_{1} s}\left[I_{2}(s)-I_{1}(s)\right]+R_{2} I_{2}(s)+\frac{1}{C_{2} s} I_{2}(s)=0, \quad E_{o}(s)=\frac{1}{C_{2} s} I_{2}(s)
$$

$$
\begin{aligned}
T . F: \frac{E_{o}(s)}{E_{i}(s)} & =\frac{1}{\left(R_{1} C_{1} s+1\right)\left(R_{2} C_{2} s+1\right)+R_{1} C_{2} s} \neq \frac{1}{\left(R_{1} C_{1} s+1\right)\left(R_{2} C_{2} s+1\right)} \\
& \therefore \frac{E_{o}(s)}{E_{i}(s)} \neq \frac{E_{o 1}(s)}{E_{i 1}(s)} \cdot \frac{E_{o 2}(s)}{E_{i 2}(s)} \longrightarrow \text { Loading effect }
\end{aligned}
$$

Transfer Functions of Cascade Elements

Input Impedance, Output Impedance

If the "input Impedance" of the second element is infinite, the output of the first
element is not affected by connecting it to the second element.

Then, $\quad G(s)=G_{1}(s) G_{2}(s)$

Transfer Functions of Cascade Elements

This amplifier circuit has to

1. Not affect the behavior of the source circuit.
2. Not be affected by the loading circuit.

$$
V_{i}(s)=\frac{Z_{i}(s)}{Z_{i}(s)+Z_{s}(s)} V_{s}(s) \approx V_{s}(s)
$$

This isolating amplifier circuit has to have

1. a very high input impedance,
2. very low output impedance

$$
V_{L}(s)=Z_{L}(s) I_{o}(s)=\frac{Z_{L}(s)}{Z_{o}(s)+Z_{L}(s)} G V_{o}(s) \approx G V_{o}(s)
$$

State-Space Mathematical Modeling of Electrical Systems

By Kirchhoff's voltage law

$$
L \frac{d i}{d t}+R i+v_{c}=e_{i}, \quad \frac{d v_{c}}{d t}=\frac{1}{C} i, \quad e_{o}=v_{c}
$$

Assume, initial condition is 0 ,

$$
\begin{aligned}
& L s I(s)+R I(s)+V_{c}(s)=E_{i}(s), \quad V_{c}(s)=\frac{1}{C s} I(s) \\
& T . F: \frac{E_{o}(s)}{E_{i}(s)}=\frac{1}{L C s^{2}+R C s+1}
\end{aligned}
$$

State-Space Mathematical Modeling of Electrical Systems

Differential equation : $\quad \ddot{e}_{o}+\frac{R}{L} \dot{e}_{o}+\frac{1}{L C} e_{o}=\frac{1}{L C} e_{i}$

State variable : $\quad x_{1}=e_{o}, \quad x_{2}=\dot{e}_{o}$

Input and output : $\quad u=e_{i}, \quad y=e_{o}=x_{1}$

State-space equation :

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{L C} & -\frac{R}{L}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{L C}
\end{array}\right] u, \quad y=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

