Frequency Domain Analysis III

Frequency Response

Seoul National Univ. School of Mechanical and Aerospace Engineering

Frequency Response and Damping ratio

Seoul National Univ. School of Mechanical and Aerospace Engineering

Spring 2011

Frequency Response and Pole Zero Plot

$$H(j\omega) = K \frac{(j\omega - z_1)(j\omega - z_2)\dots(j\omega - z_{m-1})(j\omega - z_m)}{(j\omega - p_1)(j\omega - p_2)\dots(j\omega - p_{n-1})(j\omega - p_n)}$$

Seoul National Univ. School of Mechanical and Aerospace Engineering

Frequency Response and Pole Zero Plot

$$|H(j\omega)| = K \frac{\prod_{i=1}^{m} |(j\omega - z_i)|}{\prod_{i=1}^{n} |(j\omega - p_i)|} \qquad |H(j\omega)| = K \frac{r_1 \dots r_m}{q_1 \dots q_n}$$

$$\angle H(j\omega) = \sum_{i=1}^{m} \angle (j\omega - z_i) - \sum_{i=1}^{n} \angle (j\omega - p_i)$$

$$\angle H(j\omega) = (\phi_1 + \ldots + \phi_m) - (\theta_1 + \ldots + \theta_n)$$

Seoul National Univ. School of Mechanical and Aerospace Engineering

Frequency Response of a First Order System

A system with pole at s=-1/t

High Frequency Response

Magnitude Response

Low Frequency Response

$$\angle H(j\omega) = (\phi_1 + \ldots + \phi_m) - (\theta_1 + \ldots + \theta_n)$$
$$\lim_{\omega \to 0} \angle H(j\omega) = -(N - M)\frac{\pi}{2} + L\pi \text{ rad}$$

N, M number of poles and zeros at the origin. L: number of zeros at the r.h.p. real axis.

Frequency Response of poles and zeros close to imaginary axis

$$|H(j\omega)| = \frac{K}{q_1q_2} \quad \angle H(j\omega) = -(\theta_1 + \theta_2)$$

The magnitude has apeak close to the freq near the pole.

Seoul National Univ. School of Mechanical and Aerospace Engineering

Spring 2011