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Indeterminate Equation

Equation of straight line
y = a‘O —|—31X Where a,,a,. are given

Variable: x,, x,, X3

Equation: x; + X, + X;=3

v Number of variables: 2 X, Y
v" Number of variables: 3 v Number of equations: 1

v Number of equations: 1 = We can get the value of y by assuming x.

Because the number of variables is
larger than that of equations, . . . . . .
these equation form an Find intersection point (X", y") of two straight lines

indeterminate system.

=d, +qX -
Solution for the =% +4 Where 8,,3,,0),b, are given
indeterminate equation y =D, +b,x

‘We assume

two unknown variables ]
A v Number of variables: 2 X,Y

v Number of equations: 2

Number of variables(3) - Number of equations(1)

Example) assume that x, =1,x,=0

> X3=2

oul |
Computer Aided Ship Design, I-1. Overview of Optimal Design, Fall 2011, Kyu Yeul Lee Lj\ Univ. @ﬂg,';%%ﬂ;’}’,’ugfﬁ” Automation Lab'%




Indeterminate Equation and Solution

Determinate equation

(v

ariable: x,, X,, X,

\
Equation: f,(x,, X, , X3)=0
fo(X1 1 Xz 1 X3)=0

\_ f3(X1 1 X5 4 X3)=0 Y,

If f,, f,, and f; are linearly independent,

v Number of variables : 3
v Number of equations : 3

Since the number of equations is equal to
that of variables, this problem can be
solved.

70 What happens if 2 Xf; = f,?
f, and f; are linearly dependent.
Since the number of equations, which are
linearly independent, is less than that of

variables, these equations form an
indeterminate systems.

Indeterminate equation
v )

ariable: x,, X,, X,
Equation: f, (X, , X, , X3)=0

fy(X1 5 X5 4 X3)=0

- /

If f, and f, are only linearly independent, the

v Number of variables : 3

v Number of equations : 2

Since the number of equations is less than
that of variables, one equation should be
added to solve this problem.

Added Equation Solution \wa can get many sets of

f;=0 (X, %3,%;) solution by assuming different
2 s 2 _oy €quations.
fy =0 . (X3 %z, %3) - Indeterminate equation

Computer Aided Ship Design, I-1. Overview of Optimal Design, Fall 2011, Kyu Yeul Lee

We need a certain criteria to determine the
proper solution. By adding the criteria, this
problem can be formulated as an
optimization problem.




Design

Esthetic* Design

Find(Design variables)

- Size, material, color, etc.

W Constraints

- There are some constraints, but it is difficult to formulate them.

- By using the sense of designer, the constraints are satisfied.

Objective function(Criteria to determine the proper design variables)

- Preference, cost, etc.
4 - It is difficult to formulate the objective function.

National

ﬂ;x\ Seoul @
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Mathematical Model for Determination of the Main Dimensions(L,B,D,T,C;) of a

Ship(Summary)
- “Conceptual Ship Design Equation”

Find(Design variables) L, B, D, CB Given(owner's requirement) DWT y VH req ! Tmax (= T ), V
length breadth depth block deadweight Require_d cargo maximum ship
coefficient hold capacity draft speed

Physical constraint

— Displacement - Weight equilibrium (Weight equation) - Equality constraint
L-B-T-C;-p,, -C,=DWT,., +LWT(L,B,D,C;)

o given
=DWT, +C, -l"*(B+D)+C,-L-B
+C poner - (L-B-T-C)?2-V? -.-(2.3)

given

Economical constraintsowner's requirements)

- DFOC(Daily Fuel Oil Consumption)

— Required cargo hold capacity (Volume equation) - Equality constraint . . -0 T propulsion.

V =C,-L-B-D---(3.7) - Delivery date

Regulatory constraint : It is related with the shipbuilding process.

H_ req

— Freeboard regulation(1966 ICLL) - Inequality constraint

D>T+C.,-D-(4)

Objective Function(criteria to determine the proper main dimensions)
1A 1.6 2/3 3

Building Cost =C,, -C, - L**(B+D)+C,y -C, -L-B+C,y, -C, o - (L-B-T-C,)?* -V

4 variables(L,B,D,Cp), 2 equality constraints,( (2.3),(3.1) ), 1 inequality constraint((4)) ® Optimization problem:

power

: E} & Seoul @ |
National . . , i 6
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Determination of the Optimal Main Dimensions of a Ship

Optimization problem Engineering Design

®» Minimize/maximize the -
objective function with the Find (Design variables) L(: Xi), B(: Xz)’ D(: X3), CB (: X4)
constraints on the design length breadth depth block
variables coefficient

Find(Design variables) Weight equation

X1, Xo, X3, X4 L-B-T-C, Pau -C, DVVTqlven +LWT(L,B,D,C;)
T —I_
Equality constraint ;[ —g v e l
X X, X, - C, =C, +h'(X, X, X3, X,)

h(X;, X, , X3, X,)=0
Xy + Xyt Xy 'Cl_Cz —h’ (Xl’XZ’X3’X4) - h(X1'X2’X3’X4) =0

Inequality constraint

Objective Function(Criteria to determine the proper main dimensions)

g(X1 , Xy, X3, X,)<0 Building Cost = C, - |_16(B+D)+ij L- B+C .C__ -NMCR
Objective function f(x1’X2’X31X4) 1:{()( +X3)+C X, X, +C

f (X1, %, X3, Xy) -T,Cy Pows DWTgiens Cos » Ce Coo » Co» Cont » Cmar NMCR are Given

Characteristics of the constraint
v  Physical constraints are usually formulated as the equality constraints.
(Example of ship design: Weight equation)
v Economical constraints, requlatory constraints, and constraints related with politics and culture

are formulated as the inequality constraints.
(Example of ship design : Required cargo hold capacity(Volume equation), Freeboard regulation(1966 ICLL) )




Classification of Optimization Problems and Optimization Methods

Unconstrained optimization

Constrained optimization problem

problem
Linear Nonlinear Linear Nonlinear
Objective Minimize f(x) Minimize f(x) Minimize f(x) Minimize f(x) Minimize f(x)
function FO)=x+2%| FO)=x2+x2—3xx] F0O=x+2% f(X) = X7+ X2 —3x,X, f(X) = x>+ X2 —3x,X,
(example)
. 1, 1
Constraint h(x)=x +5%, =0 h(x) =x +5%, =0 9:()=-x +-x-1.0<0
None None 6° 6
(example) 9()=-% <0 9() =% =<0 g, (0 =-x <0
(@ Direct search method Linear programming Penalty Function Method: converting the constrained
- Hooke & Jeeves method (LP) method is optimization problem to the unconstrained optimization problem
_ by using the penalty function, the problem can be solved using
Nelder & Mead method usually used. unconstrained optimization method.
(@ Gradient method SLP(Sequential Linear Programming)
- Steepest descent method First, linearize the nonlinear
- Conjugate gradient method Simplex Method problem and then obtain the solution to
e . . . this (i imati bl ;
Optimization . Newton method (unear programmin) s s agproxiation prblem i
methods - Davidon-Fletcher-Powell(DFP) And ,then, repeat the linearization
-continuous method .
Quadratic Sequential Quadratic
method First, approximate a quadratic
objective function and linear
constraints, find the search direction
and then obtain the solution to this
quadratic programming problem in this
direction. And ,then, repeat the
approximation
Optimization Integer programming: (O Cut algorithm @ Enumeration algorithm 3 Constructive algorithm
methods -

discrete value

Heuristic
optimization

Genetic algorithm(GA), Ant algorithm, Simulated annealing, etc

Computer Aided Ship Design, I-1. Overview of Optimal Design, Fall 2011, Kyu Yeul Lee

b )'»\’ 590{1/ DAL
LBJ National Adeanced Ship Design Automation Lab. 8

. Univ. http://asdal.snu.ac.kr




Computer Aided Ship Design Lecture Note

ineering

Computer Aided Ship Design

Part I. Optimization Method
- Ch. 2 Problem Statement of Optimal Design

September, 2011
Prof. Kyu-Yeul Lee

Department of Naval Architecture and Ocean Engineering,
Seoul National University of College of Engineering

L2y
¥R s ENSDAL
" .
_\b‘ National Advanced Ship Design Automation Lab.

¥
TR

S\ http.//asdal.snu.ac.kr
r— e - [ :

Univ.

Naval Architecture & Ocean Eng

Computer Aided Ship Design, I-2. Problem Statement o

f Optimal Design, Fall 2011, Kyu Yeul Lee




ineering

Ch.2 Problem Statement of Optimal
Design

2.1 Components of Optimal Design Problem
2.2 Formulation of Optimal Design Problem
2.3 Classification of Optimization Problems

2.4 Classification of Optimization Methods

Naval Architecture & Ocean Eng

Advanced Ship Design Automation Lab.
http.//asdal.snu.ac.kr

MR v (ENSDAL




2.1 Components of Optimal Design Problem(1)

M Design variable

B A set of variables that describes the system such as size
and position, etc.

M It is also called ‘Free variable’ or 'Independent variable’.

B Dependent Variable

: A variable that is dependent on the design variable(independent
variable)

M Constraint

B A certain set of specified requirements and restrictions
placed on a design

B Inequality Constraint, Equality Constraint

lation.
Computer Aided Ship Design, I-2. Problem Statement of Optimal Design, Fall 2011, Kyu Yeul Lee == Univ.



2.1 Components of Optimal Design Problem(2)

M Objective function

B A criteria to compare the different design and

determine the proper design such as cost, profit,
weight, etc.

M It is a function of the design variables.

F (X1,X2)
A

Objective Function
(Minimization)

OBJECT
FUNCTION

\
{ i + ===
-
\ - ~<
N

\ == A e
4 N
Constramt———| \\//
) ﬁ%
N Design variable

/
L]
L1

i
4

N\

Design variable

Computer Aided Ship Design, I-2. Problem Statement



2.1 Components of Optimal Design Problem(3)

Determination of the optimal design considering the
objective function(maximization) and constraints

GLOBAL

F(X) OPTIMUM F(X) OPTIMUM

y e

OPTIMUM

Local

optimum

Global N\, | /| extrew i
N e - |

optimum

—_— X — = X
a. UNICONSTRAINED OPTIMIZATION, b. UNCONSTRAINED OPTIMIZATION,
UNIMODAL CASE MULTIMODAL CASE
FOO F(X) FEASIBLE Optimal design

1 _ REGION v

T — can be changed

REGION subject to the
The region glﬁ(TJ:mM constraints.
satisfying the OPTIMUM
constraint

LOCAL
OPTIMUM

— = X — = X

c. CONSTRAINED OPTIMIZATION, d. CONSTRAINED OPTIMIZATION,

D i Desi on 15, 13
Computer Aided Ship Design, I-2. Proble UNIMODAL CASE MULTIMODAL CASE . ﬁg,';%%ﬂ?ﬁugf'r" Automation Lab.




2.2 Formulation of Optimal Design Problem

X240 5X+%,=10

l Objective Function
Minimize: f =—-4x, —5x, Minimize: f (x) s
Subject to — Xt X, <4 =X+ X, — 4<0 Subject to: gj (X) < O’ J — 1’ oM l Constraints

: Inequality constraint
X, +X, <6 X, +X,—-6<0

e 10X Exax —10-0|  h(X=0k=1--p

: Equality constraint

X, <X <X,

: Constraint




2.3 Classification of Optimization Problems(1)

M Existence of the constraints

B Unconstrained optimization problem(Unconstrained
optimization problem)

® Minimize the objective function f(x) without any constraints on the
design variables x.

Minimize f(x)

B Constrained optimization problem

® Minimize the objective function f(x) with some constraints on the
design variables x.

Minimize f(x)
Subject to h(x)=0
g(x)<0

Computer Aided Ship Design, I-2. Problem Statement of Optimal Design, Fall 2011, Kyu Yeul Lee



2.3 Classification of Optimization Problems(2)

M Number of the objective functions
B Single-objective optimization problem

Minimize

Subject to h(x)=0

£(X)

g9(x)=0

B Multi-objective optimization problem
® Weighting Method, Constraint Method

Minimize

Subject to h(x)=0

f1(X), £,(X), f3(x)

g(x)<0

Computer Aided Ship Design, I-2. Problem Statement of Optimal Design, Fall 2011, Kyu Yeul Lee
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2.3 Classification of Optimization Problems(3)

M Linearity of the objective function and constraints

B Linear optimization problem

® The objective function(f(x)) and constraints(h(x), g(x)) are linear
functions of the design variables x.

Minimize

Subject to

f(X) =x +2X,

h(X) =x +5x,=0
g(x)=-x% <0

B Nonlinear optimization problem

® The objective function(f(x)) or constraints(h(x), g(x)) are nonlinear
functions of the design variables x.

Minimize

f(X) =X+ X% —3x.X,

Subject to
h(X)=x,+5%, =0
g(x)=-% <0

Minimize
f(X) = X2+ X5 —3%,X,

Subject to

1., 1.,
X)=—X"+—x5-1.0<0
g, (X) g N tE%

QZ(X) ==X <0

s (PNSDAL
B N " / Advanced Ship Des’égn Automation Lab. | 17
T Univ. http://asdal.snu.ac.kr | 3
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2.3 Classification of Optimization Problems(4)

M Type of the design variables

B Continuous Problem
® The design variables in the optimization problem are continuous.

B Discrete Problem
® The design variables in the optimization problem are discrete.
® It is also called the ‘Combinatorial optimization problem’.
® Example) Integer programming problem

|E_Ej)' ilaticzlnal @%ﬁanéilg'hlp Design Automation La
Computer Aided Ship Design, I-2. Problem Statement of Optimal Design, Fall 2011, Kyu Yeul Lee === Univ. hitpasdal.shu.ac



GLOBAL

2.4 Classification of Optimization Method F0 P

T LOCAL
OPTIMUM

M Global Optimization Methods

B Advantage

® It is useful for solving the global optimization
problem which has many local optimum solution. | | / 1~ 5

B Disadvantage

® It needs many iterations to obtain the optimum — X
solution(much time).

B Genetic Algorithms(GA), Simulated Annealing, etc.

B Local Optimization Methods

B Advantage
® It needs relatively few iterations to obtain the optimum solution(less time).

B Disadvantage

® It is only able to find the local optimum solution which is near to the
starting point.

B Sequential Quadratic Programming(SQP), Method of Feasible
Directions(MFD), Multi-Start Optimization Method, etc.

y .EL;«\’ Seoul @ ? |
National . . . i 1 9 |
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Ch.3 Unconstrained Optimization Method
3.1 Gradient Method

1. Steepest Descent Method

2. Conjugate Gradient Method

3. Newton’'s Method

4. Davidon-Fletcher-Powell(DFP) Method

5. Broyden-Fletcher-Goldfarb-Shanno(BFGS)
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3.1 Gradient Method
1. Steepest Descent Method(1)

» Step 1: The search direction(d) is taken as the negative of the gradient of the objective function(f) at

current iteration since the objective function f decrease mostly rapidly.

» The direction of gradient vector of f, Vf(x), is the direction of maximum increase of f at x

Search direction d=-c=-Vf (X)

Ref) Appendix_ A.1:

= Step 2: Iterate successively to find the optimum design point.

ex) Minimize the objective function

Search
direction
Xl

F (X1,X2)

Directional Derivative & Gradient Vector

\\\

A\

N
0

ooooooooo



3.1 Gradient Method
1. Steepest Descent Method(2): Example

M By using the steepest descent method, find the minimum design
point in the following function of 2-variables.

Given: Starting design point x@ = (0, 0), convergence tolerance ¢ = 0.001

Find: x®@), x
. e . 2 o = Optimization problem with
Minimize f (X1’ Xz) =X =X, 2% +2X X, + X5 two unknown variables

X2
4 -
f(X1, X2) 2 |
7 | [N\
50 ) 0
) " X, 2 \\ N\ . .
2 ) - A:True minimum design point
0 L Xl* = '1.0, XZ* = 15, f (Xl*’ XZ*) = '125
Xl 2 4 4

Computer Aided Ship Design, I-3 Unconstrained Optimization Method, ERI2edanHyaineshiOptémization Method



3.1 Gradient Method
1. Steepest Descent Method(3): Example

Minimize (X, X;) =X — X, +2X1 + 2%, X, + X;  Starting design point x'= 0,0

f f 1+ 4X, + 2X, :To minimize f (x®),
VT (X) =VI(X,X,) = o N
% 0a%e) —1+2x +2x, IO 220 5 @10 x‘l’—( 1)
L da_ | 1
M 1st Iteration: Find x® \"y How can we differentiate f with respectto ?
0) (1+4x +2x 1 ):
VEO) o[ | e
0 —1+2x, + 2X, -1): : \
x® = x© _ Oy (x©) s | |
— (Oj _ aLJ' j — [_ aj Replacing a®to o for. 1
O -1 o convenience : i
05 |

Substituting x® =(-a,«) into the objective :
function . 0t
f(xX)=—a—a+2a’-2a° +a° :

2 05 |
=a° —-2a I

| |
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, BR120ddnKyaineshiOp#émization Me



3.1 Gradient Method
1. Steepest Descent Method(4): Example

Minimize (X, X,) =X, —X, + 2% +2X X, +X; Starting design point x0=(0.0)

M 2nd Iteration: Find x®

O -1} (1+4x +2X, -1
1 —14 2%, + 2X, -1

X(2) _ X(l) . a(l)Vf (X(l)) X,
— (_1) _ 0{_1] — (_1+ OZJ Replacipg a®to a for
l _1 1_|_a convenience 15 ;
Substituting x® = (-1+ o,1+ ) into the objective 1
function i
(2)y _ 2 I
f (x®?)=50? 20 -1 os |
To minimize f (x*?), 0
(2) I
AOT) _100-2-0 = =02 -
da 0.5 :
o (_0.87 :
- 12 1 [

Computer Aided Ship Design, I-3 Unconstrained Optimization Method, ERI2edanHyaineshiOptémization Method



3.1 Gradient Method
1. Steepest Descent Method(5): Example

Minimize (X, X,) =X, —X, + 2% +2X X, +X; Starting design point x0=(0.0)

m 3rd Iteration: Find x®

—0.8 1+4x +2X 0.2
Vi (x?) = v _[TTATES )

1.2 —1+2X, +2X, —0.2

x® = x@ _ gy (x)
X

~0.8) (02 ) (-0.8-02a
= - = Replacing o
1.2 —-0.2 1240200 )to @ for [

convenience 15

Substituting x® =(-0.8-0.2¢,1.2+0.2¢) into the 1
objective function
f (X(3)) =0.04c* —0.08cr —1.2 05 |
To minimize f (x?), 0
(3) I

T _ 0.080-0.08=0 — @ =10 |
da 05 |
-ox® = (_17

1.4 1k

N /
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3.1 Gradient Method
1. Steepest Descent Method(6): Example

Minimize (X, X,) =X, —X, + 2% +2X X, +X; Starting design point x0=(0.0)

B 4t Iteration: Find the minimum design point.
To obtain the minimum design point, we have to iterate.

If x“?-x%|<¢, then stop the iterative process because x*+) can be

assumed as the minimum design point.
X2

2_|----|

15 |

05 |

05 |

1 b
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[Reference] Differentiation of Function of x with Respect to the Another Variable

AEEERERRERRERRERRERNERRRENRRERERERNERNERNNRNDNHNH.] IIIIIIIIIIIIIIIIIII‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

s f ()(1, )(2) = f (X) - f is the function of x.
;IX(l) = (—0{, 0{) : XM is the function of a

- Substituting x @ into f, f is ,then, function
of a and can be differentiated f with respect
toa.

In the similar way, we can consider the followings:

To minimize f (X +AX),

The second-order Taylor series expansion of f (X +AXx)
f (X +AX) = f(x*)+cTAx+%AxTH(x*) AX

EXE)EEOZ az nto the objective

Substituting
function
f(x)=—a-a+2a’-2a° +a’

f(X +AX)— f(X) = CTAX+%AXTH(X*) AX

In the above equation, we assume that
X*is constant and Ax is a variable.

2
=a"—2a f (AX) =CTAX+1AXTH(X*) AX

.« o To minimize f,
To minimize f (x®),

AN ) LG H(X") Ax=0

L df (X)) C @ dAx

i =2a0-2=0 »> a=1.0 X = X

i da 1 = H(X") Ax=—-C
® I- N _*_ Ll 1 H b
¢} How can we differentiate f with respectto a2 =1 Ax=—H(x )'c, ‘Newton’s method




3.1 Gradient Method
2. Con'!ugate Gradient Method(1)

M This method requires only a simple modification to the
steepest descent method and dramatically improves the
convergence rate of the optimization process.

M The current steepest descent direction is modified by
adding a scaled direction used in the previous iteration.

B Step 1 : Estimate a starting design point as x“. Set the iteration
counter k=0. Also, specify a tolerance ¢ for stopping criterion.
Calculate

d(O) _ _C(O) = _Vf (X(O))

Check stopping criterion. If |c|<z, then stop. Otherwise, go
to Step 4(note that Step 1 of the conjugate gradient and
steepest descent method is the same).

. e . |Ej -';V"ﬁ"l”"l@svanéL ip De:
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3.1 Gradient Method
2. Con'!ugate Gradient Method(2)

B Step 2 :Compute the gradient of the objective function as ¢ =Vf(x).
If |c“|<e, then stop; otherwise continue.

B Step 3 : Calculate the new search direction as

k k-1
- (Hd |/l )H>
The current search direction is calculated by adding a scaled direction used in the previous iteration.

B Step 4 : Compute a step size =« to minimize f (x" +ad®).

B Step 5 : Change the design point as follows, set k=k+1 and go to

Step 2. S (D) 5 () JrOlkd(k)

oul ! ‘
. AP . 30
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3.1 Gradient Method
2. Conjugate Gradient Method(3) : Example

Minimize (X, X,) =X —X, +2X +2XX, + X; starting design point x©= (0,0

1+ 4x, +2X : inimi S
Vf (x) = Vi (X1’ Xz) _ 1 2 : To minimize f(x"),
—1+2X +2X, df (x©)
. . 1) : =2a0-2=0 - a=10
M Ist Iteration: Find X' ! da 1
0 S Note: . . C @

4 = = —Vf (x¥) = - [ j ol s ot e conae gradenians - X (1 ]

0 : X2,

L (1+4x+2x, ) (1) (-1) i : \

o “1+2x+2x,)  -1) (1 15 | _
1) _ 4 (0) (0) :
X=X +a0d Replacing & to @ for: !
0 -1 —( \ convenience . [
= T = 05 |
[Oj ( 1 j ( a j : :
Substituting x® =(-«,«) into the objective o
function : i
f(xX)=—a—a+2a°*-2a° +a° : 05 |

=’ -2« \
: 1L, SNoNN SN S 24

[ |
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3.1 Gradient Method
2. Con'!ugate Gradient Method(4): Examele

Minimize (X, X,) =X —X, + 2X12 +2X,X, + X§

m 2nd Iteration-Find x? NE K_llj
Compute the gradient of the objective function as 1
@ _ (1) 0 _ _ O)y_|
e = Vf (x®) d® = v (x) (1)
_ vt 1 1+4X, +2X, -1 d% =—¢® 4 g d*?
- 1 —-1+2x, +2X, -1 B, = (Hc(k)H/HC(k—nH)z

(k+) _ (k) (k)
Calculate the new search direction as X =x"+ad

2
Ve ()]
d® =—c® 4+ Bd® = —¢® + _d©
Ve (<)
BB e

-1} 2(-1 0
= — + — =
-1) 2\ 1 2
i ed Ship Design Automation Lbi 32
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3.1 Gradient Method
2. Conjugate Gradient Method(5): Example

Minimize (X, X,) =X —X, + 2X12 +2X,X, + X§

1 0 -1 | | (1) go_(?
— +o — Replacing @; to o for convenience 1 2

1 2 1+ 2
1+ 4%, +2x,
Substituting x® =(-1,1+2¢) into the objective function VEO) = VT (%, %) :[_1+2X1+2X2
X
f(x*)=4a® -2a-1 SE e \
To minimize f (x®), 15 _
df (x* I
( ):8a—2:O — a=0.25 Ll
da 1 i
s x® = '
1.5 05 |

i L —Minimum design point |
Check stopping criterion. i

c® = Vi (x?)=Vf (_1j = (O] |
1.5) |0 |

05

[c®|=0<& —Stop!

1 b
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3.1 Gradient Method
Assume that f(x) has minimum at x“?® =x% + Ax®,
3. Newton’'s Method(1) %
Given: f(X) Consider the quadratic approximation of the
] oL function f(x) at x=x® using the second-order Taylor
Find: x* which minimizes f (x) expansion.
df (x) 1d2f (x%) 2 3
K) | A0y = £ (500 (k) (k) k)
f(x® + Ax®Y) = f(x )+TAX +ET(AX ) +0((44%))
)
In this equation, x®¥ is a constant and AxY is a variable. So, v
the following equation is a quadratic function in terms of AX',
) Eor 4 Ay 2 £ (x4 I (x) 0, 1 d*f(x) )
XU+ AXT) = (X ——AX ——(AX
( )= 1) dx T ae ( )
Differentiate this equation with respect to AX®),
df (< + Ax) _ df (x) | d7F(X%) o0 _ s tormommsaton arane:
f(X(k+1)) dAX(k) dx dX2 function
> Calculate the small change AXin design.
0 X
Ao _[_df ) (42 £ (x®)
dx dx?
NO
k=k+1

YES

Set X = X*™ and stop the iteration

: - tomation 1ab. 34
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3.1 Gradient Method
3. Newton’'s Method(2): Example

Assume that f(x) has minimum at x“? =x® +Ax®,

Given: f(X) = X*—2X+2
Starting design point x© =3
Find: x* which minimizes f (x)

Consider the quadratic approximation of the
function f(x) at x=x© using the second-order Taylor
expansion.

(0)
PO+ ax@) = £ (@) 4 IO 5

dx 2 dx
\

o +1 d2f (X(O))

2

(Ax@)" + Ax“”))3

In this equation, x© is a constant and Ax? is a variable. So
the following equation is a quadratic function in terms of AX

(0)
£+ ax®) = £ () O g0, LETOD) oy

dx 2 dx’
Differentiate this equation with respect to AX©,
df (X + AP) _ df (xP) | dFF(XD) 0 _ g tormmmnionatine”
dAX(O) dx dX2 function
f(x) v
Calculate the small change Ax? in design.
> Ax© = _df (x9) / d?f (x?)
X dx dx?
=(-2x+2) /1(2) _,=-2
k=k+1 NO
=0+1=1

B * Seoul @
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, ERI2edanHyaineshiOptémization Method £ \ Univ. http://asdal.snu.ac.kr
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3.1 Gradient Method

3. Newton’s Method(3): Example

Given: f(X) = X% —2X + 2
Starting design point x© =3

Find: x* which minimizes f (x)

f(x®)

Assume that f(x) has minimum at x® =x® 1 Ax® .

Consider the quadratic approximation of the
function f(x) at x=x() using the second-order Taylor

expansion. (4 L 25 (5@ 2 3
F(x + ax9) = £ (x) + L) g0, LETOO) )P, o)
dx 2 dXx

v

In this equation, x® is a constant and Ax"” is a variable. So
the following equation is a quadratic function in terms of Ax".
f(x 1d%f(x®
f (X 4 AXD) = £ () 4 O S gy L) (2 )(Ax(l’)
d dx
Differentiate this equation with respect to AX®
df (xP + AxB) _ df (xB) | A7) () _ g s ovmmmaaionarine
dAX(l) dx dX2 function

V2
Calculate the small change Ax® in design.

& 2¢ 0y
Ax® = _df(x ) / d f(>2< )
dx dx

=(-2x+2) ,/(2),_,=0

Is it possible to find the x* which minimizes a

cubic function at once?

YES

Computer Aided Ship Design, I-3 Unconstrained Optimization Method, BR120ddn dyainesliOptémizat — —_—

Set x =x%and stop the iteration
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3.1 Gradient Method — ——
3. Newton’s Method(4): Example Assume that f(x) has minimum at x* =X +AX™ |

Consider the quadratic approximation of the

Is it possible to find the x* which
function f(x) at x=x© using the second-order Taylor

minimizes a cubic function at once?

expansion.
Given: f(x) = x° —3x* +2x (@ ¢ ax0) = £(x0) + OO o, LETOD) 012, (a5
Starting design point x© =3 o 2
T U T
Find: x* which minimizes f () In this equation, x© is a constant and Ax? is a variable. So,

the following equation is a quadratic function in terms of Ax©
dx 2 dx

R k=0 (X 4 Ax0) = £ (@) 4 ST

A
Differentiate this equation with respect to AX©,

(0) (0) (0) 2 (0) The necessary condition
df (X +AX ) = df (X ) Al d°f (X ) AX(O) — () — for minimization of this
dAX(O) dx dX2 function
\/

F(x -\ _______________ AN Calculate the small change AXPin design.
<~ . AXO :[_ df(x“’))j ,(de(x“’))j

i \/ X(l):zi X dx dx?
12 =Q3ﬁ+ﬁx—2kﬂ/mx—6k——31

NO

f(XO) |-mmmmmmm e

k=k+1
=0+1=1

B > Seoul
E National Advanced Ship Design Automation Lab
e \ Univ. http://asdal.snu.ac.kr
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3.1 Gradient Method
3. Newton’s Method(5): Example

Assume that f(x) has minimum at x? = x® + Ax®

Is it possible to find the x* which
minimizes a cubic function at once?

Given: f(X) = x> —3x% + 2x
Starting design point x© =3
Find: x* which minimizes f (x)

@
f(x®) _-x____----———---—.A——X— : i x(0) =3

x0=2083

1L C)Y — \\/
x@ =170

Consider the quadratic approximation of the
function f(x) at x=x() using the second-order Taylor
expansion.

() 2 (1)
x4 ax9) = £ (x0) 4 T8 gy, LT (0 +9me</1>))3
dx 2 dx

)2

In this equation, x® is a constant and Ax" is a variable. So,
the following equation is a quadratic function in terms of Ax",

dx 2 dx?
Differentiate this equation with respect to AX®
df (x® +Ax®W)  df (xV) N d?f(x®)
dAx® dx dx?

The necessary condition
Ax(l) = () — for minimization of this

function

v

Calculate the small change Ax®™ in design.

® 2¢ 0,
Ax® — _df(x™) / d f(>2< )
dx dx

_ (_sz +6X—2) 25/ (6x—6) 25 =—0.388
x=r 12

0
'!e
e —
Why is it not possible to k=k+1
find the x* which minimizes _ _
a cubic function at once? =1+1=2

NO

> Since the second-order Taylor expansion is just an approximation for f(x) at the point x©, x® will
probably not be the precise minimum design point of f(x). |




3.1 Gradient Method

3. Newton’s Method(6): Example of Function of Two Variables

Minimize f (X) = f(X,X,) =X — X, + 2X12 +2X%,X, + X22, Starting design point x© = (0, 0)

o2 f o° f
f, 1+ 4x, + 2X OX?  OX.OX 4 2

Vf(x)=Vf(X1,Xz)=(flJ:£ 1+ ;1X1+ g)z(j H(x) 52; 812f2 ( j
X, —d+ 12X

OX,0X, 8_x22

M 1st Iteration: Find x¥

Assume that f(x) has minimum at xM =x@ 4+ Ax® |

Consider the quadratic approxmatlon of the function f(x) at x=x© usmg the
second-order Taylor expansion.

How?
f (X +Ax?) = £ (x?)+ Vi (x)" Ax? + > (Ax(o))T H(x®)Ax" C‘.’?

>

In this equation, x© is a constant and Ax'” is a variable. So, the following
equation is a quadratic function in terms of Ax".

(X + AX@) = f(x©@) + VE(xX@)T Ax© + %(AX“”)T H(x®)Ax®

P Seou SDAL
|E A Na t nal Advanced Ship Des’égn Automation Lab. ! 39
Uni http://asdal.snu.ac.kr : ‘
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3.1 Gradient Method

3. Newton’s Method(7): Example of Function of Two Variables

Minimize f (X) = f (X, X,) = X, — X, + 2X + 2X,X, + X, Starting design point x = (0, 0)

B 1st Iteration: Find X(l) F (X + AX©) = f (x@) + VF (x@)T AX© 4 = (Ax(o)) H(X®)AX©
How? VE (X) = V¥ (5, %,) = f, [ T+dx+2x
Differentiate this equation with respect to AX'”. C‘.’? > | (f} (—1+2x1+2X2J
(0) (0)
of (X + AXT) = Vi (X?)+ H(X?)AXx® =0 — The necessary condition for
o(Ax?) minimization of function f(x;, x,)

Calculate the small change AX'” in design. g \

H(x®)Ax® = -vf (x?) : ‘

15+

AX® = [H(X )] vF (x)

CARS i
-Vf (x(o’):[_1 . H(x®)= oK oD%, (42 -
1 ot o'f 2 2 i

X 0%,  OXZ

Ax“” 4 2\ (-1 Ax(o) 1 S
(0) — (0) i
: : O
SoxXW = O L AxO) = O 4 -1 _ -1 05
0 1.5 1.5 \

1 b

15 1 0.5 0 05 X, 1
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3.1 Gradient Method

3. Newton’s Method(8): Example of Function of Two Variables

Minimize f (X) = f(X,X,) =X — X, + 2X12 +2X%,X, + X22, Starting design point x© = (0, 0)

M 2nd Iteration-Find x* X‘”=(_1J
In the same way as 1st Iteration,

Assume that f(x) has minimum atx"” = x® + Ax"

Consider the quadratic approximation of the function f(x) at x=x(Y using the
second-order Taylor expansion.

f (XY +Ax®) = £ (xP) + Vi (x)"AxD + = (Ax(”) H(x)Ax®
In this equation, x is a constant and Ax" is a variable. So, the following

equation is a quadratic function in terms of AX()

f (X(l) + A)((1)) _ f (X(l)) L Vf (X(l)) Ax® 4 E(Ax(l))T H(x(l))Ax(l)

Differentiate this equation with respect to AXY
of (x® + Ax™)
o(Ax™)

1 . . The necessary condition
= Vi (xY) + H(x?)Ax"Y =0 — for minimization of

function f(x,, x,)

L

% o (D 2R

. L Na f nal 41
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3.1 Gradient Method

3. Newton’s Method(9): Example of Function of Two Variables

Minimize f (X) = f(X,X,) =X — X, + 2X12 +2X%,X, + X22, Starting design point x© = (0, 0)

. . -1

M 2nd Iteration-Find x*® X(l):(l.Sj
Calculate the small change AXY in design. 1+ 4%, + 2%

H(x®)AX® = —vf (x®) VIeg=vi (Xi'xz):{ijz[_1+le+zij

AXY = [H)]VF (x)

[
Axﬁ” 4 2 - 0 AXEl) 0 1.55
(1) = — (1) = i
a2 2) (o) T(ax? ) o |
soxXP = xW o AW = - + o[

1.5 0 1.5 05 ¢

—Optimal design point

0 -

Check stopping criterion. : (@)
‘Ax(l)‘:0<g o

—Stop! \

Computer Aided Ship Design, I-3 Unconstrained Optimization Method, ERI2edanHyaineshiOptémization Method
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3.1 Gradient Method
3. Modified Newton’s Method(1)

M In this method, we treat Ax® = —[H(x*)]'Vvf(x*) of the Newton’s
method as the search direction and use any of the one-
dimensional search methods to calculate the step size in the
search direction.

B Step 1 : Estimate a starting design point x )
Set iteration counter k =0. Specify a tolerance ¢ for the stopping
criterion.

B Step 2 : Calculate ¢/ =of (x)/ox, for i=1to n.If [c¥|<¢, stop
the iterative process. Otherwise, continue.

B Step 3 : Calculate the Hessian matrix H™at current design

oint x® . 2
P H(x™®) = Gl . i=L--n; j=1---,n
OX;0X

. e . |E_Ej)' i"I”" @SvanﬁLi e.
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3.1 Gradient Method
3. Modified Newton’s Method(2)

B Step 4 : Calculate the search direction as follows:

the necessary condition for minimization of this function is as follows: :
df (AX)/dAXx=c+H(X)Ax =0 :
= H(X) AX=-Cc= Ax=-H(X)"c

B Step 5 : Update the design pognt as kx(k+1) =x® £ ad®, where o
is calculated to minimize f (X" +ad"’). Any one-dimensional
search method may be used to calculate «.

B Step 6 : Set k=k+1 and go to Step 2.

oul |
. e i ? ? . 44
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3.1 Gradient Method
3. Disadvantages of the Newton’s Method

The Newton’s method is not very useful in practice, due to
following features of the method:

1.

2.

It requires the storing of the nxn matrix H(x").

It becomes very difficult and sometimes, impossible
to compute the elements of the matrix H(x").

. It requires the inversion of the matrix H(x*) at each

iteration.

It requires the evaluation of the quantity H(x®)vf (x®)

at each iteration.

: Nati
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3.1 Gradient Method
4. Davidon-Fletcher-Powell(DFP) Method(1)

M This method builds an approximation for the inverse of
the Hessian matrix of f(X) using only the first derivatives.

B Step 1 : Estimate a starting design point x©.

Choose a symmetric positive definite nxn matrix A® as an
approximation for the inverse of the Hessian matrix of the
objective function. In the absence of more information, A =|
may be chosen. Also, specify a tolerance ¢ for the stopping

criterion. Set k =0. Compute the gradient vector
as d© —cO@ = vf (X(O)).

B Step 2 : Calculate the norm of the gradient vector as HC(k)H.
If C(k)” <&, then stop the iterative process. Otherwise, continue
(note that Step 1 and 2 of this method and the steepest descent
method are the same).

. e . |Eﬂj)' i"I”" @SvanﬁLi e.
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3.1 Gradient Method
4. Davidon-Fletcher-Powell(DFP) Method(2)

B Step 3 : Calculate the search direction as follows:

That is, A matrix is used as an estimate for the inverse of the
Hessian matrix H™' of the objective function.

B Step 4 : Compute optimum step size ¢, = to minimize f(x* +ad™),

B Step 5 : Update the design point as XU =x1 4 g, d™.

E;x\' Seoul @ |
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3.1 Gradient MethOd d® : search direction
4. Davidon-Fletcher-Powell(DFP) Method(3) o* - optimum step size

B Step 6 : Update the matrix A" - approximation for the inverse of
the Hessian matrix of the objective function - as

A = AL L BO L CN nxn matrix

where the correction matrices B*) and C* are calculated as
follows:

© _ST67). ; NxNmatrix CY= —2o@) ;NN matrix
(s% -y ®) (y®.2®)
st = akd(k) . Nx1 matrix
y*) =k ¢t . nx1 matrix
¢ = vf (x*) . Nx1 matrix
209 = ARy - [nxn][nx1] = [nx1] matrix

m Step 7 : Set K=k +1 and go to Step 2.

EJ ., Seou
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3.1 Gradient Method
4. Davidon-Fletcher-Powell(DFP) Method(4): Example

Minimize f (X) = f(X,X,) =X — X, + 2X12 +2X%,X, + X22, Starting design point x© = (0, 0)

1+ 4%, +2X, . Substitute x” =(-.a) into the objective
VI (X) = VI (x,X,) = : function

—l+2X1+2X2 . f(x(l)):aZ_Za
B 1st [teration: Find x" ! To minimize f (xV),

: Q) -1
«© :(Oj AO _ | PAXT) oy 220 o g=10 X? {1 ]
0/ . do
6O = Vf (x©) = 1+4.-0+2-0 _ 1 X, | \
-1+2-0+2-0 -1) 15 | ]

Check stopping criterion.

Hc“’)H =2+ (-1 =\2>¢

1
d® = _AOcO _ _jc©@ — _cO _ 1}

05 |

x® = xO 4 g d©

_ 0 -1 | T Replacing &% to & for- 0-5
= +a = convenience . -
0 1 a . i




3.1 Gradient Method Vf(x):vf(xlyxz):(1+4x1+2x2j

—1+2x +2X,

4. Davidon-Fletcher-Powell(DFP) Method(5): Examele

Minimize f (X) = f(X,X,) =X — X, + 2X12 +2X%,X, + X22, Starting design point x© = (0, 0)

m 2nd [teration: Find X" P 00T
Update the matrix A®- approximation for: c = FORGE
the inverse of the Hessian matrix of the y
objective function —as : AO |- 10
AD - A0 L gO O = o1
RECRYC 0
y© .70 —4
s = g =L
1 S0, _ 40
00

c<°>=(1_1j, =) o (—1 o)

y© —c® _cO _ (62) 00

AL _ A@ L BO L cO

OO} :(1 1—11) 1 Oj [o.s _o.5j (_1 Oj
- 5 = + +

(0) {0 _ : 0 1 -05 05 0 O
Vo5 Jos) i (05 05
:(—0.5 0.5) : \-05 15) o



1+ 4X, + 2X J

3.1 Gradient Method Vf<x>=Vf<x1,x2>=(_1+21X1+2;
4. Davidon-Fletcher-Powell(DFP) Method(6): Example

Minimize f (X) = f(X,X,) =X — X, + 2X12 +2X%,X, + X22, Starting design point x© = (0, 0)

m 20 [teration: Find x*® P o _yp oy (1A (D+2:15 (0
: . : ¢V =Vi(X7)=
Check stoppmg criterion. : ~1+2-(-1)+2-15 0
Hc(l)H J2> ¢ : Check stopping criterion.
4 = —° A o
1 —>Stop'

x® = x® 4 g d® 2 F

= -1 +a 0 — -1 Replacing .0!1 toaé 5
1 1 1+« for convenience

Substitute x* =(-11+a) into the objective
function

f(x?)=a?—a-1

=

05 |

To minimize f (x?),

(2) . [
dfc(lx ):Za—lzo — a=0.>5 05 |
a : [

X = ! :
1.5 | —Optimal design point :



3.1 Gradient Method
5. Brozden-FIetcher-GoIdfarb-Shanno(BFGS) Method(1)

M This method updates the Hessian matrix rather than its
inverse at every iteration.

B Step 1 : Estimate a starting design point x©.

Choose a symmetric positive definite nxn matrix H®as an
approximation for the Hessian matrix of the objective function.
In the absence of more information, let H©® =1. Specify a
tolerance ¢ for the stopping criterion. Set kK =0, and compute
the gradient vector as ¢!” = Vf (x).

: (k)
B Step 2 : Calculate the norm of the gradient vector as HC H

If HC(k)H < ¢, then stop the iterative process. Otherwise, continue
(note that Step 1 and 2 of this method and the steepest descent
method are the same).

. e . |E_Ej)' i"I”" @SvanﬁLi e.
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, ERI2edanHyaineshiOptémization Method == Univ. ttp.//asdal.snu.ac.



3.1 Gradient Method
5. Brozden-FIetcher-GoIdfarb-Shanno(BFGS) Method(2)

B Step 3 : Solve the linear system of the following equation to
obtain the search direction.

This equation looks like H*d" = ¢ of Newton's Method, but
H™® is an approximated Hessian matrix H®)

B Step 4 : Compute optimum step size «, =« to minimize f (x® +ad®),

B Step 5 : Update the design point as XU = x4 o, d1.

. e . |Ej -';V"ﬁ"l”"l@svanéL ip De:
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3.1 Gradient Method
B. Brozden-FIetcher-GoIdfarb-Shanno(BFGS) Method(3)

B Step 6 : Update the matrix H® - approximation for the Hessian
matrix of the objective function - as

|:|(k+1) _ |:|(k) 4 D(k) + E(k) * N x N matrix

where the correction matrices D" and E™ are give as follows:

k)\, (k)T k) ~ (k)"
D(k) y( )y( ) | © C( )C( )
(y(k) S(k)) (C(k) d(k))

S(k) — Olkd(k) : change in design
d® : search direction

y(k) — C(k+1) _ C(k) . Change in gradient (k)

(k+1) Vf (X(k+1))

o'’ optimum step size

B Step 7 : Set kK =k+1and go to Step 2.

=
o

% o (D 2R s
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3.1 Gradient Method
5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method(4): Example

Minimize f (X) = f(X,X,) =X — X, + 2X12 +2X%,X, + X22, Starting design point x© = (0, 0)

1+ 4X, + 2X, . Substitute x” =(-a.2) into the objective
VI (X) = VI (x,X,) = : function
—l+2X1+2X2 f(x(l)):aZ_Za
- To minimize (<"
m 1st Iteration: Find x* ET%fT)'(ﬂgr)mze O O
: r =20-2=0 - a=10 " 1
X<0>:O, 50O _ | ¢ ——————————————————————
0 P | \
C(O):Vf(X(O)): 1+4-0+2-0 _ 1 1,5; ]
-1+2-0+2-0 -1)
Check stopping criterion. l
HC(O)H — \/12 n (_1)2 — \/E > g g 0.5
~ -1) [
d© = _(H©)1c® — _j¢© = _¢© — (1 j of
x® = xO 4 g d© _
. 0.5 f
_ 0 N -1 | @ Replacing & to & fori
= 0 a 1 = o convenience LN N NN N >~ ]




3.1 Gradient Method

=1+ 2x, +2X,

1+4x +2X,
VE(X) = VI (x,X,) =

5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method(5): Example

Minimize f (X) = f(X,X,) =X — X, + 2X12 +2X%,X, + X22, Starting design point x© = (0, 0)

m 2" Iteration: Findx(®

Update the matrix H®- approximation for

the Hessian matrix of the objective
function - as

|:|(1) _ |:|(0) 4 D(O) 4 E(O)
(0)y,(0)
DO _ yy

y(O) °S(O)
@ g0 (-1
s/ =ad _(l )
1 -1
o) _ @ _
¢ {—J’ ’ _(—1)

y© = ¢ _cO _ 62

. (40
(0)y, (07 _
¥y (5 o

Loy@ g0 5

1

| —cOcoT
ROBRIO

N
_(-05 05
1L 05 -05

HY - HO . p© 4 g©

1 0 2 0 -0.5 0.5
= + +

0 1 0 0 05 -05
(25 05

0.5 05




3.1 Gradient Method Vf(x)=Vf(x1,x2)=(
5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method(6): Example

1+4x, +2X,
—1+2x +2X,

Minimize f (X) = f(X,X,) =X — X, + 2X12 +2X%,X, + X22, Starting design point x© = (0, 0)

m 2nd Iteration: Find x® : 6@ — Vf (x@) = (1+4 (-D)+2-15 ] (Oj

Check stopping criterion. : 1+2.(-1)+2-15 0
Hc(l)H J2>¢ _Check stopplng criterion.

GOq® — _c® HC(Z) ‘ 0<¢g
(5 ) -(6) e I It

x® = x® 4 g, d®

— + o = Replacing ¢; to o .
1 2 1+ 2¢ )for convenience = .

Substitute x'¥ =(-11+2a) into the objective :
function : 05 |

f(x?)=4a*-2a-1
To minimize f (x'?),

(2) . i
At (X7) _gy—2-0 - =025 5 os |
da : l

X = ! :
1.5 | »Optimal design point :



Ch.3 Unconstrained Optimization
Method

3.2 Golden Section Search Method
(One Dimensional Search Method)
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3.2 Golden Section Search method
- Phase 1: Global Search(1)

M Search for the interval in which the minimum lies

B In the figure, starting at (=0, we evaluate f () at o =06 ,wheres >0
is a small number. If the value f (0) is smaller than the value f (0), we
then take an increment of 1.618¢6 in the step size(i.e., the increment is
1.618 times the previous increment & ). (See Fibonacci sequence)

q=0,0,=0

1 .
=L, =0+1.6180 =2.6186 = 2:5(1.618)J

i=0

2 .
q=2a, =2.6185 +1.618(1.6185) =5.2365 = > 5(1.618)’

=0

3 .
=3 a, =5.2365+(1.618)°6 =9.4726 = Y 5(1.618)’

j=0

4
q=4;a,=9.4726 +(1.618)*5 =16.3260 = » 5(1.618)’
4

j=0

1 2 3

q )
4o Ly =Y 6(1.618)', q=0,1,2,..
j=0

»
»

a0 |
| I ! .
0 2.6186 5.2366  9.472% 16.32606 a

0
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3.2 Golden Section Search method
- Phase 1: Global Search(2)

B If the function at ¢ ; is smaller than that at the previous point &,
and the next point &, (i.e., f(a,,)<f(a,,). (o) <f(a,)) the
minimum point lies betweenc and < ,.

(The interval in which the minimum lies is called the interval of uncertainty.)

f(a) A | | | | f(a) A
: the interval of uncertainty l the interval of uncertainty
] \ =  esssssEEEEEsEsEEEEEEEEEEEEEE |
| |
| |
| |
| |
| | |
| . | » | .
| | | | I
| I | I I |
| | I I | I
| I | | | |
| 7 PR S Jduun ! ! | L _
| | : : | o l.101618 =0.382:0.618
| | | | | {10 1 1618 1
I | I | | | N | N I
! ! I ' ! . r \:f ‘I >
0 & 2.61886 5.2368 9.4728  16.3268 Qyo Gy & «a
I I I lower g upper
Gy - Qg Gy g (@) (@) (o)

B Therefore, upper and lower limits on the interval of uncertainty are

q _ q-2 _ q-1 _
a,=a,=> 6(1618) 0 =, ,=> 61618) ,a,=a,, =) 5(1618)
j=0 j=0

upper j=0 lower

a



Note: Fibonacci sequence

Fibonacci sequence defined as
=0 K= F=F_ +F_, n=23 -

Any number of the Fibonacci sequence for n>1 is obtained by adding the
previous two numbers, so the sequence is given as follows.

= 0,1,1,2,3,5, 8, 13, 21, 34, 55, 89, ...

n n
¢ —(1-¢ 1++/5
General term: F = ( ) , Q= ~1.6180339887---
J5 2
N 1
Property: lim =@, l-p=—=
n—oo0 Fn—l gD 1_
( i 1]
»
n n-1
n _ l— l—
F 0" -(1-9) o q)_(l_q))( /j
lim— = lim —— = =lim—*% —— —lim =0
n—o Fn—l N—o 7 _(1_(0) n—o A 1_¢) n—c 1 1_(0
n-1
»
s Seoul SDAL = ..
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3.2 Golden Section Search method
- Phase 2: Local Search(1)

.

@

Reduction of interval of uncertainty by comparing

~N

function values at a, and «,

«  We consider two points symmetrically located from
either end as shown in the figure - points o, and «, are
located at a distance of 7 1% from either end of the

interval.

« Comparing function values at , and ¢, either the left
(g, ) or the right (¢, , ) portion of the interval gets
discarded because the minimum cannot lie there. y

the interval of uncertainty

f(a)‘

A

|
|
|
|
|
|
|
IA
.
'Y
!
!
|
|
|
|

Repeat to reduce

the interval of
uncertainty

»

ay
I
a

|
|
|
|
|
|

g
|
|
|
! »

&

11

a,

(<If r=2/3>

()

If f(a,) < f(a,), then minimum
point lies between ¢ and «,.

(b)

For new interval of uncertainty, we always
have to compute f(a,”), f(a,”).
<Question>
Is there any method to use the previous
function values?

Combpmu

[

A

A0=(2/3)10)

a, |

Q)

T a- w=ansue | A0=(2
| I
v

A

| (k+D=7(0=(2/3)

[
»

’

A\ 4

R G

[20)
AKD) R GR

\ 4

_\

v




3.2 Golden Section Search method
- Phase 2: Local Search(2)

B Reduction of interval of uncertainty by comparing function values at «, and ¢,

e We consider two points symmetrically located from either end as shown in the figure — points
a, and ¢, are located at a distance of z1® from either end of the interval.

'

1(K)

A

A®)
@ ;
a o, .ab
@ ;
If f(a,) < f(&,), then minimum : :
point lies between ¢ and &, | | |(k+1) =7 (k) R E
i 7] k+1) (1 - z.)|(k+1) i
(b) ‘ 0
o/ a,’ a,’ |

(L- I&D T

1. f(a) will be used for the next interval of uncertainty 11,
2. a,is determined to equal to a,” or @’ of the next interval
of uncertainty 1(<0),

)

\‘

3-2. Assume that ¢,is equal to a,’. |

4

:ab

a

3-1. Assume that a,is equal to «,".

aa :aa

!

L-2)1® =@2-7)1 &P
L-D1Y =@1-2)d®

160 — 4

Because 7=1, this assumption is wrong.
Comp o Ty e

——>7r=0.

(L—7)1® =4 &
L-D)NY =z.z.1®
r-d%-1-0)1% =0
?+7-1=0

s



3.2 Golden Section Search method

- Phase 2: Local Search(3)

B Reduction of interval of uncertainty by comparing function values at «, and ¢,

e We consider two points symmetrically located from either end as shown in the figure — points
a, and ¢, are located at a distance of z1® from either end of the interval.

'

()

If f(a,)> f(e), then minimum
point lies between o, and «.

1. f(a,) will be used for the next interval of uncertainty 1.

1K) ) \
. ™ .
::ab > .au
(1-79)I® |
[(+1) = A () |
(1- 7)Ik+D 7] (k+1)
>« >\
4 aa / ab / au /
7] (k+1) i (1- z.)|(k+'1)

2. o, is determined to equal to a,” or @’ of the next interval

3-2. Assume that gis equal to o,”. |, = 0,

!

of uncertainty 1(<0),

4

3-1. Assume that ¢, is equal to «;,’. o, =a,

A=)1® = (@—7)1 &

-1 =1-2)d®
160 — 4 ®

Because 7=1, this assumption is wrong.
Comp o Ty e

——>7r=0.

(L—7)1 0 =4 D
L-)Y =z.z. 10
r-d%-A-0)1% =0
?+7-1=0

s



3.2 Golden Section Search method: Summary(1)

1®
A® ble (1-9I1%
o o &a %
(1-91® A®

B Step 1: For a chosen small number § , let 4 be the smallest integer
to satisfy f(,,)< f(Oqtq_z), f () < f(ey) where o, o, and a_, are
calculated frome, =) 5(1.618)', (q=012..). The upper and lower
bounds on a’ (the oj|50timum value for & ) are given as follows.

q _ q-2 _
a,=a,=) 6(1618) ¢y =, , = ) 5(1.618)’
j=0

j=0

A A A
\ 4 \ AR 4

W Step 2 : Compute f(2,) and f («,) where a, =, +0.3821 and

a, =, +0.618l (interval of uncertainty | =a, —)).

m Step 3 : Compute f(2,) and f(x,), and go to Step 4, Step 5 or Step 6.

. e . |Eﬂj)' i"I”" @SvanﬁLi e.
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3.2 Golden Section Search method : Summary(2)

— < 16 u 16)

: a0 7 Step 4 Step 5 - — >
a|| > ga . a; A > Iau
' 1-21® ! | (1-910 |
P 16D = ®) 1 | |
| < <k e 10<) = 7 o
IIA Tl(k+1) ;4(1- T)I(k-ﬂi ! 1 w 1
Ve > PV v (1- r)l(k’ﬂIA Ak I\

a l L ] Ll
“ < > ga, %’ N ® a ‘)’ @’ a,
(1 _ T)l(k+l) 7l (k+1) - kD) gD (1- DIk (k+1

m Step 4:If f(a,)<T(x), then minimum point 4" lies between ¢,
and «,, i.e., o, <a <a,. The new limits for the reduced interval of
uncertainty are ,'=¢, and,'=a,. Also, &,'=c,. Compute f(a,'),
where o,'=,'+0.382(¢,'-,") and go to Step 7.

B Step5:If f(a,)> f(ab) then minimum point « lies between @,
and ¢, i.e., a,<a <a, Similar to the procedure in Step 4, let
o,'=a, and a,'=, , so that a,'=«,. Compute f(¢,'), where
a,'=a,'+0.618(a,'~«,') and go to Step 7.

W Step : If f(o,)="1(x) let ¢,=c,and @, =, and return to Step 2.

Ko > Seoul @ |
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3.2 Golden Section Search method: Summary(3)

— < 16 |-| 1%
; A® :| Step 4 Step 5 ) " :
a|| > ga . a; A > Iau
1 (1- 910 ! : @919
P 16D = ®) 1 | |
| < > o 1) = () o
IIA Tl(k+1) LA(l- T)I(k+12 ! 1 w 1
\V < <€ » \V , \V (]_ - r)l(k*i14 7 k+D) L\l/
(24 ’ / a b VI‘ >
e pla % N ® al % | | @
(1 - DIk Ak < o > 0 r)l(krl

B Step 7 : If the new interval of uncertainty |'=¢,'— ¢, " is small
enough to satisfy a stopping criterion (i.e., I'<¢), let & =(a,~,")/2
and stop. Otherwise, delete the primes(’) on ¢, o, ', &,  and a,’

and return to Step 3.

oul ! ‘
. L io Desi g . 67
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, ERI2edanHyaineshiOptémization Method Lj\ Univ. @ﬂ%%%ﬂ?ﬁugfﬁ" Automation Lab'§ |



Ch.3 Unconstrained Optimization Method

3.3 Direct Search Method

1. Hooke & Jeeves Direct Search Method
2. Nelder & Mead Simplex Method

Naval Architecture & Ocean Engineering
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3.3 Direct Search Method 1. Base Point
1. Hooke & Jeeves Direct Search Method(1) 2 Slobe Panerm Mo

3. Local Pattern Search

M This method is a sequential technique each step of which consists
of two kinds of move, the ‘Local Pattern Search’ at a base point
and ‘Global Pattern Move’ to the optimal design point.

F (X1,X2)

P4 i ~ FUNCTION 3
B b X 2 )
N T 4
\f\L,‘)/
\‘/ 5
/ééf—:%i\ 6
LINI 3
<
2
Global Pattern Move/
Base point ~ | .
0 V x, 1
Local Pattern Search
E} S oul @ ; 69 |
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3.3 Direct Search Method 1. Base Point
1. Hooke & Jeeves Method(2): Example 2. Global Pattern Move

3. Local Pattern Search

1. ‘Local Pattern Search’ at the
base point b?

*Search in x, direction.

- No improvement of the value of the
objective function in x, direction >No
movement in X, direction

*Search in x, direction.

- Improvement of the value of the objective
function in x, direction >Movement in the
positive x, direction

»x, *Move and define the base point b2

2. ‘Global Pattern Move’ at the
base point b?

F (X1,X2)

*Find a temporary base point t,? by
symmetrical displacement of b! to b2,
*Because the value of the objective
function at t,? is better than that at b?,
do the ‘Local Pattern Search’ at t,°.

N
\\
\)\ \"
N
/]

uuuuuuuuuuuuuuu
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3.3 Direct Search Method 1. Base Point
1. Hooke & Jeeves Method(3) 2. Global Pattern Move

3. Local Pattern Search

3. ‘Local Pattern Search’ at the
temporary base point t,?

*Search in x, direction.

- Improvement of the value of the objective
function in x, direction = Movement in the
positive x, direction

*Search in x2 direction.

- Improvement of the value of the objective
function in x2 direction = Movement in the
positive x2 direction

> X «Move and define the base point b3,

d 4. ‘Global Pattern Move’ at the

\K\J base point b3

- *Find a temporary base point t,® by

“\‘g’% symmetrical displacement of b2 to b3,

*Because the value of the objective
function at t,® is not better than that at b3,
perform the ‘Local Pattern Search’ at b3,

N
\\
\)\ \"
N
/]
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3.3 Direct Search Method 1. Base Point
1. Hooke & Jeeves Method(4) 2. Global Pattern Move

3. Local Pattern Search

5. ‘Local Pattern Search’ at the
base point b3

*Search in x, direction.

- Improvement of the value of the objective
function in x, direction > Movement in the
positive x, direction

*Search in x, direction.

- No improvement of the value of the objective
function in x, direction > No movement in x,
direction

*Move and define the base point b

6. ‘Global Pattern Move’ at the
base point b4

*Find a temporary base point t,* by
symmetrical displacement of b3 to b
*Because the value of the objective
function at t,* is better than that at b4,
perform the ‘Local Pattern Search’ at i * .

N
\\
\)\ \"
N
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uuuuuuuuuuuuuuu

E} * Seoul @ |
National
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, ERI2edanHyaineshiOptémization Method Lj\ Univ. . ‘Wedalsnua sjgn Automation L b



3.3 Direct Search Method 1. Base Point
1. Hooke & Jeeves Method(5) 2. Global Pattern Move

3. Local Pattern Search

7. ‘Local Pattern Search’ at the
temporary base point t,*

*Search in x; direction.

- No improvement of the value of the objective
function in x, direction = No movement in X,
direction
«Search in x, direction.

- No improvement of the value of the objective
function in x, direction => No movement in X,
direction
*Because there is no improvement of the

value of the objective function in x; and
*X. x, direction, the current base point is
defined as the base point b°.

8. ‘Global Pattern Move’ at the
base point b®

*Find a temporary base point t,> by
symmetrical displacement of b* to b°.

*Because the value of the objective
function at t,°is not better than at b®,
perform the ‘Local Pattern Search’ at b5.

N
\\
\)\ \"
N
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3.3 Direct Search Method L. Base Point
1. HOOke & Jeeves Method(G) 2. Global Pattern Move

3. Local Pattern Search

9. ‘Local Pattern Search’ at the
base point b®
*Search in x, direction.

- No improvement of the value of the
objective function in x, direction = No
movement in x; direction

*Search in x, direction.

- No improvement of the value of the
objective function in x, direction - No
movement in X, in X, direction

oL a *Because there is no improvement of the
/—\\T value of the objective function in x1 and
)/% ””””””” x2 direction, the current base point
AN > : ) 5
&!/// defined as base point b®.
S *Because b® = bb, reduce the step size by
N . half and perform the ‘Local Pattern
et Search’ at b®.

uuuuuuuuuuuuuuu
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3.3

Direct Search Method

Rule of the ‘Local Pattern Search’

1. Hooke & Jeeves Method(7): Rule of the ‘Local Pattern Search’(1)

(F: Fail, S: Success)

Case D Search in the positive x; direction.

- Move the exploratory point in the positive
X; direction and evaluate the value of the
objective function at that point.

- If the value of
the objective
function is
increased(Fail)

- Come back to the previous point and

search in the negative x; direction.

—o<%=0oF
bk

o—
bk

- If the value of the
objective function is
decreased(Success)

- Search in the x;,, direction at the
current point.

s

bk

Case @ Search in the negative x; direction.

- If the search in the positive x; direction is
failed, move the exploratory point in the
negative x; direction and evaluate the
value of the objective function at that

point.

«—O0---0F
bk

- If the value of the
objective function
is increased(Fail)

- Come back to the previous point
and search in x;,, direction.

F o =20 --oF

bk

- If the value of the
objective function is
decreased(Success)

- Search in the x;,, direction at the
current point.

SI—o———-oF

bk

- This process of the ‘Local Pattern Search’is continued for i=1,..., n.
- After searching in x, direction, the current point is defined as new base point bk,

Computé

- T gTT, I~ UTICOTTS T anieu UPTTITITIZatTOTT IVTC U TOUU,; COHT U T I yar FeRrTT
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3.3 Direct Search Method
1. Hooke & Jeeves Method(8): Rule of the ‘Local Pattern Search’(2)

s ty
X2
/ﬁ,‘ K :
| Case 2 t‘/b“ \C2bl T 3
(J J ‘. — ) 0
I / S 2
|_0 O @ 6
I_Case: . 3
' |
Q—»>0——0
Global Pattern Move / Sh-D - =
Base point | -
0 V X, 1
Local Pattern Search
* Super script ‘k’ means the number of step.
= Rule of the Local Pattern Search (F: Fail, S: Success)
<Case 1> S <Case 2> S <Case 3> =
bk+1
bkt v Step/2
| ?
F o---0---0oF S Fo--0--0 F— o--0--0
bk bk bk, bk
| o)
o)
E
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3.3 Direct Search Method
1. Hooke & Jeeves Method(9): Algorithm Summary(1)

1) Local Pattern Search (Problem with n independent variables)

1. Compute .the value of.the 1objectlve function at Example of the ‘Local Pattern Search’
the starting base point b'. in the problem with

two independent variables(x,, X,)
(Search in x, direction)

2. Compute the value of the objective function at
bl!*=&,, where &, is input step size and a vector
with n elements(, =[6,, 0,0, ..., 0]"). If the value
of the objective function is decreased, b9, is
adopted as t,'(and the search is continued.

Example of the ‘Local Pattern Search’

. . : in the problem with
3. Compute the value of the objective function at two independent variables(x,, X,)

t,1+8,, where 8, is also input step size and a (Search in x2 direction)
vector with n elements(8, =10, &,, 0, ..., 0]7). If
the value of the function is decreased, t,1 8, is
adopted as t,.

Computer Aided Ship Design, I-3 Unconstrained Optimization Method, ERI2edanHyaineshiOptémization Method




3.3 Direct Search Method
1. Hooke & Jeeves Method(10): Algorithm Summary(2)

1) Local Pattern Search (Problem with n independent variables)

4. After the ‘Local Pattern Search’ for all independent variables, new base point
is defined. (new base point b2 =1t_1)

5. Perform the ‘Global Pattern Move’ from the previous base point along the line
from the previous to current base point.

E);\' Seoul @ . 78
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3.3 Direct Search Method
1. Hooke & Jeeves Method(11): Algorithm Summary(3)

2) Global Pattern Move

1. Define the temporary base point located the same distance between the
previous and current base point(obtained from ‘Local Pattern Search’) from
the current base point (‘Global Pattern Move’), and calculate the value of the
objective function at this point. The temporary base point is calculated by

‘Global Pattern Move’ as follows. Example of the ‘Global Pattern Move’ in the

problem with two independent variables(x,, X5,)
k+1 K k+1 k+1 K When the value of the objective function at
b + 2(b b ) 2b b the temporary base point is not improved.

2. If the result of the temporary base point is a better point
than the previous base point, perform the ‘Local Pattern
Search’ at the temporary base point. Otherwise, come
back to the previous base point and perform the ‘Local
Pattern Search’.

Seoul 1 |
. . . . National | 79
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3.3 Direct Search Method
1. Hooke & Jeeves Method(12): Algorithm Summary(4)

3) Closing Conditions

1. When even this ‘Local Pattern Search’ fails(b**1 = bX, there is no

Improvement), reduce the step sizes §, by halt, /2, and resume the
‘Local Pattern Search’.

Example of the ‘Global Pattern Move’ in the
problem with two independent variables(x,, X5,)
When the value of the objective function at

the temporary base point is not improved.

2. If the step size §, is smaller than ¢g;, stop the iteration
and current base point is the optimal design point.

B Seoul @SD
. .. . National 80
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3.3 Direct Search Method

1. Hooke & Jeeves Method(13): Example

M If the contour line of the objective function of shipbuilding cost with two
independent variables, L/B and Cg, is given as shown in the Figure, find the
optimal value of the L/B and C; to minimize the shipbuilding cost by using
the ‘Hooke & Jeeves Direct Search Method’ and plot the procedures in the

graph.

B Hooke & Jeeves Direct Search Method
@ Starting design point: L/B = 7.0, C; = 0.2
® Step size at the starting design point: A(L/B) = 0.5, A(Cg) = 0.1
Contour line of the objective fu/nction(f = const.)

Cs

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Optimization problem with two
unknown variables

yd
//: i \\
/// ,/ﬁ/ \\\
// po AV ’/CD))/ /)
00 AN AR =2
JAVANIHAN AN
[\ vy
§ \\ //// e
\\ ) — //
N — [ [ | T T 1 1 1 1 |
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3.3 Direct Search Method
1. Hooke & Jeeves Method(14): Example

X, =L/B, x,=C;

« Iteration 1 : Local Pattern Search 1 C,
b®=(7, 0.2), Ax, =05, Ax,=0.1, T ] S
t; =b° 8': 1 1 N
Searchfromt; in — x, direction — t; = (6.5, 0.2) 0'7 T T \
Searchfromt; in + x, direction — t;, = (6.5, 0.3) 0.6 /1 /] (/ Q/C,) 3)// /
' L —T—

Because the value of the objective 0.5 717/ S
function atl; is improved, this point is 0.4 ( — 1 | ‘01 6
adopted as a new base point. 0.3 N N S 2 [p°

1 4l 0.2 — L

b —t2 N |
0.1 N ——

. 1.0 20 30 40 50 6.0 7.0 80
elteration 2 : Global Pattern Move 1 L/B

Define the temporary base point by using b° and b’
—t2=(6, 0.4)

Because the value of the objective function at tg is improved, perform the ‘Local Pattern
Search’ at this point.

oul | ‘
. e 82
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3.3 Direct Search Method
1. Hooke & Jeeves Method(15): Example

elteration 3 : Local Pattern Search 2

Search from t? in — x, direction — t7 = (5.5, 0.4)

Search from t? in + X, direction - t2=(5.5, 0.5) Cs

Because the yvalue of the objective L : N
function at b is improved, this point is 8': P N
dopted b t. - 3 s [
adopted as a T:ZW a:e poin 07 1 e e \
. | NSV
-Iteration 4 : Global Pattern Move 2 v SR
0.4 ——
Define the temporary base point by using b* and b? 03 ( ] b
. | 1 1
=(4.5, 0.7) 0.2 N \ - — | t, b’
|
0.1 — T
elteration 5 : Local Pattern Search 3 1.0 20 3.0 40 50 60 70 80 |

Search from t] in +x, direction — t} = (5, 0.7)
Search from t? in -x, direction — t2 = (5, 0.6)

Because the value of the objective function at t§ tg is improved, this point is adopted
as a new base point.

b )'»\’ Seoul D AL i
BJ National ASd vanced kgn Automation L b 83
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3.3 Direct Search Method
1. Hooke & Jeeves Method(16): Example

elteration 6 : Global Pattern Move 3
Define the temporary base point by using b* and b*

> t!=(4.5, 0.7)
Ce
Because the value of the objective ] .
function att; is not improved, 09 1| N
tt =b? ' T N
: 0 o A T e \
elteration 7 : Local Pattern Search 4 0.7 7 %% 7> ]
Because there is no improvement of 056 4 A A 7
the value of the objective function 0.5 (\\: e
from the temporary base design point g 4 [/ N - L0 i
ty in x, direction and %, direction, 0.3 | B
I — I [ho
t —t —t 0.2 \ - | t b
eIteration 8 : Global Pattern Move 4 0.1 N I B
b*=b’— Ax, =0.25 Ax,=0.05, 1.0 20 30 40 50 60 70 80 |5
t; =b*

elteration 9 : Stopping the iteration of search
Because there is no improvement of the value of the objective function from base design
point (x;, x,)=(L/B, C;)=(5.0,0.6) in x; direction and x, direction by performing the ‘Local
Pattern Search’ and ‘Global Pattern Move’, the optimal design point is L/B=50, C, =06,

B * Seoul @ | |
. L Na f ional 84
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, ERI2edanHyaineshiOptémization Method Lj\ Unii . ‘Weda/snua sjgn Automation L b |



3.3 Direct Search Method
2. Nelder & Mead Simplex Method(1)

1. This method uses n+1 points in

the function of n design
variables.

(ex) If the number of the design
variables is two, this method
use three points.)

2. The simplex is reflected in the
direction where the value of the
objective function is improved.

»x, 3. If the value of the objective
function is improved, the
simplex is expanded. Otherwise,
the simplex is reduced.

};" Sem.ll D A L
4 E}j : National @ Adeanced Ship Des’égn Automation Lab. 85
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method(2)

M This method is used to find optimal design point by
successively reflecting, expanding, contracting and reducing
the simplex with (n+1) corners in the function of n design
variables. Following figure shows an example of 2-

dimensional

Reflection
Xh
A Original
/22 Simplex
Xy /
' oX\(= X))

Reflection
to X,

Se

Expansion

Xp
QO

5 X

New Si.m|glex
Expansion
to x, when

f(xe) < 1(x)) & f(x,) < 1(x))

x,: Simplex point having the largest objective function value
X,: Center point between x; and x,

Contraction

Contrarction
to x, when

f(x,) < F(x,)

Contraction
to x, when

X f(x,) 2 F(x,)

Reduction
Xh
Q

Xy

Reduction
toward x, when

f(xc) = (xy)




3.3 Direct Search Method
2. Nelder & Mead Simplex Method(3)

M Step 1 : Calculate the value of the objective function f at the n+1 corners
of the simplex.

M Step 2 : Establish the corners which yield the highest, x,, and lowest, x,, f(x)
in the current simplex.

M Step 3 : Calculate the value of the objective function f at the centroid(x,)
of all x, except x,, i.e.,

n+l

:_Zx (with x, excluded)

Example) X,

X 2
Xp

E);\' Seoul @ 3 87 |
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method(4)

M Step 4 : Test stopping condition: " _ Average of the distance
etween each corners and X,
n+1
Z[f(X)— Fx)I'F" <e X2 _
X X\(= X))

B If the stopping condition is satisfied, stop and return f(x) as minimum.
Otherwise, continue.

M Step 5 : Reflection X,
B Reflect x, through x, to give X, =2X, —X,. R Original
Calculate the value of the objective function f at x, o — Simplex

and change the simplex as following conditions.

Reflection
to X,

oul | |
. e . 88
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method(5)

M Step 6 : Expansion
B Step 6-1: If f(x,) < f(x), reflect x, through x, to give X, =2X, —X,.

And then, calculate f(x,) and compare f(x.,) and f(x). Xh N
Original

Simplex

® Step 6-1-1: If f(x,) < f(x,), replace x, by x,(expansion) "
and return to Step 2.

» Step 6-1-1
f(xe) < 1(x))

Original
Simplex

® Step 6-1-2: If f(x,) > f(x,), replace x;, by x.(reflection)
and return to Step 2.

» Step 6-1-2
f(%e) 2 f(x))

2 e (D32
Na t nal :
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method(6)

M Step 6 : Expansion
B Step 6-2 : If f(x,) > f(x)),
® Step 6-2-1: test f(x,) < f(x;) for all x; except x;.

If true, replace x;, by x.(reflection) Original
and return to Step 2. Simplex
Xy \
2, oX,
» Step 6-2-1
For all x; except x, O X, €X;.

f(x,) < f(x)

® Step 6-2-2 : If false, continue.

EJ)';\' Seoul @ B 90
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method(7)

M Step 7 : Contraction X,
B Step 7-1:If f(x,) < f(x,), A
calculate the value of the objective function f s
at X, =(X, +X%,)/2.
» Step 7-1
1:(Xr) < 1:(Xh)

r

B Step 7-2: If f(x,) = f(x,),
calculate the value of the objective function f
at X, = (X, +X,)/2. » Step 7-2
f(x,) 2 f(x,)

oul ! ‘
. L io Desi g L91
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method(8)

M Step 8 : Reduction

B Step 8-1:If f(x) < f(x,), %
replace x, by x_(contraction) \
and return to Step 2. Xp/" Xy or
» Step 8-1

f(xc) < f(Xh)

B Step 8-2: If f(x.) > f(x,),

reduce the simplex toward x, using X; = (Xi +X|)/2 X,
(reduction) and return to Step 2. » Step 8-2 Fa
f(xc) = f(xy) ii
X G ---- X(= X
2 X; (= %)
Reduction
toward X,

oul |
. L v Desi g 92
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3.3 Direct Search Method

2. Nelder & Mead Simplex Method(9): Example

M If the contour line of the objective function of shipbuilding cost with two
independent variables, L/B and Cg, is given as shown in Fig, find the value
of the L/B and C; to minimize the shipbuilding cost by using the ‘Nelder &
Mead Simplex Method’ and plot the procedures in the graph.

B Nelder & Mead Simplex Method

® Starting corners of the simplex: (L/B, CB) = (1, 0.1), (1.5, 0.1), (1.5, 0.2)

® Stopping criterion: 0.01

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Optimization problem with two
unknown variables

Contour line of the objective fu/nction(f = const.)
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/// ,/ﬁ/ \\\
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SO AN IR =24
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[\ vy
§ \\ //// e
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method(10): Example

X, =L/B, x,=Cy

Triangle 1: X, X,, X,

Iteration 1) Because x, is x,, reflect x, 0.9 | :

through the center between x, and X,. — X, 0.8 ,//,/;/

Because f (x.) < f(x) and f(x,), 07 // /fj P

perform the expansion — X, , 26 / //// // / (’ (

— Triangle 2: X, X;, X, . / {\ \\

Iteration 2) Because x, is x,, reflect x, o3 ~_ | [ —

through the center between x,and x,. — X, Zi \\ ] ——T

Because f (x.) < f(x,) and f(X,). 3 —

perform the expansion — Xs , 1.0 2.0 3.0 4.0 5.0 6.0 7.0/ 8.0 LB

— Triangle 3: X;, X,, X

Number means the index|‘i’ of Xi'

Alphabet means the kind of X; .
h: maximum point of the
corner in the simplex(triangle)
r: reflection

e: expansion

f“EElj c: contraction
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, ER12edandyainashiOptémization Method L OISO ST TCRT




3.3 Direct Search Method
2. Nelder & Mead Simplex Method(11): Example

X, =L/B, x,=Cy

Iteration 3) Because X, is X, reflect x, —— ~
// Y 7T \
through the center between x, and x;. — X, 0.9 e \
Because f (x.) < f(x,) and f(x;), 08 A ////
i 0.7 AN o~ // — \ \
perform the expansion — X, 7T A 7 &
— Triangle 4: x,, X, X 06 //// A // A }/
A S A S AT 05 / A // < ( 4,14 [ _
Iteration 4) Because X, is x,, reflect x, 04 / { N 4//,/5 ’
through the center between x,and x,. = X, , 0.3 ! \; P /// X
o SN T A1 4L
Because f (x,,) > f(X,),g0 to the next iteration. 0.2 ~ ] P
. ' \\ —t |~ 3
— Triangle 5: X, X, X, 0.1 ~] —
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 L/B

E%i -;Z;:I‘:”"’@ASdDAdIEh Design Aut: L 1;i 95
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3.3 Direct Search Method

2. Nelder & Mead Simplex Method(12): Example

Iteration 5) Because X is X,, reflect x;

through the center between x,and x,. — X,

Because f (x,) > f(x;), f(x;) and f(x,),
perform the constraction. — X
— Triangle 6 : X;, X,, Xg

Iteration 6) Because X, is X,, reflect x,

through the center between x;and x;. — X,
Because f (x,) > f(x;), f(x;) and f(x,) <f(x,),04

contract the simplex toward X, — X,
— Triangle 7@ X;, X3, Xq

Cs

®
— T~
0.9 ~ /,4 ~al” [\
0.8 e /,/ ;/ \
0.7 ////1//// — \
— ' 5
/ { \\ 4///4//
03 [ \ P //
_A
0.2 NS —
0.1 N — —
~N] —
1.0 2.0 3.0 4.0 5.0 6.0 7.0 80 B
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method(13): Example

Iteration 7) Because x; is X,, reflect x, Co
through the center between x, and x,. — X, —— ~
Because f (x.) < f(Xs), f(X,), 09 ///,4 ~—1 I\
preforme the expansion — X, 08 A \\\
i : 07 /) //1/ PV \ \
— Triangle 8 : X, Xg, X 71T 7 4
0.6 ////// // / < : :
05 / A A / ( &e// 6e //
Iteration 8) Because X, . is X, reflect x, 04 / { \ 4//,;,///
through the center between x; and x;,. — X 0.3 ! \\ A/
r e — Iy / /
Because f (x,) > f(x;), f(x,)and f(x,) < f(Xg)02 N — —
: — |
contract the simplex toward x, — X,, 0.1 s —
— Triangle 9 : X, X, Xy 10 20 30 40 50 60 70 80 s
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method(14): Example

Iteration 9) Because x; is x,, reflect x,

Cs

through the center between x,, and x,,. — X,
Because f (x,) > f(xy), f(x,)and f(x,) < f(x,) s //: | \\
contract the simplex toward x, — X,, os // Pt \\
— Triangle 10 : X,, X4, Xp o /;,/,/:,/ = 6\ \r’ \
0.6 ///////// /.12/ //)// ), l/
x,(7, 0.1) X, (7.5, 0.1) 05 // / {/ < (. % /ééx
0.4 N PrAlV Y
X, (7.5, 0.2) X,(6.75, 0.25) o [ \\ ‘//////
< ~ — | AV
X (7.375, 0.475) Xs (6.1875, 0.6875) o2 N E——
N — o
x,(6.8125, 0.9125)  x,(6.9375, 0.6375) S =
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 L/B

X,(6.4375, 0.5375)  x,,(5.0625, 0.5625)
X,,(5.21875, 0.66875) x,,(4.6171875, 0.5796875)
Performing 10 times iterations, we can recognize that the simplex(triangle) has the

tendency to approach the result obtained by the ‘Hooke & Jeeves direct search
method’.
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Ch.4 Optimality Condition Using Kuhn-
Tucker Necessary Condition

4.1 Optimal Solution Using Optimality Condition
4.2 Lagrange Multiplier for Equality Constraints

4.3 Kuhn-Tucker Necessary Condition for Inequality
Constraints
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Ch.4 Optimality Condition
Using Kuhn-Tucker Necessary
Condition

4.1 Optimal Solution Using Optimality
Condition
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4.1 Optimal Solution Using Optimality Condition
- Optimality Conditions for Function of Single Variable -
The Maximum and Minimum of the Function(Review of the Course of High School)

" Review of the Mathematics for the course of high school
- «=8t0] MM (Mathematics I1) Review “6. Maximum, Minimum and Differentials” (p. 104)

yA yA
11 _Maximum 1
-1 1 X \1\/ X
‘‘‘‘‘ Minimum

1) Maximum value: The increase of the value of the continuous function f(x) is
changed to the decrease of thatat X = X*.

2) Minimum value: The decrease of the value of the continuous function f(x) is
changed to the increase of thatat X = X .

f'(X) =0

(Necessary condition for X = X to be a maximum or minimum)

‘ ';’Eju -:Ieﬁz{"q, @Asdgéilzhlp Design Automation Lab. 102
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4.1 Optimal Solution Using Optimality Condition
- Optimality Conditions for Function of Single Variable :

First-Order Necessarz Conditions(1)

= First-order necessary condition for the function of a single variable: f l(X*) =0

pf) The Taylor series expansion of f(x) at the point X*is as follows.

-l

B o df (X7) _d f(x") --—.
f(x)_f(x)+—dx (X — )+2 e (Xx—X)* %

Lo
Remainder
Let X — X* = [ . the equation is as follows. . If the difference between
. . 1 . » X and X issmall, the
f(X) — f(X )+ f'(X )d T+ f”(X )d2 +R value of the remainder is
2 also very small.

From this equation, the change in the function at X ,i.e., f(X)—f(X)=Af(x)
IS given as

Af (x) = £'(x")d +% fr(x")d2 +R

p B 50!1/ @ |
oty naf 103 |
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4.1 Optimal Solution Using Optimality Condition
- First-Order Necessary Conditions(2)

AF(X) = f(x)— F(x) = F'(x")d +% f"(x")d2 +R

Af must be positive, if X is alocal minimum point.

v
v

|
X —d X X +d X —d X X +d X —d
f f

(X") is minimum (X”) is maximum. f (x”) is neither minimum nor
maximum.

Since d (= X— X*) is small, the first-order term f '(X*)d dominates other terms.

And the sign if the term f '(X")d depends on the sing of d .

Thus, the only way Af can be positive regardless of the sign of d in a neighborhood of X*
is f'(x)=0 .

In the same way, Af must be negative if X Is alocal maximum pomt So, the onIy way
Af can be positive regardless of the sign of d in a neighborhood of X is f' (X ) =0

B E} Sou/ @ |
oty naf 104 3
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4.1 Optimal Solution Using Optimality Condition
- Sufficient Conditions and Second-Order Necessary Condition

Af(x)=f(xX)—f(x)=f'(x)d +% f"(x)d*+R
= Now, we need a sufficient condition to determine which of the stationary points are

actually minimum for the function.

Since stationary points satisfy the necessary condition f'(x*) =0, the change in function
Af (x) = f'(x")d +% f'(x)d*+R becomes as follows.

Af (X) :% f(x)d*+R
Since the second-order term dominates all other higher-order terms, the term can be

positive for all d #0, if
f l'(X*) > () (Sufficient condition)

Summary
= First-order necessary condition = Sufficient condition
If X is a local minimum point, f'(X ) =0. If Xis a stationary point( f'(X*) =0)

cf) If f '(X*) —0, X isa stationary - and f"(x") >0, X is a local minimum point.

point(minimum, maximum and inflection point).

EL»“.? ':fofll @ |
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4.1 Optimal Solution Using Optimality Condition
[Revnew] Taylor Series Expansion for the Function of Two Variables

| |
Taylor series expansion for the function of two variables f (X, X, )at (X1 , X )
* * af * af *
f(X17X2): f(X1’X2)+_(X1_X1)+—(X2_Xz)
0%, OX,
1(0°f . o° f . o O°f .
+— —z(xl_xl)2+2 (Xl_Xl)(XZ_X2)+—2(X2_X2)2 +R
2\ OX OX,0X, OX,
¥ Each terms can be represented as follows:
af T
ﬂ_*i_*:a_xl xl—xf: Ty o
axl(xl X1)+6X2(Xz X,) of {Z_X,j V(X)) (x=X)
oX,
G PN IO § 62_f_* & f AL IPVRC:A SV Ee
Z(axf (% —x) +28X15X2 (¢ =% )0 =X;) + 2)} 8X12 Xl)+a —X;) O%,0%, (% Xl)+8X22 (%, XZ):||:X2—X;:|
:1[)( 8x6x2 X =%
x — X,
8xax OX2
:2 H(x)x x

/

"4
* * * 1 * * *
f(x)=f(X)+VF(X) (X—X )+§(x—x JHOC) (X=X )+ R [Erement of the 2x2 Matrix
___‘L___

(x=(x, %), X =X, %) 1:H€M22 )
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4.1 Optimal Solution Using Optimality Condition
- Optimality Conditions for Function of Several Variables (1)

= Matrix form of the Taylor series expansion for the function of two variables

F(x)= f(X)+VEX) (Xx=X)+= (x X" ] HX) (x=x")+ R

Element of the 2x2 Matrix

A 4

_——=L -

(X:(Xlixz) X _(Xl,X)T :H€M2x2i)

b e e o - - -

= Matrix form of the Taylor series expansion for the function of the several variables
. It has the same form of the function of two variables.

X, X ,Vf :ndimension Vector
HeM_,

» By defining X —X =d,the Taylor series expansion for the function of the several

variables is as follows. === e
f(x +d)=f(X )+.Vf (x)" dﬁZdTH(x )d'+R

............................ T i APV
\%i (X ) =0, 2d H(X )d >O » 5 local minimum

p EJ Sou/ @ |
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4.1 Optimal Solution Using Optimality Condition
[Review] Hessian Matrix

= Hessian matrix : Differentiating the gradient vector once again, we obtain a matrix of
second partial derivatives for the function f (X) called the Hessian matrix.

That is, differentiating each component of the gradient vector with respect to X;, X,,-*+, X,

we obtain ) )
821: azf 52—1: x—(x X X )T
aXl2 OX, OX, OX,0X, : n—colllJmn \Z/ector ”
o2f 02 o2 f -
0% f e —
x| PR O OX,0X,
2: 2 . 2 F- T T s T s s s s s s
o f o° f o f = Property of the Hessian matrix
| OX, 0%, OX,0X, OXn

of  of
OX;0X;  OX;0X

= Hessian matrix is denoted as H or V2§ .

o° f : .
H=|——| (@(=12,---,n; J=12,---,n)
OX;OX;

Therefore, the Hessian matrix is

always a symmetric matrix.

| :

EJ 5 oul @ i |
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4.1 Optimal Solution Using Optimality Condition
[Review] Quadratic Form

= Quadratic form: This is a special nonlinear function having only second-order terms.
_ 1 2 2 2
ex) F (X, X,,X;) = > 2X; 4+ 2% X, + 44X X, —6X5 — 4X, X, + 5X;

The quadratic form can be written in the following matrix notation.

2 1 2 __)(1_ A:Symmetri](-: matrix
F(Xl’XZ’XS):%[Xl X2 X3: 1 _6 —2 X2 ; TIA|X<:> EdTHd
2 -2 5 |X

= The elements of symmetric matrix A is defined as follows.(a;: element of the matrix A at (i j))
1) The diagonal terms of the matrix are equal to the coefficient of the squared terms.

a, = (coefficien t of x?)
2) The all terms except for diagonal terms(a;) are equal to a half of the coefficient of

the xx;. Q; = (coefficien tof x;x j)x —

p EJ Sou/ @ |
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4.1 Optimal Solution Using Optimality Condition
- Quadratic Form may be either positive, negative, or zero for any X

r : : : N . _
A symmetric matrix A Is : = Use of the form of a quadratic form
Often .referrec.ll t.O a; a @® Minimum condition for the function of the
positive definite if the ! single variable
guadratic form associated ! If Xis a stationary point( f'(Xx")=0)

_ with A is positive definite | i and f*(x")>0, X" is a local minimum
: point.

» Form of a quadratic form

1) Positive Definite : @ Minimum condition for the function of the

. X" AX > 0 for any x except for X = O several.variable.s . .
2) Posmve Semidefinite If X is a stationary point( VT (X ) = O)

- X" Ax > 0 for all x and there exists and d"H(x)d >0, i.e., the quadratic form

atleastone X # 0 with X' Ax=0. i g positive definite, X is a local minimum
3) Negative Definite : point.
- X' AX < 0 for all x except for X =0 To be d"H(Xx)d > 0 at X,
4) Negative Semidefinite H(X ) must be positive definite
- X' AX <0 for all x
5) Indefinite : | Ref) KREYSZIG E., Advanced Engneering Mathematics, WILEY, 2006,
" The quadratic form is positive for E 8.4. Eigenbasis. Diagonalization. Quadratic forms.
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4.1 Optimal Solution Using Optimality Condition
Theorem: Methods for checking positive definiteness or semidefiniteness of a

%
Let A,1=1...,n be n eigenvalues of a symmetric nxnmatrix A associated

with the quadratic form F(x) :%XTAX

1) F(X) IS positive definite if and only if all eigenvalues of A are strictly positive, i.e.,
A >0,1=1..,n

2) F(X) Is positive semidefinite if and only if all eigenvalues of A are nonnegative, i.e.,
A >0,1=1..,n

3)F (X) Is negative definite if and only if all eigenvalues of A are strictly negative, i.e.,
A <0,1=1...,n

4) F(X) Is negative semidefinite if and only if all eigenvalues of A are nonpositive, i.e.,

A <0,1=1...,n

5) F(X) is indefinite if some ﬂfl < Oand some other ﬂfl >0.

y .B}»\’ .:Ieoql @ |
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4.1 Optimal Solution Using Optimality Condition
- Eigenvalue of a Symmetric Matrix A associated with the quadratic Form

For a given matrix A, the eigenvalue problem is defined as AV = ﬂ,V
, Where /1 is an eigenvalue and V is the corresponding eigenvector.

How to determine the eigenvalues:
Av=Av » (A-Al)v=0 =» det(A-Al)=0

Determine the eigenvalues and the form of the following matrix.

4 2 2
A=|2 4 2
2 2 4]
i )
det| 2 4-1 2 |=(2-1)%*@8-1)=0
i 2 4-2]

. A =2(equal root), 8

Since all eigenvalues of A are positive, this matrix is positive definite.

iy Seout @ |
i~ Iatinnaf . . . | 112
Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tu, Ch.4 Optimality Condition-Using Kuhn-Tucker-Necessary Condition ﬂgz%%ﬂ;'ﬁugfﬁ" Automation Lab'§ |



4.1 Optimal Solution Using Optimality Condition
[Summary] Optimality Conditions for Function of Several Variables

» The Taylor series expansion of f (X) which is the function of n variables gives

f(x)=f(X)+VF(X)d+ %dTH(x*)d +R

= From this equation, the change in the function at X, i.e., Af (x) = f(x)— (X)), is given as
* 1 *
Af =VE(C)Td+ZdTH(C)d + R

= If we assume alocal minimum at X then Af must be positive.

1) The first-order necessary condition:

of (x7) .
if VE(x") =0, ie, =0, (I=12,

point(minimum, maximum and inflection point).

--n) , X is a stationary

2) The sufficient condition:
If d"H(x")d > 0 a stationary point (Vf(X')" =0 = Vf (Xx")=0) is a local minimum.
Tobed'H(x )d >0 H(X") must be positive definite.

EL?‘\' Seoul @ i
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4.1 Optimal Solution Using Optimality Condition

Necessary condition to be a stationary point : Total derivative d =0 -> grad f= 0.

f (X, +AX, X, +AX,) idx2 The symbol “d” refers to the infinitesimal
£(x,%) X2 change. In accordance with the notation we
e A write the change of the function f as follows
. ‘E Af the change of the
A ~—7" ] Y functlon in X, direction
f(x; XZ) /;.I_ _________________ af af ..................
! //
2 ~slope= —
N/ L] Pe= %, df =—dx;+—dx,
slope o 8)(1 X2
X - — ! F 1  tssssssssssssssssssaasd * asssssssssssssssssssssnans
? aXl N the change of the function in
Ax, = dx, ﬂXm X, direction
(dxe dx, 28 * : :
If df =0, then X is a stationary point.
<€ —>
: AX, = dx,

- X, _/To be df =0 regardless of the sign of
The change in the function is defined as i dx,and dx, ,of /ox and f / 0X;must be zero.
follows ,

of of 1(o%f o o f f ., i _ _

Af =anl+a_szX2+2(axf A2 ow, ARt e % j*R It means that the gradient of function f

If Ax, = 0,Ax, — 0, the first-order term 15 equal to zero.

of of :

ZAx +2Ax,dominates other terms. :

o, X1+8x & : of _O|:> VI =

of of

Therefore Af can be approximated as Af ~6—A AXz: axl @X o 114
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4.1 Optimal Solution Us

ing Optimality Condition

/

\

Find: Stationary point (x,*, x,*)

Given: minimize f(X;, X,)

F (%)
i

OBJECT
FUNCTION

f (XI ’ X;) I X,
(X, %)

|
N
/]
/

OPTIMUM ( MINIMUM )

/

- The change in function(df ) at the point(x,*

X,*) with the change in variables(dx,, dx,) is
follows.

df = A dx, + a dx,
0%, OX,

The point where the change in function(df)
IS zero is called stationary point . It
includes the minimum, maximum and
saddle point.

Note: In the general engineering optimization problem,
the optimum point is more important than the optimum
value.

[example] Main dimension of a ship (L, B, D, Cy) to
minimize the shipbuilding cost is more important than
the shipbuilding cost itself.

as

4
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4.1 Optimal Solution Using Optimality Condition
[Example] Solution of a Quadratic Programming problem

Quadratic programming problem

- Objective function: quadratic form
- Constraint: linear form

Given:

f(X1’X2’X3):X12 +X22+X32
(X, X,, %) =X +X, +X,+1=0

Find: Stationary point (X;*, X,*, X5*)

Express h (equality constraint) as an explicit
function of x,.

Substitute x;, into the function of f

=—X, —X; —1

2 2 2
f=(-X%—X%-1D +X°+X,
2 2
= (X, + X, +1+2X, X, + 2X, + 2X,)
+ X%+ Xy
. 2 2
= 2X," +2X;" +1+2X, X, +2X, + 2X,

Determine the stationary point in (df = O)
unconstrained optimization problem.

=idxz+ﬂdx3
OX, OXq
Lo _ o _
COX,  OX,

— =4X,+2X,+2=0
OX,

df =0

0

i:4x3+2x2+2=0
OXq

1 1

The equations are solved as X, =——, X;=—=

3 3

By substituting these value into the function of
f, we obtain 1

3
1 1 1
Therefore, the stationary pointis| ——,——,—— |.
3 3 3

W] o Seoul @
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4.1 Optimal Solution Using Optimality Condition
[Example] Solution of a Quadratic Programming problem

Given:

Minimize f (X, X,) = (X, —1.5)* +(x, —1.5)°

h(%,X,) = X, +X, ~2=0

Find: Local minimum point(x,*, x,*)

Solutionl

Express X, as an explicit function of X,
X :CD(X1):_X1+2
f (%, @(x)) = (% =1.5)" + (-x +2-15)’

o _
1
=X =1

=2(x,-1.5)-2(-x,+0.5) =0

=X, =—X%+2=1

2
g—z—:4>0
dx,

1. Express h (equality constraint) as an explicit function of

Xl-

2. Substitute x, into f and find the stationary point

by using df = 0.

2 (X, X;)=(1, 1): Local minimum point

b _E};’ Seoul
P Ala:

tinnaf
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Ch.4 Optimality Condition Using
Kuhn-Tucker Necessary Condition

4.2 Lagrange Multiplier for equality
constraints
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4.2 Lagrange Multiplier for equality constraints
- Function and Stationary Point for Unconstrained Optimum Design Problem

Given: minimize f(x,X,,X,)

Find: Stationary point(x,*, X,*, X,*)

df = a x1+idx +— a dx,
8x1 OX, OXq

At the stationary point, the change in the function(df) is zero.
The gradient of the function at stationary point must be zero for the change in the function(df) to be
zero regardless of the sign of dx;, dx, and dxa.

of of of
X, ax ax3

> Vf =0

=0

2 -B*"‘Y\: -:/em‘ll @ |
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4.2 Lagrange Multiplier for equality constraints
- Function and Stationary Point for Constrained Optimum Design Problem(1)

Given: minimize f (Xl’ X X3) 1. Express h (equality constraint) as an explicit function of x;.

Subject to h(Xl, X, X3) =0 2. Substitute x, into f and find the stationary point by
using df = 0.

Find: Stationary point(x,*, X,*, X3*)

express h (equality constraint) as an explicit stationary point if the equality

function of x;. .
o _ , constraint can not be expressed as an
Example) It is difficult to express the following equality

constraint as an explicit function. eXpI|C|t function?
ex) h(x;,X,,X;) =tanx, +cosx, +e* =0

In many problem, it may not be possible to :: Is there any method to obtain the

df = 0 at the stationary point. Since h(x,X,,X3)=0, dh is also zero.
df =idx1+ﬁdx2+idx3=0 ------- ® dhza—hdx1+a—hdx2+a—hdx3=0 ------- ®
OX, OX, OX4 OX, OX, OX,

Since equation® and (@ are equal to zero, the following equation is always satisfied.

df 4+ A . dh — O A ‘l.llndetermined Fo.eff’icient

/

#~a L Matinng, . . . 120
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4.2 Lagrange Multiplier for equality constraints
- Function and Stationary Point for Constrained Optimum Design Problem(2)

of of
Given: minimize f(Xl,Xz,Xg) ® df :&dxl_F@dez_F@deg =0
2 3
Subjectto h(x,X,,%X,)=0
(% %) ® dh:a—hdx1+a—hdx2+a—hdx3:0
Find: Stationary point(x,;*, X,*, X;*) 0%, X, 0%

- Because of the equality constraint h,
dx,, dx, and dx; are not linearly independent.

df + ﬂ/ . dh — O A Undetermined Coefficient

‘Lagrange multiplier’

This equation can be rearranged as follows.

id)(lJridszrﬂdngr/l a—hdleré—hdszra—hdx3 =0
0%, OX, OXq 0%, OX, OXq
ijtia—h dx, + ﬂ+/Ia—h dx, + i+ﬂa—h dx, =0
oX  OX oX,  OX, OX,  OXq

EJ ., Seoul
P 5 Matinng,
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4.2 Lagrange Multiplier for equality constraints of

of of
- Function and Stationary Point for Constrained ® df =6—dx1+a—dx2+&dx3 =0
Optimum Design Problem(3) % %, 3

@ dhza—hdxljta—hdx2+@dx3 =0

OX, OX, OX,
- Because of the equality constraint h,
dx,, dx, and dx, are not linearly independent.

df +A-dh=0

A Undetermined Coefficient

‘Lagrange multiplier’
ﬂ+ﬂa—h dx, + ﬂ+ia—h dx, + A +A oh dx, =0
X, OX, OX, OX, OXq OXy

If the dx;, dx,, and dx; were all independent of each other, all terms in the brackets will be zero. This
however, is not the case because of the equality constraint A. Therefore, we should make the first term
to be zero by determining a proper value of 4, so that the following equation is satisfied without
considering the dx;.

[ﬂ+la—hjdx2+[6f +A oh jdx3 =0

Given: minimize f(x,X,,X,)

Subjectto h(X, X,,X%;) =0

Find: Stationary point(x;*, X,*, X3*)

oX,  OX, OX;  OXq
Since dx, and dx; are independent, the terms in the brackets must be equal to zero to satisfy the
equation.

.'.(iJrA@]:O, £i+26—h]:0, (i+ﬂa—h]:0

ox, 0% X,  OX, X, OXg
Therefore, the point(ﬁ,, Xy X5, Xy) that satisfies the following equations is a stationary point.
S_f + ﬂg_h — 0, sf + A jh — 0 4 Unknown variables: (X3, Xy, X3, 4)
X X .
a);l axlf‘ > = 4 Equations
—_— + A = 0O, h(x,, %X,,X%X3) =0 | |

i | ion. 122
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4.2 Lagrange Multiplier for equality constraints

the point( 4, X, X,, X3) that satisfies the
following equations is a stationary point.
a +/Iah:0, ﬂma—h:o
oX, — OX OX, OX,
of oh
+A—=0, h(x,x,x,)=0
o o 04 %, %)

—

| |

It is convenient to write these conditions in terms of a Lagrange function, L, defined as

L(X1 X5, X5, A) = T(X, %5, %) + AN (X, X5, X;)

VL(X, X,, X3, 4) =0

Constrained optimal design problem is transformed to the unconstrained

optimal design problem.

oL of oh oL
=—+1A—=0

oX, OX  0OX OX,

oL _ of ) oh 0 oL

OX, OX;  OXg oA

|
+A on =0
OX,
_h _0 /. Lagrange Multiplier
=06, %) = L : Lagrange Function




4.2 Lagrange Multiplier for equality constraints
- [Summary] Function and Stationary Point for Constrained Optimum Design Problem

- Solution of the Constrained Ogtimum Design bx using the Lagrange Multiglier‘12

Optimization Problem

4 )
Minimize f (X1’ Xy XS) SN0 Number of variables: 3
Subject to hy (%, X, Xs) =0 - @ Number of equation : 2
h, (X, %, %) =0 = @
- /
Necessary condition that minimize f is df = 0.
df =0 is eq®’ as following
4 of of of )
df =—dx, +—dx,+—dx, =0 ... i :
o, X, o, 5 o, 3 @’ Number of variables: 3
Number of equations : 3
Subjectto  h(X,X,%)=0 .. @ 7:
N e¢. How could we generate more equations
L (X, %, %) =0 = @ i‘; from the indeterminate equation?

of

0,

of

of

=0,—=0

%,

-

OX,

0%,

Since dx,, dx,, dx; are not independent because
of the equality constraints h;, h,, we cannot set

/

Because ‘Minimize f’ is formulated as an equation(df =
0), the number of equations is equal to the number
of unknown variables.

We can SO|Ve ItI (Num of Equation = Num of Variables)

Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tu, Ch.4 Optimality Condition-Using Kuhn-Tucker-Necessary Condition
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4.2 Lagrange Multiplier for equality constraints
- [Summary] Function and Stationary Point for

- Solution of the Constrained Ogtimum Design bx using the Lagrange Multiglier‘22

Optimization Problem

s
Minimize (X, X,,%;) NG
Subject to hl(xl,xz,xg)zo - @
h (X, %, %) =0 = @

- /
Necessary condition that
df =0 is eq®’ as following

(o Of of of )

df =—dx, +—dx, +—dx, =0 . 3
OX, X1+8x2 & +6x3 . o
Subjectto  h(X,X,%)=0 .. @
hz(x1’X2’X3):0 = 3

Since dx,, dx,, dx; are not independent because

of the equality constraints h;, h,, we cannot set
of 0 of _o, of
oX, oX, OX,

To find relationship between dx,, dx,, dx;,

=0

Constrained Optimum Design Problem

Number of variables: 3

Number of equation : 2

minimize f is df = 0.

[ of of of )
df = —dx, +—dx, +—dx;=0 ... ()’
ox 0 3
O g My, o, oh
d d +—dx +—0dX; =0 - (5
h = ox Pt o et o ®
oh, oh oh
dh, = —%dx, + —2dx 2d%, =0 ... @y
Tk  aw ®
- by

we modify the equation(s) @ and ® to the form

ﬁf total derivativedh,, dh, . .

—r

3 _E}x’ Seoul
| Natinns/
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4.2 Lagrange Multiplier for equality constraints
- [Summary] Function and Stationary Point for Constrained Optimum Design Problem
- Solution of the Constrained Optimum Design by using the Lagrange Multiplier(3)

Optimization Problem (o A

df = —dx1+ﬂdx +— o dx; =0 ... @)’

-

Minimize T (X, X,,X;) SN C) I:> 2 2 %
Subjectto  h, (X, X,,X;) =0 - @ dhlzg_hldxi+27hldx +67hldx =0 @)
h, (X, %,, %) =0 == 3 X, , .
N / oh, . oh

oh
dh, =—2dx, +—2dx, +—2dx, =0 ... @

2 & X, X ®
. /

T Are the equation @’, @’ and @’ the differential equations with respect to f, h;, h, ?

(i; - If the problem is given as following
- Given: E;iolxﬁﬂolx LN i+ F M g, + Mg, =0, Mo gy + Mg 4 Mgy =
X

OX OX, OX, oX, OX, ax1 oX, OX,
- Find: Function f, h;, h,
Then the equation @, @’, and @’ are differential equations.

However, since the function f, h, and h,(equation @, @, ®) are given and differential quantities to dx,,
dx, and dx; are finds, the equation @', @' and (®" are the algebraic equations of the variables x, x,, x; .

o E}}E‘ ':/em’ll @ |
o Iatinnaf 126 |
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4.2 Lagrange Multiplier for equality constraints

™ ™

- et

Optimization Problem
P —> | df =T+ Lo+ T =0 - @y
4 ) OX, OX, X,
Minimize f(Xl,Xz,Xg) NG
Subjectto  h (X, %,, %) =0 - @ ah = Mgy + Mgy - Mgy —o .. @
OX, OX, OXy
h (X, %, %) =0 = @
- /
ah, = Mgy + Moy Mgy g @’
OX, OX, OX,
To eliminate dx,, dx, in the equation @, \_ Y,
we multiply the equation@’and ®’ by /, and 4, respectively
and add it to the equation @'.
4 N
df + A,dh, +4,dh, =
of 0 oh, 0 oh, 0 oh
|$ +4 hl +A, = |dx + —+21 hl ﬂg X, /ll—hl+/12—2 dx,=0
OX, OX, X, O, X, ax X, 0%,
=0 @ - 0 G = Q- ()
- Determine 1, 4, so that - Determine /1, 4, so that -> Since dx; is an
the first term in the brackets the second term in the brackets independent variable
becomes zero* becomes zero*
(to eliminate dx,) (to eliminate dx,)
5 variables: .
* Since dx;, dx,, dx; are not independent Th_ere existsa |
o because of the equality constraints h,, h, 5 equations: 2,3,4,5,6 unigue solution. | a7




4.2 Lagrange Multiplier for equality constraints

the point(A,, A,, X, X,, X;) that satisfies the following
equations is a stationary point.

ﬂl“@ ﬂlhwz

/11 hl /12 =0,h (X, %, %) =0, h,(X,%,X%)=0

It is convenient to write these conditions in terms of a Lagrange function, L, defined as

L(X, Xy, Xg, Ay Ap) = T(X, Xp, %) + 40 (4, %5, X5) + A0, (X, %5, %5)
VL(X, X,, X3, 4, 4,) =0 4 Lagrange Multiplier
gt

L: Lagrange Function

oL _of ahl oL _ of oh,

OX, 8x1 /11 /12 """" ® ox,  OX, A4 OX, /12 ®
oL

8L ahl = =h (X, Xy, %) =0 @

ax ax A OX, /12 ~® %f_l

) =0 e @
The Lagrange Function gives us a simple way of stating and remembering how
to get the equations, which are satisfied at a stationary point.




4.2 Lagrange Multiplier for equality constraints
Example: Quadratic Programming Problem

1 Original Problem

Minimize f(x,X,) = (% —1.5)* +(X, —1.5)*
Subjectto h(x,X,)=x+X,—2=0

Lagrange Function

Minimize L(x,X,,4) = f(X,X,)+Ah(X,,X,)
= (%, —1.5)% +(x, —1.5)
+A(X +X,—2)

a—L:2(><1—1.5)+/1:O
%,
i=2(x2 -15)+41=0
8 2

oL
—=X+X-2=0
PY) X+ X

=X, =X, =1,4" =1 (The point Cis a stationary
point.)

Necessary Condition: VL(X;,%,4) =0 |———

Quadratic programming problem

- Objective function: quadratic form
- Constraint: linear form

L(%, %, %, 4) = T(X, %, %) + AN(X;, X, %)
VL(X, X,, %5, 4) =0

f =0.75

s (NSDAL
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4.2 Lagrange Multiplier for equality constraints
- [Example] Solving Nonlinear Constrained Optimization Problem by using the Lagrange Multiplier (1)

MThere is a sphere whose center is (0,0,0) and
radius is c.

MDetermine the maximum volume of the
rectangular solid which is circumscribed* in the
sphere.

*to draw a geometric figure around another figure so that the two are in contact but do not intersect

ﬂ;x Seoul @
#*54.  Matinna/ 130 3
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4.2 Lagrange Multiplier for equality constraints

- [Example] |

M Mathematical Modeling

/2%,

2X,

PAY

The volume of the rectangular sold fis
F (X0 %0 %) = 2% - 2%, - 2%,

Because the vertices of the rectangular
solid are on the surface of the sphere,

N(X, X, X5) =X + X2 + X2 —C* =0

cf ) equation for a sphere:x*+y*+z*=r?

&

maximize : f (X, X,, X;) = 2X, - 2X, - 2X,

= 8X X, X
constraint : %1% Xs

h(X,X,,%,) =X+ X5 + X2 —¢* =0

<

hl\l

minimize: f (X, X,, X;) =—=8XX,X,
constraint :

h(X,X,,%,) =X+ X5 + X2 —¢* =0

e I T o
Advanced Ship

e — - -
Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tu, Ch.4 Optimality Condition-Using Kuhn-Tucker-Necessary Condition \‘._”http‘?//fasdal.snugi—.sﬁ" Automation Lab.




4.2 Lagrange Multiplier for equality constraints
[Example]

M Solution(1/2)

minimize: f (X, X,, X;) = —8XX,X,
constraint :

h(X, Xy, X)) = X2+ X2 + X2 —c° =0

Lagrange function of this problem is as follow.
L% Xy X1 2) = F (% X0 %) + 200X, X, X,)

= —8XX, X, + A(X’ + X5 + X5 —C?)

a_=_8)(2)(3+12x1 =0 i:—8X1X3+ﬂL2X2 =0
VL(X, X,, %5, 4) =0 X %
oL

oL
a)(3=—8x1x2+ﬂb2x3=0 872X12+X22+X§_C2:0

.,_EJ;:‘V. f,eﬁﬁf{,,q, @Asdgéilzhlp Design Automation Lab,i 132
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4.2 Lagrange Multiplier for equality constraints
[Example]

M Solution(2/2)

—8X, X, +A2X% =0 @ Equationr@=x=Xy —8X X, X, —|-ﬂ,2X12 =0
—8X X, +A2X, =0 - @ Equation@=x=X5 —8X X,X; + A2X; =0
—8XX, +A2X, =0 - ® Equation@x=X; —8X X,X, + A2X; =0
2 2 2 2
+ X5 +X;—C =0 O S
% 2 3 | ¢ 0 Substitute these into the equation @
|
v 24X7X, X c’
_ 273 _ 2 _%
A XXy AXXXs | AXNXXs 2o 8X,%; + o2 0 % =3
A A A 32 C
X X =+—
12X X, X —8X,X,| 1-— [=0
X;Vz 3 _ 2 2 3[ o2 \/§
If X, and X3 are zero 0, the
12X X, X R ® volume of the rectangular
c2 B solid is zero and the result Way.
is not correct
Substitute the equation ® into the 3
- X1
equation @® _
12X X, X ¢’
—8X, X, + —22 aias 2%, =0 3% .
C -1 =
c? 8%

veCox ot
B30 B

So, the maximum volume is

8c?

Because X, is the length, it is positive.
X, and X3 are obtained in the same

C

X3:ﬁ

-~

Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tu, Ch.4 Optimality Condition-Using Kuhn-Tucker-Necessary Condition
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Quadratic programming problem

- Objective function: quadratic form
- Constraint: linear form

VT (X) :The direction where f ()

4.2 Lagrange Multiplier for equality constraints

At the candidate minimum C, the meaning of

1 Original Problem Is increased
2 Vh(X) :The direction where h(x)
Minimize f(x)=(x,—1.5)° +(x, —1.5) is increased
Subjectto h(x)=x,+x,—2=0
| Lagrange Function
Minimize L(X, v)= f(X)+h(X)
= (X, —1.5)* +(x, —1.5)° (. (C){—l} f (D) = 0.75,h(D) = 0.0
+v(X + X, —2) re
1 > X
— — 1 2\
- Necessary Condition:VL(x', v ) =0 |- Vi (D) - _1073} o
v (X) +v'Vh(x") =0 Ty
- =V (X") =v'Vh(X") At the candidate minimum C, the meaning of —vf (x") =v'Vh(x) is
2(x, —1.5) 1 The gradient vector of the objective function and constraint are
VT (x) :{ } , Vh(x) ={ } on the same line and proportional to each other, and the
2(x, —1.5) 1 Lagrange multiplier v*is the proportionality constant.

—2(x; =1.5)=V", —2(x, —1.5) =V +
X +X—-2=0

\%i (C)={:ﬂ , Vh(c:)=m V=1

But point D is not a candidate minimum, because the gradient
vector of the objective function and constraint are not on the
same line.

= X =X, =1,V =1(point C)




4.2 Lagrange Multiplier for equality constraints
- [Summary] Constrained Optimization Method by using the Lagrange Multiplier

MConstrained Optimization Problem

Minimize T(X) = T(X,X,, ... ,X) Determinationof the propeller main >
Subjectto h, (X) =0,

= - Determination of the main dimension of a
I — 1, y p ship by using the Lagrange multiplier

MDefinition of the Lagrange function(L)
P
f(x)+ Zvi h; (X) Vil b

=1 V

= f(X)+ V' h(x) s

L(X,V)

v; are the Lagrange multipliers for the equality constraints and are free in sign,
I.e., they can be positive, negative, or zero.

<Reason>
The solution does not change, even if the equality constraint is multiplied by the minus sign,

EJ;,“- -Z/EOL‘II @ |
i~ atinnsf . . . | 135
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4.2 Lagrange Multiplier for equality constraints
- Comparison between Newton’s Method and Method of Lagrange Multipliers

Newton’ Method for Unconstrained Optimization Problem

Given: Minimize f(X) Find: Local minimum design point

_______________

Necessary condition for =i
X=X tobea ‘gi(X) =0, dTH(X)d 0»
candidate local minimum = niiniiniiniinii R
(stationary point)

Method of Lagrange Multipliers for Constrained Optimization Problem
Given: Minimize f(X)
h(X1’X2’X3) =0

df _I_ ﬂ/ o dh p— O ﬂd Undetermined Coefficient ‘Lagrange multiplier’

, ¥ .
Define Lagrange function, L = df + 4-dh
Necessary condition for X = X
to be a candidate local minimum-> grad L =0

Sufficient conditions for X = X
to be alocal minimum

Find: Local candidate minimum design point

Statlonar(}/ptIEOInt i PEL SOUI QI@SDAIE/I,DD k_anutmatoani 136
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4.2 Lagrange Multiplier for equality constraints

- [Reference] Constrained Optimization Method for Candidate Minimum by using the Lagrange

Multiplier

Minimize f (X, X,), Subjectto h(x,,X,)=0

By using h(X;, X,) =0, x, can be expressed as the function of x,, i.e., f (X, %)= f(x,0(x))

To determine the local candidate minimum of the function of the

df (x,x,)/dx, =0, But, because df (x;, X,) =deﬁ

1
If we assume that X = (X, X,)is the local candidate minimum,

o (04, %) , 2 (5, %) d(x)
0%, OX, dx,

X, = @(X) is the explicit form, in general it is impossible to represent the constraint
as this from.

Form the equallty constraint: h(X1 X2) 0

dh(x5) (¢, ) - aNGE ) )

= (0 - Equation (1)

of (X,
OX,

single variable,
o (3, %) |, O (%, %,) dx,

X,)
ax,, X, ox,  dx

:0.

—i-»Equation (4) can be rearranged as follows.

2 In summary, forX* = (X*, X,*)to become
= the local candidate minimum, the following
= three conditions have to be satisfied.

» =0
dx, 0%, OX, dx,

Cdo(x) _on(x*, x*)1ox |

. Xm = 8h(X1*, Xg*)/5X2 Equation (2)
Substitute the equation (2) into the equation (1)

O O, x *)""éi‘"('%ﬁ'%&';')' oh(x*, X,*)/ 0%, _
ox, . o, 8h(X1 ....... *)/8X (E:guation
If we assume that v~ = —?;122 P, *;;Zi - Equation (4)
8f(xlx*)*6h(xl*x*) .......

Computer Aided Ship Design, I-4. Optimality 'Cond'flon Using Kahn-Ta4¢ €h.2"0ptimalify tondition' Usmg Kwhn-Tucker Necessary Condltlon

F ih(4, %) =0

Fiof (" %) - oh(x*, %) _

i OX, OX, :
af()(l*x*) ....... ah()(l*x*)_o

é axg 6X2

. il e YA
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Ch.4 Optimality Condition
Using Kuhn-Tucker Necessary
Condition

4.3 Kuhn-Tucker Necessary Condition
for Inequality constraints

Naval Architecture & Ocean Engineering
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Quadratic programming
problem

- Objective function: quadratic form
- Constraint: linear form

4.3 Kuhn-Tucker Necessary Condition for Inequality constraints
- Quadratic Programming Problem with Inequality Constraint

We can transform an inequality
constraint to by adding a new variable
to it, called the slack variable.

Minimize f(x) = (x, —1.5)* +(x, —1.5)
Subjectto g(x)=x,+X,—2<0

Original Problem

Lagrange Function

Minimize L(x, u, S)= f(x)+u[g(x)+sz]
= (%, —1.5)* +(x, —1.5)°
+U(X, + X, —2+5%)

Necessary Condition:VL(x", u’, s)=0

oL oL !

:8_ = 2()(1 _1_5) +u=0 —= 2()(2 _1_5) +u=0 : Linear indeterminate - At first, we obtain the
[ % " ):(2::::::|—-—_——-_—‘ equa_tlon _ solution which satisfies
:%z w94 zo::g_zzuszo:Nonllnearmdetermlnate equation _the non“near |
l.@H__Xi___Z_______Ll_a§ ______ ;o u=0 > indeterminate equation.
(1) IE S —f),(lne(juallty constralnt IS t.ra-nsformed-to the. equality constraint.) (U _ O or S = O)
X, =X, =1L,u =1 ® Candidate minimum point(point C) - And then, we check
(2) If u = 0,(the inequality constraint is not active) whether each solution
satisfies the linear
X, =X, =1.5,u” =0,s* =—1(Point D: the constraint is violated) _| indeterminate equation.

" Sevr : |
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4.3 Kuhn-Tucker Necessary Condition for Inequality constraints
- The Necessary Condition for a Candidate Local Optimal Solution in the Inequality

Constrained Problem ‘12

[Ref] Lagrange function for the equality constrained problem

L(x,v)=f(x)+ Zp:vih(x) = f (X) + v'h(x)

Inequality constraint v; are the Lagrange multipliers for the equality
) i ] constraints and are free in sign.
g.(x)<0, 1=1 ..,m

To transform the inequglity constraint s to the equality constraints ,
the slack variables S are introduced :

g (X)+s°=0, i=1 ..,m

Lagrange function in the inequality constrained problem

Since the inequality constraint is transformed to the equality constraint by introducing the slack
variable, the Lagrange function is defined as

LOU8) = 00+ D0 (0,00 +59) = T (0 +UT (@) +57), u,20

u; are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
s, are the slack variables to transform the inequality constraints to the equality.

EJ ., Seoul
B2 L Matinngf
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4.3 Kuhn-Tucker Necessary Condition for Inequality constraints
- The Necessary Condition for a Candidate Local Optimal Solution in the Inequality Constrained Problem

(2)

Lagrange function in the inequality constrained problem
m
L(x,u,8) = f () + D u,(g,(x) +57) = F(x) +u’ (g(x) +5°)
i=1

u; are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
s; are the slack variables to transform the inequality constraints to the equality.

The Necessary condition for the candidate local optimal solution of the inequality
constrained problem

VL(X,u',s)=0

£
aLEaf+Zui*%:o, j=1 ...n
oX; OX; I X;
iEgi(x*)+si*2:0, i=1 ..,m
ou,
A _ws =0 i=1...m
oS,
>0 i=1 m

EJ)';“- -:/em‘ll @ |
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4.3 Kuhn-Tucker Necessary Condition for Inequality constraints

Optimization

Problem

Minimize f(X)= (X, X;,--, X,)

Subjectto h.(x)=0, 1=1,..p

Equality constraints

<0, i=1,....m Inquality constraints

Definition of

the Lagrange function

L(x,v,u,8) = T(x) + Zp:Vihi (X) + iui (g,(X) +5%)

= f(X)+Vv'h(x)+u' (g(x) +5%)
v, are the Lagrange multipliers for the equality constraints and are free in sign.

u; are the Lagrange multiplier for the inequality constraints and have to be nonnegative.
s; are the slack variables to transform the inequality constraints to the equality.

Kuhn-Tucker necessary condition: VL(X,V,uU,s)=0

P m

L _T sy Py sy B
OX; OX; I OX; T OX,
oL « :

—=h (X =0, 1=1 ...,

o (X)) p
izgl(x*)-i—si* =0, i=1
ou

@Eu:si =0, i=1 ..,m

oS,

If x* is the candidate local minimum point, these equations
have to be satisfied. That is, the Kuhn-Tucker necessary
condition, which composed of these equations, is the
necessary condition for x* to be the candidate local
minimum point.

Therefore, K.-T. condition can be used to find the
candidate local minimum point in the equality and
inequality constrained problem.

u >0, 1=1 .. ,m Thevalueofthe objective function and gradient vector are calculated at X .



4.3 Kuhn-Tucker Necessary Condition for Inequality constraints
[Example] Nonlinear Constrained Optimization Problem (1)

® ®

Minimize 1E()():)(12"')(22_3)(1)(2 a—=2X1—3X2+2uX1=0 """"" @
Xl
2,2
gxX)=x"+X%X,"-6<0 oL
1 2 — =2X, —3%X, +2UuX, =0 )
oX,
2 2 2 2 2
L(X, U,8) = X"+ X" —=3% X%, +u(X" + X" —6+5°) %:x12+x22—6+32=0, $°>0,u>0 -------- ®
u
DL werereennss
™ —2USO :® There are two cases.
EEEEEER ......................................................................................x;........................

A

CASE #1 :U = O(The inequality constraint is considered as inactive at the solution point.)
— 3%, +2%, =0

CASE #2 'S = O (The solution point is on the boundary of the inequality
constraint.)

» Point A: X =0,%, =0, f(x,%)=0

Rearrange the 2%, —3X, +2ux, =0, U= _1+§§
equation® 2 ’ 2 % 4 3 1-2
Substitute u into 2X, —3X, +2(— 1+——)X =0
the equation @ 2 2 g=0
2X, —3x1—2x2+3—2:0, 3—2=3x1, X2 =X
% % | , o]
Substitute x, into ox2-6  x —+J3 Cost function confours
the equation ® T o ad

Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tu,, Ch.4 Optimality Condition-Using Kuhn-Tucker-Necessary Condition ~oa ntto//asdal.shu.ac.kr



4.3 Kuhn-Tucker Necessary Condition for Inequality constraints
- Finding the Candidate Local Optimal Solution by using the Kuhn-Tucker Necessary Condition -

Nonlinear Constrained Optimization Problem (2)

® ®

Minimize f(X)=x%"+X," —3%X, a—=2xl—3x2+2ux1=0
Xl
2 2
g(X)=%"+X,"—6<0 oL
1 2 — =2X, —3% +2ux, =0
oX,
2 2 2 2 2
L(X, U,8) =X+ X, —3%X, +U(X  +X,” —6+5%) %:x12+x22—6+52=0, 250, u>0
u
2 —2US ______ 0 » There are two cases

CASE #1 :U = (O (The inequality constraint is considered as inactive at the solution point.)
— 3%, +2%, =0

CASE #2 :S =

» PointA: X, =0,%, =0, f(x,x;)=0

O (The solution point is on the boundary of the inequality
constraint.)

1
X, =X, =3, U=7 wpoint B: X =% =3, f(x,%)=-3 4 342

T

1 * * * *
% =X, ==V3, U=Capoint C: X =%, =—/3, F (X, %) = —

o . )
X1:—X2:\/§, UZ_E ®» Point D:)(l:\/g,xzz_ 3, f()(1 )(2)

_3 -
Cost func!ion contours
ad

X, ==X, =—3, u=—§»Point E: X =—/3,% =+/3, f (X, X))



4.3 Kuhn-Tucker Necessary Condition for Inequality constraints Quadratic programming
- Finding the Optimal Solution in the Quadratic Programming Problem Pg’b'?'e'? e
by using the Kuhn-Tucker Necessary Condition - xi are free in sign (1) " Constraint: inear fom o

Minimize f(X) =X’ +X —2X —2X, +2
Subjectto g,(X) =—-2x% —X,+4<0 \
4

— X — <
9,(X) =—x -2x,+4<0 9,=0 Minimum at Point A

X =(5.9), f(xX)=3

313

Lagrange function
L(X,U,S) = X + Xz — 2X, — 2X, + 2

+U, (—2X, — X, + 4 +57)

+U, (=X, —2X, +4+57)

EJ ),x\' seoul NCHAI

. . . . . . . . . . . £ * National @Advanced Ship Design Automation Lab.% 145 |
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4.3 Kuhn-Tucker Necessary Condition for Inequality constraints
- Finding the Optimal Solution in the Quadratic Programming Problem

Quadratic programming

problem
by using the Kuhn-Tucker Necessary Condition — xi are free in sign (2)

- Objective function: quadratic form
- Constraint: linear form

Lagrange function

f = 2 2_2 _2 2
s 2 ez ® | TO=X 2% 20
2 44 g2 0, (X) =—2x —X, +4<0
+U1(_ X1_X2+ +31) gz(x):_X1_2X2+4SO
+U, (=X, — 2X, + 4 +5;)

Kuhn-Tucker necessary condition: VL(X,u,s)=0

$:2x1—2—2u1—u2=0 i=2x2—2—u1—2u2=0

0%, OX,

oL oL

—— =-2X X, +4+5’ =0 —— =X —2X, +4+5s. =0

aul Xl 2 1 auz Xl 2 2

i=2u131=0 i=2u232:0 u =0,1=12
0S, oS,

F Seou! @SDAL
Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tu, Ch.4 Optimality Condition-Using Kuhn-Tucker-Necessary Condition

tional Advanced Ship Des’égn Automation Lab. 146
http://asdal.snu.ac.kr | ‘



4.3 Kuhn-Tucker Necessary Condition for Inequality constraints Quadratic programming

- Finding the Optimal Solution in the Quadratic Programming Problem problem
- Objective function: quadratic form

by using the Kuhn-Tucker Necessary Condition — xi are free in sign (3)

- Constraint: linear form

Lagrange function : Case #1: $,=5,=0, (Minimum at Point A)
_ 2

L(X,U,8) = X2 + X2 = 2% —2X,+2 i X=X =3,U=U,=¢

2 .
U (=2% = X, +4+5;) : Case #2: u,=s,=0, (Point B)
2 .
+U, (=X, —2X, +4+5,) : o x=%,x,=%,u,=2 87 =-1
: It has to be nonnegative(qg,).

: Case #3: u,=s,=0, (Point C)

\ : 7 6 2 1
4 — . . . X1:§;X2:§1u1:§5 5
g, = 0 Minimum at Point A - It has to be nonnegative(q,).

X =(5.3). f(x) =% ECase #4: u,=u,=0, (Point D)
X =X,=18"=s;=-1

. . It has to be nonnegative(g,, 9,).
Feasible region .




4.3 Kuhn-Tucker Necessary Condition for Inequality constraints

Quadratic programming
- Finding the Optimal Solution in the Quadratic Programming Problem problem
. oge . . - Objective function: quadratic form
by using the Kuhn-Tucker Necessary Condition — xi are nonnegative (1) - Constraint: linear form

Minimize f(X) =X+ X —2x, —2X, +2 X 4
Subjectto g,(X) =—-2x% —X,+4<0 \
gZ(X):_X1_2X2+4SO 4

9,=0 Minimum at Point A

=(5.9), f(X) =

X, =20,%X, =20
Minimum point: X” = (%,4), f(X") =

Minimize f(X) =X +X —2X, —2X, +2
Subjectto g,(X) =—2X,—X,+4<0
g,(X) ==X —2x,+4<0
-X, <0,-x,<0

Inequality constraints whose form are“<”:
; Introducing the slack variable

Minimize f(X) =X+ X —2X, —2X, +2

Subjectto g,(X)=—-2% —X, +4+s/ =0
g,(X) =—X —2X, +4+s. =0
X +8; =0,—%,+5, =0



4.3 Kuhn-Tucker Necessary Condition for Inequality constraints Quadratic programming
- Finding the Optimal Solution in the Quadratic Programming Problem problem

- Objective function: quadratic form

by using the Kuhn-Tucker Necessary Condition — xi are nonnegative (2) - Constraint: linear form

Minimize f(X) =X +X5 —2X —2X, +2

Subjectto g, (X) =—-2X, — X, +4+5s7 =0 >
0,(X) ==X —2X, +4+5> =0
X+ =0,-X,+6, =0

Lagrange function

g, = 0 Minimum at PointA

X _(3'3) f(X)

L(X,U,5,,8) = X + X5 — 2%, —2X, +2 > Feasible region
+U, (—2%, — X, +4+5])
+U, (=X, —2X, +4+57) g,=0
+§1(_X1+512)+§2(_X2+522) a >
........................................................ 4 Xl
Kuhn-Tucker necessary condition:VL(X,U,S,£,8) =0
oL oL
&:2&—2—2u1—u2—§1=0 &2=2xz—2—u -2u,—-¢,=0
oL oL
—— = 2% X, +4+s° =0 —— =X —2X, +4+5s =0
aul Xl 2 1 8u Xl 2 1
oL oL
—=2us, =0 =2 =
55, 1S as u,s, =0
oL oL GL oL
a é,l 1 X1 a é/z 2 2 51 41 1 8 51 4/1 1



4.3 Kuhn-Tucker Necessary Condition for Inequality constraints
- Finding the Optimal Solution in the Quadratic Programming Problem
by using the Kuhn-Tucker Necessary Condition — xi are nonnegative (3)

Quadratic programming
problem

- Objective function: quadratic form
- Constraint: linear form

Kuhn-Tucker necessary condition:-VL(X,U,S,£,8) =0

—% =08 =% —

Substitute

=2¢,0,=0— 2411512 =0 «—
Multiply o, to the both sides.

887" 2%, —2—U, —2U, — ¢, =0
2

oL

—— =X —2X,+4+s.=0
auz X1 2 2

at_ 2u,s, =0
0S,

i:522 =%
¢,
oL

a5,

N 2 _
Substitute

= 24,151 = 0? 24/2522 =

Multiply 9, to the both sides.

%:2&—2—2% u,-¢; =0 aL =2X,—-2-u,-2u,—-¢, =0

24 2

oL oL

= =-2X, =X, +4+52=0 —— ==X —2X,+4+5;=0

aul Xl 2 auz XZI. 2 2

oL oL

—=2us,=0 ~— =2u.s. =0

0S, ok 05, 272

N ey fa) Lo W, U £ S >0 1=1 2
517 — VY >

B Seoul @I
| /
Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tu, Ch.4 Optimality Condition-Using Kuhn-Tucker-Necessary Condition . ‘Weda/snua
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4.3 Kuhn-Tucker Necessary Condition for Inequality constraints Quadratic programming

The constraint is violated. CU.=S, = =X= i
Case #7: u,=s;=x,=X,=0 , (Point E Case #14: U;=5,=¢,7%,=0 , (Point )

X, =4,X,=0,u, =6
= = 2 _ 1 1 A2 y Yo y
X, =X, =0,8, =4,
It hastob tive. 2 It has to be
as to be nonnegative Sl 4’ ;"2 14

_2X_X +4+SZ-‘/—'0 122 T nonnegative.
1 2 lThe constraint is violated. Case #15: ul_uZ_gz_Xl_o , (Pomt J)

Case #8: s,=5,=x,=x,=0, (Point E _ _ 2 _
1=57%=%,=0,, ( )2 X, =0,x, =152 =3,
X, =X, =0,-2X =X, +4+s; #0,

- Finding the Optimal Solution in the Quadratic Programming Problem problem
. oge . . - Objective function: quadratic form
by using the Kuhn-Tucker Necessary Condition — xi are nonnegative (4) - Constraint: linear form
Lagrangian function E Case #1: 5,=5,=£;=¢,=0, (Point A) Case #9(::)UI282222:X120 ,1(Pomt F)
2 2 . =X, =2 U =U,=2 X =UX,=4U, =1
L(X,u,s,8,08) = X, +X; —2X —2X, +2 1 N TX%E5 U0 =g 1 =0 R = e =s
5 = Case #2: u;=5,=¢;=¢4,=0, (Point B) 312 =-2,{,=-3 nonnegative.
+U1(—2X1 — X, + 4+ S; ) : x,=2,%x,=1,u, =%,512 =1 Case #10: u,=s,=¢;=x,=0 , (Point G)
2 . It has to be nonnegative. X = 2, X, = 0, u, = 1, 522 =-2,
+U, (=X, —2X, +4+5,) = Case #3: U,=5,=£;=£,=0, (Point C)  has to be
) ) . X_l X _gu _2 SZ——i 4,2:—3 nonnegative.
. 17 5172 T 51¥1 T 5192 T *§.=5.=/7=X.= i
X2 _|_é’l (_X1 + 51 ) + 4’2 (—X2 4+ 52 ) - 5 5 |tEF1as 2 nonsnegative. Case #11: 5,=5,=¢;=x,=0, (Point G)
* * Case #4: u,;=u,=£;=4=0, (Point D) X, =2,%X,=0,
. 2 2 The constraint is violated.
: X=X =ls=s5=-1 _ — X, —2X, +4+s> %0
" It has to be nonnegative. .
= Case #5: u;=u,=x,=x,=0, (Point E) Case #12: u,=s,=¢,=x;=0, (Point H)
— .. . E X =X 20,32232:—4’ X:O’X :4’u :6’
gl - O Mlnlmu m at PO' nt A . ! 2 ! 2It has to be nonnegative. i 2 ! It has to be
X* = (ﬁ ﬂ) f (X*) —2 E 51 - 4/2 =2 S; = 4, é/l =-14 nonnegative.
313/ 9 " Case #6: u,=s,=x,=x,=0, (Point E) Case #13: 5,=5,=£,=x,=0, (Point H)
: X, =X,=0,5’ =4, X =0,%, =4, o
. It has to be nonnegative. The congtraint is violated.
: X —2X,+4+52#0 —X 2%, +4+s;, #0
. 2 It has to be
. ) SZ = _2! 4/1 =-2 nonnegative.
v =X —2X,+4+s; 20 Case #16: u,=u,=£;=x,=0 , (Point K)

The constraint is violated.

X X =1, =0,8 =-2,
1 It has to be 2
nonnegative. 52 = —3, ;2 = —2



4.3 Kuhn-Tucker Necessary Condition for Inequality constraints
-[Reference] The Reason Why Lagrange Multiplier for the Inequality Constraint has to be Positive

Original Problem

Minimize f(x) = (x, —1.5)* + (X, —1.5)
Subjectto g(X) =X, +X,—2<0

—>: Vi —>: Vg
Direction of the gradients Direction of the gradients
of the objective function of the constraint

f=0.75
A
||||| f=05
I "
|
||||| .
-
|||| ~."’(1.5, 5) .
(- g(<:)=[1
1+ (||, f(Cy=0500) =9
=\ ([T
05 4 UOE A —
I . h
05 1 2 ||||| g=05

Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tucker Necessaryth ?tlon aII%OIlq( geu' Lee

If u>0,the gradients of the objective and the
constraint function point in opposite
directions _Vf = Vg

To reduce the value of the objective function
f, the design point steps in the negative
gradient direction.

However, at the green point(1.5, 1.5), for examp
g(X)=x+Xx,-2
—15+15-2=1<0 the constraint is violated.

Therefore, this way, f cannot be reduced any
further by stepping in the negative gradient
direction without violating the constraint

That is, the point C is the optimal solution
satisfying the constraint and minimizing the
ctiv



EXAMPLE OF A CONSTRAINED NONLINEAR
OPTIMIZATION METHOD BY USING THE LAGRANGE
MULTIPLIER

- DETERMINATION OF THE OPTIMUM MAIN
DIMENSIONS OF A SHIP

- DETERMINATION OF THE OPTIMUM PROPELLER
MAIN DIMENSIONS

N . .
Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tucker Necessary Condition, Fall 2011, Kyu Yeul Lee LJ\ Univ. @Z‘%‘?/’}asdﬁ@'ﬁugec.sﬁ" Automation Lab



Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier
- Determination of the Optimum Main Dimensions of a Ship (1)

= Given: DWT, Vo, D, Ts, Td, Cg 4

= Find : L, B, Cg,
® Hydrostatic equilibrium(Weight equation)

L-B-T,-Cgy - Py -C, = DWT,,, + LWT(L,B,D,Cq )

given
=Wy £, U2 (8D} +C, LB {Co (BT, G 7V - (2)
Assum t;on(% Assumption®,
¢, -1 (B+D) —Coouer (2:B-Ty+2-L-T, +L-B)-V®

(L-B-T-C3)**is Volume?® and means the submerged area of the ship.
So, we assume that the submerged area of the ship is equal to the submerged
area of the rectangular box.

® Required cargo hold capacity(Volume equation)
Viireg =Cy-L-B-D ..(b)

H.req

® Recommended range of obesity coefficient with

respect to the maneuverability L
Ce g D%
' 0.15 .. T -
(L/B) " (©) T ‘B//

®» Indeterminate Equation: 3 variables(L,B,Cy ), 2 equality constraints,((a), (b))
|:> It can be solved as the optimization problem to minimize the objective function.

% Seoul
EE]_]] Nto”I@ASdDAIEhpD n Autol matonlb‘ 154
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Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier
- Determination of the Optimum Main Dimensions of a Ship (2)

= Given: DWT, V} ¢, D, Ts, Td, Cg 4

= Find : L, B, Cg,

= Minimize : Building Cost

f(L,B,C,,)=C-C, -*°-(B+D)+C,,-C,-L-B+Cpy -C,,,ee -(2:B-T, +2-L-T,+L-B)-V?
= Subject to (e)

® Hydrostatic equilibrium(Weight equation)
L-B-T,-C; - p,,-C,=DWT_,., +LWT(L,B,D,C;)

given

=DWT,_, . +C. -1*°-(B+D)+C,-L-B+C

given

power

".(2-B-T,+2-L-T,+L-B)-V?®

(b)

power

® Required cargo hold capacity(Volume equation)
Viireg =Cy-L-B-D ..(c)

H.req

® Recommended range of obesity coefficient with respect to the maneuverability
Cos 015 ..(d)

(/8]

E} > Seoul @ |
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Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier
- Determination of the Optimum Main Dimensions of a Ship (3)

» By introducing the Lagrange multipliers 4,, 4,, u, formulate the Lagrange function H.

H(L,B,Cqq 4, 4,U,8) = f(L,B,Cy, )+ 4 -h (L,B,Cy.)+4 - (L,B,D)+u-g(L,B,Cq,,S) ...(e)

f(L,B,Css)=Cps-C, -L*-(B+D)+Cpy,-C,-L-B+Cpy -C oo -{2:(B+L)- Ty +L-B}-V?
h(L,B,Cg,)=L-B-T,-Cy-p,,-C, —DWT,, —-C, - L*°-(B+D)-C,-L-B-C . {2-(B+L)-T,+L-B}-V?

h,(L,B,D)=C,-L-B-D-V,

g(L,B,Cq,.s )_(E/LB)—O.15+S2

Vg L—>x,B—=>Xx,,C;, =X

H (X, %, %5, 4, 4,,U, )
:CPS 'Cs, 'X12(X2 + D)+CPO 'Co "X Xy +CPM 'Cpower’ '{2'(X2 +X1)'Td +X1'X2}'V3
+21'[X1'X2 'Ts X3 Psy C D\NTglven _Cs 'X12 '(Xz + D)_Co X X _Cpower’ '{2'(X2 +X1)'Td +X1°X2}'V3]

+ﬂz'(CH 'X1'X2'D_VH_reQ)
+u-{x3/(X1/X2)—0-15+32} ..(f)

E} = Seoul @ |
National 156
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Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier
- Determination of the Optimum Main Dimensions of a Ship (4)

MB—)XB

H (X, %, X3, A3, Ay, U, 8) = Cpg -C - X7 (%, + D) +Cpg -Co - Xy - Xy + Copy - Crgner {27 (X +% ) Ty + X, - X3V
+ﬂ1'[X1'X2 'Ts 'X3'psw'Ca _DWTgiven _Cs 'X12 '(X2 + D)_Co 'Xl'xz_Cpower"{z'(xz—*_xl)'Td +X1'X2}'V3]
+2,+(Cy XX, D=V ) +u-{x3/(x1/x2)—0.15+32} ..(f)

» To determine the stationary point( X, X,, X;) of the Lagrangian function H(equation (f)),
use the Kuhn-Tucker necessary condition VH (X, %,, X;, 4, 4,,U,5) =

ﬁzchs 'Cs"xl'(X2+D)+CPo 'Co'X2+CPM 'Cpower,'(z'Td "‘Xz)'VS

oX
+2‘1'(X2'Ts°X3'psw'Ca_[Z'Cs'xl'(xz_i_D)+C0'X2+Cpower"(2'Td+X2)'V3])
+ﬂ,2-(CH-xz-D)+u-(—x3-x2/x12):O ..(1)

cH r) 3

aTZCPS'Cs X +CPO'C0'X1+CPM "™ power (2 T +X1) -V

2

+ﬂl [Xl T XS psw C C C Xl Cpower,(Z’Td-'_Xl)'Vg]
+4,-(C H-xl-D)+u-(x3/x1): ..(2)

S Seoul @SDAL
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Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier
- Determination of the Optimum Main Dimensions of a Ship (5)
MB —> X3
H (&’Xz’xsv%’ﬁz’uls)chs 'Cs"x12(xz + D)"‘Cpo 'Co "X X, +CPM 'Cpower, '{2'(X2 +X1)'Td +X1’X2}'V3
+ﬂ1 [X1 "X, 'Ts X3 Pow 'Ca _DWTgiven _Cs 'X12 '(X2 + D)_Co XXy _Cpower' '{2'()(2 +X1)'Td +X1'X2}'V3]
+2?-(CH -xl-xz-D—VH_req) +u-{x3/(x1/x2)—0.15+32} ..(f)

= Kuhn-Tucker necessary condition VH (x,,%,,X;, 4, 4,,U,5) =0.

oH

—:/’ll'xl'XZ.Ts°psw'Ca+u.(X2/X1):0 (3)

OX,

oH 2
a:XfXZ'Ts'X3'psw°Ca_DWTgiven_Cs°X1 '(X2+D)_C0°X1'X2
" —Cooner {2-(% + %) Ty +% - %,3-V? ---(4)
%:CH XX D=V =0 ..(9)
ﬁ:x3~x2/x1—0.15+52:0 ...(6)

ou

oH

= (u=0) ..(7)

= VH(Xq, Xy, X3, 44, 45, U, S) - Nonlinear simultaneous equation having the 7 variables((1)~(7)) and 7 equations

— |t can be solved by using the numerical method!

E} = Seoul @S A
National 158
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Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier
- Determination of the Optimum Propeller Main Dimensions (1)

Given P, n, AE/AO,V
Find  J,P/D,

T » Because K; and K, are a function of J and Py/D,,
27T KQ the objective is also a function of Jand P;/D,,.

Maximize 1, =

. P 2 5
Subjectto — = p-n“-D, -K
o P P Q

: The propeller absorbs the torque delivered by Diesel Engine

:V(l—w)

n- D P: Delivered Power to Propeller from the
P Main Engine, KW

K; = f(J, P / DP) n: Number of Revolutions, 1/sec
Dy: Propeller Diameter, m

KQ = f (J , PI / DP) P,: Propeller Pitch, m

Ag/Aq: Expanded Area Ratio

V. Ship speed, m/s

No: Propeller efficiency(in open water)

Where, J

®» Optimization problem having the two variables and oge 3 \straint
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Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier
- Determination of the Optimum Propeller Main Dimensions (2)

i =p- n° . DP5 . KQ ..... (a) : The propeller absorbs the torque delivered by Diesel

27mM Engine

If the propeller absorbs the torque delivered by Diesel Engine, the constraint is represented
from the equation (a).

K .n?
C = ;9: P-n -

J 2mp -V,
G(J,Pi/DP)zKQ—C-J5=O ----- (b)

Propeller efficiency in open water /g is as follows.

F(,P/Dy) =7 == o1 . (©)

277 KQ

The objective Fis a function of Jand P;/D, and we have to determine the optimal main
dimensions(J and P;/D;) to maximize the propeller efficiency in open water satisfying the
constraint (b) in this optimization problem.

- Ch.6 Constrained Nonlinear Optimization Method

B > Seoul @ 160 |
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Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier
- Determination of the Optimum Propeller Main Dimensions (3)

G(J,P/D;)=K,-C-J°=0 ---- (b)
F(J P/D) M, = J ﬁ ..... (C)
Introduce the Lagrange multiplier A to the equation (b) and (c). 27 K,
HJ,P/D,,A)=FJ,P/D,)+AG(J,P/D,) ---- (d)

Determine the value of the P, / D: and A to maximize the value of the function H.

oK
oH 1 K, J{( )Q(aJQ)'K}

Kq
( ) AR )5CJ}

& 27 Ky 27 Ky’

=0 ..... (e)

oK, oK,
KL= K

oH ] {(aPi/DP) ? ((’BPi/DP) T}+/1( oK, )

o(P/D,) 2z Ko oP /D,
=0 ----- (f)

oH
Z K. —-C-J°=0 -----
2 e 9

- Ch.6 Constrained Nonlinear Optimization Method

% o (D 2R
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Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier
- Determination of the Optimum Propeller Main Dimensions (4)

Eliminate A inthe equation (e), (f) and (g) rearrange as follows.

6 T
(6(P/D)){ ( ) 4K}
oK 3. Fay_g
+(5(R/DP)){5KQ J (aJ )}=0 (h)
Ke—C-3°=0 ---- (i) P/D,

By obtaining the solution of the equation (h) and (i), we can determine the value of the J and
Pi/D, to maximize the propeller efficiency absorbing the torque delivered by Diesel Engine.

V(Q1-w
Because J= rf D ) . iIf we obtain the value of J, we can find the value of Dp. And the value
P

of P; is obtained from the value of Py/D,.

Therefore, we can obtain the value of the propeller diameter (DP) and pitch( P| ).

- Ch.6 Constrained Nonlinear Optimization Method
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Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier
- Determination of the Optimum Propeller Main Dimensions

- [Reference] Derivation of h from e, f, g (1)

oK
iﬁJri ; +24 =2 |-5.c-J3%'=0
2n\ Ky ) 27 Ko

GRS o(R/ Dy) ( oKq J
+ A =

27 o(P, 1 D)

2
27 KQ

To eliminate A, we calculate as follows.

(e)x[%] (f)x {@%}-aoy}:o
(e)x[ at ]1( it J(K};[ Gt ]{[Z}?J'KQ_@?J'KT}M[ o,

oK
: . ~5.C-J*1=0
o(P/D,)) 2x\a(P/D,) 7\ 8P /D,) Kq o(P_LB; 03

o) {aren) ]
- "

o {[GKJ . J} s Lawron )™ Law oy {(aKO]_s.c.J“}%W“}O
a3 27 Ko a3 D,) ) || a3

(e)x[L)—(f)x{%j—S-C-J"}
o(R /D) ad
L e ) o ){(aa}jTJ'KQ_@?]'KT}i{[«?(s%p))“{a(PaifQDp)]'KTh(aK ) sc. Jl 0

D/ w2 Lo} w2

(IIII.JP}/ I\Q &/ I\Q

s > Seoul @ Y J 3 163 |
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Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier
- Determination of the Optimum Propeller Main Dimensions

- [Reference] Derivation of h from e, f, g (2)
|

et (et )
L(LJ(K_] L[ J{(m)Kﬂm]K} J{(awop))“[MJ'KT}{PKQ)S_N}

- =0
27\ (P 1 D,) 27\ (P 1 D,) 83

KQ KQ2 27 KQ2

Multiply 21 and the both side of the equation and rearrange the equation as follows.

L Ko + J Kq (aKTj.K 9Kq KoL _ oK KL= L K % -5.Cc-J*Y =0
o(P/Dy) )\ Ky | KZ[\O(RID,) )\ aa ) @ (&) T aP /D)) ¢ (8(RID)) T[]l & -
The term underlined is rearranged as follows.

oK oK K, oK oK
:( Q j(aKTj'KQ_ Q Q K, — [ oKy j( J KQ+ Q Q 'KT+5'( Ky }KQ.C.J“_S{ Q ].KT.C.J4
(P ID,) )\ ad 1D,) | aJ a(P 1 D,) TD,) | & o(P 1D,) d(P /1 D,)
oK Ky oK
- Q (GKTJ-KQ Ky Kq +5- Ky K, C-J*-5- ¢ _|.K,-C-J*
(P I1D,) )\ &d o(P/D,) o(P 1D,) o(P/1D,)

Substituting the rearranged term into the above equation.

Kq Ko +i Kq (aKTj-K — oKy % K. +5- oKy K..-C-J*-5. Kq K. -C-J*|=0
3P /D) | Ky | Ko2|L8(R/Dp) )\ 83 ¢ la(R /D) )\ & © aRID,)) © aPID)) T

- Ch.6 Constrained Nonlinear Optimization Method
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Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier o
- Determination of the Optimum Propeller Main Dimensions

- [Reference] Derivation of h from e, f, g (3) ~  —K.-C-J°=0 ----- (9)

Xq Ko | Xq (aKTj'K K [ XKoo M | coatos[—Te |k .c.at|-0
(R ID,) )| Ky | K[\ a(R /D) )\ 23 ° |a(R/D,) Q oP /D)) © oPID,)) T B

Apply the distributive

Mo K (K (%jJ ST (SR BT (i o [ H YK cF g property.
a(P /D) )\ Ky ) (&R ID)\ 83 ) Ky (8(P/D;) Ko (P 1D,) 0 aPID)) Ky K,
. 5
i 1
Mo YKo e ) %) L)) s s e ) e Pyusing e e e
P ID,) )| Ky ) \O(RID))\ 83 ) Ky \a(R/D) )\ a3 ) K, a(P 1 D,) (R /Dy)) Ky
The underlined term is calculated
LS K. K, K\ I oK, HKo) 3 o[ K ), as follows.
MECIES ) CYNECIES (w]'KQ_ ar o)\ @ J ke laming)”

Multiply Ko and the both side of the equation.

(e e | (e [ 5+ ol o
LTS AMECTES ) DN CCYES I 3(R1Dy)

‘ Apply the distributive property. {a(lflj% )j’(a(s}jTD )j
oK
+( T 5
o(R /D)

K, —J Ko =0 (h)
Q al ||

oKy [, (K,
o(P 1 D,) EY

- Ch.6 Constrained Nonlinear Optimization Method
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Ch.5 Penalty Function Method
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Ch.5 Penalty Function Method

5.1 Interior Penalty Function Method

Naval Architecture & Ocean Engineering
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5.1 Interior Penalty function Method

- The Method of Transformation of Constrained Optimal Design Problem to Unconstrained Optimal Design Problem

- Lagrange Multiplier

Constrained Optimal Design Problem
Minimize f(X)
Subjectto h(X) =0 Equality constraint

g(x) <0 Inequality constraint
Transforming this problem to unconstrained optimal design problem by using the
Lagrangian function

L(x,v,u,s) = f(X)+Vv'h(x)+u' (g(x)+5s%)

By using the necessary condition for the candidate local optimal solution(VL=0), are calculated.

1) If the constraints are satisfied at the current design point,

In case of the equality constraints:n(X) =0
In case of the inequality constraints: U = O (The constraints are inactive, i.e, the design point is in feasible re
s=0= g(X) -0 (The constraints are active, i.e, the design point

is on the constraints)

Therefore, L(X,V,U,S) = f(X) + VTh(X) +u' (9(x) —|—82) = f (X) » If all the constrains are
satisfied, the Lagrange

2) If the constraints are violated at the current design point, fuvqtiolr\ is same V;ith the
In case of the equality constraints:V' h(X) # 0 original objective function.

In case of the inequality constraints: U' (g(X) +5°) >0
Therefore, L(X,V,U,8) = f(X)+Vv'h(x)+u' (g(X)+s°)

®» This term means augmenting a penalty to the original objective function when the constraints

are violated. 169
Computer Aided Ship Design, I-5 Penalty Function Method, Fall 2011, Kyu Yeul Lee




5.1 Interior Penalty function Method

- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem

- SUMT: Sequential Unconstrained Minimization Technique(nterior Penalty Function Method) (1)

Constrained Optimal Design Problem
Minimize f(X)
Subjectto h(X) =0 Equality constraint

g(X) <0 Inequality constraint

- Fiacco and McCormick suggested a method which transforms the constrained optimization problem
into the unconstrained optimization problem by using the modified objective function in 1968.

The modified objective function is a function augmenting a penalty to the original objective function.

- SUMT: Sequential Unconstrained Minimization Technique

_ where r, is given and positive value and
CD(X’ rk f (X) rkz (X) getting smaller each iteration.

If the design point approaches to the boundary of
the inequality constraints in the feasible region,

g;(x) <0, the absolute value of this is decreased.

—r, >0, the absolute value of this is increased.

g;(x)

Since the modified objective function is increased as the
design point approaches to the boundary of the
inequality constraint, this method prevents the design
point violating the constraints.

Computer Aided Ship Design, I-5 Penalty Function Method, Fall 2011, Kyu Yeul Lee
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5.1 Interior Penalty function Method

- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem
- SUMT: Sequential Unconstrained Minimization Technique(nterior Penalty Function Method) (2)

m If the design point approaches to the boundary of the constraints in the feasible
region, the objective function is augmented by a penalty.
B The starting de5|gn point has to be in the feasible region.

D(x, 1) = f(x)- rkz (r, is decreased, when k is increased.)
[Example] Function of a smgle variable D, f
f(X)=ax, g(X)=4-x<0 ,(x=p=p-x<0) Mk = N
Transform the unconstrained JpTirﬁiEa?io_n_pr_OBIEm_iﬁta the
constrained optimization problem. 1
DX, r, f(X)—r ——=ax-r,

(65)= F0) =k s X

-k is the number of iteration.

- In each iteration, the optimal design point can be obtained
by using the Gradient method, Hooke&Jeeves, Nelder&Mead.

K =1, starting design point: x*,
1 Optimal design g(x)>0
point: X*,

DX, 1) = ax—,

k =2, Starting design point : X*;

1 |j‘> Optimal design
D(x,1,) =ax—r, F point : X*,

k=3, Starting design point : X*,

Optimum x*

Optimal design
L —X point : X*;

O(x,r)=ax—r,

By iterating the above process, we find the optimal design point(x*). N .

Computer Aided Ship Design, I-5 Penalty Function Method, Fall 2011, Kyu Yeul Lee



Ch.5 Penalty Function Method

5.2 Exterior Penalty Function Method
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5.2 Exterior Penalty Function Method

- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem

- Exterior Penalty Function Method (1)

B There will be a penalty for only violating the constraints.

D(X, 1) = f(x)+rkzml[max{gj(x),o}]2 (r, is increased, when k is increased.)
j=1

[Example] Function of a single variable
f(x)=ax, 9(x)=B-x<0,(x=f=p-x<0)

Transform the unconstrained optimization problem into
the constrained optimization problem.

2 7
D(x, 1) = f(x)+r max{g(x),0}" = ax+r, max{g(x),0}
- k is the number of iteration.

- In each iteration, the optimal design point can be obtained
by using the Gradient method, Hooke&Jeeves,
Nelder&Mead.

k =1, Starting design point : x*

) Optimal design
D(x, 1) = ax+ 1| max{g(x),0} |

point @ X*;

k = 2, starting design point : X*;
Optimal design

2
D(x,1,) = ax+1,| max{g(x),0} | point - X*,
k = 3, Starting design point : X*,

2 Optimal design
D(X,1;) :ax+r3[max{g(x),0}] point © X*;

By iterating the above process, we find the optimal design point(x*).

Computer Aided Ship Design, I-5 Penalty Function Method, Fall 2011, Kyu Yeul Lee

I < M1
g(x)>0 g(x) <0
g(x)=0
ﬂ(xl r3) e
f(x) = ax
X, 1)
X,\(1)
— \Optimum X
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5.2 Exterior Penalty Function Method

- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem

- Exterior Penalty Function Method (2)

B There will be a penalty for only violating the constraints.

Dd(x, 1) = f(x)+rkimax{gj(x),0} (r, is increased, when k is increased.)

j=1

[Example] Function of a single variable

f(X)=ax, 9(X)=4—-x<0,(x= = pF-x<0)

Transform the unconstrained optimization problem into the
constrained optimization problem.

D(x, 1) = f (X)+ 1, max{g(x),0} = ax+r, max{g(x),0}

- k is the number of iteration.
- In each iteration, the optimal design point can be obtained

by using the Gradient method, Hooke&Jeeves, Nelder&Mead.

Kk =1, Starting design point : X*
J anp R Optimal design

d(x,1,) = ax+r,max{g(x),0} ﬁg{"ftm;”ﬁ can

k = 2, Starting design point : X*,
Optimal design
D(x,T,) = ax+r, max{g(x),0} point : X*,

k = 3, Starting design point : X* |
_ Optimal design
D(x,1,) = ax+r,max{g(x),0} I::; point - X*,

If r,is determined properly, the optimal design point(x*) is
not changed.

O, f

e < N

AX, I3)

AX, 1,)

AX, 1)

r, is too low

g(x) >0

g(x) <0

g(x) =0

f(X) = ax

Optimum X~

><\



5.2 Exterior Penalty Function Method

- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem
- Relationship between External Penalty Function and Feasible Region (1)

B Since there will be a penalty for only violating the constraints, if the
minimum design point is in the feasible region, the result of the
optimization method by using the exterior penalty function is the same

with that only using the objective function.
P, f

N\

g(x) <0

[Example] Function of a single variable

Ax, 1)
f(x)=(x-a)", 900 =p-x<0 4

g(x) =0

DX, 1) = f(x)+rki[max{gj(x),o}]2 e

Penalty term

D(x, 1) = T(x)

where, g(x) <0, max{g;(x),0} =

. o f(x) = (x-a)?
If the minimum design point(x*) is in the
feasible region, the penalty term is equal
to zero. So, the objective function
augmented by the penalty is the same

with the original objective function. Optimum X

X=a X

Computer Aided Ship Design, I-5 Penalty Function Method, Fall 2011, Kyu Yewl Lee X = 'B
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5.2 Exterior Penalty Function Method

- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem
- Relationship between External Penalty Function and Feasible Region (2)

B Since there will be a penalty for only violating the constraints, if the
minimum design point is not in the feasible region, the result of the
optimization method by using the exterior penalty function is different with

that only using the objective function.
P, f

N\
[Example] Function of a single variable g(x) >0 g(x) <0

g(x, r)

£ =(x-a), 90)=F-x=<0
g(x) =0

/

DX, 1) = f(x)+rkZm:[max{gj(x),O}]2
" Penalty term
DX, 1) = f(x)+rng (X)?
where, g(x)J>0 max {g;(x),0} = g;(x)

. o o f(x) = (x-&)*
If the minimum design point(x*) is not in
the feasible region, the penalty term is
larger than zero. So, the objective
function augmented by the penalty is ;
different with the original objective | Optimal design point
function. ! at k iteratign

X = ﬂ

Optimum x~

X

Computer Aided Ship Design, I-5 Penalty Function Method, Fall 2011, Kyu Yewl Lee
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Ch.5 Penalty Function Method

5.3 Augmented Lagrange Multiplier
Method

Naval Architecture & Ocean Engineering
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5.3 Augmented Lagrange Multiplier Method

- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem

*Augmented Lagrange multiplier method

*This method combines the Lagrange multiplier and the penalty
function methods.

*There is no need for the penalty parameter r to go to infinity.
=Starting point does not have to be in feasible region.

"It has been proven that they possess a faster rate of convergence

than interior and exterior penalty function method.

Advanced Ship Desll('gn Automation Lab.
http://asdal.snu.ac.kr
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5.3 Augmented Lagrange Multiplier Method
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem
- Augmented Lagrange Multiplier Method in Equality Constrained Problem (1)

Minimize f(X)
Subjectto N;(X)=0, J=12,..,m

Lagrangian function of this problem is as follows.

L(x, 1) = f(x)+izbjhj (X)

Augmented Lagrangian function of this problem is follows.

Lagrangian function

DX, A, 1) =F(X)+ Z/?,j hj (X)+r, Z hj2 (X)  Augmented term to
i1 i1

I'. : arbitrary constant

Computer Aided Ship Design, I-5 Penalty Function Method, Fall 2011, Kyu Yeul Lee
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5.3 Augmented Lagrange Multiplier Method

- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem
- Augmented Lagrange Multiplier Method in Equality Constrained Problem (2)

Minimize T (X)
Subjectto N;(X)=0, J=12,..,m
Lagrangian functimon

L(x,4) = F0)+ Y Ah; (%)

Augmented Lagrangian function

CD(X, 7\., rk) = f (X) + Zﬂj hj (X) + rk Z hj2 (X) Augrr.lented term to Lagrangian
j=1 j=1

function

I'. : arbitrary constant

Necessary conditions for the minimum of
Lagrangian function

m—oh.
izi_kz /1]_ _Jzo
o% 0% GH—IoX
Necessary conditions for the minimum Find iterative relation
of Augmented Lagrangian function /I; :/11- +2rkhj j=12,..m

od _ ot i|(/1 T AL B O) 0
j=1

8x 8x OX.
! /11.("”) :/11.(")+2rkhj(x(")) ]=12,...m

Computer Aided Ship Design, I-5 Penalty Function Method, Fall 2011, Kyu Yeul Lee
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5.3 Augmented Lagrange Multiplier Method

- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem
- Augmented Lagrange Multiplier Method in Equality Constrained Problem (3)

Minimize f(X)
Subjectto N;(X)=0, J=12,..,m

Augmented Lagrangian function

CD(X, A, rk) = f (X) + Z//Lj hj (X) ulh Z hjz (X) Augmented term to Lagrangian
j=1 j=1

function

I' : arbitrary constant

Iterative relation

A4 =289 ¢ 2rh (x¥) j=1,2,..,m

1. In the first iteration(k=1), the values of 1 are chosen as
zero, the value of I} is set equal to an arbitrary constant.

2. Find the x®" that minimize ® by using any unconstrained
optimization method and set x* — x®)’

181
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5.3 Augmented Lagrange Multiplier Method

- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem
- Augmented Lagrange Multiplier Method in Equality Constrained Problem (4)

Minimize f(X)
Subjectto N;(X)=0, J=12,..,m

Augmented Lagrangian function

CD(X, A, I’k) = f (X) + Z/lj hj (X) ulh Z hjz (X) Augmented term to Lagrangian
j=1 j=1

function

I' : arbitrary constant

Iterative relation

A4 =289 ¢ 2rh (x¥) j=1,2,..,m

3. The values of ﬂ.j(k)and I are then updated by using the
iterative relation to start the next iteration.

r.,=cr,c>1

A4 =28 12rh (xY) j=12,..,m

4. 1f |A*P-2P|<¢, stop the iteration and take x" = x®".

Computer Aided Ship Design, I-5 Penalty Function Method, Fall 2011, Kyu Yeul Lee
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5.3 Augmented Lagrange Multiplier Method
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem
- Algorithm of Augmented Lagrange Multiplier Method

Augmented Lagrangian function
m

D(x, k1) = F(x)+ Y A4h, (x)+rkihj2(x)

Start withx®”. A%, n,c>1 1,

| Set k=1 |

l Iterative relation

28D =20 1 oph (x¥) j=1,2,..,m

Minimize®(x,4,r,) from starting point

k . *(k
x* and find X

., =cCr,c>1

yes R N
Take X =x®

and stop

Check for conver?ence of
A% and x

set A =A% +2rh (X)), j=12,...,p

set M =Ch

If N> set Lo =l

set k=k+1

Seoul
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5.3 Augmented Lagrange Multiplier Method
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem
- Augmented Lagrange Multiplier Method in Inequality Constrained Problem

Minimize f(X)
Subject to gj(X)SO, 1=12,...m

Augmented Lagrangian function in the inequality constrained problem

m m
A ted t t
CD(X, u,s, rk) = f (X) + Zuj [gj (X) T SJZ] +h Z[gj (X) + SJ?]Z L:ggrr::gniaen fuer::t]ioz
j=1 =1

I : arbitrary constant

S; : slack variable

This function is equivalent to*

m m u.
O(x,ur)=f(X)+ > ua +5 > a? o =max gj(X),—?
j=1 =1 K

Iterative relation

(k+1) _

Uj

(k) (k)
u;” +2ra;

Computer Aided Ship Design, I-5 Penalty Function Method, Fall 2011, Kyu Yeul Lee
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Ch.5 Penalty Function Method

5.4 Descent Function Method
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5.4 Decent Function Method

- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem

" ,
Constrained Optimal Design Problem Desc.e.nt Fun.ctlo.n _ _
, - - Modified objective function by augmenting

Minimize T (X) a penalty to the original objective function

Subjectto h(X) =0 Equality constraint - It has the same meaning with Penalty
Function.

g(xX) <0 Inequality constraint

Pshenichny and Danilin suggested a method which transforms the constrained
optimization problem into the unconstrained optimization by using the descent function*
in 1978.

V (X) = max{0;|h

,g} : Maximum penalty by the constraints

p m
— _ : Penalty parameters which is
O(x) = f(x) +R-V(x) R =max _RQ’ r(= Zl“‘vi ‘_I_Zl:ui ) the summation of the all
i= i=

Lagrange multipliers

The value defined by user <—

1) If the constraints are satisfied at the current design point,
V(x)=0=R-V(X)=0

D(x)= f(x)+R-V (X f (% ®» |f the constraints are satisfied at the current design
= P(X) () () = T(x) point, the descent function is the same with the original

objective function.
2) If the constraints are violated at the current design point,

R-V (X) >0 ®» |f the constraints are violated at the current design

— CI)()() = f (X) +R-V (_X) > f (X) point, the value of the positive penalty is augmented to
""""""" the original objective function. 186
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5.4 Decent Function Method

- [Reference] The Meaning of the Constant ‘R’ in the Decent Function

Original Problem

Minimize f(x) =100(x, —1.5)* +100(x, —1.5)
Subjectto g(X) =X, +X,—2<0

d(X) = f(X)+R-V(X)
V (x) = max{0; h|; g}

R= max{Ro, r(:_zpl‘vi ‘+iui )}

If ‘R’ is assumed as a constant ’10’,

Since the constraint is satisfied at the point
C(1,1), the value of the decent function is as

follows:

®(C) = f(C)+R-V(C) =50+R-max {0,g(C)}

—50+10-max {0,0} =50

.
L3
*
A
*
-
L3
-
L3

. D(1.1, 1.1)
(C) =50, g1

Since the constraint is violated at the point
D(1.1, 1.1), the value of the decent function is
as follows:

®(D) = f (D)+R-V (D) =32+R-max{0,g(D)}

=32+10-max{0,0.2} =32+2 =34

Although the constraint is violated, the value of the decent function is decreased.

Because the change in the original objective function fis larger than the change in the constraint g.
Therefore, if the decrease in the original objective function fis larger than the increase in the
constraint g, the value of the penalty parameter ‘R’ has to be increased.

Computer Aided Ship Design, I-5 Penalty Function Method, Fall 2011, Kyu Yeul Lee
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5.4 Decent Function Method
- [Reference] The Meaning of the Constant ‘R’ in the Decent Function

Original Problem Uk

Minimize f(x) =100(x, —1.5)* +100(x, —1.5)
Subjectto g(X) =X, +X,—2<0

O(X) = f(X)+R-V(X)
V (x) = max{0; h|; g}

R= max{Ro, r(= Zp:‘vi ‘+iui )}

At point C, the value of — V(X )=u"Vg(X) is as
follows.

_— = 200(x, -1.5) ~100
X) = = =
% . | 200(x, -1.5) (L) -100 If we use the value of the Lagrange Multiplier, 100,
- el as the value of ‘R’, the value of the decent
2—2 1 1 function at the point D increases by 52.

VI = 4 | = d Tl ®(D) = f (D)+ RV (D) =32+ R-max{0, g (D)}

L% Doy - 0D =32+100-max{0,0.2} = 32+20 =52
u*=100

If the change in the objective function(Vf (x)) is larger than the change in the
constraint(Vg (X)) respectively, the value of the Lagrange Multiplier is increased.
Therefore, we use the value of the Lagrange Multiplier as the value of ‘R’.

188
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6.1 Linear Programming Problem

M Linear Programming(LP) Problem %brigtcitci)‘r’f Minimize f =-4x,—5x,
B This problem has linear objective -
function and linear constraint functions Subject to X =X, 2 —4
in the design variables. Constraints: X, + X, < 6
B Since all functions are linear in an LP
problem, the feasible set defined by X, %, =0

linear equalities or inequalities is convex.

m Also, the objective function is linear, so
it is convex.

B Therefore, the LP problem is convex, and
if an optimum solution exists, it is global
optimum solution.

M Linear Programming Method

B This is the method to solve the linear
programming problem.

B George B. Dantzig proposed a kind
method, “the Simplex method”, i

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee



6.1 Linear Programming Problem
- Property of the Linear Programming Problem

M The objective function and constraints
represent the linear relationship among

. Objective - . _
the variables. o . fnction.  Minimize f =-4x, —5x,
B This problem has one objective function :
and constraints Subjectto x, —x, > —4
B The objective function is minimum or L
maximum. Constraints: X + X, < 6

X[, X, =0
M The constraints are represented as the
equality constraints(=) or inequality
constraints(>, <).

M To use the Simplex method, the
variables have to be nonnegative in the
LP problem.

W If the variables are negatlve' the var.lable v' Example of problem which has nonnegative variables.
should be transformed to nonnegative. + Distribution of the feed for animal : the amount of the

— s 2 s ses feed can not be negative.
) = -
Ex) x y (x is hegative, y Is pOSItlve) + Distribution of the material for products : the amount of

B If a variable is unrestricted in sign, it can | the material can not be negative.
always be written as the difference of
two nonnegative variables.

v' Example of variable which is unrestricted in sign.

® Ex) x =y - z(x is unrestricted in sign and | , ;¢ (he Shipyard = Price of a ship — Shipbuilding
y and z are nonnegative.) cost
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6.1 Linear Programming Problem
- Example of the Linear Programming Problem: Problem with Two Variables and Inequality

g I M I ‘ll<lll

obIeCtive  Minimize f =-4x, —5X,
Subject to X, — X, >—4
Constraints: X + X, < 6
X,y X

Maximization problem can be transformed
to a minimization problem.

2 The right hand side of the constraints can

Subjectto —x +x, <4 always be made nonnegative by multiplying
1o 7= both side of the constraints by -1, if

X, + X, <0 necessary.

Minimize f =—-4x, —5X

| Why should we transform the maximization problem to a minimization problem?
. If the problem is not transformed to a minimization problem, we also have to find the method
| . which can solve the maximization problem and minimization problem. |

_________________________________________________________________________________________________________________________________________
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6.2 Geometric Solution of Linear
Programming Problem
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6.2 Geometric Solution of the Linear Programming Problem

Minimize f =-4x —5X,

Subjectto — X, +X, <4
X, +X,<6
X, X, 20

X
2A Infeasible
solution

\/

N
N

Basic feasible solution

Optimum
solution

1. The solution of LP problem lies on a
vertex point of the polygon.

2. The vertex points mean the intersection
of the constraints.

3. The vertex point (A, B, C, D, E, F) are
called “Basic solution”.

4. Basic solution in the feasible region (A,
B, C, D) are called “Basic feasible
solution”.

5. The basic feasible solution minimizing
the objective function is an optimum
solution.

_»
Feasibl region/ AN
N
N
) N =
: . V. 2 I > I Pl by, i \ "
F Infeasible solution Basic'feasible™ 9 ¢ 4 ([ pBasic feasible\ Xl

solution h ~solution M &4
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Ch.6 Linear Programming

6.3 Solution of Linear Programming
Problem Using Simplex Method
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6.3 Solution of Linear Programming Problem Using Simplex Method
- Transformation of “<” Type Inequality Constraint

Minimize f =—4x —5Xx,

Subjectto i— X, + X, <4

X, +X, <6
X[, X, 20
For “<" type inequality constraint we introduce a nonnegative slack variable.
—X+X% <4 & =X +X+X =4

Slack variable(nonnegative)

Standard form of the Linear Programming Problem

1. Right hand side of the constraints should always be nonnegative.
2. Inequality constraint should be transformed to an equality constraint

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem(1)

To transform “<” type inequality constraints
to the equality constraints, we introduce a

/ nonnegqgative slack variable.
Transforming the

Minimize f = —4-X1 —5X2 inequality constraints to Minimize f = —4X1 —?)(2

the equality constraints =~ . = == — == —=le— -

Subjectto — X, +X, <4 } Subjectto, — X, + X, + Xg =4 |
> 1 [
X +X,<6 ' X+ X, +X,=6 !

X, X, 20 X1y Xoy Xg, X, 20

Because the number of variables(4) is larger than the number
of equation(2), there are many sets of solution.

» If we assume the value of two(=4-2) unknown variables, we can
————————————————— obtain the solution.
®» When we use the “Simplex method”, the two unknown variables are
assumed to be zero.

At this time, the variables set to zero are called “nonbasic variables”,
the remaining ones are called “basic variables”.

When the number of unknown variables is n and the number of linear independent equations(constraints,
is m,(n>m)

- The degree of freedom is (n-m).

- If we assume the value of (n-m) unknown variables(degree of freedom), we can obtain the solution.

- In the “Simplex method”, the (n-m) unknown variables are assumed to zero.



6.3 Solution of Linear Programming Problem(2) Minimize © — a5,
inimize = — Xl_ X2

Subject to— X, + X, + X, =4
-]
X, + X, +X,=6
X, Xy, X5, X, 20
NonbaS]C Bas_lc SOlUtlon LocatlonOf Objective —X1+X2+X3 =4 =——- @ Clonvert the
variables | yariables the solution | 1 tion X, + X +X, =6 ==m- T 4
(assumed to be zero) (Xl, Xoy  Xg, X4) (“Vertex point” ) 1 2 4 @ constralnt§ to
—————————— - X, Xy, X5, X, =0 the equality
o) 1 tux) 4 0, 010  F 16 consiraint
| 1 |
U (%) 1| (ax) [0 6, -20) E 30
; | | 1|, o |
I (Xllxz) 1 (X3,X4) I (0, 0’ 4’ 6)I 1 A 1 I 0 I .lllllllllllllllllllllllllllllllllll
1 | T T - . . . .
! (X Xg) 1 (Xy, X3) 6, 0, 10, O)I 1 D | I 24 | . Each vert(_ex point is obtained .
I : : T — I : by assuming the value of the :
I (X | Gex) PO 4 0207 B I 20, X, * two variables. .
I I I I L EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEET
— Q%-XO_I (X1 %) 1 _5;'_ Q 0. L _f -1 YA . ~E Infeasible
| | | | .
|l) Select the two variables assumed to be zero(Total 6 sets) | 6\ 4 solution “~
v | ‘
2) Substitute the 6 sets into the equations @, @ and calculate
the value of the basic variables(vertex point) Basic feasib Optimal solution
\ 4 solution~y f*= .29
|3) Find the basic feasible solution in the 6 basic variables |
4) The basic feasible solution minimizing the objective function ¢

is the optimum solution.

Q: Do we have to find all vertex points and calculate the value of
the objective function?

General solution of LP problem:

“Simplex Method” starts at the initial basic feasible
solution and finds the optimal solution by improving E R
the objective function = We can minimize the i i . N R
number of calculating the vertex points. Basic feasible "/ 2 4 6D Basic feastle, 199
Computer Aided Shio Desion. 16 Linear Prooramming. Tall 20T Kyvu Veul Lee solution solution N |

Feasible region

Infeasible Initial basic feasible solution

solution X~ inthe Simplex method
(

s T T




6.3 Solution of Linear Programming Problem Pivot: It is the same concept with Gauss-Jordan

by Using Simplex Method(1) Elimination. This eliminates the selected variables
P . . . . from all the equations except one equation.
- Classification between basic variables and nonbasic variables .

- In this example, we can solve this problem by assuming the two variables as the nonbasic variables(=0).

- - D : Nonbasic variable(=0)
Mark the basic variable
(1) Transform the inequality | included in each row Nonbasic variable || Basic varialbe Q - Basic vraible
constraints to the
equality constraints \ \ \
o 4 VY4 N
Minimize f =—-4x, —5Xx, 1row: X3 — X, |+ X *@ =4
Subject to — X1 + X2 < 4
<6 2row: X, X, + X, -I-@: 6
Xl + X2 - o L J
(" N N\
X, X, >0 3row: _4Xl —5X2 =1 =0
(. . ./
>
X1y Xoy Xg, X, 20
Type of variables Explanation Method to classify
Nonbasic variables A variable set to zero in variables Objective function is only composed of the nonbasic variables.
. . A variable obtained by setting the nonbasic . . .
Basic variables . . . : Each basic variable appears in only one row. J—
variable and solving the equations simultaneously n
Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee 3




6.3 Solution of Linear Programming Problem by Using Simplex Method(2)
- Interchange of Basic and Nonbasic Variables

Interchange the basic variable
lrowf X5 — X |+ Xy Xy =4 41=41T included in 1st row, i.e., x3 and
the nonbasic variable, i.e., x2.
3row: — 4-X1 — 5X2 = f -0
> : Nonbasic variable(=0)
Xl’ X2’ X3’ X4 — O : Basic variable

The greatest reduction in the objective function can be achieved by increasing x2,
because its coefficient is most negative. 2 The nonbasic variable x2 should be
replaced by a basic variable.

Because two variables should be the nonbasic variables(=0),
x3 or x4 should be a nonbasic variable.

Right hand side parameter in each row Select the variable whose coefficient is positive and the row having the smallest
Positive coefficient of the element in the + positive ratio in the constraints = x3 is selected as the nonbasic variable.
selected row

<Ref.> What would be done if we do not select the row having the smallest positive ratio?

201
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6.3 Solution of Linear Programming Problem by Using Simplex Method(3)

- Pivot Operation

Type of variables Explanation

Method to classify

Nonbasic variables A variable set to zero in variables

Basic variables

A variable obtained by setting the nonbasic

variable and solving the equations simultaneously

Objective function is only composed of the nonbasic variables.

Each basic variables appears in only one row.

Interchange the basic variable included in 1st
«—— 4/1 = 4| row, i.e.,, x3 and the nonbasic variable, i.e., x2

Xy Xoy Xg, X, =0

rowf X, | — X [+ X, 4 X =4
2row: X, | X, X, +X, =06
3row: —4X,|—5X%,

Rearrange 1st row as: X, =4+ X, — X,
«— p/1=6 and substitute this into the 2 and 3 row.
X, +(4+X —X%;) +X, =6

= f —O = 2X — X+ X, =2

: Nonbasic variable(=0)

—4x —5(4+x—-X%;) =f

: Basic variable = -9x,+5%x;=f +20

Pivot on the selected variable(x, : 1strow, 2nd column)

Pivot: It is the same concept with Gauss-
Jordan Elimination. This eliminates the
selected variables from all the equations
except one equation.

1st row:X2
2nd rowX4

3rd row:

— X, X+ Xy =4
2%, — Xy X, =2
—9x, +5X, =f+20

Xl’ X2, X3, X4 > () : Nonbasic variable(=0)

: Basic variable o |
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6.3 Solution of Linear Programming Problem by Using Simplex Method(4)
- New Basic Variable(“Vertex Point”) after Pivot Operation

Type of variables Explanation Method to classify

Nonbasic variables A variable set to zero in variables Objective function is only composed of the nonbasic variables.

A variable obtained by setting the nonbasic

Basic variables variable and solving the equations simultaneously Each basic variables appears in only one row.

1row: X2 — Xl + X2 + X3 =i

2row: X, | 2X; —X; +X, =2

3row: — 9X1 + 5X3 =f+20

: Nonbasic variable(=0)
X]_’ X21 X31 X4 Z O . Basic variable [2 Infeasible
~ solution //b‘
Nonbasic variable: X1, X3
Basic variable: X2, X4 >, Optimal solution
f*=-29

Substitute x1=x3=0 into the equations(1row, 2row) ® x2=4, Xx4=2

®» New solution B(xy, X5, X3, X,) = (0, 4, 0, 2)
Value of the objective function at B = -20

Infeasible Initial basic feasible solutio
solution / in the Simplex method

(
>~ 1 1
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6.3 Solution of Linear Programming Problem by Using Simplex Method(5)
- Interchange of Basic and Nonbasic Variables

Type of variables

Explanation Method to classify

Nonbasic variables

Basic variables

A variable set to zero in variables Objective function is only composed of the nonbasic variables.

A variable obtained by setting the nonbasic
variable and solving the equations simultaneously

Each basic variables appears in only one row.

trow:X, |[ =X, [ X,+ X =4

_ Interchange the basic variable
2rowi Xy 2Xl — X3 Xy = 2 «—22=1 (I included in 2nd row, i.e., x4 and

the nonbasic variable, i.e., x1.
3row: —9X +5X =f+20 L
1 3
: Nonbasic variable(=0)
X]_’ X21 X31 X4 Z O ; ngica\fell(r;i;/s{(lea ’

Nonbasic variable: O X3 X4 |because its coefficient is most negative.
X2, X1

Basic variable:

Right hand side parameter in each row

The greatest reduction in the objective function can be achieved by increasing x1,

- The nonbasic variable x1 should be replaced by a basic variable.

Because two variables should be the nonbasic variables(=0),
- x2 or x4 should be the nonbasic variable.

Select the variable whose coefficient is positive and row and the row having the

Positive coefficient of the element in the ]
selected row

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem by Using Simplex Method(6)

- Pivot Operation

Type of variables Explanation

Method to classify

Nonbasic variables

A variable obtained by setting the nonbasic
variable and solving the equations simultaneously

Basic variables

A variable set to zero in variables

Objective function is only composed of the nonbasic variables.

Each basic variables appears in only one row.

Interchange the basic variable
— included in the 2nd row, i.e., x4
and the nonbasic variable, i.e.,

row:Xp || =% [FXet%s =4
2row] X, 2X1 — X, +X, = 2 o« o1
Srow: —9X, +5X, — f 1420

X, Xp: %5, %, 20 e

x1.

Nonbasic variable:o X3 x4
X2, X1

Basic variable:

Pivot on the selected variable(x; : 2nd row, 1st column)

(row +0.5X2row) —>| 1row: X2 X2

(0.5X2row) —>| 2row: Xl Xl

(3row + 4.5X2row) —>| 3row:

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee

X1y Xoy X3, X4 20

+0.5%x, +0.5%x, =5
—-0.5%x, +0.5%, =1
+0.5%,+4.5x, = f +29

: Nonbasic variable(=0)
: Basic variable
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6.3 Solution of Linear Programming Problem by Using Simplex Method(7)
- New Basic Variable(“Vertex Point”) after Pivot Operation/ Stop to Simplex

Type of variables

Explanation

Method to classify

Nonbasic variables

Basic variables

A variable set to zero in variables

A variable obtained by setting the nonbasic
variable and solving the equations simultaneously

Objective function is only composed of the nonbasic variables.

Each basic variables appears in only one row.

1row: X2
2row: X4 X1

3row:

Xy Xoy Xg, X, =0

X, +0.5%, +0.5%x, =5
—0.5%,+0.5x, =1
+0.5x,+4.5x, =1 +29

: Nonbasic variable(=0)
: Basic variable

Because the coefficients of the
objective function are nonnegative,
the current solution is the optimal
solution.

- Stop the Simplex

Nonbasic variable: X3, x4

Basic variable:

Substitute x3=x4=0 into the equations(lrow, 2row) ®»x1=1, x2=5

x1, x2

®» New solution C(Xy, X,, X3, X,) = (1, 5, O, 0)
Value of the objective function at B = -29

Infeasibl
solution

e

Initial basic feasible solution

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee

A

1" in the Simplex method

2 4



6.3 Solution of Linear Programming Problem by Using Simplex Method

[Reference] The reason why the column which has the minimum coefficient of the objective function is
selected for pivot.

1row: X3
2row: X4

3row:

X, X
—4X,|— 59X,

Xy Xoy Xg, X, 20

X3

~J

+ X,

T

=4
=6
=f-0

: Nonbasic variable(=0)
: Basic variable

The nonbasic variables(x; and x,) are equal to zero. (x, =4, x, =6)

If there are some variables whose coefficients are nonnegative in the objective function, the
variables(x, and x,) can be increased for decreasing the value of the objective function.

The greatest reduction in the value of the objective function can be achieved by increasing
X, , because its coefficient is most negative.
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6.3 Solution of Linear Programming Problem by Using Simplex Method

[Reference] The reason why the row having the smallest positive ratio in the constraints is selected

Select the variable whose coefficient is positive and the row having the smallest positive ratio in the
constraints = x3 will be selected as the nonbasic variable.

lrow:| Xj — X, X Xy =4 <«— 4/1 = 4[¢+——The row having the smallest
- positive ratio(1 row)
2row: X, | X |+ X, +X,=6 +—e/1=6
3row: —4X,|—5X, =f-0
: Nonbasic variable(=0)
X11 X21 X31 X4 2 O : Basic variable

Therow 1 and 2 are rearranged as follows.
- X, +X =4-X,
X, +X,=6-X,
1) If the 1strow is selected, then x; becomes nonbasic variable.
1strow: X =X%X;=0,X,=4 (. x,x, are nonbasic variables)
2" row: X, =0,X,=4,X,=2
2) If the 2"9 row is selected, then x, becomes nonbasic variable.
ond row: X, =X, =0,X,=6 (. X,X, are nonbasic variables)

1strow: X = 0, X, = 6, X; = —2 w The constraint, the variables have to be nonnegative, is violated.

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee

pi & Seoul
Laj National @ Asdgéilg'hlp Design Automation Lab. 20
; ~. Univ. http.//asdal.snu.ac.k'? |




6.3 Solution of Linear Programming Problem by Using Simplex Method
[Reference] The reason why the row having the negative coefficient in the selected column is not selected.(1)

wowy || =% X tx =4 e e
2row X, 2X1 — X3 +X, =2 <«——2p2=1
Srow: B 9X1 T 5X3 =1+20 Nonbasic variable:O x3, X4
Xl’ X2’ XS’ X4 2 O ;gggizat/s;fi;ggable(:()) Basic variable: X2, x1
1. Therow 1 and 2 are rearranged as follows.
X, +X, =4+X e @
— X3+ X, =2-2X%  ------ @

2. X2 or x4 will become a nonbasic variable.

3. If x4 becomes a nonbasic variable,

3-1. Equation @ is changed as follows. (nonbasic variable x,=0, x,=0)
0=2-2x, > 2=2Xx, — 1=X,
3-2. Equation @ is changed as follows.(nonbasic variable x;=0, x,=0)
X, =4+X% =0

In 3-1, any value of X satisfies the equation @ - If the row having the positive coefficient in the selected
column is selected, the row having the negative
coefficient in the selected column is always satisfied.

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee




6.3 Solution of Linear Programming Problem by Using Simplex Method
[Reference] The reason why the row having the negative coefficient in the selected column is not selected.(2)

ving the negative coefficient in the
lumn is not selected.

Nonbasic variable:O>X3<X2

. The row ha
lrow: X2 o Xl T X2 + X3 =4 selected co
2row: X, 2x1 — X, +X, =2 «—22=1
3row: — 9X1 + 5X3 =f+20

: Nonbasic variable(=0)
X11 X21 X31 X4 2 O : Basic variable
1. Therow 1 and 2 are rearranged as follows.
X, +Xg =4+X - 0
— X3+ X, =2-2X%  ------ @

2. x2 or x4 will become a nonbasic variable.

3. If x2 becomes a nonbasic variable,

Basic variable: x4, x1

3-1. Equation @ is changed as follows. (nonbasic variable x,=0, x;=0)

0=4+ X, = X = —4 = The constraint, the variables have to be nonnegative,

is violated.

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem
by Using Simplex Tableau

Basic
variable

lrow: X3
2row: X4

3row:

.......................................................................... T

Basic
variable
lrow: X2
2row: X4

3row:

.......................................................................... T

Basic
variable

lrow: X2
2row: X1

3row:

Computer Aided Ship Design, I-6 Linear Programm

Nonbasic variable Basic variable

=4 | «——4/1=4

+X,=6 <«—6/1=6

=0

f_(A_\ K_H

—X X T X

X, X,

—4X,|-5X, =f-0

Nonbasic variable

(=0)

Nonbasic variable

(=0)

K_H
X, +0.9%;, +0.5%, =5
—0.5%,+0.5x, =1

+0.9%; +4.5%, = f +29

Pivot: It is the same concept with Gauss-Jordan
Elimination. This eliminates the selected
variables from all the equations except one
equation.

Basic variable
]

lrow:
2row:

3row:

v | x| x| x3| x4 | bi |biai

3| 1| 1| 1] o] 4] 4

x4 | 1 1 o | 1] 6| 6
obji.| 4| 5| o | o | fo0

Pivot on x2(1 row and 2 column)

Basic variable

—X |+ X, + X =4 4-1=-4
1 2 3 (If the coefficient of the variable is
negative, the variable is not selected.) i
2X, —X, +X, =2| ——2/2 ) lrow:
2 :
—-9x[  +5x, =f+20 o
3row:

New 2row = (2row - 1row)
New 3row = (3row + 5X1row)

v | xt | x2| x3| x4 | bi |bisai

x2 | 1| 1 1| 0| 4 | -4

xa | 2 o | 1| 1] 2] 1
obji.| -9 | o | 5 | o [f+20

Pivot on x1(2 row and 1 column)

Basic variable

lrow:
2row:

3row:

New lrow = (1row + 0.5X2row)
New 2row = (0.5X2row)
New 3row = (3row + 4.5X2row)

v | xt | x2| x3| x4 | bi |bisai
2| o | 1 o505/ 5
x1 | 1] 0o [-05]05]| 1

Obiy O | O |05 |45 |f29

Because all the coefficients of thefbjective function are nonnegative,
the current solution is the optimal solution. (x;=1, X,=5, X3=X,=0, f=-29)




6.3 Solution of Linear Programming Problem Using Simplex Method
- Problem with “>" Type Inequality Constraint and Two Design Variable

Ya(=X"Xs)

B . .
*Optimum Point = (0, 6)
fr=-12

Maximize z=y,+2y,
Subjectto 3y, +2y, <12

- ~o_f=-10
2y, +3y, =6 : e
y >O o \3y1+2y2:12
1 - =27 \\\
Y,is unrestricted in sign, 273 6 yf(=><1)
SR ottt o S e
Minimize F=-y, -2y, Maximization problem can be transformed
. to a minimization problem.
Subjectto 3y, +2y, <12
The variable unrestricted in sign is
2y, +3y,>6 _ 9 _
expressed with two nonnegative variables.
y; 20 (Y=Y, =Y,
Y,is unrestricted in sign. Let be K=Y X = y;’ X3 =Y,

Minimize f =—X —2%,+2x~_~
Subjectto 3x, +2x, —2x, <12
2%, +3X, —3X; =6
Xy Xoy Xg =0 e

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee



6.3 Solution of Linear Programming Problem Using Simplex Method
- Transformation of “>" Type Inequality Constraint

Minimiz =—X, —
€ f Xl 2X2 + 2X3 [Review]For “<" type inequality constraint: we introduce a nonnegative

Subjectto 3x, +2x, —2x, <12 ) %2)( oy 4 x. =19
................................................. , —2Xg + X, =

For “>” type inequality constraint, we introduce a surplus variable and artificial variable.

2%, +3%X,—3%;, 26  »  2X +3X, —3X%—X +X, =6
Surplus variable Artificial variable(nonnegative)
(nonnegative)

“The reason why we introduce the artificial variable”

At starting the Simplex method, we assume the original design variables (x;, X,, X;) as “nonbasic
variables” (x;=x,=x3=0), -Xs = 6.

®» This violates the nonnegativity requirement. For satisfying the requirement, we introduce the

variable x; artificially.
However, the artificial variable should be equal to zero in the feasible region, because x; is

augmented artificially,

3 _B}»’ Seoul
|E j National

~. Univ.
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6.3 Solution of Linear Programming Problem Using Simplex Method simplex Tableau)
- Simplex Method for the Problem with “>" Type Inequality Constraint (1)

@ @ Slack variable
> ... f

Maximize zZ =Y, +2Y, Minimize =—X, —2X, +2X,

SUbJeCt to 3yl + 2y2 < 12 . Transform to a minimization proble SUbJeCt 0 3X T 2X 2X : 12
2y1 +3y2 >0 2.S|nce Y,is unrestricted in sign, 2X +3X 3X *@: 6
: + - :
: transform as = — : :
y, 20 Y2=Y2 7Y x_O|—1to5
: 3.Let be 5 o*
: - : * | |
y2 is unrestricted X1 — yl’ X2 — y;’ X3 — y2 A Surp us Varlab e
> ; ; iqi i X,y Xy, X3)
In sign. i A Transform the inequalit i Assume the original variables ( 11 Aoy Az ) as
P ) 9 _ y _ i nonbasic variables(=0) and calculate the basic
: constraints to the equality constraints : 4rjap|e ( X4, Xz ).
(Introduce the slack and surplus variable.) : X =12.X_ =—@ = This violates the nonnegativity
.............................................................................. 4 ) requirement
Yo(=X5-Xs)

— - (3) Sck vriable ¢

S SR Minimize f =—x, —2X, +2X,
: Introduce an artificial varlable

Xg in the “>” type |neO|uaI|ty Subject to 3X +2X 2X3 : 12 44

constraints. - — -
FCONSIIAINtS. | oo 2%+ 3%, —3X, @@ 6~

A >0i=1to6 T T 4

Assume the original design variables( Xy, X5, X3) an

Optimum Point = (0, 6)
ff=-12

the surplus variable(Xs) as nonbasic variables(=0) and Surplus  Artificial _

calculate the basic variable(X4, Xg). variable variable

The resultis X,=12, X;=6. = Initial basic solution(Infeasible solution) @

However, the artificial variable should be equal to zero in the Initial basic solu'[ion\4§C g
214

feasible region, because x4 is augmented artificially. (Infeasible solution)




6.3 Solution of Linear Programming Problem Using Simplex Method simplex Tableau)
- Simplex Method for the Problem with “>" Type Inequality Constraint (2)

: Slack variable

Minimize f =—-X —2X, +2X,
Subjectto 3x, + 2X, — 2X, : 12

X, >20;1=1t0 6
Surplus Artificial
variable variable
@Find the optimal solution to minimize -
the original objective function(Phase

2 of the Simplex method)
Ya(=X2-X3)

Optimum Point = (0, 6)
ff=-12

S S

Define an artificial objective
: function which is a sum of all
i the artificial variables(w=xg)

2%, +3X, —3X, @ =6 e ssesseee e ssene e esses s s s

T g
. . . 6 Yi(=xy)
Initial basic solution
( (InfeaSIbIe SO|UtI0n) 6 Linear Programming, Fall 2011, Kyu Yeul Lee

@ 3X, + 2X,

2% +3X, =3Xg — X + X, =6

—2X;+ X, =12

—X —2X, +2X; = f

—2X —3X, +3X; + X, =W—06

T

Designate x;=w and
rearrange 2%, +3X, =3X; — X; + X; =6

Artificial objective function

Find the basic feasible solution(minimize the
artificial objective function, w=x, (“w=0")
(Phase 1 of the Simplex method)

Since x4 is augmented artificially, the artificial
variable should be equal to zero in the feasible
region.




6.3 Solution of Linear Programming Problem Using Simplex Method simplex Tableau)
- Simplex Method for the Problem with “>" Type Inequality Constraint (3)

3X, +2X, —2X; + X, =12

@ Yo(=X5-X3) What if x, is
2%, +3X; —3X; — X5 + X5 =6 substituted for zero
—X, —2X, +2X, = f _ _ in advance?
o Optimum Point = (0, s, =

—2X% —3X, +3X;+ X =W—06 ~
At first, we assume the original design variables(x, ..., X3) and
surplus variable(xs) as nonbasic variables(=0), whereas the slack

fr=-12 Procedure of
finding the basic

feasible solution

variable(x,) and_artificial ve.lriablg(xﬁ) as.b.alsic var!ables. The”r] starting with the
solve the equation. (“Starting with the initial basic solution” ) S~ il basic |E|
x1 | x2 | x3 | x4 | x5 | x6 | bi [bi/ai +2y, =12 | solution
x4 3 2 2 1 0 0 12 S~
x6 | 2 |3 [ 3]0 -1]1]°% I
obj. | 4 | 2| 2] 0] o] oo \% 6 Yi(=x))
aobi.| 2| 3 3] o] 1] o0 [ws C

@Phase 1: Repeat Pivot operation until the artificial objective function w becomes zero.

x1 X2 X3 x4 x5 x6 bi | bi/ai x1 x2 x3 x4 x5 x6 bi | bi/ai

x4 3 2 -2 1 0 0 12 6 x4 5/3 0 0 1 2/3 | -2/3 8

x6 2 3 -3 0 -1 1 6 2 » X2 2/3 1 -1 0 -1/3 ] 1/3 2

obj. | 1| -2 20| o | o|ro obj. |1/3 | 0 | o | 0 |-2/3| 2/3 | f+4
A. Obj. | -2 -3 3 0 1 0 w-6 A. Obj. 0 0 0 0 0 1 w-0

: . : : /
Since the artificial variable(xg) is mew é row = 11;(3)";’('2(2/3)"2 oW | Since the value of the artificial objective

TN . ew Zrow = row . :
augmented artificially, the variable should | \ow 2 row = (3 ro)w_ (213)X2 row function becomes zero, the Phase 1is
be equal to zero in the feasible region. New 4 row = 4 row + 2 row completed. e
Point A(X;=X3=X5=X5=0, X,=2, X,=8) ‘ |




6.3 Solution of Linear Programming Problem Using Simplex Method simplex Tableau)
- Simplex Method for the Problem with “>" Type Inequality Constraint (4)

@Phase 1: Repeat Pivot operation until the artificial objective function w becomes zero.

x1 X2 x3 x4 x5 X6 bi bi/ai

x4 5/3 0 0 1 2/3 | -2/3 8

x2 2/3 1 -1 -1/3 |1 1/3 2

x1 x2 x3 x4 x5 x6 bi | bi/ai
x4 32| 2] 1 o[ o | 12] 6
X6 2 | 3| 30| 1| 1 6 | 2 | B
obj. | 1 | -2 | 2| o] o] o] Ffo
AObj.| -2 | 3| 3 [ o | 1 0 | wé

0
Obj. 1/3 0 0 0 -2/3 | 2/3 | f+4
A.Obj. | O 0 0 0 0 1 w-0

Phase 2: Repeat Pivot operation until all the coefficients of the original objective function f are

nonnegative.

X1 X2 x3 x4 x5 X6 bi bi/ai

X5 5/2 0 0 3/2 1 -1 12

»

x2 3/2 1 -1 1/2 0 0 6

ff=-12

Optimum Point = (0, 6)

x1 x2 x3 x4 x5 x6 bi | bi/ai
x4 5/3 0 0 1 2/3 | -2/3 8 12
x2 2/3 1 -1 0 -1/3 | 1/3 2 -6
Obj. 1/3 0 0 0 |-2/3 | 2/3 | f+4
Y2(FX57Xs)

Obj. | 2 0 0 1 0 0 |f+12

Since all the coefficients of the objective

New 1row =1row X (2/3)
New 2 row =2 row + (1/2) X1 row
New 3 row =3 row + 1 row

function are nonnegative, the current
solution is the optimal solution.




6.3 Solution of Linear Programming Problem Using Simplex Method
- Transformation of Equality(“=") Constraint

Minimize f = —X, — 2X + 2X [Review] For “<" type inequality constraint, we introduce a nonnegative
1 2 3 slack variable.

Subjectto  3x, +2xX, —2X; <12 /) 3X +2X, —2X; + X, =12
2% +3%, 3%, 26 =) 2X +3X, —3X; — X, +X; =6

_ : [Review] For “>” type inequality constraint,
R S ~ - ; we introduce a surplus variable and artificial variable.

For “=" type equality constraint, we introduce an artificial variable.
X +X, +X;, =06 » X FX+X+X =06

Artificial variable(nonnegative)

“The reason why we introduce the artificial variable”

At starting the Simplex method, we assume the original design variables (x;, X,, X;) as “nonbasic
variables” (x,=X,=x,=0). Then the equality constraint is violated(0 = 6).

» To satisfy the equality constraint , we introduce the variable x, artificially.

However, because x, is augmented artificially, the artificial variable should be equal to zero in
the feasible region.

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem Using Simplex Method
- Method for Formulating the Artificial Objective Function

® @

Minimize f =—X —2X, +2X, Minimize f =—-X —2X, +2X,
Subjectto 3%, +2X, —2X; <121, crorm the inequaliyoURIECt O 3%, + 2%, —2X, + X, =12
2% +3X, —3%; 26 const::a:)i?és;rt;nfguality 2X + 3%, =3%; — X5+ X; =6
X, + X, + X, =6 ] X, + X, + Xg + X, =6
Xy Xoy X3 =0 X.>0;,1=1t0 7
<Ref.> If we define the artificial objective :
functions for each artificial variable, Xg — 6 = —2X —3X, +3K; + X5 Define an artificial objective

function which is a sum of
all the artificial variables
W(= Xg + X,) =12 ==3X, —4X, + 2X; + X5 | (W=Xg+x;)

3X, +2X, — 2%, + X, =12 % =6==% =% =%

2%, +3X, —3X; — X + Xs =6

X, + X, +X;+ X, =6 v
— X —2X, +2X, = f :

C ke aEssEEsEEsEEsEEsEEsEEsEEsEEsEEsEEEEEEEE - 2X +3X _3X —X. 4+ X :6
—2X, —3X, +3X; + X :Wl_G}»We have to minimize w,(x=0) ' ? o

S X, —X,— X, =W, —6 and w, (x;=0). X +X, + X, +X, =6

Since the artificial variables are nonnegative, : v —
_ GaVE, s P X —2X, + 2%, = f

solutions of minimizing the sum of all the :
artificial objective functions are the sameas _3)(1 — 4)(2 + 2)(3 + X = w-=12
those of minimizing of each artificial objective
function . Therefore, it is convenient to define Find the basic feasible solution(minimize the artificial
the artificial objective function as asum of all & objective function, w=xs+x,(“w=0"; X;=x,=0) e

the artificial variables.



6.3 Solution of Linear Programming Problem a X
Using Simplex Method E |r%feasib|e //b‘
- Summary of the Simplex Method N Thasolution” v

M This method starts at the initial Basic feasible
basic feasible solution and finds solution v [7"C X

Optimal solution

the optimal solution by B T2
improving the objective function t 78 X, + X, =6
M This method is based on the : X0
. F bl
theory of the first-order q| Teasie reaon ‘/<
simultaneous equations. XN
B Matrix calculation is used Infeasible Initial basic feasible solutio \\
* i in the Simpl hod
(Gauss-Jordan Elimination) = solution Af/ nme s met. 2 = > 1(1
M Type of the Sirpplex method Basic feasible soluti 4 Bgsic feasible
B One-phase Simplex method Yo(=X,-Xs) solution

® The problem only having “<" type
inequality constraints

B Two-phase Simplex method <

® The problem having “>" type
inequality or equality (“=")
constraint

® Phase 1: Find the initial basic
feasible solution to satisfy the
artificial objective function(w) to
be zero.

® Phase 2: Find the optimal solution
by starting with the initial basic
feasible solution.

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem Using Simplex Method
- Summary of the Simplex Algorithm

M Step 1: initial basic feasible solution

B “<=" type inequality constraints: Find the initial basic feasible variables by
assuming the slack variables as basic and the original variables as nonbasic
variables(=0).

B “>=" type inequality constraints: By using the Two-phase Simplex method,
find the initial basic feasible variables to satisfy the artificial objective
function to be zero in the Phase 1.

M Step 2: The objective function must be expressed with the nonbasic variables.

M Step 3: If all the reduced coefficient of the objective function for nonbasic
variables are nonnegative, the current basic solution is the optimal solution.
Otherwise, continue.

M Step 4: Determine the Pivot column and row. At this time, the nonbasic variable
in the selected Pivot column should become the new basic variable and the
basic variable in the selected Pivot row should become the new nonbasic
variable.

M Step 5: Pivot operation by using the Gauss-Jordan Elimination
M Step 6: Calculate the value of the basic and nonbasic variable and go to Step 3.

221
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6.3 Solution of Linear Programming Problem Using Simplex Method
- [Reference] Time to transform the variables unrestricted in sign to the nonnegative variables

Mathematical Model

Minimize zZ =-Y, -2V,

3y, +2y, <12
2y, +3y, =6

y, 20

Subject to

Y, is unrestricted in sign.

Introduce the slack variable

Introduce the surplus variat

“<” type inequality constraint:

“>” type inequality constraint:

Transform the variable
unrestricted in sign
to nonnegative variable

Order (1)

and

¢ the artificial variable.

Minimize f =—y, —2y,
Subjectto 3y +2y, +x1: 12
2y, +3y, - X+X3 _

..............

y, % =0;i=1to 3

Ysis unrestricted in sign.

Order (2)

Transform the variable
unrestricted in sign
to nonnegative variable

Minimize f — vl BuETS

Subject to

Yi: Y5, Y, 20

“<” type inequality constraint:
Introduce the slack variable.

“>” type inequality constraint:
Introduce the surplus variable and
the artificial variable.

yl,yz,y2 >0, X >O |—1t03

After formulating the mathematical model, there is no restriction in order between transforming the variables
unrestricted in sign to the nonnegative variables and introducing the slack, surplus and artificial variables.

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee



6.3 Solution of Linear Programming Problem Using Simplex Method
- [Reference] What if x; is substituted for zero in advance?

33X, +2X, —2X, + X, =12
2X, +3X, =3X; — X + X, =6
— X, —2X, +2X, = f

When X; is substituted for zero,

the other variables(Xy, X5, X3, Xg) in the same equation should not be negative.

The procedure of the calculating the values of xy, X,, X3, X5 is identical with that of
reducing the artificial objective function(xg) to zero in the Simplex method.

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem Using Simplex Method
- [Reference] Procedure of finding the basic feasible solution starting with the initial basic solution(1)

x1 x2 | x3 | x4 | x5 | x6 | bi |bi/ai Ya2(=X57X3)
x4 3 2 -2 1 0 0 12 4 _ _
Optimum Point = (0, 6)
X6 2 3 -3 0 -1 1 6 3 ~] P
Obj. -1 -2 2 0 0 0 | f0
A. Obj. | -2 -3 3 0 1 0 | w-6

Select the first column and perform the Pivot.
(In the general Simplex method, the second column is selected.)

x1 X2 x3 x4 x5 x6 bi bi/ai Initial basic solution C
(Infeasible solution)
x4 0 -5/2 | 5/2 1 3/2 | -3/2 3
x1 1 |32 -3/21 0 |-172|12]| 3 : The basic feasible solution can be found
Obj. 0 172 | 172 0 /2| 172 | f+3 . from the initial basic solution through the
AObi.] 0 o oo o |1 |[woOf- near corner.
/ - It is similar with the procedure of

Since the value of the artificial objective
function becomes zero, the Phase 1 is
completed. Point E(X,=X3=X5=X=0, X;=3, X,=3)

finding the optimal solution from the
initial basic feasible solution. (through
the near corner)

- Since Phasel is completed, Phase 2 is performed.
- Phase2: Pivot operation for the original objective function f —

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee



6.3 Solution of Linear Programming Problem Using Simplex Method
- [Reference] Procedure of finding the basic feasible solution starting with the initial basic solution(2)

x1 | x2 | x3 | x4 | x5 | x6 | bi |[bi/ai Yo(=X5-X3)
x4 0 |[-5/2|5/2 | 1 |3/2(-3/2| 3 |-6/5 4B
x1 1 3/2 | -3/2| 0 |[-1/2]|1/2]| 3 2 A Optimum Point = (0, 6)
L f =-12

0 -1/2 1/2 0 -1/2 1/2 f+3 - Since the value of the artificial

objective function becomes zero,
[~ the Phase 1is completed. 4
Point E(x,=x3=xs=X=0, X;=3, X,=3)

~

Obj.

~N
~

New 1 row = 1row + 2row X (5/3)
New 2row = 2row X (2/3)
New 3row = 3row + 2row X (1/3) 24

x1 x2 x3 x4 x5 x6 bi | bi/ai >~
x4 5/3 0 0 1 2/3 | -2/3 8 12
@
x2 2/3 1 -1 0 -1/3 |1 1/3 2 -6
. Initial basic solution
Obj. 1/3 0 0 0 23|23 ) 14 ) (Infeasible solution) C

New 1row = lrow X (2/3) Point A\(x=X;=X:=X=0,X,=2,X,=8)
New 2row = 2row + (1/2) X lrow
New 3row = 3row + 1row

X1 X2 x3 x4 x5 X6 bi bi/ai
x5 5/2 0 0 3/2 1 -1 12
X2 3/2 1 -1 1/2 0 0 6

Obj. | 2 0 0 1 0 0 |f+12
Since all the coefficients of the objective function are nonnegative,

the current solution is the optimal solution.
Point B (x,=x,=x,=x,=0,%,=6,x5=12,f=-12)




6.3 Solution of Linear Programming Problem Using Simplex Method
- [Homework 1] Optimal Transportation of Cargo

Consider a cargo ship departing from the port A to E via the ports B, C, D.
The maximum cargo loading capacity of the ship is 50,000ton and the
loadable cargo at each port is as follows. Formulate and find the optimum
cargo transportation that maximizes the freight rate.

Type Port of Loadable cargo at each

of d Port of arrival port of departure Freight rate (§/ton)
eparture

cargo (1,000ton)
1 A B 100 5
2 A C 40 10
3 A D 25 20
4 B C 50 8
5 B D 100 12
6 C D 50 6

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem Using Simplex Method
- [Homework 2] Linear Programming Program

M Solve the linear programming problem only having the equality
constraints(linear indeterminate equation).

2% +Yy—-2-¢(,=3

2X, +Yy—2—-(,=3

X + X, =2

where, X, X,Y,2,¢,,¢, =20

Initial basic feasible solution: X, =X, =1,y=172=0,4,=¢, =0

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem Using Simplex Method
- [Example 1] Optimal Transportation of Cargo

Consider a cargo ship departing from the port A to E via the ports B, C, D.
The maximum cargo loading capacity of the ship is 50,000ton and the
loadable cargo at each port is as follows. Formulate and find the optimum
cargo transportation that maximizes the freight rate.

Type Port of Loadable cargo at each

of d Port of arrival port of departure Freight rate (§/ton)
eparture

cargo (1,000ton)
1 A B 100 5
2 A C 40 10
3 A D 25 20
4 B C 50 8
5 B D 100 12
6 C D 50 6

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem Using Simplex Method
- [Example 1] Optimal Transportation of Cargo — Solution (1)

TS| deparur | POl | e cach portsor | Shppim cos
cargo e departure (1,000ton)

1 A B 100 5

2 A C 40 10

3 A D 25 20

4 B C 50 8

5 B D 100 12

6 C D 50 6

Design variables: X;, X, X5, X;, Xg, X5

The loadable cargo at each port
(x;, 1 type of cargo) by 1,000ton is as follows.
X

Objective function: Maximization of the shipping cost

Maximize Z =5x, +10Xx, +20X; +8X, +12X; +6X;

®» The maximization problem should be converted to a minimization problem by assuming f =-Z

Minimize f =-5x, —10x, —20x, —8x, —12X, —6X,

Computer Aided Ship Design, I-6 Linear Programming, Fa

11 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem Using Simplex Method
- [Example 1] Optimal Transportation of Cargo — Solution (2)

Type Port of Port of Loadable cargo at Shipping cost
of | departur | Lo\ | theeach ports of rate ($/ton) The loadable cargo at each port
cargo e departure (1,000ton)
1 A B 100 5 (x;, 1 type of cargo) by 1,000ton is as follows.
2 A C 40 10 X,
3 A D 25 20
4 B C 50 8
5 B D 100 12 XZ
6 C D 50 6 X1

Constraints:

The maximum cargo to be loaded in the ship:
A=B:iX+X,+X% <50 B=C:X,+X,+X, +X <50
C=>Dix,+ X +X%, <50

The maximum cargo according to the type:
0<x, <40, 0<x, <25, 0<x, <50, 0<x, <50

The maximum loadable cargoes x,, X5 are larger than 50,000 ton, there are no upper limit related with x;, X.

The maximum loadable cargoes x,, Xg are 50,000 ton, there are no upper limit related with x,, Xg.
Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee




6.3 Solution of Linear Programming Problem Using Simplex Method
- [Example 1] Optimal Transportation of Cargo — Solution (3)

Find X11X2;X3;X4’X51X6
Minimize f =-5% —10x, —20x, —8x, —12x. —6X;
Subjectto X, + X, + X, <50

X, X, X, X< 50 . Constraints related with the maximum cargo to be
2 3 4 5 . )
loaded in the ship

Xg + X + X5 <50
0 < x, £40, O£x3£25,}
0<x,<50, 0<x,<50

: Constraints related with the maximum cargo
according to the type:

®» Optimization problem having the 6 unknown variables and 7
Inequality constraints

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem Using Simplex Method
- [Example 1] Optimal Transportation of Cargo — Solution (4)

@ Convert to the standard form > @Solve this problem by using the Simplex method

Constraints

X + X, +X; <50 X, + X, + X3 + X, =50

X, + X3+ X, + X, <50 §&+&+M+&+&:m
X5 + Xg + X5 <50 X3 + Xg + Xs + X5 =950
0<x,<40, 0<%, <25, X, + X0 =40, X3+ X, =25,
0<x,<50, 0<x, <50 X, + X, =90, Xs+ X3 =50

Where, X7, Xg, X9, X109, X115 X1 pX 5 slack
variables?

Objective function

f =—-5x, —10x, —20x, —8x, —12X. —6X f =—5x, —10x, —20%, —8x, —12X, —6X;

Perform the Simplex method.

starts at the initial basic feasible solution and finds the optimal solution by improving the
objective function

1: Slack variable — The variables introduced for converting “<” type inequality constraints.

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem Using Simplex Method

- [Example 1] Optimal Transportation of Cargo - Solution (5)

- ___________________________________________________________________| pOSitive ratio =

Right hand side parameter in each column

Positive coefficient of the element in .the selected row

1 x1 X2 x3 x4 x5 x6 x7 x8 x9 x10 | x11 | x12 [ x13 bi | bi/ai
X7 1 1 1 0 0 0 1 0 0 0 0 0 0 50 50
x8 0 1 1 1 1 0 0 1 0 0 0 0 0 50 50
x9 0 0 1 0 1 1 0 0 1 0 0 0 0 50 50 Select the vaxiable
x10 0 1 0 0 0 0 0 0 0 1 0 0 0 | 40 - | whose coefficient is
7| positive and roy has
x11 0 0 1 0 0 0 0 0 0 0 1 0 0 25 25" | the smallest positive
x2 ol o|lo]|1]|]o]o|lo] o] o] o] o] 1] o0/s0 atio in the constraints.
x13 0 0 0 0 0 1 0 0 0 0 0 0 1 50
Obj. -5 -10 | -20 -8 -12 -6 0 0 0 0 0 0 0 f+0
(1) Select the column Which‘%s the minimum coefficient of the objective function.  (3) Pivot on the selected variable(x; / 5 row, 3 column).
2 x1 X2 x3 x4 x5 x6 x7 x8 x9 x10 | x11 | x12 [ x13 bi | bi/ai
X7 1 1 0 0 0 0 1 0 0 0 -1 0 0 25
x8 0 1 0 1 1 0 0 1 0 0 -1 0 0 25 25
x9 0 0 0 0 1 1 0 0 1 0 -1 0 0 25 25
x10 0 1 0 0 0 0 0 0 0 1 0 0 0 40
x3 0 0 1 0 0 0 0 0 0 0 1 0 0 25
x12 0 0 0 1 0 0 0 0 0 0 0 1 0 50
x13 0 0 0 0 0 1 0 0 0 0 0 0 1 50
Obj. -5 -10 0 -8 -12 -6 0 0 0 0 20 0 0 |f+500
Computer Aided Ship Design, 1-6 Linear Programming, Fall 2011, Kyu Yeul Lee _
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6.3 Solution of Linear Programming Problem Using Simplex Method

- [Example 1] Optimal Transportation of Cargo — Solution (6)

3 x1 X2 x3 x4 x5 x6 x7 x8 x9 x10 | x11 | x12 [ x13 bi | bi/ai
x7 1 1 0 0 0 0 1 0 0 0 -1 0 0 25
x5 0 1 0 1 1 0 0 1 0 0 -1 0 0 25
x9 0 -1 0 -1 0 1 0 -1 1 0 0 0 0 0 0
x10 0 1 0 0 0 0 0 0 0 1 0 0 0 40
x3 0 0 1 0 0 0 0 0 0 0 1 0 0 25
x12 0 0 0 1 0 0 0 0 0 0 0 1 0 50
x13 0 0 0 0 0 1 0 0 0 0 0 0 1 50 50
Obj. -5 2 0 4 0 -6 0 12 0 0 8 0 0 |f+800
4 x1 X2 x3 x4 x5 x6 x7 x8 x9 x10 | x11 | x12 [ x13 bi | bi/ai
x7 1 1 0 0 0 0 1 0 0 0 -1 0 0 25 25
x5 0 1 0 1 1 0 0 1 0 0 -1 0 0 25
x6 0 -1 0 -1 0 1 0 -1 1 0 0 0 0 0
x10 0 1 0 0 0 0 0 0 0 1 0 0 0 40
x3 0 0 1 0 0 0 0 0 0 0 1 0 0 25
x12 0 0 0 1 0 0 0 0 0 0 0 1 0 50
x13 0 1 0 1 0 0 0 1 -1 0 0 0 1 50
Obj. -5 -4 0 -2 0 0 0 6 6 0 8 0 0 800
Computer Aided Ship Design, 1-6 Linear Programming, Fall 2011, Kyu Yeul Lee _
& Seoul
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6.3 Solution of Linear Programming Problem Using Simplex Method
- [Example 1] Optimal Transportation of Cargo - Solution (7)

S x1 X2 x3 x4 x5 x6 x7 x8 x9 x10 | x11 | x12 [ x13 bi | bi/ai
x1 1 1 0 0 0 0 1 0 0 0 -1 0 0 25
x5 0 1 0 1 1 0 0 1 0 0 -1 0 0 25 25
x6 0 -1 0 -1 0 1 0 -1 1 0 0 0 0 <
x10 0 1 0 0 0 0 0 0 0 1 0 0 0 40
x3 0 0 1 0 0 0 0 0 0 0 1 0 0 25
x12 0 0 0 1 0 0 0 0 0 0 0 1 0 50 50
x13 0 1 0 1 0 0 0 1 -1 0 0 0 1 50 50
Obj. 0 1 0 -2 0 0 5 6 6 0 3 0 0 |f+925
6 x1 X2 x3 x4 x5 x6 x7 x8 x9 x10 [ x11 | x12 [ x13 bi | bi/ai
x1 1 1 0 0 0 0 1 0 0 0 -1 0 0 25
x4 0 1 0 1 1 0 0 1 0 0 -1 0 0 25
x6 0 0 0 0 1 1 0 0 1 0 -1 0 0 25
x10 0 1 0 0 0 0 0 0 0 1 0 0 0 40
x3 0 0 1 0 0 0 0 0 0 0 1 0 0 25
x12 0 -1 0 0 -1 0 0 -1 0 0 1 1 0 25
x13 0 0 0 0 -1 0 0 0 -1 0 1 0 1 25
Obj. 0 3 0 0 2 0 5 8 6 0 1 0 0 |f+975

The row having the
negative coefficient
(-1) in the selected
column is not
selected.

Because all the coefficients of the objective function are nonnegative, the current
solution is the optimal solution(X,=X==0,X,=X,=X,=X:=25,f=-975)

Therefore, the maximum shipping cost (975,0008$) can be achieved by loading 25,000 tons per the
cargo type(l, 3, 4, 6).




6.3 Solution of Linear Programming Problem Using Simplex Method
- [Example 2] Linear Programming Program

M Solve the linear programming problem only having the equality
constraints(linear indeterminate equation).

2% +Yy—-2-¢(,=3

2X, +Yy—2—-(,=3

X + X, =2

where, X, X,Y,2,¢,,¢, =20

Initial basic feasible solution: X, =X, =1,y=172=0,4,=¢, =0

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem Using Simplex Method
- [Example 2] Linear Programming Program - Solution (1)

1. The problem is the linear programming problem only having the equality constraints(linear

indeterminate equation).

2. To solve this problem, we introduce the artificial variables and artificial objective function
to find the initial basic feasible solution in the Simplex method.

B(3><6)X(6><1) + Y(3><1) = D(3><1)

Artificial variable
3. The artificial objective function is defined as foIIows

w:iv ZD ZZBX =W, +Zcx

j=1 i=1
3
where Cj = —Z Bij : Sum the all the elements at the j column in Matrix B and change the sign.
i=1 (Relative objective coefficient)
3
W0 = Z Di =3+ 3+ 2 =8 : sum of all the elements in the Matrix D.
i=1 (Initial basic solution for the artificial objective function)

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee

EJ > Seoul
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6.3 Solution of Linear Programming Problem

Using Simplex Method 2% +Y—1-¢ =
- [Example 2] Linear Programming Program — Solution (2 2%, +Yy—2-¢,=3
B(SXG)X(6><1) + Y(3><1) = D(3><1) X+ X, =2
Artificial variable ) where, X, %Y,2,,,6, =0
Xl(: Xl)
_ AX%EX) | o4 pas
201—1—102(X2) Y, | [3
y =
2 1 -1 0 -1 LY, | =
Z(: X4)
1100 0 O Y,| |2
- TGEX) | T T
_42 (= X6)_
1 X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 bi bi/ai
Y1 2 0 1 1 1 0 1 0 0 3 3/2
Y2 0 2 1 1 0 -1 0 1 0 3
Y3 1 1 0 0 0 0 0 0 1 2 2
A. Obj. | -3 -3 -2 2 1 1 0 0 0 w-8
t ~F 1
Artificial objective Sum the all the elements at the each column in Matrix B and change the sign.
function (ex. 1 column: -(2+0+1)=-3)

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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6.3 Solution of Linear Programming Problem Using Simplex Method
- [Example 2] Linear Programming Program - Solution (3)

2 X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 bi bi/ai
X1 1 0 1/2 | -1/2 | -1/2 0 1/2 0 0 3/2
Y2 2 1 -1 0 -1 0 1 0 3 3/2

0
Y3 0 1 -1/2 | 1/2 | 1/2 0 -1/2 0 1 1/2 1/2
0

A. Obj. -3 | -1/2 | 1/2 | -1/2 1 3/2 0 0 w-7/2
3 X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 bi bi/ai
X1 1 0 1/2 | -1/2 | -1/2 0 1/2 0 0 3/2 3
Y2 0 0 2 2 1 -1 1 1 2 2 1
X2 0 1 -1/2 | 1/2 | 1/2 0 -1/2 0 1 1/2
A.Obj.| O 0 -2 2 1 1 0 0 3 w-2
4 X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 bi bi/ai
X1 1 0 0 0 -1/4 | 1/4 | 1/4 | -1/4 | 1/2 1

X3 0 0 1 -1 /2 -1/2 | 1/2 | 1/2 -1 1
X2 0 1 0 0 174 | -1/4 | -1/4 | 1/4 | 1/2 1
A.Obj.| O 0 0 0 0 0 1 1 1 w-0

T Since the value of the artificial objective function becomes zero,
X x5 = [X1 X5 Y Z é/l 4/2] the initial basic feasible solution is obtained.

S5 X,=1, Xp=1, Xe=1, X, =X=X=0
Therefore, one of the initial basic feasible solutionsis X =X, =1lv=y—-z=1¢,=¢,=0.

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee
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Programming Assignment #1

Golden Section Method
Programming Guide
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Programming Assighment #1

Write a program, which is applying the “Golden Section Method”

and minimize following functions.

1. f(X)=x°
2. T(X)=sInx

3.f(X)=x"-x"+x-1

Seoul @ SDAL r 2 43
National . . . { |
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Golden Section Search method Program Guide

Step 1 : Find the interval where Step 2: Calculatef () and f(a,)
the minimum is located

f(a),

f(a) 4 Interval containing minimum point

0.618I |<—|—>|<—>0 3821

4 ... R
0 §2.6185 5.23689.4728 16.3268 04 aa 0% A, «a
I I . Lower bound Upper bound
Ol| aa au
Li}j oo S ShpD sign Automation Lab. 244
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Golden Section Search method Programming Guide

Step 3: Check in which interval we have the minimum value
o If f(a,)< f(a,)
Then the optimum point @™ is between @, and «, .

The new lower bound is & = &, and the new O!b'= o, f(a)

. Interval containing minimum point

The upper bound,,'= @, and o, '= ¢r,'+0.382(ct,'~,")-

@ Ifelse f(a,) > f(a,)

. . * ., | |
The optimum point « is between @, and ¢, . 0.618l :‘—;—’;‘—’:0-38%

»

The new lower bound is €| = &, and the new OCa'Z a Qower®a G Cupper

Lower bound Upper bound

The upper bound ¢, '= ¢, and &,'= & '+0.618(¢x, '~1,").
® If f(a,)=T(a,)

Then o, =a,, o, =aq,

Step 4: Determine if the tolerance is acceptable, if not then enter the loop at step 2

The distance between the points left and right from the minimum value should be smaller than
-6
our tolerance || @ — @4 <10

oul | |
p Desi i | 245
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Golden Section Search method Programming Guide

#include "stdafx.h*
#include "math.h"

//Function which we want to optimize.

double f1(double x) f(x) ,
{

}

return x*x-4*x+4;

//Main function and variables

int _tmain(int argc, _TCHAR* argv[])

|
|
|
|
| |
| |
| |
{ | |
| |
double init_x=0.0; 0 l : >
double delta = 0.1; : : X
double final; init x : :
X |
double lower; init_x+deltax1.618° !
double a; (lower bound) |
double b;

init_x+deltax1.618*
(upper bound)

double upper;

3 B & Seoul !
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Golden Section Search method Programming Guide

//Divide the interval

while(true)
{

if (f1(init_x)>f1(init_x+delta) && f1l(init_x+delta)<fil(init_x+delta*2.618))

{

break;

}

init_x=init_x+delta;

delta = 1.618*delta; (0618) (0382)
} A L

f(x) , IR

final = init_x+2.618 * delta;

//Check the interval in which we presume the minimum point

printf("%1f \n", init_x);
printf("%1f \n", final);

//Lower bound, upper bound and point a and b
lower=init_x;

upper=final;

a= ( upper-lower )*@.382+lower;

b= ( upper-lower )*@.618+lower;

v

)
| | |
I I I
A
| ' |
| : |
| |

| : |
| | |
b
! | |
|

|

- (a) (b)
(lower bound) (upper bound)

Seoul | ‘
National - 247
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Golden Section Search method Programming Guide

while(true)
{

//1f the tolerance is not reached keep executing
if(fabs(b-a)<0.00000001)

{
}

//If a is smaller than b, then the minimum point is in the left interval

break;

else if(f1(a)<fi(b)) =
{ lower=1lower; f (0.618)I® |, (0.382)I® f
- 3
upper=b; Ve S % A
b=a; " (0.881)I0 A0
k+1) —A(K

a=lower+(upper-lower)*0.382; ' 4 16+D) =4 ®) !

} e—dten ] 038201051
“ % '’ - a,’
‘(0.382)|(k+7‘ (0.618) 1) "

//If b is smaller than a, then the minimum point is in the right interval
else if(f1(a)>f1(b))
{

}

//If a and b are same, then the minimum point is in the interval between a and b
else

{
}

.i',;._ E} ;»; Seoul @ |
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Golden Section Search method Programming Guide

while(true)
{

//1f the tolerance is not reached keep executing
if(fabs(b-a)<0.00000001)

{
}

break;

//If a is smaller than b, then the minimum point is in the left interval

else if(f1(a)<fi(b))
{

}

//If b is smaller than a, then the minimum point is in the

else if(f1(a)>f1(b))
{

What should we define?

}

right interval

1)

A A

(0.382)10

vV Yy

(0.618)1%

;Tﬂh 2

A

(b)

TIRAY

AK

Y

P

(0.618)1%

(D) = 4K

A

<_____
A

A\ 4

(0.618)1%+D »\/

(0.382)1%+D) |
Lt

&
<«

R

a’ a,’ [N

»ld »

0.382)16+D "1 (0.382)16+)

//If a and b are same, then the minimum point is in the interval between a and b

else

{
}

Computer Aided Ship Design, Programming Assignment, Fall 2011, Kyu Yeul Lee
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Golden Section Search method Programming Guide

//Print the result
printf("%1f %1f \n", a,b );

return 0;
}
Bl C\Windows\system32\cmd.exe | = | B |t S
2. 741426
2. A08Ad8 2 . ARdBAA
Press any key to continue . .

E] & Seoul |
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Programming Assignment #2

Simplex Programming Guide

Naval Architecture & Ocean Engineering
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Simplex Programming Assignment

M Programming for the following optimization problems
using Simplex methods
B Linear programming problem #1: refer page 13
B Linear programming problem #2: refer page 14
B Linear programming problem #3: refer page 15

M Caution

B Separate the procedures for minimizing the objective function,
and the artificial objective function into two phases

B Output the simplex tables during the iteration into the console
window or a file.

B Find out at list 2 solutions of indeterminate equations by using
Roll-Back procedure.

[

)'x\' eou/ 777777777777777777
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Linear programming problem #1

X1 X2 X3 x4 bi bi/ai

Maximize z =4Xx, +5X,

_ 1strow: X3 -1 1 1 0 4 4
SUbJeCt to — X+ X, <4 2vdrow: | x4 | 1 1 0 1 6 6
Xl n X2 < 6 3d9row: | Obj. | -4 -5 0 0 f-0
X, X, 20

x1 x2 x3 x4 bi | bi/ai
1strow: X2 = 1 1 0 4 -4
2" row: x4 2 0 -1 1 2 1
39 row: Obj. | -9 0 5 0 | f+20

Optimal solution: x,=1, x,=5, X3=Xx,=0, f=-29

x1 X2 x3 x4 bi | bi/ai
15t row: x2 0 1 0.5 | 0.5 5
2" row: x1 1 0 [-0.5]( 0.5 1
39row: |obj.| O 0 | 0.5 | 4.5 | f+29

3 Seoul
LEJJ National @ %Bérjgh/p Design Automation Lab.
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Linear programming problem #2

Minimize  f =—X, —2X, +2X,
Subjectto  3x, +2x, —2x, <12
2X, +3X, —3%X; =6

Xy Xoy Xg =0

2) Phase 2: Repeat the pivot operation
until all the coefficients of the original
objective function f are nonnegative

x1 x2 x3 x4 x5 x6 bi | bi/ai
x4 5/3 0 0 1 2/3 | -2/3 | 8 12
x2 2/3 1 -1 0 -1/3 | 1/3 2 -6
Obj. 1/3 0 0 0 |-2/3 | 2/3 | f+4

x1 X2 x3 x4 x5 x6 bi bi/ai

Corrpmueu-srrrp-uesrgn, PTOYTATTITTInT Y ASSTYTITIETI, Fdil ZUIL, Ryt reurcee

= Univ.

http.//asdal.snu.ac.kr

x5 5/2 0 0 3/2 1 -1 12
X2 3/2 1 -1 1/2 0 0 6
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Linear programming problem #3

Minimize

f =—Xx —2X%, +2X,

Subjectto  3x, +2x, —2x, <12

1) Phase 1: Repeat the pivot operation

until the artificial objective function w

becomes zero

x1 x2 x3 x4 x5 x6 bi bi/ai
2%, +3X, —3X; =6 x4 3 2210 o] 12
x6 2 3 -3 0 -1 1 6
Xy Xoy Xg =0
Obj. -1 2 2 0 0 0 f-0
A. Obj. | -2 3 3 0 1 0 | w6
. . x1 x2 x3 x4 x5 x6 bi bi/ai
2) Phase 2: Repeat the pivot operation
3 . . . x4 3 2 -2 1 0 0 12 6
until all the coefficients of the original - A 3 T 1 1 —T5
. . . . X - -
objective function f are nonnegative
Obj. -1 -2 2 0 0 0 f-0
x1 X2 x3 x4 X5 X6 bi [ bi/ai A. Obj.| -2 3 3 0 1 0 | w6
x4 5/3 | 0 0 1 2/3 | -2/3| 8 12
x2 2/3 1 -1 0 | -1/3] 1/3 2 -6
- x1 X2 x3 x4 x5 X6 bi | bi/ai
Obj. | 173 | 0 0 0 |-2/3| 2/3 | f+4
x4 5/3 | 0 0 1 2/3 | -2/3| 8
x1 x2 x3 x4 x5 X6 bi | bi/ai X2 2/3 1 -1 0 |-1/3 ] 1/3 2
x5 5/2 | 0 0 | 3/2 1 -1 12 Obj. | 1/3 ] 0 0 0 | -2/3]| 2/3 | f+4
x2 3/2 1 -1 1/2 0 0 6 A.Obj.| O 0 0 0 0 1 w-0
Obj. | 2 0 0 1 0 0 |f+12 S seoul @ - ]
Corrpmueu-snrp-uesgn, PTOYTATTITTInT Y ASSTYTITIETI, Fdil ZUIL, Ryt reurcee LJ\ ?//n/'l/. ! ﬁg;‘?/f}giga_ggllaouggsz;]nAutomat/an Lab




Linear programming problem #4

Solve the following indeterminate equations 1 X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 bi bi/ai
Y1 2 | o 1111 o0 1 0| o 3 | 32
2x1+y—z—§1:3 Y2 o2 |1t |[1]o0o|-1]o0 | 1]o0O 3
Y3 1 1 ol ol o ]| of o] o 1 2 2
2X, +Y—71-(, =3 aobi.| 3| 3 221 1o o] o] we
X + X, =2 >
x1 | x2 | x3 | x4 | x5 | x6 | vt | v2]| v3 bi | bi/ai
where, X, X,Y,2,¢,,¢, =20 xt | 1 [ o [12]12{12] 0 [12] 0| o | 32
Y2 0o | 2 1t 1o | -1]o0 1 0 3 | 32
Y3 0 1 |-172{ 1212 o |-12] o 1 172 | 1/2
X, =X, =Lv=y-72=10=,=0 [aovi.| 0 | 3 | 12| 172 12| 1 |32] o 0 | w772
3 X1 | x2 | x3 | x4 | x5 | x6| vyt |vy2]v3 bi | bi/ai
X1 1 o |12 |-12|-1720 o |12 o | o | 3/2 | 3
Y2 o |l o | 2| 2] -1/[ - 1 1 | 2 2 1
X2 0 1 {1212 12] o |-172] o 1 1/2
AObj.| o | o | -2 | 2 1 1 o | o | 3 | w2
4 X1 | x2 | x3 | x4 | x5 | x6 | Yl |vY2]| V3 bi | bi/ai
X1 1 o | o | o |-1/4|1/4| 1741412 1
X3 0| o 1| 4 a2z 12 1
X2 0 1 0 | o | 1/4|-1/4|-1/4| 174|172 | 1
AObji.l o | o | of| o o o 1 1 1 | w0

Computer Aided Ship Design, Programming Assignment, Fall 2011, Ky




An example of solution for the Linear programming

Eroblem #1

= = mllll|lllII:|IIII|III2II:|IIII|III3II:|IIII|III4II:|IIII|
Ma)(|m|ze Z :4X —|—5X 1 -1.0000 1.0000 1.0000 ©.0000 | 4.0000
1 2 2 1.9000 1.0000 ©.0000 1.0000 |  G.0000
- T [---------
SUbJeCt 10 — )(1 + X2 < 4 4 -4.0000 -5.9000 ©.0000 0.0000 | ©.0000
5
< 6 € Row = 1
7 Col = 2
X, + X, < H
g9
1=
X1! Xz Z O 11 -1.0600 1.9000 1.0000 ©.0000 |  4.0000
12 2.0000 0.9000 -1.0000 1.9008 | 2.0008
. . . _ _ Y _ _ R [---------
Optimal Solution: x;=1, X,=3, X3=X,=0, f=-29 14 -3.0000 ©.0000 5.0000 ©.0000 | 20.0009
15
16 Row = 2
x1 x2 x3 x4 bi bi/ai 17 Col = 1
13
1st row: x3 -1 1 1 0 4 4 15
28
2" row: | x4 1 1 0 1 6 6 21 @.P8E8 1.98088 ©.58080 0.5888 | 5.0008
22 1.0800 0.9000 -9.5000 ©.5000 | 1.0000
39 row: | Obj. -4 -5 0 0 f-0 - R e T [---------
4 ©.0000 0.9000 0.5000 4.5000 | 29.0008

x1 X2 X3 x4 bi | bi/ai
1strow: | X2 -1 1 1 0 4 -4
2" row: | x4 2 0 -1 1 2 1
3drow: | Obj. | -9 0 5 0 f+20

X1 X2 x3 x4 bi bi/ai
1st row: X2 0 1 0.5 0.5 5
ond row: | X1 1 0 -0.5 | 0.5 1

3d row: | Obj. 0 0 0.5 | 4.5 | f+29 - S Seou 3
. n " " " Lj National Advanced Ship Design Automation Lab. |
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Explanation of Simplex Class

class Simplex

{
public:

}s

Simplex();
Simplex(const Simplex& rhs);
virtual ~Simplex();

//member variables

Matrix m_matSimplexTable;

Matrix m_matVar;

Matrix m_matBiAi;

int m_nPivotRow,m_nPivotCol;

int m_nPhase;

static std::vector<Simplex*> m_vSimplexStack;

//member function

void
void
void
void
void
bool
void

SetSimplexTable(Matrix& m_matSimplexTable);
SetPhase(int phase);

FindPivotColumn();

FindPivotRow();

Pivot();

CheckEndCondition();

Solve();



Programming Guide for Simplex Method

1) Construct the Simplex Table using given objective function and constraints

Basi Nonbasic
v:r?acble variable(=0) Basic variable
r A \ l ) x1 | x2 | x3 | x4 | x5 | x6 | bi |bi/ai
1=row: x, | 3% +2X;, —2%; +X, =12
4 3 2 | 2 | 1 0 0o | 12
2"d row: X6 2X1 +3X2 —3X3 — X5 + X6 =6 N X
5 5 f '/p x6 2 3 -3 0 -1 1 6
rd . — — =
3 row: X, X, +£X, Obj. -1 -2 2 0 0 0 | f0
4t row: — 2X1 —3X2 + 3X3 + X =W-06 A.Obj. | -2 3 3 0 1 0 | w6

void SetSimplexTable
(Matrix& m_matSimplexTzlble);

\ x1 x2 X3 x4 x5 x6 bi | bi/ai

\X“\\E’ 2 | 2] 1| 0] o] 12
X6 Matrix 1 6
Obi. m_matSimplexTable; 0o | fo
AObj.|] 2 | 3| 3 ] 0| 1| 0 |ws

Matrix Matrix
m_matVar; m_biaiTable;

) iy Seoul @ |
¥ : National i i 2 | 259 ‘
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Programming Guide for Simplex Method
1) Construct the Simplex Table using given objective function and constraints

M Caution for constructing Simplex Table

1. Elements in the column “bi” must be nonnegative. If there is
negative element, then multiply “-1" to the row on which the
negative element is.

E} = Seoul S
National . 260
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Programming Guide for Simplex Method

2) Phase 1. Minimize the artificial objective function

X1 X2 x3 x4 x5 X6 bi bi/ai
x4 3 2 -2 1 0 0 12
X6 2 3 -3 0 -1 1 6
Obj. -1 -2 2 0 0 0 f-0
A. Obj. -2 3 3 0 1 0 w-6

1) Select the column whose
element is the most negative value
in the last row

void FindPivotColumn();

VZ) Select the row whose bi/ai is the
smallest nonnegative value.
void FindPivotRow();

X1 X2 x3 x4 x5 X6 bi bi/ai
x4 3 2 2 1 0 0 12 6
X6 2 3 3 0 -1 1 6 2
Obj. -1 -2 2 0 0 0 f-0
A. Obj. -2 -3 3 0 1 0 w-6

X Caution for pivot operation

= The row whose bi/ai is zero should be
candidate for selecting row.

» Round off Error
Wrong example: if (x==0)
Right example: if (fabs(x) < 10e-6)

= Roll Back Function

When the column, whose element is
most negative value in the last row, is
selected, if several columns have same
most negative element:

- Save the matrix and pivot point.

And it is same when the row Is selected.

= When all of the elements in the last row
are nonnegative and w is not zero, go
back to the matrix which is saved by Roll
Back function.

Computer Aided Ship Design, Programming Assignment, Fall 2011, Kyu Yeul Lee
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Programming Guide for Simplex Method

3) An example of function “FindPivotCol()”

void Simplex::FindPivotCol()
{
int 1 = 0; // Initialize index for “iteration”
double val = 0.0; // Initialize variable to compare the coefficients of the
// objective function
// Input the row number, which store the coefficients of the objective function
int nRow = m matSimplexTable.GetNumOfRows() - 1;
// Select the column whose element is most negative value in the last row
for (i=0@; i<m matSimplexTable.GetNumOfCols()-1; i++)
{
if (m matSimplexTable.GetElement(nRow, i) < val)
{
val = m_matSimplexTable[nRow][i]; // save the most negative value
m_nPivotCol = 1i; // save the index for most negative value
}
}
}

Computer Aided Ship Design, Programming Assignment, Fall 2011, Kyu Yeul Lee == Univ. htto,//asdal.snu.ac k7
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Programming Guide for Simplex Method

4) An example of roll back function

X Implementation of Roll Back

1. Find the most negative value in the last row using “void FindPivotColumn();”
2. If several columns have same most negative element,

3. Then, save the simplex table into the variable “m_SimplexChild” with the pivot column.

std::vector<Simplex*> m_vSimplexStack; // Initialize the stack to save simplex tables
for(int i=@;i<NumOfColumn;i++)
{
double element = m_matSimplexTable.GetElement(nRow, i)
if(fabs(val - element) < 10@e-6)
{
// Copy this simplex table to the temporary variable “temp”
Simplex* temp = new Simplex(*this);
// Save the povot column
temp->m_nPivotCol = i;
// Save this simplex table
m_SimplexChild.push_back(temp);
}
}

S5 Seoul DAL
L Li}j - National @ éivanced Ship Design Automation Lab. |

. Univ. http.//asdal.snu.ac.kr
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Programming Guide for Simplex Method
5) End condition of “Phase 1"

if (x==0) (X)
1. If all of the element in the last row if (fabs(x) < 10e-6) (0)

® End condition of “Phase 1” [
are nonnegative and w is not zero

2. Then, start “Phase 2”

3. Else, go back to the matrix which is
saved by Roll Back function and carry
out the pivot operation for “Phase 1”

@ Phase 2
v'Since the artificial objective function is v’ carry out pivot operation for
not used anymore, eliminate the last row. “Phase 2”

x1 X2 x3 x4 x5 x6 bi [ bi/ai x1 X2 x3 x4 x5 x6 bi | bi/ai
x4 |53 0 | 0o | 1 |2/3|-2/3| 8 - % x4 53| 0| o | 1 |23|-23] 8 | 12
x2 |23 1 | 4| o |3 13] 2 - x2 |23 1 | 4| o |43[13| 2 | -6
Obj. |13 o | o | o |-2/3]|2/3| f+4 | - Obj. |1/3| 0 | 0o | 0 |-2/3]| 2/3 | f+4
AObji.| o | o [ o | 0o f 0| 1 |woO

: .EL,»—\’ Seoul @ | |
National ; ; : . 264
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Programming Guide for Simplex Method

6) End condition of “Phase 2"

If the all element of the last row., i.e., the coefficients of the objective function, are nonnegative,

then the current solution is the optimal solution.

- Stop the simplex, and print out the resulit.

X1 X2 x3 x4 x5 X6 bi bi/ai
x5 5/2 0 0 3/2 1 -1 12
x2 3/2 1 -1 1/2 0 0 6
Obj. 2 0 0 1 0 0 f+12

Because all the coefficients of the objective function
are nonnegative, the current solution is the optimal

solution.

(X;=X3=X,=0,X,=6,%:=12,f=-12)

Computer Aided Ship Design, Programming Assignment, Fall 2011, Kyu Yeul Lee
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Programming Guide for Simplex Method
7) An example of iteration procedure for “Phase 1"

bool Simplex::Solve()

{ _ ¥ Implementation of the
\£Vhl|e(1 ) function “Solve”

if (m_pivotColumn == —1)
FindPivotColumn(Q): _ All values of the last row, coefficients of the objective

if (m_pivotColumn == —1) function, are positive

1 .
Simplex temp = m_SimplexChild[m_SimplexChild.size()-1 ]| Go back to the matrix
m_SimplexChild.pop_back(); «—— which is saved by
return temp.Solve(); Roll Back function

}

if (m_pivotRow == -1)
FindPivotRow(); o .

T (m_pivotRow == —1) All values of bi/ai are negative

1
//Same as above <

}

Pivot();

if(CheckEndCondition())
return true;
if (m_NumOfinteration >= 100 && m_SimplexChild.size() > 0)

{
}

to prevent the infinite iteration

a

//Same as above

}

return true,

T R | |
&3 ’ﬁ"::, i/so{l/ / S DA L 2 66
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Programming Guide for Simplex Method

- How to use ‘vector’ library for implementation of Roll Back function

% vector9] A2

1. definition: #include <vector>

using namespace std,

std::vector<int> a;
std::vector<Simplex*> m_SimplexChild;

2. Member push_back(...) : save a variable

functions: . o
pop_back() : delete the variable which is saved at last
size() : the number of variables which are saved
3. examples : std::vector<int> a;

a.push_back(1);
a.push_back(2);
int b = a.size();
a.pop_back();

b = a.size();



An example for use of Vector Library #1

#include <vector>
#include <iostream>
#include <string>
using namespace std;

void main()

{
vector<string> sV; // Declare a new vector
sV.push_back(*This"); // Adds an element to the end

sV.push_back("is");
sV.push_back(“a");
sV.push_back(“test”);

for(vector<string>::iterator p=sV.begin(); p < sV.end(); ++p)
cout << *p << endl;

5= () SDAL
s I h 1
j National @ Advanced Ship Design Automation Lab. ! 268
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An example for use of Vector Library #2

#include <algorithm>

#include <vector>
#include <iostream>
using namespace std;

int main()

{
vector<char> vec;
vec.push_back( 'e");
vec.push_back( 'b");
vec.push_back( 'a");
vec.push_back( 'd");
vec.push_back( 'c");

sort( vec.begin(), vec.end() ); // sort the variables using “sort()”

// print out the results.

cout << “After sorting vector[In";

for(vector<char>::iterator it= vec.begin(); it = vec.end(); ++it)
cout << *jt;

return O;

E} = Seoul S
National . 269
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Ch.7 Constrained Nonlinear Optimization
Method

7.1 Quadratic Programming(QP)
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[Review]4.3 : Finding the optimal solution for the quadratic objective function with linear inequality
constraints problem by using the Kuhn-Tucker Necessary Condition, where xi are nonnegative (1)

Minimize f(X) = X2 + X2 — 2, —2X, +2 %24
Subjectto g,(X) =—-2x% —X,+4<0 \
gZ(X):_X1_2X2+4SO 4 9,=0 Minimum at Point A
X, 20,x, >0

=(3.%), f(x) =
Minimum point: X” = (%,4), f(X") =

Minimize f(X) =X +X —2X, —2X, +2
Subjectto g,(X) =—2X,—X,+4<0
g,(X) ==X —2x,+4<0
-X <0,-%, <0

Inequality constraints are transformed to equality constraints
by introducing the slack variable

Minimize f(X) =X+ X —2X, —2X, +2

Subjectto g,(X)=—-2% —X, +4+s/ =0
g,(X) =—X —2X, +4+s. =0
X +8; =0,—%,+5, =0



[Review]4.3 : Finding the optimal solution for the quadratic objective function with linear

inequality constraints problem by using the Kuhn-Tucker Necessary Condition, where xi are
nonnegative (2

Minimize f(X)= X2 + X2 — 2%, —2X, +2 X2

Subjectto g, (X) =—-2X, — X, +4+5s7 =0 >
0,(X) ==X —2X, +4+5> =0
X+ =0,-X,+6, =0

Lagrange function
L(X,U,S,8,8) = X + X5 — 2%, — 2X, + 2 Z Feasible region
+U, (—2%, — X, +4+5])

g, = 0 Minimum at PointA

X _(3'3) f(X) 9

+U, (=X, —2X, +4+57)
+§1(_X1 + 512) + é’z (_Xz +522)

Kuhn-Tucker necessary condition:VL(X,U,S,£,8) =0

2—)'(‘1:2x1—2—2u1—u2—§1=0 SX_I;:ZXZ_Z_U —-2u,-¢,=0
%:—2&—x2+4+sf:0 STL:—xl—Zx2+4+sf:0
2—;=2u151:0 s: 2u,s, =0

2gon0 ook s—;=2§151=0 55 =200



[Review]4.3 : Finding the optimal solution for the quadratic objective function with linear inequality
constraints problem by using the Kuhn-Tucker Necessary Condition, where xi are nonnegative (3)

Kuhn-Tucker necessary condition:-VL(X,U,S,£,8) =0

oL

&:ZXFZ—ZUFUZ—Q:O

oL

—— =2%X —X, +4+5°=0

o, X =% |

a—L=2u131=0

0S,

oL

f=512—xi=0—>512=xi —

6L1 Substitute

5:24151:092;15#04—
1

Multiply both sides byJ,

i:2x2—2—u1—2u2—4“2:0

OX,

i:—x1—2x2+4+322=0

ou,

i=2u252:

0S,

aa—L:522— 2:0—)522=X2 —

8% Substitute
——=2£,6,=0->2£,6; =0 +—

0o, 1 u,g;=20,1=12

Multiply both sides by 52

We eliminate two variables 0, , 0, and two equations.
Reformulated Kuhn-Tucker necessary condition:

oL

&:2&—2—2u1 u,—¢, =0
oL 5

— =-2X,— X, +4+S, =

aul Xl 2 1

oL

—=2u,s,=0

s, 1S,

28,% =0

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee

i:2x2—2—ul
OX,

oL
ou,
oL
8_52_

2¢,%, =0

—2Uu,-¢,=0
=—X, —2X, +4+5s; =0

2u,s, =0

u,c,8>0i=12



[Review]4.3 : Finding the optimal solution for the quadratic objective function with linear inequality
constraints problem by using the Kuhn-Tucker Necessary Condition, where xi are nonnegative (4)
- |

Lagrange function

L(X,u,s,§,8) = X + X’

9,=0

—2X —2X,+2

+U, (2%, — X, +4+57)

+U, (=X, —2X, +4+5.)

+, (=X +67) + &, (=%, +5)

Minimum at Point A

=(3,3), T (x) =

YV EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEN

Case #1: 5,=5,=4;=4,=0, (Point A)
—y —4 -1 =
X =%=3U=U,=
Case #2: u,=s,=¢;=¢£,=0, (Point B)

_ — 2 1
X = _X E’uz 351 ~— "5

It has to be nonnegative.

Case #3: u,=s,=¢,=4,=0, (Point C)

7 — —
% =5, % =5, W =55, =

It has to be nonnegative.

Case #4: u,=u,=¢;=¢£,=0, (Point D)
X =X,=1s"=s>=-1

It has to be nonnegative.

Case #5: u;=u,=x,=x,=0, (Point E)
X =X, =0,8 =5 =4,
C1=G,=-

Case #6: u,=s,=x,=X,=0 , (Point E)
X, =X, =0,8 =4,

It has to be nonnegative.

It has to be nonnegative.

—2X, +4+s #0

The constraint is violated.

Case #7. u,=s,=x,=X,=0, (Point E
X, =X, =0,82 =4,

It has to be nonnegative.

—2X, — X, +4+87#0

The constraint is violated.

Case #8: 5,=5,=X,=x,=0, (Point E)
X, =X, =0,-2X

2
X, —2X, +4+5s; #0

The constraint is violated.

X1

1

5

—X, +4+5s7 %0,

It has to be
nonnegative.

Case #9: u,=s,=¢£,=x,=0, (Point F)
X =0,X,=2,u, =1,

It has to be
=-2, gl =— nonnegative.
Case #10: u,=s,=4;=%,=0, (Point G)

X =2,%X,=0,u =155 =-2,

It has to be
4,2 = —3 nonnegative.

Case #11: s,=5,=¢;=X,=0 , (Point G)
X, =2,%X, =0,

The constraint is violated.
X —2X, +4+55#0
Case #12: u,=s,=¢,=x,=0, (Point H)
X, =0,X, =4,u, =6,

-4 _ It has to be
- ’é/l - nonnegative.

Case #13: 5,=5,=£,=%,=0, (Point H)
X =0,X, =4,

The congtraint is violated.
—X, —2X,+4+5s, #0
Case #14: u;=s,=¢;=X,=0, (Point I)
X, =4,X,=0,u, =6,

-4 _ It has to be
- 1(2 - nonnegative.

Case #15: u,=u,=4£,=x,=0, (Point J)
x =0,x, =15’ =-3,

2 It has to be
2 = _2' 4/1 == nonnegative.
Case #16: u;=u,=¢;=x,=0, (Point K)
X =1, =0,8 =-2,

52_3’52:_



Summary

Minimize  f(X)=—-2% —2X%, + X} + X +2

Subject to — 2%, — X, <4 —2X1—X2+4+512 =0
—X, —2X, <4 » —X, —2X, +4+5s> =0
X 20,%,20 X +6,=0,-X,+5,=0

Lagrange function
L(X,U,5,5,8) = X, + Xz —2X, —2X, +2

Uy (=2%) =X, +4+87) +U, (=X —2X, +4+5;)
+§1(_X1+512)+§2(—X2 +522) where, U;,¢; 20

Kuhn-Tucker necessary condition:VL(X,U,s,§,6) =0

oL oL
6—)(1:—2+2x1—2u1—u2—§1:0, a—XZ:—2+2x2—u1—2u2—§2:0
oL
i=—2xl—x2+4+sf=0, a—L=—X1—2Xz+4+S§=0 ~—="X+0 =0
ou, ou, 1
%:2u131:0,a—|':2u252:0 i=2§151:0,i:2§252:0 i:—x2+522:0
0S, oS, 00, 00, o<,
Equation @ Equation @ Equation ® Equation @ where Ui , gi >0
Multiply both side of each equation @, @ multiply both side of each equation 3®, @

by s..s,, respectively by 5,0, respectively



Another Method for solving the equations
derived from K.-T. conditions:

Apply the Simplex Algorithm

Naval Architecture & Ocean Engineering
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Apply the Simplex Algorithm

- Eliminate variables using relevant equations and introduce new ‘virtual’ linear

variables x’

Kuhn-Tucker necessary condition: VL(X, U,S,§,8) =0

oL oL

a—)(lz—2+2xl—2u1—u2—§1:0, a—X2:—2+2x2—u1—2u2—§2:0
rEsmm—————————— 1
1 oL I

i:—2x1—x2+4+sf:0, i:—x1—2x2+4+s§=0 | =+ =01

ou, ou, I 0o !
| |
|

L qust=0, L cousi=0  Eoorst=0 o oMEMey Ly 45701

os, os, 00, 00, 1 0, ]

-> ' 2 '
redefine s; as s/ where U.’Q’S. >

Reformulate n-Tucker necessary condition:

oL oL

a—)(lz—2+2xl—2u1—u2—§1:0, a—X2:—2+2x2—u1—2u2—§2:0

oL ' oL '

—=-2X,—X, +4+s, =0, — ==X —-2X,+4+s, =0

aul X1 2 1 au Xl 2 2

oL oL oL oL

—=2us =0,—=2u,s, =0 —=2.%,=0

s, L as, ol 25, == 552 o where U;,£;, 8/, % 20

We eliminate two variables using relevant two equations and

also introduce new variable s’ instead of s.

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization -Mé&tAdeb Faliaiogd timization Method
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Apply the Simplex Algorithm of phase 1 for solving linear indeterminate equations

Kuhn-Tucker necessary condition: VL(x,u,s,;,0) =0

1= - - - - - - - = = == -=""5F - - =" /- ======= | . . . .
|i=—2+2x _2u,—u,—¢, =0, $=—2+2x2 U, -20, &, =01 Linear indeterminate equations
1 9% o, l

| |

li_—le X, +4+s =0, i_ —2X,+4+s, =0 I

10U, ou, I

/I Y oo o B

_81:21l =0, 82:222—0 8_51: X% =0, 2:Zg“zx2 0 where uué/usuxu—o

Solve the linear indeterminate equations by using the Simplex Algorithm of phase 1.

Define the standard LP problem

X X

X, X2
2 0 -2 -1 -1 0 0 Ofu | [2] 2 0 -2 -1 -1 0 0 O07u/l [2]
0 2 -1 -2 0 -10 0fju,| |2 »02—1—20—100u2_2
-2 -1 0 0 0 0 1 0f¢ —41: 21 0 0 0 0 -1 0]¢ 4
122,00 .0 0.0 1lgl l-4i (120 0 0 0 0 -1g) (4

Multlply both side of the constraints by -1 S{ 31'

| S, | Sz |

B i @SRAL,, .
National 279 |
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Apply the Simplex Algorithm of phase 1 for solving linear indeterminate equations

Introduce the artificial variables to treat the linear equality constraints

_X1(=X1)_
Xz(zxz)
2 0 2 -1 -1 0 0 0]luEX)| Y] [2
02 -1 -2 0 -10 0 u2(=><4)+Y2_2
21 0 0 0 0 -1 0|/&EX)] Y| |4
12 0 0 0 0 0 -1||&HEXD] Y. 4]
S{(:X7)
RAGE

Define the artificial objective function as sum of all the artificial variables
(Y1+Y,+Y3+Y,)

5% +5%, —3u, —3u, -, —<&,—S —S, + Y, +Y, +Y, +Y, =12
W

—5x, —5X, +3u, +3u, + &, + &, +S,+S, =W—12 : Artificial objective function

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization -Métdeb Fsliatodd Ngulivealr Iptimization Method
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Apply the Simplex Algorithm of phase 1 for solving linear indeterminate equations

2 0 -2
0 2 -1
2 1 0

12 0

—5x, —5X, +3u, +3u, + &, + &, + 5 +S, =w—-12

0

-1 -1 0 O

-2 0 -1 0 O
0O 0 0 -1 0
o 0 0 0 -1

~

Xl(: Xl) ]

X, (= X,)
u (= X,)
uz(: X4)
41(: Xs)
42(: Xs)
s (=X5)

| S,(= X5)

< < < <

A BB NP

. Artificial objective function

L j National

~. Univ.

1 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai
Y1 2 0 -2 -1 -1 0 0 0 1 0 0 0 2 1
Y2 0 2 -1 2 0 -1 0 0 0 1 0 0 2
Y3 2 1 0 0 0 0 -1 0 0 0 1 0 4 2
Y4 1 2 0 0 0 0 0 -1 0 0 0 1 4 4
A.Obj.| -5 -5 3 3 1 1 1 1 0 0 0 0 w-12
ST Seoul

@SDAL
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Apply the Simplex Algorithm of phase 1 for solving linear indeterminate equations

2 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai
X1 1 0 -1 -1/2 | -1/2 0 0 0 1/2 0 0 0 1
Y2 0 2 1 2 0 1 0 0 0 1 0 0 2 1
Y3 0 1 2 1 1 0 -1 0 -1 0 1 0 2 2
Y4 0 2 1 1/2 | 1/2 0 0 1 -1/2 0 0 1 3 3/2
A.Obj.| 0 -5 -2 1/2 | -3/2 1 1 1 5/2 0 0 0 w-7
3 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai
X1 1 0 -1 -1/2 | -1/2 0 0 0 1/2 0 0 0 1
X2 0 1 -1/2 | -1 0 -1/2 0 0 0 1/2 0 0 1
Y3 0 0 5/2 2 1 1/2 -1 0 -1 -1/2 1 0 1 2/5
Y4 0 0 2 5/2 | 1/2 1 0 -1 -1/2 | -1 0 1 1 1/2
A.Obj.| O 0 -9/2 | -9/2 | -3/2 | -3/2 1 1 5/2 | 5/2 0 0 w-2
4 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai
X1 1 0 0 |3/10 (-1/10( 1/5 | -2/5 0 1/10 | -1/5 | 2/5 0 7/5 | 14/3
X2 0 1 0 -3/5 | 1/5 | -2/5 | -1/5 0 -1/5 | 2/5 | 1/5 0 6/5
X3 0 0 1 4/5 | 2/5 | 1/5 | -2/5 0 -2/5 | -1/5 | 2/5 0 2/5 1/2
Y4 0 0 0 |[9/10(-3/10| 3/5 | 4/5 -1 |1 3/10| -3/5 | -4/5 1 1/5 2/9
A.Obj.| O 0 0 |-9/10( 3/10 | -3/5 | -4/5 1 7/10 | 8/5 | 9/5 0 w-1/5

ip Design, I-7 Constrained Nonlinear Optimization -Mé&tRdeb Faltzd0oed Nguliveal Qptimization Method

., Seoul D A L i
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Apply the Simplex Algorithm of phase 1 for solving linear indeterminate equations

S X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai
X1 1 0 0 0 0 0 -2/3 | 1/3 0 0 2/3 | -1/3 | 4/3
X2 0 1 0 0 0 0 [7/15] -2/3 | 2/5 0 |-7/15(2/15| 4/3
X3 0 0 1 0 2/3 | -1/3 |-10/9| 8/9 | -2/3 | 7/15 | 10/9 [-8/45| 2/9
X4 0 0 0 1 -1/3 | 2/3 | 8/9 |-10/9( 1/3 | -2/3 | -8/9 | 2/9 2/9 -
A.Obj.| O 0 0 0 0 0 0 0 1 1 1 1 w-0

Since the value of the objective function becomes zero, the initial basic feasible solution is obtained.
XT(1><8) :|:X1 X U U & & 31’ 52,
The one of the initial basic feasible solutions is X;=X,=4/3, X;=X,=2/9, X;=X;=X;=Xg=0.
X=X = 4u_u 9’41 4:2251,232,:0
And this solution satisfy the all nonlinear indeterminate equation(constraints)

s, =0, us =0, ¢x=0 &X=0

Therefore, the optimal solution of this problemis X, =X, =%,U, =U, =%,4, =¢, =5 =5, =0.

This result is same with the method which solves the nonlinear indeterminate equation at first.

s (P)SDAL
4 ‘
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Apply the Simplex Algorithm of phase 1 for solving linear indeterminate equations

If we choose the second column whose coefficient of the objective function is same with the first
column of that as the pivot column in the first table, what will happen?

1 X1 | X2 | x3 | x4 | x5 | x6 | x7 | x8 | Yt | Y2 | Y3 | Y4 | bi |[biai
Y1 2 o | 2] 1] 0] o] 0] 1 ol o] o 2
Y2 o214 |-2]0]|-1]0] 0] 0| 1 0| o 2 1
Y3 2 | 1 ool oo |10 ]| 0] 0| 1 0 4 4
Y4 1 2 oo o | o ]| o ]|-1]o0 | o] o] 1 4 2
AObj.| -5 [ 5 | 3 [ 3 | 1 1 1 1 ol o] o | 0| w12
2 X1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | Yt | Y2| VY3 | vYv4a]| bi [biai
Y1 2 ol 2] 1]o]o o ]| 1]of|o]fo 2 1
X2 o 1 [12] 4] o |12 0| 0| 0o |12 o0]o0 1
Y3 2 | o [12] 1 o (12| 1| o | o |-12] 1 0 3| 32
Y4 1 0o | 1 2 | o | 1 0 11 0 1| o | 1 2 2
Aobj.| 5 | o [12] 2| 1 |-3/2] 1 1 0 [52]| 0| 0 | w7
3 X1 | x2 [ x3 | x4 | x5 | x6 | x7 | x8 | Yt | Y2| Y3 | Y4 ]| bi [biai
X1 1 o | -1 [12]12] 0| 0| 0o |12] 0| 0ol o 1
X2 o 1 [42] 1] o0 |12 0| 0| o0 |12 o0]o0 1
Y3 o[ o [52| 2|1 12|10 |1 |12 1 0 1 | 2/5
Y4 o[ o | 2 |52]|12] 1 0 1 {120 1| 0 | 1 1 1/2
Comput
Aobj.| o | o [-9/2]-9/2|-3/2]-3/2| 1 1 |s/2]52 0| o | w2 | - [IDAL

"—tivanced Ship Design Automation Lab. |
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Apply the Simplex Algorithm of phase 1 for solving linear indeterminate
equations

*-9/10 is selected originally, but select -9/5.

4 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai
X1 1 0 0 |3/10(-1/10| 1/5 | -2/5| 0 |1/10| -1/5| 2/5 0 7/5
X2 0 1 0 |-6/10( 1/5 | -2/5 | -1/5| 0 |-1/5| 2/5 | 1/5 0 6/5
X3 0 0 1 4/5 ( 2/5 | 1/5 | -2/5| 0 |-2/5|-1/5] 2/5 0 2/5
Y4 0 0 0 |9/10(-3/10| 3/5 | 4/5 -1 [3/10 | -3/5 | -4/5 1 1/5 1/4
A.Obj.| 0 0 0 |-9/10( 3/10 | -3/5 | -4/5 1 7/10 | 8/5 | 9/5 0 w-1/5
5 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai
X1 1 0 0 3/4 | -1/4 | 1/2 0 -1/2 | -1/4 | -1/2 | 0 1/2 3/2
X2 0 1 0O |-3/8(1/8|-1/4]| O -1/4 | -1/8 | 1/4 0 1/4 5/4
X3 0 0 1 5/4 | 1/4 | 1/2 0 -1/2 | -1/4 | -1/2 | 0 1/2 1/2
X7 0 0 0 9/8 | -3/8 | 3/4 1 -5/4 | 3/8 | -3/4| -1 5/4 1/4
A.Obj.| 0 0 0 0 0 0 0 0 1 1 1 1 w-0
T , , Singe the yalue of the o.bjectiv'e function becomes zero, the initial
X (1x8) = |:)(1 X, u u & ¢, S S, basic feasible solution is obtained.

The another initial basic feasible solution is X=3/2, X5=5/4, X3=1/2, X,=X:=X=0, X;=1/4, X4=0.
_2 _5 _1 _ S _ 7 0 —1 o _

X =5.%=0W=5U=£0=¢,=0s=35,=0

But this solution does not satisfy the constraint(u,s; =0).

Therefore, this solution cannot be the optimal solution.

» \When the smallest(i.e., the most negative) coefficient of the artificial objective function or the smallest positive
ratio “b,/a,” appears more than one entry, the initial basic feasible solution can be changed depending on the
selection of the pivot element in the pivot operation.

» \We have to check whether the solution obtained by the Simplex algorithm satisfies the nonlinear equation.

(constraint, u;*s;'=0).



Apply the Simplex Algorithm of phase 1 for solving linear indeterminate

equations

In the tableau 3, if we choose the column 4 as a pivot column which has the same coefficient of
the artificial objective function(column 3), what will happen?

3 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai
X1 1 0 -1 -1/2 | -1/2 0 0 0 1/2 0 0 0 1
X2 0 1 -1/2 | -1 0 -1/2 0 0 0 1/2 0 0 1
Y3 0 0 5/2 2 1 1/2 -1 0 -1 -1/2 1 0 1 1/2
Y4 0 0 2 5/2 | 1/2 1 0 -1 -1/2 | -1 0 1 1 5/2
A.Obj.| 0 0 -9/2 | -9/2 | -3/2 | -3/2 1 1 5/2 | 5/2 0 0 w-2
4 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai
X1 1 0 ([-6/10| O -2/5 | 1/5 0 -1/5 | 2/5 | -1/5 0 1/5 6/5
X2 0 1 3/10| O 1/5 |-1/10( O -2/5 | -1/5(1/10| O 2/5 7/5
Y3 0 0 |9/10( O 3/5 |-3/10] -1 4/5 ( -3/5(3/10| 1 -4/5 1/5 1/4
X4 0 0 4/5 1 1/5 | 2/5 0 -2/5 | -1/5 | -2/5 0 2/5 2/5
A.Obj.| O 0 |-9/10( O -3/5 | 3/10 1 -4/5 | 8/5 (7/10| O 9/5 | w-1/5
S X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai
X1 1 0 -3/8 0 -1/4 | 1/8 | -1/4 0 1/4 | -1/8 | 1/4 0 5/4
X2 0 1 3/4 0 172 | -1/4 | -1/2 0 -1/2 | -1/4 | 172 0 3/2
X8 0 0 9/8 0 3/4 | -3/8 | -5/4 1 3/4 | 3/8 | 5/4 -1 1/4
X4 0 0 5/4 1 1/2 | 1/4 | -1/2 0 “1/2 | -1/4 | 1/2 0 1/2
A.Obj.| O 0 0 0 0 0 0 0 1 1 1 1 w-0

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization -MétHoch iralla203d, NoynliYieal etimization Method




Apply the Simplex Algorithm of phase 1 for solving linear indeterminate
equations

5 X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai
X1 1 0 -3/8 0 -1/4 | 1/8 | -1/4 0 1/4 | -1/8 | 1/4 0 5/4
X2 0 1 3/4 0 1/2 | -1/4 | -1/2 0 -1/2 | -1/4 | 172 0 3/2
X8 0 0 9/8 0 3/4 | -3/8 | -5/4 1 3/4 | 3/8 | 5/4 -1 1/4
X4 0 0 5/4 1 1/2 | 1/4 | -1/2 0 “1/2 | -1/4 | 1/2 0 1/2
A.Obj.| O 0 0 0 0 0 0 0 1 1 1 1 w-0

Since the value of the objective function becomes zero, the
initial basic feasible solution is obtained.

X we) = [Xl X, U U, & & § 52]
The another initial basic feasible solution is X;=5/4, X,=3/2, X;=0, X,=1/2, X;=Xz=0=X,=0, Xz=1/4.
=3.%=3,Uu=0U,=3,{,=4,=5=05,=73

But this solution does not satisfy the constraint(u,s, =0).

Therefore, this solution cannot be the optimal solution.

Seoul S L 3
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[Ref] Decomposition of the Unrestricted Variable into the
Difference of Two Nonnegative Variables (1)

For using the Simplex method, the variables have to be nonnegative in the LP problem.

We can use the Simplex method only for the case that all the variables are nonnegative at the optimal point.

variables in the LP problem.

The variables unrestricted in sign at the optimal point should be decomposed into the difference of two nonnegative

Minimize Z =-Y, —2Y,
Subjectto 3y, +2y, <12

Subject to

2y, +3y,>6
Y, 20

Y,is unrestricted in sign.

_y2 Minimize f :_y ...............................

Since y, is free in sign, it should be decomposed into the

difference of two nonnegative variables.

For “<” type inequality constraint, we
Introduce the slack variable.

For “>” type inequality constraint, we
Introduce the surplus variable and
the artificial variable.

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimiz

y11y21y2 —O X _O|_1t03

Solve the problem
by using the
Simplex method.




[Reference] Reason to Decompose the Unrestricted Variable into the Difference
of Two Nonnegative Design Variables for Using the Simplex Method  *

Minimize f(X) =X +X +2x, —2X,

Minimize  f(X) =X + X2 +2x, —2X,

Definition of the Lagrange function

L0 X,) = X, + % +2% 2%,

1
oL '
! 6_=2X1+2=0 - @
1 X .
! 1 . We try to solve this
i 6L=2 —2-0 ___®,E problem by using the
L OX, ! Simplex method
L e e e e = = 1
Since these constraints are the
equality constraints, we must
— 2)(l — 2 introduce artificial variables for — 2)(1 +y, = 2 ---0®
the equality constraints and
2)(2 = define an auxiliary minimization 2)(2 +Y, = 2 --—-@

LP problem, and solve it .

Since the artificial objective function is the sum of all the
artificial variables, its minimum value must be zero.

Eq. @+@® —> -2X, +2X,+ Yy, + VY, =4

2% —2X, =Yy, +Y,—4
w
Redefine the variables as X; = Xl, X, = Xz, A =Y1, Y, =Y2
and express in Matrix from.

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization -Méthoch frall2204d, NyoliYiewl @etimizatian Methadl Ae

: Quadratic objective function

—~

©

| splution

e I xt x| v1| w2 bi | bi/ai
Y1 2| 0 | 1 0 2 -
Y2 o | 2| o | 1 2 1

Aobj.| 2 | 2| 0o | o | w4

—

Va:::; x1 | x2 | vyt | vy2]| bi [biai
Y1 2| 0 | 1 0 2 2
X2 0o | 1 o | 12| 1

AObj.| 2 | o | o | 1 | w2

- All coefficients of the artificial objective
function become nonnegative.

- However, the sum of all the artificial
variables(w) does not become zero.

x=0,x=1Ly,=2Yy,=0
The simplex method does not give the optimum solution
of x1=-1, x2=1, rather x1=0, x2=1.
The reason is that the simplex method assume all the variables are
nonnegative, whereas the variables x1,x2 of this example are free

E>Stop the simplex

289

unrestricted variables must be decomposed into the two




[Review]

Minimize f(x)= X12 + X22 +2X, —2X, :Quadratic objective function

Subject to X =0 : Linearized inequality constraint

Minimize  f(X) = X + X2 +2X, —2X,
Subjectto X, >0—>-X <0—>-x+6°=0
Definition of the Lagrange function

L(X,, X,,&,0) =X + X5 + 2%, —2X, + (=X, +57)

Kuhn-Tucker necessary condition: VL(X,X,,{,0)=0

iﬂ:2x1+2—g=o---® |
1 0% !
L o_x,-2=0 ---@ !
10X, |
L x+62=0 ---0
o¢ |
ES_Lzzggzo -—®

Ifweassume " =0, X, =—1 - The equation ® is not
1
satisfied.

lfweassume § =0, X, =0,X, =1,{ =2

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization -MétHoch iralla203d, NoynliYieal etimization Method

Optimal
s@lution




Solving the problem by Using the Simplex Method(1/2)

Minimize

f(X) =X +X5 +2X, —2X,

: Quadratic objective function

: Linearized inequality constraint

Subject to

Minimize

X =0

f(X) =% +X +2% —2X,
Subjectto X, >0—>-X <0—>-x+6°=0

Definition of the Lagrange function

L(X,, X,,&,0) =X + X5 + 2%, —2X, + (=X, +57)

Kuhn-Tucker necessary condition: VL(X,X,,{,0)=0

We try to solve this problem by using the Simplex method.

+ —
X, =X, =X,
+ —_
X;, X, 20

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization -Méthoch fall 2044, NMvuliYeul k@etimization Method

sign, we may
decompose it as
— + -
X, =X =%

L o 42-0=0---0
> ok Lok h2=0-@
Eiz—x1+52= ---@
1 0& !
ES—L=24“5=0 ---®

Optimal
s@lution

®
\2\4/[ 10X

® > 2X,—¢ =-2

@ —> 2X, —2X, =2

@ —=>

—0---0®
@® > ¢ =0

265° =0

Multiply the both side of equation @ by o
and substitute the equation @ into that.
We eliminate one variable ¢ and one equation.

1st stage: Find the solution satisfying the
equation ®, @ and ®.

2"d stage: Check whether the solution
obtained in the 1st stage satisfies the
nonlinear equation ® or not.



X =0

f(X) =X +X5 +2X, —2X,

The right hand sides of
the equations have to
be nonnegative.

Since the constraints are
the equality constraints,

introduce the artificial

g

Minimize
Subject to
2% — ¢ =2
2X, —2X, =2
—2X,+{ =2
2X, —2X, =2

The artificial variables have to be zero.

variables.

: Quadratic objective function

: Linearized inequality constraint

—2X%+4 =2
2%, —2X, =2
—2X, +5+Yy, =2

2X, —2X, +Y, =2

Since the artificial objective function is the sum of all the

artificial variables, its minimum value is clearly zero.
+ -
—2X +2X, =2X, +{+ Yy, +Y, =4

Change the variables as X, = X;, %, = X,,%, = X3, =X, ¥, =Y, ¥, =Y,
and express these as the Matrix from.

_________

asie | xt | x2 | x3 | x4 |yt | y2| bi [biai
yio | 2o | o |1 | 1]o0][ 2 -
y2 | o2 |-2|0]|o0]1 2 | 1

AObj.| 2 | 2|2 |-1] 0] 0| w4

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul

Solving the problem by Using the Simplex Method(2/2)

- o X
el xt | x2 | X3 | x4 | vi | v2 | bi |bi/ai
vi |2l oo | 1] 1]o0 2 -
v2 ol 2|20 o] 1 2 1

AObj.l 2 | 2| 2| 1] 0] 0| w4
0
e I Xt | X2 [ X3 | x4 | Y1 | Y2 | bi |bi/ai
vi |2l oo | 1] 1]o0 2 2
x2 o | 1|10 ]| o |12] 1
Aobji.l 2 o] o 1|o] 1] w2
0
va'fiaailce X1 | x2 | x3 | x4 | Yt | Y2 | bi [biai
x4 | 2|0l of| 1] 1] o0 2 -
x2 o | 1| 1o o |12] 1
Aobji.l ol oo ]| o 1] 1] wo

X,=0,X,=1,X,=0,X,=2Y,=0,Y,=0
x,=0,X; =1,x; =0, =2,y,=0,y,=0

X, =X, =X, =1-0=1

X, =2-0=0--6

e

Since the equation ® is satisfied,
this is the solution of this problem.




[Reference] Solution of the Problem Having the Design Variables whose sign is

Unrestricted (1/2)

Corr

Matrix Form ~ —— Number of design
d(+n ) variable 2n+2m+2p
: . v 9| . -
H(nxn) H(nxn) A(nxm) O(nxm) I\I(nxp) I\I(nxp) u C(nxl)
T T (mx1) | _
Nfumbert_ A @ —Ama) Opm Tamy Omy O g =| Bimay
of equation T T (mx1)
n+2m+p _N (pxm) N'em  Opamy Opm Oy Opep) ] | C)
_B Y -D
— P ((n+m+p)x(2n+2m+2p)) 7 ((n+m+p)x1)
. x1
_us =0;i=1tom -—(p_)-x
T M(2n+2m+2 p)x1)
B((n+m+ p)x(2n+2m+2 p))X((2n+2m+2 p)xl) — D((n+m+ p)x1)

The number of the design variables is the same with that of the equations as n+2m+p in the original problem.

Since the equations V g =Y pa ~ Z(py aNdd 4 =d4 —d4 areintroduced, the number of the design
variables is also increased by n+p.

The interesting variables v; and d; are determined by the equation V p.a) = Y (pa1) ~Z(px) -

Example | X+Yy+2=2 . L X+y+2,-2,=2 After replacing the
, eplace z as - i i
Equation 2X+2y+2 =6 D L2 5 2X+2y+2,-2,=6 variable, this problem
(21 22 2 0) indeterminate e [
= ! — quation.
2X+ y 0 2X + y= ° The value of z;-2,is
always -2.
Solution X:l,y:3,Z:—2 x=1,y=3,21=0,22:2 D
P &F Alded D Desig = 0O ained Nor &a BTITMIZatio VT OD NI THOU V&R AT apRs o vietnoa | 293 |




[Reference] Solution of the Problem Having the Design Variables whose sign is
Unrestricted (2/2)

Example X+y+2=5 X+Y+2,-2,=5
) Replacezas 7, — Z,
Equation 2x+3y+z=11 ( O)> 2X+3y+12,—-2,=11
Z.,2, =2
x2=0 o xz =0
Case #1 : Case #2
Introduce the artificial variables for using the Simplex |  Introduce the artificial variables for using the Simplex
method | method
_ * Number of the design _ — * Number of the design
X+y+12 +Y1 =9 variables: 5 I Xty+4,-1, +Y1 =5 variables: 6
_ * Number of the linear | . * Number of the linear
2X+3y+ z +Y2 =11 independent equation: 2 I 2X+3y + Zl _ Z2 +Y2 =11 independent equation: 2
Solve this problem by assuming the three design | Solve this problem by assuming the four design variables
variables as zero. | aszero.
Stop the Simplex method, if the sum of all the artificial i Stop the Simplex method, if the sum of all the artificial
variables(Y1+Y2) zero. I variables(Y1+Y2) zero.
(X, Ys z, Y1,  Y2) I z=z1-22
@ (4, 1, 0, 0, 0) l (x, Y, z1, 72, Y1, Y2)
@ : o | @ 1, o o o 0
l
® (0, 3, 2, 0, 0) I ® (6, 0, 0, 1, 0, 0)
I ®
Between the solution ® and ® obtained by I @
using the Simplex method, the final solution has | ®
to satisfy the equation Xz =0, : 5 o 35 2 o o o
I thet_solgtlon vlvhoclnsde \t/slue ?ftz_ (Zl'ﬁg]'sc g1 | Among the solution M, and ® obtained by using
negative Is exciuded, the sofution ot the L.ase | the Simplex method, the final solution has to satlsfy

is the same with that of the Case #2. | the equation xz =0.

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization -MétHoch iralla203d, MynliYieal etimization Method




[Ref] Taylor Series Expansion for the Function of Two Variables (Review, 1)

The second-order Taylor series expansion of f (X;,X,) at (X, X;)

(%0 0) = ¢, X0) + af( M) (0 iy %(xz—x;*)

l 2
e ©
o> f (x,, 82f , . o 02F (X, \
+2( éXlz Xz)( X = 1) a()(;l XZ) (Xl_xl)(XZ_X2)+ T éX1z XZ) (Xz_xz)z}
% X2 define:  c=Vf(x),d=(x-x")
® f(X) = f () +VF () (x—x*)+%(x—x*)TH(x*) (x—x")= f (<) +c'd +%dTH(x*)d ------ ®
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7.1 Quadratic Programming(QP)

- Approximate the original problem as a Quadratic Programming Problem

Minimize f(X+Ax)= f(X)+ V' (X)Ax+0.5Ax" HAX

The second-order Taylor series expansion of the objective function

Subjectto h; (x+ AX) = h, (x)+Vh (X)Ax=0; j=1to p

The first- order(lmear) Taylor series expansion of the equality constraints
g;(X+Ax) = gj(X)+ng (X)AX<0; j=1tom

The first-order(linear) Taylor series expansion of the inequality constraints

¢; = f (X)/ 0%, ny =0h;(X)/0x;, a; =0g;(x)/ox;,
d. = AX

Matrix form

L - 1 L .
Minimize f = CT (]Xn)d(nxl) +§dT(1xn)H(nxn)d(nx1) : Quadratic objective function

Subject to NT(pxn)d(nxl) =€,y : Linear equality constraints
AT(mxn)d(nxl) < b(mxl) : Linear inequality constraints

ip Design, I-7 Constrained Nonlinear Optimization -Mé&tRdeb Faltat0oed Ngulivieal Qptimization Method
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7.1 Quadratic Programming(QP)
- Construction of Lagrange Function

o _ 1
Minimize f =c' (lxn)d(nxl) + EdT(lxn)H(nxn)d(nxl)
. T
Subjectto N (pxn)d(nxl) =€ pu1)

T T 2
A (mxn)d(nxl) S b(mxl) » A (mxn)d(nxl) _b(mxl) +S(mX1) — O

Lagrange Function

1
T T
L =C (1><n)d(nx1) + E d (Ixn) H (nxn)d(nxl)

T T 2
+U (1xm) (A (mxn)d(nxl) +S(m><1) o b(mxl))

T T
+V (1><p)(N (pxn)d(nxl) _e(pxl))

ip Design, I-7 Constrained Nonlinear Optimization -Mé&tRdeb Faltat0oed Ngulivieal Qptimization Method
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7.1 Quadratic Programming(QP)

- Apply the K-T Necessary Condition to the Lagrange function

Lagrange Function

T T
+V axp) (N (pxn)d(nxl) _e(pxl))

1
T T
L(d,v,s,u) =C @wm)d +§d nH

T T 2
+U @) (A ) .y +S gy —D

(mxl))

Kuhn-Tucker Necessary Condition: VL(d, v,u,s,u) =0

aL(add(\:xj = =Cinay + Hmm iy + Ay Uimay + N
5L(§'V’(\:j’”) =N (pmd 0 —€(pay =0

aL(;u(\:xj u) _ A meryd gy +S(ma) ~Dmay =0
GL(déZ’S’ Y _us =0, i=0tom

(nxp) (pxl)

=0

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization -MétHoch iralla203d, NoynliYieal etimization Method




7.1 Quadratic Programming(QP)
- Method 1: Direct Solving the Egs. from the K._T. Conditions

Optimization problem Minimize T (X)= (X, X,,---, X,)

Subjectto h.(X)=0, 1=1,..,p Equality constraint
g. (x) <0, 1=1,....m Inequality constraint

Definition of L(X,V,u,s) = f(x)+Zv (x)+Zu (g,(x) +5s°)

Lagrange function

v, : Lagrange multiplier for the equallty constralnt(lt is free in sign.)
u; : Lagrange multiplier for the inequality constraint(Nonnegative)
s; : Slack variable transforming an inequality constraint to an equality constraint

____________________ I
1oL _of | Z : Gh i“* 09. j=1 n 1 | Method 1.
I ox; X, C | - Find the solutions which satisfy the nonlinear indeterminate
8L I equations.
I—=h(x ) 0, i=1 P - Check whether the solutions satisfy the linear indeterminate
I ov, | eqguations and determine the solution of this problem.
1 oL . I - Human can find the solution of this problem easily by using
=g;(X)+s°=0, i=1 ;M I this method.
I ou. I
= e = e e o = o e = = =
Linear indeterminate equations
[ === = = = ——— -
oL« « I
I—=us =0, 1=] m |
L o o e e e = i

Nonlinear indeterminate equations

u >0, i=1 ..,m — %

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization -MétHoch iralla203d, NoynliYieal etimization Method



7.1 Quadratic Programming(QP)
- Method 2: Formulate the Problem of the K.-T. Condition as a LP problem

Kuhn-Tucker Necessary Condition: VL(d, v,u,s) =0

oL oL .
od =Cinay + Hmeny Ay T AmeamUimay T Ny Vipay = 05 =N (pxn)d(nxl) —€(pg =0
(nx1) (px1)
(9L == oL
_ P _ AT 2 _
88 uu!_ui— 0,i=0tom ‘“'@ —6u A(mxn)d(nxl) *+S(ma) _b(mxl) =0
(nx1)

Multiply S; both side of the equation® Although the equation @ is multiplied by §S; ,

the solution(ui =0or s =0) is not changed.

us, =0 = uisi2 =0

Transform  Kuhn-Tucker Necessary Condition: VL(d,v,u,s)=0[
oL oL ]
Gd— =Clnay T H(nxn)d(nxl) + A(nxm) (maa) T N(nxp)v(pxl) =0, ——=N (pX”)d(nxl) “Coa) T 0

(nx1) (px1)

al_ |"'| al_ 2

— =uis’=0,i=0to m----@)’ =Al .m0 a +Sima — By =0

! (mxn) ™~ (nx1) (mx1) (mx1)
os, - U 0y

wallaioed Meuoliviealr Retimization Method
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7.1 Quadratic Programming(QP)

Kuhn-Tucker Necessary Condition: VL(d, v,Uu,s) =0

oL oL .
d_ Cen™ H e + AwamUmag + N Vo =00 ————=N (om0 q) = €(p =0
(nx1) (px1)
oL oL v T 7
= U'S =0,i=0t0 m----1’ = Amaydmay +S(m><1) —Dpqy =0
0S; au(nxl) """
Replace Si2 with S| (where s=>0 )
Oy Honon HAnmties NV =0, O =N iy € o
: ad = C(nxl) + (nxn)™(nx1) + (nxm) (mx1) + (nXp)V(pxl) — VU, — (pxn) (nx1) —e(pxl) = -
1 C- (0 (PD) :
oL, T |
= _ P — | AT ’ _ _
: Nonlilnear indeterminate equationsl L____inill ___________ Linear indeterminate equatlons‘I

Check whether the solution obtained from the linear
indeterminate equations satisfies the nonlinear
indeterminate equations and determine the solution.

I =1tom

where Ui,Si' >0;

Since these equations are linear in

the variables d,s’,u,v, this problem is

alinear programming problem only
having the equality constraints.

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization -MétHoch iralla203d, NoynliYieal etimization Method



7.1 Quadratic Programming(QP)

| Kuhn-Tucker Necessary Condition: VL(d, v,U,S) =

! '5[""""""""""""""""""""""'"?a'l_ """"""""""" i
I
e pe— = ju— _ p— I
' Cinay T H ey Aoy F Ay Umay F Ny Vipay =0, ov N’ () gy =€y =0 |
1 () (px1) :
i‘.'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_l """"" 1 :
1 oL _ _ I ! oL I
—= = = I —
:Nonl inear indeterminate equationsi L____i”ﬁll___________ ______Elﬂe_alTge_te_rr_nl_n_at_e_eq_u_aﬂ(in_sll
Since these equations are linear in
Check whether the solution obtained from the linear the variables d,s’,u,v, this problem is
indeterminate equations satisfies the nonlinear a linear programming problem only
indeterminate equations and determine the solution. having the equality constraints.
where U.,S >0; 1=1tom

Since the design variables d(n><1) are free in sign, we may decompose them as follows to use
the Simplex method.

dnay =diny —dipay, (A7 20, d7 20ji=1to n)

Also, the Lagrange multipliers V(o) for the equality constraints are free in sign, we may
decompose them as follows to use the Simplex method.

Vi) =Y ~Z(pays (y; 20, z,20;1=1to p)

waltaioed Meuolivieal Retimization Method
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7.1 Quadratic Programming(QP)

- Method 2: Simplex Method for Solving Quadratic Programming Problem

| Kuhn-Tucker Necessary Condition: VL(d, v,u,s) =0

1 oL
I ——— =Cpq + H

(nxn)

d gy + ApamUYima) T N Vipa = 0;

AT

(mxn)

2

(px1)

T
- N (an)d(nxl) _e(pxl) - O

’
d iy +Simay —Bimay =0

Check whether the solution obtained from the linear
| indeterminate equations satisfies the nonlinear
indeterminate equations and determine the solution.

Since these equations are linear in
the variables d,s’,u,v, this problem is

where U.,S! >0; i=1tom

a linear programming problem only

having the equality constraints.

Because d and v are
free in sign.

d(nxl) :dz-nxl) a (_nxl)’ (di+ ZO’ di_ ZO’I =110 n)
Vo) =Yipa) —Zipay: (¥;20,2,20;i=1to p)

Matrix From

Comg

H (nxn) o H(n><n)

AT (mxn)  — AT (mxn)
T T

_N (pxn) —N (pxn)

A

0
0

(nxm)
(mxm)

(pxm)

(nxm)
(mxm)

(pxm)

N

0

(nxp)
(mxp)

(pxp)

—N

0
0

(nxp)

(mxp)

(pxp)

+
(nx1)

d )
U sy
S(ma)
Y ey

o C(nxl)
b(mxl)

| Z(pa) |

€ |

problem by using the Simplex method.

Introduce the artificial variables, define the artificial objective function and solve the linear programming




7.1 Quadratic Programming(QP)

Matrix From Introduce the artificial variables, define the artificial objective function and
solve the linear programming problem by using the Simplex method.
S
d(nxl)
_ -1 d> Y] _ -
(nx1) 1
H(nxn) _H(nxn) A(nxm) O(nxm) N(nxp) _N(nxp) u Y _C(nxl)
AT _AT I O (mx1) 2 _ b
(mxn) (mxn) (mxm) (mxm) (mxp) (mxp) g’ + : (mx1)
N ~N" 0 0 0 0 (- ' e
L (pxn) (pxn) (pxm) (pxm) (pxp) (pxp) Y | 7(pd)
y(pX1) | "n+m+p |
| Z(pa) | Artificial variables
How to define the artificial objective function
- Define an one equation by sum of all the equations from 1 row to n+m+p row.
- Define the sum of the all artificial variables(Y +Y,+...+Y,,.;) as an objective function(w).

- Determine an initial basic feasible solution for the linear programming problem by using the

Simplex method.

- Check whether the initial basic feasible solutions satisfy the following nonlinear
indeterminate equations and determine that as a solution.

%:uisi’:O, i=0tom

OS.

|
Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization -MétHoch iralla203d, NoynliYieal etimization Method




7.1 Quadratic Programming(QP)
- Summary of Method 2 of Simplex Method for Solving Quadratic Programming Problem

Kuhn-Tucker Necessary Condition(Matrix form)

B (n+m+p)x(2n+2m+2 p)) X((2n+2m+2 p)xl) — D((n+m+ p)x1)

Simplex Method for Solving Quadratic Programming Problem

1. The problem to solve the Kuhn-Tucker necessary condition is same with the problem having only
the equality constraints(linear programming problem).

2. To solve the linear indeterminate equations, we introduce the artificial variables, define the
artificial objective function, and determine the initial basic feasible solution by using the Simplex

method.
B((n+m+ 0)x(2n+2M+2 p)) X((2n+2m+2 o)1) T Y((n+m+ p)xl) — D((n+m+ 0)x1)

If any of the elements in D is(are) negative, the corresponding equation must be multiplied by -1 to have a nonnegative element on the right sid

3. The artificial objective function is defined as follows.

n+m+p n+m+p 2(N+m+p) n+m+p 2(n+m+p)
w= QY= 2D- > 2 BXj=w+ »CX,
i=1 i=1 j=1 i=1 j=1
n+m+p n+m-+p

where CJ = — Z Bij ’WO = Z Di Initial value of the artificial objective function
i=1 i-1
}dd the elements of the jth column of the matrix B and change its sign.(Initial relative objective coefficient).
4. Solve the linear programming problem by using the Simplex and check whether the solution
satisfies the following equation.

! - . . . . . . .
UiSi = O, I=1tom : This equation is used to check whether the solution satisfies this equatlo'rga;}
Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization -MétHoch iralla203d, NoynliYieal etimization Method




7.1 Quadratic Programming(QP)
- Comparison between Method land 2

Optimization problem

Minimize T (X)= (X, X,, -+, X,)
Subjectto h.(X)=0, 1=1..p
gI(X):O, . :ll"'lm

Equality constraint

Inequality constraint

Definition of
Lagrange function

L(X,V,Uu,s) = f(x)+Zv (x)+Zu (g,(x) +5s°)

v, : Lagrange multiplier for the equallty constralnt(lt is free in sign.)
u; : Lagrange multiplier for the inequality constraint(Nonnegative)
s; : Slack variable transforming an inequality constraint to an equality constraint

1oL of . Gh i *ag, B
'5_X,_§J Z Zu j=1 .. ,n
oL

I—=h((Xx)=0 i=1 ..,

' (X)= P
:aL:g,(x*)+s,2_0, i=1 .. ,m

O e e e e e e e e —
Linear indeterminate equations

[ == = = == — =

Ii:ufsf:O, i=1 ..,m :

S o __ -

Nonlinear indeterminate equations

u >0, i=1 ..,m

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization -MétHoch iralla203d, NoynliYieal etimization Method

Method 1.

- Find the solutions to satisfy the nonlinear indeterminate
equations.

- Check whether the solutions satisfy the linear indeterminate
eqguations and determine the solution of this problem.

- Human can find the solution of this problem easily by using
this method.

Method 2.

- Find the solutions to satisfy the linear indeterminate
equations by using the Simplex method.

- Check whether the solutions satisfy the nonlinear
indeterminate equations and determine the solution of this
problem.

- Since the algorithm of this method is more systematical,
this method is useful for the computational approach.




Ch.7 Constrained Nonlinear Optimization
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7.2 Sequential Linear Programming
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7.2 Sequential Linear Programming(SLP)

» Define the linear programming(LP) problem by
linearizing the objective function and the constraints in

the current design point.

= Compute the design change by solving the linear
programming problem and obtain the improved design

point.
XT(k+1) _ XT(k) + CI(kT)
Improved Current Design change obtained by solving the LP problem.

design design
point point

» This method is to find the optimal solution by solving
the linear programming problem sequentially.

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee




7.2 Sequential Linear Programming(SLP)
- [Example] Problem with Inequality Constraints (1)

Minimize f(X) =X+ X2 —3X,X,
Subject to g,(X) = % X; +%x§ -1.0<0

g,(X)=—x% <0
g;(X)=—x% <0

Xo1

The starting design point: X'¥ = (1,1),
& =¢&,=0.001

Choose move limits such that a
15% design change is permissible. 34

The optimal solution: 2/

X" =(+/3,/3), f(X") =-3 Z

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, K



7.2 Sequential Linear Programming(SLP)
- [Example] Problem with Inequality Constraints (2)

X
Minimize f (X) = X7 + X5 —3%,X,

Subjectto g,(X) = % X; +%x22 -1.0<0

g,(x) =% <0 A

9,(X) =—x, <0 9,=0 4]

(1) Iteration 1(k = 0) 37

(i) Step 1 2]

From the given point(starting point), the current design 17
point is as follows.

x? =(11),& =&, =0.001 A

(i) Step 2: Evaluate the objective and constraint function at the current design point.
f@l)=-1
0,(L1)=-%2<0 = Constraintis satisfied.
0,(1,1) =-1<0 = Constraint is satisfied.
0;(L1)=-1<0 = Constraint is satisfied.

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee
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7.2 Sequential Linear Programming(SLP)
- [Example] Problem with Inequality Constraints (3)

A
4

Minimize f (X) = X7 + X5 —3%,X,

Subject to gl(x)zle+£x§—1.0§0 7
6 6 9,=0

gz(x):_x1go

93(X): ngo

(iii) Step 3: Define the LP problem(linearize the objective function ).

R (0) 0)\ ~ (0) T /4, (0) (0) The first-order(linear) Taylor series expansion
Minimize: (X +AX ) = f (X )+Vf (X )AX of the objective function
Minimize: f (X +AX?)— f(x?) = Vi T (x?)Ax® XU = x® 4 g

- T
©) _ 4O T _[of o X =[]
AX = d ,Vf = |:§1 E:| d(k) _ _dl(k) dz(k) :IT

) ~
Minimize: f(x® +d@) - f(x?)=[2% -3%, 2%,-3%], {dl } =[ax® ax9 ]

—————————————————

r 1 . . . . o
: f(d(o)) ;—dl(o) —déo) < - - Thelinearized objective function
Computer Aided Ship*Pesign, + 7Constramed Nonliear O'ptl'm'lzdtion Method, Fall 2011, Kyu Yeul Lee



7.2 Sequential Linear Programming(SLP)
- [Example] Problem with Inequality Constraints (4)

XA

Minimize f (X) = X7 + X5 —3%,X,

Subject to gl(x)zlxl2 +£x§ ~-1.0<0 7
6 6 9,=0 4

g,(X) =—x <0 7

y

g,(X) =—x, <0 /

(1) Iteration 1(k =0) x© =(11),¢ =&, =0.001 A

(iii) Step 3: Define the LP problem(linearize the constraints ).
The first-order(linear) Taylor series

: 0 0 0 0 0 i _
Subject to: gj(X( '+ AxO) = 9; (x' ))+ngT (x*)Ax® <0; j=1tom expansion of the constraints

& (kD) _ 5 () 4 4

vg," (x?)Ax® <—g;(x?); j=1tom
b X0 =d,vg] <[ 2 2], Ve (x)ax = g, (ax?) = g, (@)

Subject to:

9,(d?) =[x 1xP] d,” < —(l(x © )2 +E(x © )2 _1.0j
' : 272 Ao 61" 6V ) ) . g,(LD)=-2
Lo (0) (0) (0) 2: . °
FICN L g,(d™)=2d” +1d,”’ <
9,[d?)=[-x" 0] 31(0) <~ (%) IS 3 0,01)=-1
- - I
| 2 . : g, ( (0)) d(0)<1 " 3(1’1) 1
0 ) — |
9,(d®) = [0 —Xéo)} d{o; < _(_Xz(O)) Substitute X =(11) | 9_(_(2))_ = _d_(o_) 3 S
Computer Aided Ship Design, I-7 Consgl%inee Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee The Ilnearlzed ConStral ntS




7.2 Sequential Linear Programming(SLP)
- [Example] Problem with Inequality Constraints (5)

(iv) Step 4: Solve LP problem for the design change(d©)

Minimize f =-d,—d,

i 1 1 2
Subjectto zd,+3d, <%

Linearize the objective
function and constraints.

<

~d, <1

fL)=-1g,)=-2

92(1’1) =-1 93(1’1) =-1

Vf=( 1-1),vg, = (3.1
=(-10),Vg, = (0, 1)

Limits must be imposed on changes
in design called move limit

f=-d -d,=-03

C
fdldzox

Minimize f (X) = X7 + X5 —3%,X,
Subjectto g,(X) = % X; +%x22 -1.0<0

g,(X)=—x% <0
93(X) ==X = 0

o
(N)

‘/

The graphical solution for
the linearized subproblem
is as follows.

w
I

The design change

A%
rg

To solve the problem, the Simplex method can be used.

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization

move limit ~_/] is obtained.
2 IR
. dy+d,=2 o
d,=-1 31
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7.2 Sequential Linear Programming(SLP)
- [Example] Problem with Inequality Constraints (6)

(v) Step 5: Check for convergence by using the obtained design change d©,
d® =(d,,d,) = (0.15,0.15)

Since Hd(O)H ~0.15* +0.152 =0.212 > &,(=0.001), the criterion for convergence is not satisfied.

(vi) Step 6: Update the design point as x“™" =x®+d"% .Set k =k +1and go to Step 2
xW =xH =x©@ 1 d9 = (1,1) + (0.15, 0.15) = (1.15,1.15)

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee
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7.2 Sequential Linear Programming(SLP)
- Summary of Algorithm of SLP

= Step 1: Estimate a starting design point as x(©. Set k=0.
Specify two small numbers, g,, ,(criterion for violating
the constraints and convergence)

= Step 2: Evaluate objective and constraint function at
current design point x(¥, Also evaluate the objective and
constraint function gradients at the current design point.

= Step 3: Select the proper move limits Ax,(® and Ax; (¥ as
some fraction of the current design point. Define the
linear programming problem.
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7.2 Sequential Linear Programming(SLP)
- Summary of Algorithm of SLP

= Step 4: Solve the linear programming problem for d¥ by
using the Simplex method.

= Step 5: Check for convergence. If, g;< g,(/ = 1 to m), |h|
<g (/=1to p), and || d¥||< ¢,, then stop and the
current design point x(® is the optimal solution.
Otherwise, continue.

= Step 6: Update the design point as x(+1) = x(d + Ax(4, Set
k = k+1 and go to Step 2.
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7.2 Sequential Linear Programming(SLP)
- Summary of Algorithm of SLP

Minimize f (X(k) -I—AX(k)) ~ f (X(k)) -I—Vf T (X(k))AX(k) The firgt-order(lineqr) T_aylor ser_ies

expansion of the objective function

Subject to h. (x(k) +AX" ) =h. (X(k))+Vh (X NAx™ =0; j=1to p

The flrst order(lmear) Taylor series expansion of the equality constraints

g, (X" +ax9) = g, (x“)+vg," (x*)Ax® <0; j=1tom

The flrst -order(linear) Taylor series expansion of the inequality constraints

¢; = f (X)/ 0%, ny =0h;(X)/0x;, a; =0g;(x)/ox;,

d. = AX
Matrix form
Minimize f — ZC d : Minimize f =C (1><n)d(n ) : Linearized objective
E function
SUbJeCt {0 Z n d = e J =1to p i SUbjECt tON (pxn)d(nxl) e(p ) : Linearized equality
. constraint
. T : Li rized
E A (mxn)d(nxl) < b(mxl) ineqnueaalityeconstraint
Za d < bj, j =1tom E ®» Linear Programming Problem

» |t can be solved by using the Simplex method.

where d,, <d. <d. (Ax, (k)<Ax(k)<Ax 9



7.2 Sequential Linear Programming(SLP)
- Limitations of SLP Method

M The move limits of the design variables are defined by the user.

M If the move limits are too small, it take much time to find the
optimal solution.

M If the move limits are too large, it can cause oscillations in the
design point during iterations.

M Thus performance of the method depends heavily on selection of move
limits f(x) & Original objective function

Linearized opjective fynction Linearized objective function

®» The optimal solution cannot
be obtained, because of the
oscillations in the design

point during iterations.

AONNCS X

X(n+2)
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7.3 Sequential Quadratic Programming (SQP)

- Formulation of the Quadratic Programming Problem to Determine the Search Direction

Minimize f(X+Ax)= f(X)+ V' (X)Ax+0.5Ax" HAX

The second-order Taylor series expansion of the objective function

Subjectto h; (x+ AX) = h, (x)+Vh (X)Ax=0; j=1to p

The first- order(lmear) Taylor series expansion of the equality constraints
g;(X+Ax) = gj(X)+ng (X)AX<0; j=1tom

The first-order(linear) Taylor series expansion of the inequality constraints

Assumption: f = f (x + Ax) — f(x), e; =—h;(x), b, =-g;(x),
¢, =of (x)/ox;, my =0oh;(x)/ox, a; =0ag;(x)/0x,
d. = AX

Matrix form

L - 1 L .
Minimize f = CT (]Xn)d(nxl) +§dT(1xn)H(nxn)d(nx1) : Quadratic objective function

Subject to NT(pxn)d(nxl) =€,y : Linear equality constraints
AT(mxn)d(nxl) < b(mxl) : Linear inequality constraints

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee
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7.3 Sequential Quadratic Programming

(SQP) - Algorithm of the SQP

v

/]
X2

quadratic form

Objective function is approximated to the

Quadratic programming problem

- Constraint: linear form

%

Optimal >g

ﬁo\gon Improved-design point
Voo

Current design point

NV

le

Step 1

Define the quadratic
programming problem
at the current point.
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Current design point

NV

1 - Objective function: quadratic form

“u

X/




7.3 Sequential Quadratic Programming

(SQP) - Algorithm of the SQP

v

/]
X2

%

Optimal >g

Current design point

NV

§WOn Improved-design point
Voo

le

quadratic form

Objective function is approximated to the

Step 1

Define the quadratic
programming problem
at the current point.
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Quadratic programming problem

- Objective function: quadratic form
- Constraint: linear form

Current design point

“u

/ Linearized Constraint

-

7z

X/

Step 2

Calculate the search direction(d©) by
solving the quadratic programming

problem.

X

\

Stopping criteria

If the magnitude of the
search direction |d©] is
smaller than small
value,epsilon, stop.




7.3 Sequential Quadratic Programming

(SQP) - Algorithm of the SQP

X2

%

Optimal >g

§WOn Improved-design point
Voo

Current design point

NV

- X/

Go to the Step 1 at the
improved design point.

@ A

Improved-design point
do©)

quadratic form

Objective function is approximated to the

{/ ﬁ

Step 1

Define the quadratic
programming problem
at the current point.

Step 3

After defining the penalty
function, calculate the step
size by using the one
dimensional search method.

- Penalty Function:

Modified objective function by adding a
penalty for possible constraint violations to
the current value of the objective
function(The method of transformation from
the constrained optimal design problem to
unconstrained optimal design problem)

- Example of the one dimensional search
method: Golden section search method

X1
Co\ﬁ . — %mization Method, Fall 2011, Kyu Yeul Lee

Quadratic programming problem

- Objective function: quadratic form
- Constraint: linear form

Current design point

“u

/ Linearized Constraint

-

7z

X/

Step 2

Calculate the search direction(d©) by
solving the quadratic programming
problem.

X

\

Stopping criteria

If the magnitude of the
search direction |d©] is
smaller than small
value,epsilon, stop.




7.3 Sequential Quadratic Programming (SQP)

M Sequential Quadratic Programming(SQP)

B D After defining the quadratic programming problem about the
objective function and constraints at the current design point,
solve this problem and calculate the search direction d®.

B @ Define the penalty function by adding a penalty for possible
constraint violations to the current value of the objective
function and calculate the step size ¢, to minimize the penalty
function. For determination of the step size one dimensional
search method, e.g., Golden section search method can be used.
And determine the improved design point.

B 3 At the improved design point, go to @
B The method is to find the optimal solution by solving the
quadratic programming problem sequentially.
M CSD(Constrained Steepest Descent) method
B This method is a kind of the SQP method.

B When defining the quadratic programming problem, the Hessian
matrix is assumed to be equal to the identity Matrix.

B This method uses the Pshenichny’s penalty function.
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If the Hessian matrix is equal to the Identity matrix , then the objective function
is approximated as a centric circle form.

Define the QP problem

To find the search direction(d©), define the QP problem at
current design point.

The second-order Taylor series

L 0 0\ ~ 0 T (0 0 0)T 0
Minimize: f (X( ) +AX( )) = f(X( ))+Vf (X( ))AX( ) +O.5AX( ) HAX( ) expansion of the objective

function

Minimize: f (X@ + AX®@) — f (x?@) =2 VI T (X)) AXx® +0.5AxPTHAX®

0) _ ~4(0) T _[of o 1 (Inthe CSD method, the Hessian matrix is assumed to
AXT =d, VI _[6X1 J’ H=I be equal to the identity matrix.)

of of d®
Minimize: f(X(O)JFd(O)) f(x (O)) {8)(1 ax} {l(o)}+o-5(d1(0)2+déo)2)

2

T(d(o)) ~ of (X ) d(O) of (X ) d(o) +0. 5(d (0)2 d(0)2)
X, OX,
T _r
constant constant

T(d9) =cd® +c,d® +0.5(d? +d?)

It has the same form of the equation of circle.

Form of the equation of circle: X1 +X +C X +C, X, +C, —03
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- Example of SQP - Iteration 1 (1)

Minimize f (X) = X12 + X22 —3X1X2 Optimal solution: X* = (\/g, \/é), f (X*) =-3
Subject to g, (X) = %xf +%xz2 -1.0<0

gz(x) ==X = 0
g;(X) =—X%, <0

Assume that the starting point is X = 11).

(1) Iteration 1(k = 0)

(i) Step 1: Evaluate the objective and constraint
function at the current design point.

f(L)=-1
0,11 = —% <0 » constraint is satisfied.

d,(L1) =—1<0 = constraint is satisfied.
0;(1,1) =-1<0 = constraint is satisfied. -
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- Example of SQP - Iteration 1 (2)

Minimize f(X) = X7 + X5 —3X,X,
Subject to gl(x):%xf+%x§—l.0§0
gz(X)z—Xlﬁo _
9,=0

(1) Iteration 1(k = 0) x© =12
(”) Step 2 Deflne the QP prObIem(The objective function is approximated to the quadratic form.)

Minimize: f (X© + AX?) = f (@) + Vi T (x?)Ax? +0.5Ax DT HAx®

Minimize: f (X + AX@) — f (x?) = VI T (X)) AXx® + 0.5AxPTHAX®
AXO =d® VT =[ 2L 2] H |

d©
iz, (47 +6) - 1<) 2[4 3%, 26,36, 105607+
2

T(d) = (2% —3x?)d© + (2x7 —3x@)d{ +0.5(d0? +d?)
f(d?)=-d® —d® +0.5(d®2 +d?)

Objective function is approximated
J PP JT WL Objective function is approximated to the second order term 327

to the first order term
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- Example of SQP - Iteration 1 (3)

Minimize f(X) = X2+ X5
Subject to gl(x):%xf+%x§—l.0£0
gz(X)z—Xlﬁo

o 3X1X2

(1) Iteration 1(k =0) x© =(1,2)

Subject to: g, (X + AX@) = o] (x) +Vg, T(xXNAX? <0; j=1tom The first-order(linear) Taylor series expansion
of constraint

Subject to:

-w

vg,T (x)Ax® <—g;(x); j=1tom

' AxO =dO,vg] =[ 2 2], v (x*)ax® = g, () = g, (d)

0@ =[x 5] {

g (d(O)) — [ (0)

g,(d”) =0

o]l 4

O]

d 0) ]
d (0)

(0) ]
dl

4

d (0)
d (0)

<

<_(l (0>
6

X1(0) )

()

é(xz“” ) 1.0

=)

Substitute x© =(1,1) ]

The constraints are linearized

9,(d?)=—d <1
g (d(O)) d(O) <1



- Example of SQP -

Iteration 1 (4)

(iii) Step 3: Solve the QP problem to determine the search direction(d©)
Cons”ai”(ec‘)jrizﬁfglnslrc?belzira;‘ Problem CD Quadratic Programming Problem
. £ d4 2 2
Minimize f(x)—x2+x2—3x X Minimize f =(—d;—d,)+0.5(d; +d;)
(1) =-1,0,(11) =-2, i 1 1 2
Subject to g,(X) = 5 x te X2 =1.0< 0|l 0y 160y Subjectto 30, +5d, <3
Vi =(-1-1),vg,=(3.3), —d1 <1 x@+d, =x, % +d,=x
9,(x) =—-x <0 Vg, = (-10),Vg, = (0.-) 1R % e =
— d2 <1 | Substitute x? =1 x,@=1
93(x) =—x, <0 1+d, =%, 1+d, =X,

Lagrange function

L=(-d;,-d,) -|—O.5(d12 + d22)
+u,[3(d, +d, _2)+312]

+U,(-d, —1+5?)
+Uy(—d, —1+5?)

Kuhn-Tucker necessary condition: VL(d,U,S) =0

=-1+d,+3u, —u, =0 l The optimal direction is

adl
ad —_1+d +1U -u,=0 u®® = (U, U,,u5) =(0,0,0),

2 0)

v’/ =(s,S,,S

gTL:i(dl‘Fdz_Z)'l‘SlZ:O (1 2 3)

1 =(0,1.414,1.414),
e =0 (@6, =0

iy =0y ~145, =0 Thesearch drsion

The search direction also can be >

oL __ _ 1 *
e u|S - 01 u 2 01 I _11 2!3 j determined by using the Simplex method. 329
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- Example of SQP - Iteration 1 (5)

. . . Xo.A
(0) _The search direction is
d____(_d_li_q _)__(_1_1_) “determined.
(iv) Step 4: After the search direction(d©) is determined, finintunypgint in the objective function
f=-25
calculate the step size. / e 20
92:0 4' A 5 f=-10
. L L (X f=-3
Step size minimizing the value of the objective '
fuTnction along the search direction ¥ f=-1
c
1 0 — (0 27
x® = x© 4 5 d© ’
= ]
T T T x© = (T4 «— 0= X2+ X,2-6.0=0
Improved Current Search direction obtained from the QP N F— >
design point design point problem A 1 ;B3 4 \ 6.0 Xy
u® = (u,,u,,u,) =(0,0,0),
Find
d?=(d,, d,)=(@11)
. < e - 1 0 0 12 '
Find a: Minimize f(x®) =f(x?+d?) = f ()

Objective function to be given «—] Ir>(5iven

The improved design point can be found along the search direction by minimizing the step size of the value of the
objective function. However, it may violates the constraints, when without considering the original constraints.

Therefore, a penalty function, which considers the constraints, should be constructed by adding the penalty for
possible constraint violations to the current value of the objective function.

By property of the nature, the objective function is decreased when the constraints is violated,
we can find the improved design point of minimizing the penalty function while the constraints are satisfied.

330
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f(X) = X2 +%2 —3%X,

7.3 Sequential Quadratic Programming (SQP) 600~ + L1020

6

- Penalty function : Pshenichny’s Descent Function(1) 9,09 =% <0

gs() =—x, <0

Penalty function(Pshenichny’s descent function, ®(x™))

By adding a penalty for possible constraint violations to the current value of the objective function,
the constrained optimal design problem is transformed to the unconstrained optimal design problem

Ky — (k) (k)
O(x™)=f(X")+R, -V(X)
where,
k: iteration number how many times the QP problem is defined approximately
f (x*): current(kt" iteration) value of the objective function

V(x®) is either the maximum constraint violation among all the constraints or zero.
V(x®) is nonnegative. If all the constraints are satisfied, the value of the V(x¥) is zero.

V (x") = max{0;|h,|,|,- -, [ 05, 950+, O 3

where,
h,: value of the equality constraint function at the design point x®
g,: value of the inequality constraint function at the design point x®

R, is a positive number called the penalty parameter
R, =max{R,, &}

o . : Summation of all the Lagrange multipliers
The initially value of R is grang P

p m
specified by the user: _ (k) (k)
=Y V+> u
i=1 i=1

Vi(k) :Lagrange multipliers for the equality constraints(free in sign)

ui(k) :Lagrange multiplier for the inequality constraints(nonnegative) e
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f(X) = X2 +%2 —3%X,

7.3 Sequential Quadratic Programming (SQP) 600~ + L1020

6

- Penalty function : Pshenichny’s Descent Function(2) 9,09 =% <0

gs() =—x, <0

By adding a penalty for possible constraint violations to the

Pena|tv function(Pshenichny’s descent function, (I)(X(k) )) current value of the objective function(f(x)), the constrained
< 7 optimal design problem is transformed to the unconstrained

optimal design problem

(D(X(k)) = f (X(k)) + Rk -V (X(k)) (k is the iteration number how many times the QP problem is defined

approximately.)

V(x®) is either the maximum constraint violation among all the constraints or zero.
V(x®) is nonnegative. If all the constraints are satisfied, the value of the V(x¥) is zero.

V (x¥) = max{0; hy|,|h,|,---, |,

R, is a positive number called the penalty parameter (initially specified by the user).

p m
— — _(k)‘ (k)
Rk max RO’ rk_( iz—l“‘v' +Z_1:UI ) ulk) :Lagrange multiplier for the inequality

\ ! ' constraints(nonnegative)

- Summation of all the Lagrange multipliers

hy: value of the equality constraint

. . i i i (k)

; gl, 92’ , gm} function at t_he de5|gn point x_
g,: value of the inequality constraint

function at the design point x®

v :Lagrange multipliers for the equality
' constraints(free in sign)

(v) Step 5: Calculate the penalty parameter R, (in this example, the initial penalty parameter is assumed as R;=10.)

P m m
k k _ (0) _
u® =(u,,u,,u,) =(0,0,0)and I, = Z‘vi( )‘ +> ul rh=>u”=0
i=1 i=1 i=1
Since this problem does not have the equality
Therefore Ro . maX{RO r }_ maX{lo O} . 10 constraints, we do not consider the v,.
! - y o — 1 -
T T T I
D) = £ (x9)+ R,V (x) oLy Ly 10

0,(*) = "

I =X + X22 — 3X1X2 +10-V (X(k)), V (x*) = max{0, g,(x"'), g,(x“), g;(x"“)} | (k=0)

0,(x*) =
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f(X) = X2+ X2 —3%,X,

7.3 Sequential Quadratic Programming (SQP)

1, 1.,
- Penalty function (3) 0,() =5 X + 5% ~10<0
g;(x)=-x,<0

(vi) Step 6:
By using the one dimensional search method, e.g.,
Golden section search method, 4.5
calculate the step size to minimize the penalty
function along the search direction(d®), 34
and determine the improved design point.
2 Fi
d(x®) = f(x®)+R -V (x¥) "7

= X7 + X —3x.X, +10-V (x)

V (x®) = maxq0, g, (x*), g, (x*), g;(x*)} (k=0)

After the k-th search direction is found, one dimensional search for step size is
started.

X(k'j) — X(k) + ot j)d(k) |$ After completing the one

dimensional search, k is

The iteration number k does not change during the one dimensional search . changed to k+1:

x ) is changed to x*D

(D)= (6P RV (X ) v ) = mas0,0,0c4), 0, 0c4), 0, )}

The iteration number k does not change during the one dimensional search method
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7.3 Sequential Quadratic Programming (SQP) FO9 =+ =3x%, R, = max{R;, I}
- Determination of the Step Size by Using gl(x):%xf+%x§—1.0§o _=max{10,0} =10
the Golden Section Search Method (1) O x <0 u® = (uy, ,,u5) = (0.00)

(vi) Step 6:

When a(O,j) =0.0
X0 =x gy, -d9 =11 +0-11) =11
O(xOP) = f(xX*P)+ R,V (x®P)=-1+10x0=-1

where, V (X(O‘j)) — max{O, gl(X(O’j)), gz(X(O’j)), gS(X(O,j))}
= max{o,—%,—l, -1}=0
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7.3 Sequential Quadratic Programming (SQP)
- Determination of the Step Size by Using
the Golden Section Search Method (2)

(vi) Step 6:

—_ *
Assume a g ;) —0.1 :

x(0:1) _ 3(0) +ag ) d@=@11+0.1-(11) =110

O (x®V) = £ (x®V)+R, -V (x©P)=-1.21+10x0=-1.21

where, V (x®) = max{0, g, (x), g, (x*?), g, (x* ")}
= max{0,-0.57,-1.1,-1.5} =

* The initial value of &, ;) (0.1) is defined by user, we can also define

that as another value(ex. 0.5).
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9,(x) :gxl2 +EX§ -1.0<0

R, = max{R,, .}

= max{10,0}=10
u(O) = (ul’ u2 ' u3) = (01010)




7.3 Sequential Quadratic Programming (SQP)
- Determination of the Step Size by Using
the Golden Section Search Method (3)

(vi) Step 6:

f(X) =X +X; —3x,%, Ro = maX{RO’ ro}

gl(X)=1xf+3x§—1.0so =max{10,0} =10
N U = (U,,,,u) = (0,00

X(0.2)=(1.262, 1..20'2)

]

. @ Xo=(11 N
¢ X00=(11)

When ¢, =0.1+1.618(0.1) =0.2618
X0V =xO 4 g -d? =(1,1) +0.262- (1,1) = (1.262,1.262)

where, V (x®?) = max{0, g, (x*), g, (x*?), g (x**)}
= max{0,-0.469,-1.262,-1.262}=0
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7.3 Sequential Quadratic Programming (SQP) FO9 =+ =3x%, R, = max{R;, I}
- Determination of the Step Size by Using gl(x):%xf+%x§—1.0§o _=max{10,0} =10
the Golden Section Search Method (4) O x <0 U = (u;,,,U;) = (0,0,0)

(vi) Step 6:

X03=(1.524, 1.524)
b2)=(1.262, 1.263

]

@ Xo=(11 N
¢ X00=(11)

When ¢, , =0.1+1.618(0.1) +1.618?(0.1) = 0.5236
X0V =xO g -d® =(1,1) +0.524- (1,1) = (1.524,1.524)

O (X )= £ (xOV)+R;-V (X)) =-2321+10x0=-2.321 .

where, V (x*7) = max{0, g, (x*”), g, (x*”), g, (x> ")}
— max{0,-0.226,~1.524,~1.524} = 0
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7.3 Sequential Quadratic Programming (SQP) FO9 =+ =3x%, R, = max{R;, I}
- Determination of the Step Size by Using gl(x):%xf+%x§—1.0§o _=max{10,0} =10
the Golden Section Search Method (5) U = (u;,,,U;) = (0,0,0)

(vi) Step 6:

oo (1524, 1524,

12621269
]

174 @ oL NY

P X(O,O):(ll 1) 0= X12 + X22 -6.0=0

] | 1 |
1 2 3 4 \93:0 X1

A The minimum point existg.
Xo=(1, 1) |« >

<« »

>

When ¢, ;, =0.1+1.618(0.1) +1.618%(0.1) +1.618°(0.1) D

=0.9472 o
X0V =xO g -d@ =(1,1)+0.947- (L1) = (1.947,1.947)

X0)F (1.947, 1.947)

=(1.1, 1.1)

02=(1.262, 1.262)
-1.592

|
i
|
O (x®V) = £ (x®V)+R, -V (x®?)=-3.792+10x0.2638 = -1.154 i
i
I
|
I

|
|
2321 i |
where, V (x?) = max{0, g, (x"), g, (x°*), g, (x*")} T |
— max{0,0.2638,~1.947,~1.947} = 0.2638 o .
A 0001 | 05236 09472 & g
0.2618 338
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7.3 Sequential Quadratic Programming (SQP)
- Determination of the Step Size by Using
the Golden Section Search Method (6)

(vi) Step 6:

The value of thea, = 0.732 is found which
minimizes the value of the penalty function
in the interval between x(®? and x4,

f(X) = X2+ X2 —3%,X,

1 1
gl(x):gxl2 +6X22 ~-1.0<0

0,(0) =%, <0

" ©) © 2 _x(0,3)=(1.524,1.523
X7 =xX"+a,-d” =(11)+0.732-(1,1) = (1.732,1.732) %a(1.262,1.26%)
174 &, ,=(1.1, N
f (x<1> ) = (1.732,1.732) = -3 I A 6= X2+ X,2- 6.0 =0
A
I I 1 T \ >
1 2 3 4 9= 0 Xq
A The minimum point exists.
DPlx =1, 1)|< >
116 X047 (1.947, 1.947)
-1.154) =(1.1, 1.1)
-1.21] :
1 \Xoo)=(1.262,1.262)
1502 | 1
o |
23210 |1 |
1.732,1.732
-3.000] | i L E )
o | |
T | | |
it L : | >- - -0
A 0001 | 05236 o732 09472 & g
0.2618 339
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7.3 Sequential Quadratic Programming (SQP)
- Example of SQP - Iteration 2 (1)

(2) lteration 2(k = 1) Minimize f(X) = x>+ XZ —3x,X,
(ii)Step 2: Calculate maximum constraint violation _ 1, 1,
among all the constraints Subject to g, (X) etk -1.0=<0
From the previous stage, B <0
x® — (1.7321.732) 9, () == <
9;(X) =—%, <0

f(x¥)=f(1.732,1.732) = —2.999824
0, (X(l)) =0, (1.732,1.732) —_5.866x10" = Constraint is satisfied.

9. (X(l)) =-1.732 ®» Constraint is satisfied.
0, (x(l)) =-1.732 ®» Constraint is satisfied.

V, =V (x¥) = max{0;-5.866x10°°,~1.732,~1.732} = 0

And,
Vi (x®) = (2%, —3x,,2x, —3%,) = (-1.732,-1.732)

Vgl(x(l)) = (% Xy % X,) =(0.577,0.577),vg, =(-1,0), Vg, = (0,-1)

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee
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Quadratic programming problem

7'3 Sequential Quadratic Programming (SQP) - Objective function: quadratic form
- Examp|e of SQP — Iteration 2 (2) - Constraint: linear form

(iii) Step 3: Solve the QP problem to determine the search direction(d(©)

Constrained Optimal Design Problem Quadratic Programming Problem
(Original problem) i
Minimize f(x)= X+ x5 —3%,X, Minimize f =(-1.732d,-1.732d,)+0.5(d} +d;)
Subject to g, (X) = 1 X2 + 1 x2-1.0<0 Subject to 0.577d, +0.577d, <5.866x10°
6 6 f(1.732,1.732) = -3, Vf = (-1.732,-1.732) —d, £1.732 where
9,(X)=-x <0 0,(1.7321.732) = -5.866x10°°,vg, = (0577.0577)|  —d, <1.732 d = x —1.732
X)=—_x <0 9,(1.732,1.732) = -1.732,Vg, = (-1,0) o ’
9a(X) ! 0,(1.732,1.732) = -1.732,Vg, = (0,-1) d, =x,-1.732

Lagrange function Kuhn-Tucker necessary condition: VL(d,u,s) =0

L =(-1.732d, -1.732d,) +0.5(d, +d?>) . N The optimal solution is
L A= 1732+d,+0.577u,~u, =0 49 —d.d.)
+U[0577(d, +0,)-5.866x10° 457 | T l v,
+u,(~d, —1.732 + 57) O = (5.081x10°,
ST 22 4=0577(d, +d,)-5.866x10" +s/ =0 5.081x10°%)
+U,(—d, -1.732 +s;) L . o
i E:_d1_1'732+32 =0 u —(uyuz’us)
L= _d,-1.732+52=0 =(3.0.0
| Zlf ) s =(5,,5,,53)
& =Us=0u=0,1=123 ~(0,1316,1.316)
‘Tesuchobemionssacanne e
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. . . Quadratic programming problem
7.3 Sequential Quadratic Programming (SQP) - Objective function: quadratic form
- Example of SQP - Iteration 2 (3) - Constraint: linear form

(iv) Step 4: Check for the following stopping criteria.
d® =(d,,d,) =(5.081x10°, 5.081x107)

[d®] = /(5.081x10* f +(5.081x10* | =7.186x10°° < &, (= 0.001) The stopping criteriais

satisfied.

(iv) Step 5: Stop

The optimal solution: X = (\/g, \/5), f(x)=-3

The Lagrange multiplier:

u“=(3,0,0), s" = (0,1.316,1.316)

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee
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7.3 Sequential Quadratic Programming (SQP)
Summary

Optimization Problem
Minimize f(X)=f (Xl, Xoyoe, Xn)
Subjectto h.(x)=0, 1=1..,p Equality constraints

g:(x)=0, 1=1,....m Inequality constraints

Pshenichny’s descent function:the penalty function is constructed by adding a penalty for possible constraint violations to
the current value of the objective function

(I)()((k)) =i (X(k)) + Rk -V (X(k)) (k is the iteration number how many times the QP problem is defined.)

V(x®) is either the maximum constraint violation among all the constraints or zero.
V(x®) is nonnegative. If all the constraints are satisfied, the value of the V(x¥) is zero.

(K)y _ .
V (x®) = max{ 0;|h],|h, |, -, h,
R, is a positive number called the penalty parameter(initially specified by the user).
p m
_ _ (k) (k)
R, =max<R,, r (= Z‘vi ‘+Zui )
= i=1 i=1

\: Summation of the all Lagrange multipliers

01105, gm}» If all the constraints are satisfied, the value of the
V(x®) is zero.

The improved design point is determined as follows.

XD = x® 4 g . d®
Improved Current | ESearch direction obtained from the QP problem

design point design poi Step size calculated by one dimensional search method(ex. Golden section search method) 3
Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee




7.3 Sequential Quadratic Programming (SQP)

Solution of the Quadratic Programming
Problem to
Determine the Search Direction by using the
Simplex Method
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7.3 Sequential Quadratic Programming (SQP) Quadratic programming problem
- Determine the Search Direction by using the Simplex Method - Objective function: quadratic form
[Iteration 1] (1)

Solve the QP problem to determine the search direction(d©)

Constrained Optimal Design Problem Quadratic Programming Problem
Original problem . 3
o (Orig 2 ; ) Minimize f =(-d,—d,)+0.5(d +d?)
Minimize f(X) =X +X, —3XX,
Subjectto 1d,+1d,<%

) 1 1
Subjectto g,(X) ==X +=x5-1.0<0|[fad=-—1gan=-2,
6 6 0,0 =19, =1 -d; <1
X = —X S O Vi = (_11_1)lv91 = (%’%)1
gZ( ) ! Vg, =(-10),Vg, =(0,-1) —d 5 <1 where

gS(X):_XZSO A dlzxi_l, d2:X2_1

.............................................. )

Kuhn-Tucker necessary condition 0y §Graphing

Lagrange function

L=(-d,~d,)+0.5(d? +d2) & =-1+d,+5u~u,=0
+u[3(d,+d, -2)+87] \ G=-1+d,+3u —u;=0
+U,(—d, —1+5;) %:§(d1+d2—2)+sf:0
Uy, 14 ) i 4 1480

%:—d2—1+s§=0

g_l_i:uisi =0, U; >0,1=12,3
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7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method [Iteration 1] (2)

Kuhn-Tucker necessary condition

S=-1+d,+3u,—u, =0

Quadratic Programming Problem
Minimize f =(-d,—d,)+0.5(d?+d?)
ad

Subjectto1d, +3d, <% W ,
—dlﬁl 6_u1:§(d1+d2_2)+5120

—d, <1 2 =-d, ~1+s.=0
==-d, ~1+s.=0

=-1+d,+3u,—u; =0

0

%:uisi =0,u;20,1=12,3 us’=0,u >0,i=12,3

Multiply the both side of equations by s;

Kuhn-Tucker necessary condition Kuhn-Tucker necessary condition
S =-1+d +3u,—u, =0 S=-1+d +3u,—u, =0
. S =-1+d,+3u,-u, =0 Represent S to S=-1+d,+3u, -u; =0
Replace S; with §, §TL=%(d1+d2—2)+S{ ~0 S forthe & _1(d +d,-2)+s, =0
Si2 =s'>0 a_l_l:_d e -0 convenience a_Ll__d s 0
au, 1 2 au, — V1 2 =
f=-0,-1+s; =0 f=-0,-1+5,=0
&=us/=0 &=us =0
u,s >0,1=12,3 u,s >0,1=12,3 a6
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7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method [Iteration 1] (3)

Quadratic Programming Problem
Minimize f =(-d,—d,)+0.5(d?+d?)

Subjectto3d, +5d, <%

S=-1+d,+3u,-u, =0

S =-1+d,+3u,-u; =0

&L —1(d,+d,-2)+s, =0

| |
1 1
1 1
I I
| |
1 1
1 1
I I
| |
1 1
1 1
1 1
1 1
I I
| |
1 1
1 1
I I
| |
1 1

-d; <1 o
Matrix form aus——d -1+s,=0
&=us=0
u,s, 20,i=12,3

o _ 1
Minimize f :CT(1><2)d(2X1) +EdT(1><2)H(2x2)d(2xl)

Subjectto AT How can we express the Kuhn-

(3><2)d(2><1) - b(3><1) Tucker necessary condition in a

: matrix form(d, ¢, H, A, b)?
Assume that H,,, is equal to 1., X ( )

d1 -1 1 O
d(le) — d2 ' Cloxy = _1 ’H(2x2) = 0o 1/

A —F - O}b —
(2x3) 1M (3x1) T
10 -1

, 1

Computer Aided Ship Design. I-7 (.'on_str_ain_ed'NEn'ITne_ar'O;?cirﬁizEtﬁn'M?tlﬁ»d,'FElliOTl,'K)FJ Yeul Cee—
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7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method
[Iteration 1](4)

. 1
Kuhn-Tucker necessary condition e e
R I TR T 10 d 4 T :
& =—1+d+3u-u, =0 | . { 1+d, +1y, uz} |
: P | —1+d, + 2y, —u !
oL 1 — . ! . 1
a, At dy +5u —u =0 0 P |
1 . u |t
oL _i1 _ -5 _ 1 _ 1
A f1(d,+d,~2)+s, - [ o [r o]
A o1 0 1]d, : 0 -1 :
& =-d,-1+s, = : tal
oL . : =C « + H « d « + A « u ) — O :
& =id,—1+s, = J L~ Cen oo %y T Regtes T .
oL = Uu.>5 =
5 =Uis =0 serd-2es] [4 3], [8] 2
UI,SI 20’ i :11213 _dl_1+32 = _1 O |:d1:|+ SZ - 1
—d, —1+s, 0 -1-72 |s,| |1
=A' (3><2)d(2><1) +S@a) b(3><1) =0
Since the design variables d ., are free in :
sign, we may decompose them as follows for Matrix form
using the Simplex method. T
d(le) - d(le)  Y(2x1) (_2 D
H(2><2) o H(2><2) A(2><3) O(2><3) (2x1) o C(le)
T T =
=B .0 | Sy | =Dy
. o . . . =X 348
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7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method [Iteration 1] (5)

Kuhn-Tucker necessary condition : VL(d",d",u,s)=0

+
(2x1)
Heoy | “Hoo) | Avg | Do | deg | _| ~Cea
Ao —A 2 Oga | g U D 3.0
=Bsao S =D
:X(loxl)
2
) ar] d- -1 10 i -1 0 ;
where d(le):|:d12+}d(2x1):{dZ}C(M):{_J,H(zxz):{O ]}A(ZXS):E 0 _]]ab(sxl)zi
(1 0:-1 0i{f -1 0:!0 0 O
0 1.0 -1;% 0 -1,000
Boap=| % +i{-% -£{0 0 0{1 00
-1 01 1 ‘0 0 0{0 1 0
0 -1; 0 1;0 0 0i0 0 1]

XT(1><10)=|:d1+ dy d; d, u u, u, s s, S3lDT(1x5):[1 12 1 1]
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7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method [Iteration 1] (6)

Kuhn-Tucker necessary condition(matrix form)

B(leO)X(lel) — D(5><1) ra
1
d,
_ Jdd7 | - -
1 0—10§—10000d1_ 1
0o 1 0 -1 0 -1000|* |1
u
i L -1 100 01oou1=§
-1 0 1 0 0 0 0 01 0f | |2
u
0 -1 0 1 0 0 0 00 1| °| |1
: I | M
52
| Ss |

We want to find.

®» This problem is to find X in the linear programming problem only having the equality
constraints.

® us =0;1=1t03 : Check whether the solution obtained from the linear indeterminate
equation satisfies the nonlinear indeterminate equation and determlne

the solution. a0
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7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method [Iteration 1] (7)

Simplex method to solve the quadratic programming problem

1. The problem to solve the Kuhn-Tucker necessary condition is the same with the problem having
only the equality constraints(linear programming problem).

2. To solve the linear indeterminate equation, we introduce the artificial variables, define the
artificial objective function and determine the initial basic feasible solution by using the Simplex

method.
B 510 X0 T Ysa) = Py

Artificial variables

3. The artificial objective function is defined as follows.

5 5 10 5
W=3% =30~ 358X, =, + 3C)X,
=1 i=1 j=11=1
where Cj = —Z B : Add the elements of the j th column of the matrix B and change the its

sign.(Initial relative objective coefficient).

W0 = Z Di =1+1+ % +1+1= 1—; . Initial value of the artificial objective function

(summation of the all elements of the matrix D)

4. Solve the linear programming problem by using the Simplex and check whether the solution

satisfies the following equation.
us, = =0 | =110 3 : Check whether the solution obtained from the linear indeterminate equation

satisfies the nonlinear indeterminate equation and determine the squtlon 351
Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee |




7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method

[Iteration 1](8)

M

BaoXaon + Yy =Dy ™

Define the artificial objective function for using the Simplex method
Sum the all column(1~5): 3 X; +3 X, —3

Replace the summation of the all
artificial to w and rearrange:

Artificial variables

3

Xq

1 1 1
—3 Xy +3 X5 X,

0 -1
1 0
i _1
3 3
0 1
-1 0

~_~

O O O wkr wk

-1 0
0 -1
0 O
0 O
0 O

0
0
1
0
0

O O O O

O O O O

[d; (= X,) |

d (= X5)
dz_(: X4)
ul(: Xs)
U2(= Xa)
Uy (= X,)
$i(= Xg)
S,(= X,)

| S5 (: XlO)_

— I X, HEX =X =X, + Xy + Xg+ X g +Y, +Y, + Y, +Y, +Y, =22

w

CZX A K+ Xy = X=Xy — Xy =w—14

o< <

< < <

L X1 X2 X3 X4 X5 X6 X7 X8 X9 [ X10 | Y1 Y2 Y3 Y4 Y5 bi bi/ai
Y1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1
Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1
Y3 /3 [ 1/3 | -1/3(-1/3] O 0 0 1 0 0 0 0 1 0 0 2/3 2/3
Y4 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1

A.Obj. | -1/3 | -1/3 | 1/3 | 1/3 | -2/3 1 1 -1 -1 -1 0 0 0 0 0 |w-14/3
A A

Artificial objective

Co function

Sum all the elements of th

Constrained Nonlinear Optimization Method,

e row and chan
Fall 2011, Kyu Yeul Le

nge the its sign (ex. 1 row: -(1+0+1/3-1+0)=-1/3)

W =

e




7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method [Iteration 1] (9)

2 Xt | x2 | x3 | x4 [ x5 | x6 | x7 | x8 [ X9 [ x10| Y1 | Y2 [ Y3 | Y4 | Y5 | bi [bi/ai
vi |1 ]o |1 ]ofw3|1|lo]oflo]o|1]o|o]|o0o]o0 1
vz o1 o |1 |{3fo|1]o0o]o|o|o]|1]|]o0o]|o0]o0 1
x8 |13 (13 |-43|3] 0 oo | 1|0 oo 0|1 |o0o]| 0] 23
v4 | 1| o |1 ]ofo]oflo]o|1]o|o]o|o]|1]o0 1 1
ys o1 lo]|1]|ofo|lo|o|o|1|]o]|]o0o]|o0]|o0]1 1
Aobi.l o | o | oo 23] 1|1 ]o|-1]1]o0o]o|1]o0]o0]| wa
3 Xt | x2 | x3 | x4 [ x5 | x6 | x7 | x8 | x9 [x10]| Y1 | Y2 [ Y3 | Ya ]| Y5 | bi [biai
vi |1 o |1]o |31 o]o]oflo]|1]o0o]|o0o]|o0]o0 1
v2 [ o | 1o |1 fw3|o|-1]o|lo]o|o]|1|]o0o]o]o 1
x8¢ |13 |13 |-13|-13 0| oo | 1| o]o|o]|of| 1] o] o0] 23
9 |4 fo|1]ofofo|o]o]|1|[o|]o]|o]|o]|1]o0 1
ys o1 |lo |1 ]|ofo|lo|o|of1]|o0o]|]o0]|o0]|o0]1 1 1
Aobi| 1| o | 1 | o 23] 1|1 ]o|o]|-1]o0of|o| 1] 1] 0] w3
4 Xt | x2 | x3 | x4 [ x5 | x6 | x7 | x8 | x9 [x10]| Y1 | Y2 [ Y3 | Ya | Y5 | bi [biai
vi |1 fo|1]o |31 o]o|o|lo|1]|o0o]|o0o]|o0]o0 1 1
vz o1 o |1 {3fo|1]|]o0o]o|o|o]|1]|]o]|o0]o0 1
x8 |[1/3| 13|33 0| o | o | 1| o] o|o]|o|1]o]| o] 23] 2
x9 |14 fo|1]ofofo|o]o]|1|o|o]o]|o]|1]o0 1
compd X100 | O [ 1] 0| 1[0 fo0o|o]|]o|o0o|1]|]o0o]o0o]|o0]|o0]1 1
Aobji| -1 | 1 | 1 | 1t |23 1|1 oo ]o oo | 1] 1] 1] w2




7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method [Iteration 1] (10)

S X1 X2 X3 X4 X5 X6 X7 X8 X9 | X10 | Y1 Y2 Y3 Y4 Y5 bi bi/ai
X1 1 0 1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1
Y2 0 1 0 -1 1/3 0 1 0 0 0 0 1 0 0 0 1 1
X8 0 1/3 0 -1/3 | -1/9 | 1/3 0 1 0 0 -1/3 0 1 0 0 1/3 1
X9 0 0 0 0 1/3 -1 0 0 1 0 1 0 0 1 0 2
X10 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1
A.Obj. [ O -1 0 1 -1/3 0 1 0 0 0 1 0 1 1 1 w-1
6 X1 X2 X3 X4 X5 X6 X7 X8 X9 | X10 | Y1 Y2 Y3 Y4 Y5 bi bi/ai
X1 1 0 1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1
X2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1
X8 0 0 0 0 -2/9 | 1/3 | 1/3 1 0 0 1/3 | -1/3 1 0 0 0
X9 0 0 0 0 1/3 -1 0 0 1 0 1 0 0 1 0 2
X10 0 0 0 0 1/3 0 -1 0 0 1 0 1 0 0 1 2
A.Obj.| O 0 0 0 0 0 0 0 0 0 1 1 1 1 1 w-0

Since the value of the objective function
becomes zero, the initial basic feasible
solution is obtained.

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee
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7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method [Iteration 1] (11)

6 TR TR TR TR TR TR TR IR TR v v [ v v [ o Torm
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Since the value of the objective function

X<l d; & dw oy u g s ] e e e bl

X,=X,=X,=X,=X,=0

This solution satisfies the nonlinear indeterminate equation( X X, =0;i=5t07,X, >0;i=1t010)

So, the optimal solution isd; =d, =Lu, =u, =u, =0,5, =0,8, =S, =2,

Why are the values of u, ands, zero at the same time?
®» In the Pivot step, if the smallest(i.e., the most negative) coefficient of the artificial objective function or the
smallest positive ratio“bi/ai” appears more than one time, the initial basic feasible solution can be changed by
depending on the selection of the pivot element in the pivot procedure.

®» \We have to find and check the solution until the nonlinear indeterminate equation(u;*s;=0) is satisfied.
Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee



7.3 Sequential Quadratic Programming (SQP) Minimize f(x)= xf+x2—3xx
- Determine the Search Direction by using the Simplex Method

1
-1.0<0
[Iteration 1](11) Subject to 6,(X) = X "6 % -

2 >

gs(X) =—x, <0 A
The optimal solution in this problem isd, =d, =1,u, =u, =u, =0,5,=0,8, =S, =2.
Why are the values of u, ands, are zero at the same time?

Quadratic Programming Problem
Minimize f =(—d, —d,)+0.5(d?+d?2)
Subjectto 1d,+1d, <%

—-d, <1 da 4
~d, <1

This example is graphical displayed as the right side.
—>5,=0

The optimal solution is on the linearized constraint( g,(x), d,+d,=2).

—> Uu,=U,=0

The optimal solution is not in the region satisfying the inequality
constraint.

5 u =0
The optimal solution is on the inequality constraint(g,(x)) and is equal to the
optimal solution of the objective function to be approximated to the second
order. Therefore, although we do not consider the inequality constraint g,(x),
the optimal solution of QP problem is not changed.(g,(x) does not affect the
optimal solution of this problem.)
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7.3 Sequential Quadratic Programming (SQP) Quadratic programming problem

. . . . . - Objective function: quadratic form
-]Determine the Search Direction by using the Simplex Method  Constraint: linear form

[Iteration 2](1)

Solve the QP problem to determine the search direction(d©)

Constrained Optimal Design Problem Quadratic Programming Problem
(Original problem) i
Minimize f =(-1.732d,-1.732d,)+0.5(d} +d>)

Minimize f(x) =%} +x? —3%,X,
Subject to 0.577d, +0.577d, <5.866x10°

1 1
Subject to 9;(X) ==X’ +=x; -1.0<0
6 6 f(1.732,1.732) = -3, Vf = (-1.732,-1.732) —d, £1.732

where
9,(X)=-x <0 0,(1.7321.732) = -5.866x10°°,vg, = (0577.0577)|  —d, <1.732 d —y 1730
1 ™M . y
x)=—x <0 9,(1.732,1.732) = -1.732,Vg, = (-1,0) ]
9 () ' 9,(1.732,1.732) = -1.732,Vg, = (0,-1) d, =x,-1.732
|

Lagrange function Kuhn-Tucker necessary condition:VL(d,u,s) =0

L =(-1.732d,-1.732d,) + 0.5(d; +d;) | & = 1732+, +0.577u, ~u, =0
+1,[0.577(d, +d,) ~5.866x10° + /] | & —_1732+d,+0577u, —u, =0

od, —
+U,(=d, ~1.732+5;) £ -0577(d,+d,)-5.866x10° +57 =0
2 i
+Uy(=d; ~1.732+5;) % =—d, -1.732+s, =0 1. Multiply s; and the both side
A= _d,-1.732+ 832 ~0 and replace s? with s’

2. Represent s;’ to s; for the
convenience

L=us=0,u20,i=123
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7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method
[Iteration 2] (2)

Kuhn-Tucker necessary condition
o= =-1.732+d,+0.577u,—u, =0

=-1.732+d,+0.577u, —u, =0

Quadratic Programming Problem .
1
1
I
|
1
1
I
= O.577(d1 + dz)—5.866><10’6 +s, =0,
1
I
|
1
1
I
|
1
1

Minimize f =(-1.732d, —1.732d,) +0.5(d? +d2)
Subjectto 0.577d, +0.577d, <0

D
o
=

Dl
2

2

~d, <1.732 "
—d, <1.732 A =—d,-1.732+5, =0
Matrix form i
g—tt =-d,-1.732+s,=0
_ 1 oL _ _ P
L T T ==us, =0,u,5201=123
Minimize f=c (1><2)d(2>(1) +Ed (1x2)H(2X2)d(2X1) ha_' _______________________ L

. T
SUbjeCt fo A (3X2)d(2><1) < b(3><1)

Assume that H o) is equal to 12.o).

: d, ~1.732 1 0],
where Ed“”){dj’ ‘M{ 1.732}’ M{o J
: 0 :
| 0577 -1 0 :
:A‘M){o.s?? 0 —J’b‘w: 1132 |
! _1.732_ |
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- Determine the Search Direction by using the Simplex Method

7.3 Sequential Quadratic Programming (SQP) :d( )z{dl} : ){—1.732} H ){1 o}:
| 2x1 2x1 ' 2x2 O 1
[Iteration 2] (3) :

Kuhn-Tucker necessary condition

~1.732+d, +0.577u, —u,
~1.732+d,+0.577u, —u,

24 —-—1732+d +0.577u,—u, =0
gsz =: 1.732+d,+0.577u, —u, =0

r 01!
4 -9 577(d,+d,)-5.866x10° +5, =0 ->*{—1-732} {1 Owl} {0-577 - 0} |

oy + +
01 0577 0 -1

| 21732 d .
L —id,-1.732+s5,=0 S i Uy
L —td,-1.732+5, =0 =Ceq tHeoley *Agglen =0

&=us=0u,520i=123
~0577d, ~0577d, +s, | [0.577 0577 - [s, 0

—d, ~-1.732+s, =| -1 0 Lﬁ} s, |—|1.732
—d, —1.732+s5, 0 -1 |- s, | [1.732

;
=A" 52924 TSz —Baay =0

Since the design variables d,, are free in sign, we _
may decompose them as follows for using the Matrix form
Simplex method.

[ 4+
d(2><1)

H(2><2) o H(2><2) A(2><3) O(2><3) d(_2><1) N C(le)
T T =

d(le) — d(le) (_2><1)

u (3x1)

= B(5><10) i S(3><l) ] —= D(5><1)

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee — 7 ¥(10x1)



7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method [Iteration 2] (4)

Kuhn-Tucker necessary condition_: VL(d",d",u,s) =0

_|_
(2x1)
Hea | “Heo) | Aeg | Oe | dea | _| ~Cen
T | T | | T
A’ (32) | — A (32 | O(3><3) i |(3><3) U s b(3><l)
= B(5><10) _S(3X1) i = D(5><1)
:X(loxl)
d’ d, 1.732 1 0 0577 -1 O 0
where d(+2x1)z{d}}’d(le)z{dlz}c(le)z{_1:732}’H(2x2)={0 1:|’A(2><3)=|:0:577 0 _1:|b3><1) 1.732
1.732
1 0 | -1 0 {0577 -1 0i0 0 O]
0 1 10 -1 {0577 0 -1i0 0 0
Bsao =| 0.577 0.577 0577 —0577 . 0 0 0.1 00
-1 0o | 1 0o {0 0 0:0 10
0 -1 0 1 {0 0 0:00 1
Xy =0 dy di dy u u, uy s s, 5]Dg=[1732 1732 0 1732 1.732]
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7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method [Iteration 2] (5)

Kuhn-Tucker necessary condition(matrix form)

B(leO)X(lel) — D(5><1) _df_
d,
1 d” _ _
1 0 -1 0 0577 -1 0 0 O O dl‘ 1.732
0 1 0 -1 0577 0 -1 0 0 Of * 1.732
0.577 0577 -0577 -0.577 0 O 0 1 0 O e = 0
-1 0 1 0 0 O 0 010 4 1.732
0 -1 0 1 0 O 0 0 0 1 s 1.732
i Is | L i
SZ
SS

We want to find.

®» This problem is to find X in the linear programming problem only having the equality
constraints.

® us =0;1=1t03 : Check whether the solution obtained from the linear indeterminate
equation satisfies the nonlinear indeterminate equation and determlne

the solution. o
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7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method [Iteration 2] (6)

Simplex method to solve the quadratic programming problem

1. The problem to solve the Kuhn-Tucker necessary condition is the same with the problem having
only the equality constraints(linear programming problem).

2. To solve the linear indeterminate equation, we introduce the artificial variables, define the
artificial objective function and determine the initial basic feasible solution by using the Simplex

method.
B 510 X0 T Ysa) = Py

Artificial variables

3. The artificial objective function is defined as follows.

5 5 10 5
W=3% =30~ 358X, =, + 3C)X,
=1 i=1 j=11=1
where Cj = —Z B : Add the elements of the j th column of the matrix B and change the its

sign.(Initial relative objective coefficient).

W0 = Z Di =1+1+ % +1+1= 1—; . Initial value of the artificial objective function

(summation of the all elements of the matrix D)

4. Solve the linear programming problem by using the Simplex and check whether the solution

satisfies the following equation.
U.S. = 07j =1to 3 : Check whether the solution obtained from the linear indeterminate equation
| I T P R (I T PR ST S TR PR T ST T FRPY J i ——

satlsfles the nonlinear indeterminate equation and determine the squtlon 362
Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee |




7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method

[Iteration 2] (7) di+

d;
dr |
1 0 -1 0 0577 -1 0 0 0 O d{ 1.732
0 1 0 -1 0577 0 -1 0 0 Of 2| [1732
ul
B X +Y -D W 0577 0577 -0577 -0577 0 0 O 1 0 0 = 0
(5%10)“ *(10x1) (5%1) (5%1) 1 0 1 0 0 0 0 0 1 0 u, 1732
Artificial variables 0 -1 o0 1 0 0 0 00 1]|™=| |1732
i s | B
SZ
Define the artificial objective function for using the Simplex method L Ss

Sum the all column(1~5): 0.577X, +0.577X, -0.577 X, -0.577X, +1.154 X, — X — X, + Xz + Xy + X, +Y; +Y, + Y, +Y, +Y, =6.928
w

—0.577X, —0.577X, +0.577X, +0.577X, ~1.154X + X, + X, — Xy — X, — X,; =W—6.928

Replace the summation of the all
artificial to w and rearrange:

L X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
Y1 1 0 -1 0 0.577 1 0 0 0 0 1 0 0 0 0 1.732 3
Y2 0 1 0 -1 0.577 0 -1 0 0 0 0 1 0 0 0 1.732 3
Y3 [0.577 ] 0.577 |-0.577|-0.577 O 0 0 1 0 0 0 0 1 0 0 0
Y4 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1.732
Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1.732

A. Obj.[-0.577|-0.577 | 0.577 | 0.577 |-1.154| 1 1 -1 -1 1 0 0 0 0 0 [w-6.928

Artificial*objective'\ ot o

; Sum all the elements of the row and change the its sign (ex. 1 row: -(1+0+1/3-1+0)=-1/3
Computer Ai]}elzg %Hi?orbesign, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Le(-:-g g ( ( ) )




7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method [Iteration 2] (8)

.2 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
X5 1.732] 0.000| -1.732 0.000] 1.000| -1.732] 0.000[ 0.000; 0.000[ 0.000] 1.732| 0.000| 0.000] 0.000f 0.000] 3.000[ -1.732
Y2 | -1.000[ 1.000| 1.000] -1.000{ 0.000f 1.000| -1.000] 0.000[ 0.000| 0.000] -1.000{ 1.000[ 0.000] 0.000] 0.000[ 0.000, 0.000
Y3 0.577] 0.577] -0.577| -0.577{ 0.000; 0.000; 0.000| 1.000[ 0.000| 0.000; 0.000] 0.000f 1.000[ 0.000] 0.000; 0.000f 0.000
Y4 | -1.000[ 0.000| 1.000] 0.000| 0.000f 0.000| 0.000; 0.000[ 1.000| 0.000] 0.000] 0.000[ 0.000| 1.000] 0.000] 1.732| 1.732
Y5 0.000] -1.000, 0.000f 1.000[ 0.000; 0.000] 0.000| 0.000[ 0.000] 1.000; 0.000] 0.000[ 0.000[ 0.000; 1.000] 1.732 -

A. Obj.| 1.423| -0.577| -1.423| 0.577| 0.000| -1.000] 1.000| -1.000| -1.000| -1.000, 2.000] 0.000, 0.000, 0.000| 0.000|w-3.464

13 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
X5 0.000; 1.7321 0.000f -1.732] 1.000; 0.000] -1.732| 0.000[ 0.000] 0.000; 0.000| 1.732[ 0.000] 0.000; 0.000] 3.000 -
X3 -1.000] 1.000; 1.000] -1.000f 0.000| 1.000] -1.000; 0.000| 0.000f 0.000| -1.000; 1.000] 0.000f 0.000[ 0.000; 0.000 -
Y3 0.000[ 1.155] 0.000f -1.155 0.000| 0.577| -0.577] 1.000f 0.000; 0.000( -0.577) 0.577| 1.000, 0.000| 0.000| 0.000 -
Y4 0.000] -1.000, 0.000f 1.000f 0.000] -1.000; 1.000| 0.000[ 1.000] 0.000; 1.000] -1.000[ 0.000f 1.000; 0.000] 1.732 -
Y5 0.000] -1.000, 0.000f 1.000| 0.000; 0.000] 0.000f 0.000[ 0.000; 1.000, 0.000| 0.000[ 0.000] 0.000; 1.000 1.732[ 1.732

A. Obj.| 0.000/ 0.845[ 0.000 -0.845[ 0.000[ 0.423| -0.423| -1.000| -1.000| -1.000] 0.577| 1.423| 0.000, 0.000, 0.000|w-3.464

14 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
X5 0.000; 1.7321 0.000f -1.732] 1.000; 0.000] -1.732| 0.000[ 0.000] 0.000; 0.000| 1.732[ 0.000] 0.000; 0.000] 3.000 -
X3 -1.000 1.000] 1.000f -1.000; 0.000[ 1.000] -1.000| 0.000] 0.000] 0.000f -1.000; 1.000[ 0.000] 0.000| 0.000] 0.000 -
Y3 0.000; 1.155 0.000f -1.155[ 0.000; 0.577| -0.577| 1.000[ 0.000] 0.000] -0.577| 0.577| 1.000] 0.000, 0.000; 0.000 -
Y4 0.000] -1.000, 0.000f 1.000| 0.000] -1.000] 1.000f 0.000[ 1.000] 0.000; 1.000| -1.000[ 0.000] 1.000; 0.000] 1.732[ 1.732
X10 0.000] -1.000] 0.000f 1.000[ 0.000; 0.000] 0.000| 0.000[ 0.000] 1.000; 0.000] 0.000f 0.000[ 0.000; 1.000] 1.732 -

A. Obj.[ 0.000 -0.155[ 0.000f 0.155[ 0.000] 0.423| -0.423| -1.000] -1.000] 0.000] 0.577| 1.423] 0.000] 0.000] 1.000/w-1.732




7.3 Sequential Quadratic Programming (SQP)

- Determine the Search Direction by using the Simplex Method [Iteration 2] (9)

12 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
X5 0.000[ 1.7321 0.000{ -1.732 1.000| 0.000 -1.732] 0.000f 0.000; 0.000[ 0.000] 1.732[ 0.000] 0.000] 0.000| 3.000] 1.732
X3 | -1.000[ 1.000| 1.000] -1.000{ 0.000f 1.000| -1.000] 0.000[ 0.000| 0.000] -1.000{ 1.000[ 0.000] 0.000] 0.000[ 0.000] 0.000
Y3 0.000; 1.155/ 0.000f -1.155[ 0.000; 0.577 -0.577| 1.000[ 0.000| 0.000] -0.577] 0.577| 1.000[ 0.000] 0.000; 0.000f 0.000
X9 0.000 -1.000, 0.000f 1.000| 0.000] -1.000] 1.000f 0.000[ 1.000] 0.000; 1.000] -1.000[ 0.000] 1.000; 0.000] 1.732 -1.732
X10 0.000f -1.000; 0.000[ 1.000] 0.000| 0.000| 0.000] 0.000f 0.000; 1.000[ 0.000; 0.000[ 0.000] 0.000] 1.000 1.732] -1.732

A. Obj.| 0.000 -1.155 0.000| 1.155 0.000| -0.577] 0.577| -1.000] 0.000] 0.000| 1.577| 0.423| 0.000] 1.000[ 1.000|w-0.000

16 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
X5 1.732] 0.000| -1.732 0.000] 1.000| -1.732] 0.000[ 0.000; 0.000[ 0.000] 1.732| 0.000| 0.000] 0.000f 0.000] 3.000[ 1.732
X2 | -1.000[ 1.000| 1.000] -1.000{ 0.000f 1.000| -1.000] 0.000[ 0.000| 0.000] -1.000{ 1.000[ 0.000] 0.000] 0.000[ 0.000] 0.000
Y3 1.155( 0.000| -1.155] 0.000, 0.000f -0.577{ 0.577) 1.000, 0.000| 0.000[ 0.577] -0.577] 1.000] 0.000f 0.000 0.000] 0.000
X9 | -1.000[ 0.000| 1.000; 0.000{ 0.000f 0.000| 0.000; 0.000[ 1.000| 0.000] 0.000[] 0.000[ 0.000| 1.000] 0.000] 1.732 -1.732
X10 | -1.000; 0.000, 1.000/ 0.000f 0.000| 1.000| -1.000; 0.000, 0.000| 1.000f -1.000[ 1.000] 0.000] 0.000, 1.000| 1.732| -1.732

A. Obj.| -1.155| 0.000] 1.155( 0.000] 0.000| 0.577| -0.577| -1.000] 0.000] 0.000| 0.423| 1.577| 0.000, 1.000[ 1.000|w-0.000

17 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai
X5 0.000; 0.000] 0.000f 0.000] 1.000] -0.866| -0.866[ -1.500[ 0.000] 0.000] 0.866| 0.866[ -1.500] 0.000; 0.000] 3.000
X2 0.000[ 1.000; 0.000[ -1.000, 0.000] 0.500f -0.500] 0.866( 0.000] 0.000f -0.500, 0.500[ 0.866| 0.000| 0.000| 0.000
X1 1.000[ 0.000| -1.000; 0.000] 0.000f -0.500[ 0.500] 0.866| 0.000| 0.000f 0.500f -0.500; 0.866/ 0.000f 0.000[ 0.000
X9 0.000; 0.000] 0.000f 0.000[ 0.000] -0.500; 0.500| 0.866[ 1.000] 0.000; 0.500 -0.500[ 0.866| 1.000; 0.000] 1.732
X10 0.000; 0.000] 0.000f 0.000[ 0.000; 0.500] -0.500| 0.866[ 0.000] 1.000] -0.500] 0.500[ 0.866[ 0.000] 1.000] 1.732

A. Obj.| 0.000/ 0.000[ 0.000f 0.000] 0.000] 0.000] 0.000] 0.000] 0.000] 0.000] 1.000] 1.000] 1.000] 1.000/ 1.000/w-0.000
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7.3 Sequential Quadratic Programming (SQP)
- Determine the Search Direction by using the Simplex Method [Iteration 2](10)

EUXA R EX2 HE X3 XA EXE HEX6 | EX7 K8 IXG HEXI0E[ Y Y2 Y3 Y4 Y5 bi bi/ai
0.000| 0.000] 0.000| 0.000f 1.000f -0.866 -0.866( -1.500| 0.000] 0.000] 0.866| 0.866| -1.500] 0.000] 0.000] : 3.000)

0.000[ 1.000] 0.000| -1.000[ 0.000] 0.500[ -0.500| 0.866( 0.000| 0.000| -0.500| 0.500, 0.866| 0.000| 0.000| : 0.000

1.000[ 0.000| -1.000[ 0.000| 0.000| -0.500| 0.500| 0.866] 0.000| 0.000| 0.500| -0.500| 0.866| 0.000| 0.000| i 0.000:

0.000[ 0.000] 0.000] 0.000[ 0.000| -0.500] 0.500| 0.866| 1.000] 0.000| 0.500f -0.500, 0.866/ 1.000[ 0.000| : 1.732

0.000[ 0.000] 0.000] 0.000[ 0.000] 0.500[ -0.500| 0.866( 0.000| 1.000| -0.500| 0.500, 0.866| 0.000| 1.000| : 1.732

0.000] 0.000] 0.000] 0.000f 0.000] 0.000[ 0.000] 0.000f 0.000] 0.000f 1.000] 1.000f 1.000] 1.000] 1.000/w-0.000

x5=3, xzzo, X, =0, X,=1732, X,=1732

XS = X X X = X8 =
This solution satisfy the nonlinear indeterminate equation(X. X, . =0;i=5t07, X, >0;i =1t010).
So, the optimal solution is d, =d, =0, u;, =3, U, =u, =0, s, =0, s, =5, =1.732.

®» In the Pivot step, if the smallest(i.e., the most negative) coefficient of the artificial objective function or the
smallest positive ratio“bi/ai” appears more than one time, the initial basic feasible solution can be changed
by depending on the selection of the pivot element in the pivot procedure.

®» \We have to find and check the solution until the nonlinear indeterminate equation(u;*s;=0) is satisfied.
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7.3 Sequential Quadratic Programming (SQP)

- Summary of the Sequential Quadratic
Programming
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7.3 Sequential Quadratic Programming (SQP)

- [Summary] Formulation of the Quadratic Programming Problem to Determine the Search Direction

Minimize f(X+Ax)= f(X)+ V' (X)Ax+0.5Ax" HAX

The second-order Taylor series expansion of the objective function

Subjectto h; (x+ AX) = h, (x)+Vh (X)Ax=0; j=1to p

The first- order(lmear) Taylor series expansion of the equality constraints
g;(X+Ax) = gj(X)+ng (X)AX<0; j=1tom

The first-order(linear) Taylor series expansion of the inequality constraints

Assumption: f = f (x + Ax) — f(x), e; =—h;(x), b, =-g;(x),
¢, =of (x)/ox;, my =0oh;(x)/ox, a; =0ag;(x)/0x,
d. = AX

Matrix form

L - 1 L .
Minimize f = CT (]Xn)d(nxl) +§dT(1xn)H(nxn)d(nx1) : Quadratic objective function

Subject to NT(pxn)d(nxl) =€,y : Linear equality constraints
AT(mxn)d(nxl) < b(mxl) : Linear inequality constraints

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee
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7.3 Sequential Quadratic Programming (SQP)
- [Summary] Determination of the Step Size by using the Golden Section Search Method

Trial design point for which the descent condition is checked

X(k’J) = X(k) + OC(k j)d(k)» How can we determine the value of the ¢ to find the improved design point?

Find the improved design point which minimizes the descent function more than the current point
by changing ¢;- (One dimensional search method, such as the Golden section search method, can
be used.)

Determination of the improved design point X(k+1) by using the one dimensional search method such
as the Golden section search method(X(k’J)is changed to X(k+1).)

After finding the interval in which the minimum lies, find the minimum point, X, by reducing
the interval(Golden section search method)

d(x), | _— Dd(x)+
: The |nr;[1(?;\i/ra;|$rrlnvl\/iglsch the : The intgr\_/al in which the
I S S EEEEEEEEEEEENEEENEER : w
i : '
| | |
| = | [ ] | | |
|l . | [ |
I = | | = | | |
: ] : : : : byl :
: ‘J:IIIII:IIIIIIIIIIIFI. : l : II : :
| | LN
ql ¢1 12 3 i4 s 0,618|.<—1—.—>|<—>:0 382[
0 52.6185.2365 9.4725 16.3265 o a, Tab a, o
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7.3 Sequential Quadratic Programming (SQP)
- [Summary] Formulation of the Quadratic Programming Problem

_ 1
- e . T T
Minimize f =c (1><n)d(n><1) +§d (1><n)H(nxn)d(n><l)

Subject to NT(pxn)d(nxl) =€)

T
A (mxn)d(nxl) < b(m><1)

Assumption: Hg .. = 1<

1 1
L T T T T
Mlnlmlze f — C (1><n)d(nxl) + Ed (1><n) I (an)d(nX].) - C (1Xn)d(n><l) _I_ _d (1><n)d(nxl)

Subject to NT(pX“)d(nxl) =€) » Since H,x = lhxn) the objectlve function is a
quadratic form.
AT(mX“)d(nxl) < b(mxl) ®» All constraints are linear.

» This problem is called the convex
programming problem and any local optimum
solution is also a global optimum solution.
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7.3 Sequential Quadratic Programming (SQP)
- Flow Diagram of the SQP Algorithm

R R A A A AR A A A A AR A AR A A R R AR A AR A AR A AR A EEEEEEESEEEEEEEEEEEEE
- Define the QP problem to determine the search
: direction d® and calculate the Lagrange multiplier :
: at the given design point x®. : Sequential
: | : Quadratic
Solve the QP problem(solution: search direction : Programming
- d®, Lagrange multiplier) by using the Lagrange :
: function and Kuhn-Tucker necessary condition. :
: — . Ygs
eck for the stopping crite Set x" = x®
|d®| < &, and the maximum o SCLX =X
onstraint violation V,< and stop.

No

Find the improved design point(x&*D)) to minimize the
descent function along the search direction (d®) by
using the one dimensional search method(ex: Golden
section search method)

Yes
k=k+1
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7.3 Sequential Quadratic Programming (SQP)
- Summary of the SQP Algorithm (1)

M Step 1: Set k=0. Estimate the initial value for the design
variables as x©). Select an appropriate initial value for the
penalty parameter R,, and two small number ¢, g, that
define the permissible constraint violation and
convergence parameter values, respectively.

M Step 2: At x¥ compute the objective and constraint

functions and their gradient. Calculate the maximum
constraint violation V,.

M Step 3: Using the objective and constraints function
values and their gradients, define the QP problem. Solve
the QP problem to obtain the search direction d®(= xk+1)
- Xx) and Lagrange multiplier v, u®),
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7.3 Sequential Quadratic Programming (SQP)
- Summary of the SQP Algorithm (2)

M Step 4: Check for the stopping criteria | d®| < ¢, and the maximum
constraint violation V,<g,. If these criteria are satisfied then stop.
Otherwise continue.

M Step 5: Calculate the sum r, of the Lagrange multiplier. Set R =
max{R,, }.

M Step 6: Set x*)=x®+ o, ,d® where o = o ;) is a proper step size. As
for the unconstrained problems, the step size can be obtained by
minimizing the descent function along the search direction d®. The
one dimensional search method, such as the Golden section search,
can be used to determine a step size.

(If the one dimensional search method is end, the current design
point xkJ) is changed to xk*1))

M Step 7: Save the current penalty parameter as R, = R. Update the
iteration counter as k = k+1 and go to Step 2.

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee
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7.3 Sequential Quadratic Programming (SQP)
- Effect of the Starting Point in the SQP Algorithm

The starting point can affect performance
of the algorithm.

For example, at some points, the Quadratic
Programming problem defined to determine

the search direction may not have any
solution.

This need not mean that the original
problem is infeasible.

The original problem may be highly
nonlinear, so that the linearized constraints
may be inconsistent giving infeasible
Quadratic Programming problem.

This situation can be handled by either
temporarily deleting the inconsistent
constraints or starting from another point.

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee
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Define the QP problem to determine the search
direction d and calculate the Lagrange multiplier
at the given design point x(*.

L 2

1

!'| Solve the QP problem(solution: search direction
1 d¥, Lagrange multiplier) by using the Lagrange
I'| function and Kuhn-Tucker necessary condition.

ck for the stopping criteri —
| d¥] < g, and the maximum SEtd" : x
nstraint violation V,s< and stop.

No

1
1

y | Fi dth improved design p
1 d tf ton along the

t(( 1) to minimize the
rch direction (d®) by
g the rch mel th od(ex: Golden

ton sea

e dimensional s
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L-

Yes
k=k+1
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7.3 Sequential Quadratic Programming (SQP)

- Use of the Descent Condition for SQP Instead of
the Golden Section Search Method

Naval Architecture & Ocean Engineering

MR o ENSDAL

% J@ Elg Zz;lllona/ Advanced Ship Design Automation Lab.
N : http.//asdal.snu.ac.kr




Use of the Descent Condition for SQP Instead of the Golden Section Search Method (1),

f(X) = X2+ X2 —3%,X,
1, 1,
==—Xx"+=x-1.0<0
60 6

M

(vi) Step 6: By using the one dimensional search method(ex.
Descent Condition method) calculate the step size to minimize
the descent function along the search direction(d©®) and
determine the improved design point.

CD(X(k’j)) — f (X(k’j)) + Rk ~V(X(k’j))

=X +X%; —3%X, +10-V (x"“)
V (x") = max{0, g, (x""), g, (x™?), g, (x"“ )}, (k=0)
XV =x® 4t ;,d®

(k,j) » k iteration of CSD algorithm
X j iteration of one dimensional search method

N

gs(X) =—x, <0

=11 x®=(@11),

P o o e e - o o - -

___________q

CD(t(O,J)) ~1-t,, ;) where, 4, = [d®| =050 +1%) =1
(I)(X(O,O))z f (x(o 0))Jr R,-V (X(o 0))
V (x©9) = max{0,—-2,-1, -1} =0

Computer Aided Ship Design, I-7 Constrained Nonlinear Optlmlzatlon Method, Fall 2011, Kyu Yeul Lee
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f(X) = X2+ X2 —3%,X,
Use of the Descent Condition for SQP Instead of the Golden Section Search Method () (x)=1xf e 10<0
' 6 6°

M

(vi) Step 6: By using the one dimensional search method(ex. 9509 =—x, <0
Descent Condition method) calculate the step size to minimize
the descent function along the search direction(d©®) and
determine the improved design point.

CD(X(k’j)) — f (X(k’j)) + Rk ~V(X(k’j))
=X + X2 —3%x.X, +10-V (x* V)
Vv (x*P) = max{0, g, (x* "), g, (x™?), go(x™ ")}, (k=0)
w (k) — 3 (k) +t(k,j)d(k) 1

(k,j) » k iteration of CSD algorithm
X j iteration of one dimensional search method

N
|

| 1 1 !
By reducing the value of t from 1 to a half, find the point to satisfy the 1 2 3 4 \ g;=0 Xq
following equation. 8

D(tg )= F(2,2)+R, -V (x®V)=-4+10x0.333=-0.667
where, V (x*?) =max{0,{,-2,-2}=0.333
1ty =-1-1=-2

If d)(t(oyj))s—l—t(olj) is not satisfied, t is reduced to 0.5.
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f(X) = X2+ X2 —3%,X,
Use of the Descent Condition for SQP Instead of the Golden Section Search Method (3) (x)=1xf e 10<0
' 6 6°

M

(vi) Step 6: By using the one dimensional search method(ex. 9509 =—x, <0
Descent Condition method) calculate the step size to minimize
the descent function along the search direction(d©®) and

determine the improved design point. 4/

CD(X(k’j)) — f (X(k’j)) + Rk ~V(X(k’j))
=X + X2 —3%x.X, +10-V (x* V)
V (x*7) = max{0, g, (x"“ "), g, (x™), go(x“ ")}, (k=0)
XD = x () +t(k1j)d(k) 17

(k, j) » k iteration of CSD algorithm
X j iteration of one dimensional search method

N
|

| 1 1 !
By reducing the value of t from 1 to a half, find the point to satisfy the 1 2 3 4 \ g;=0 Xq
following equation. 8

T2.25= @t ;) <-1-ty;=-15 k=0, j=1

When t,;, =0.5 1

XOD =x©@ 4t .d® =(11)+05 L1 =(L515)

Dt )= f(L5L15)+R, -V (x*))=-225+10x0=-2.25
Where, V (X(O'J)) = maX{O, _% y _15, _15} = O Point to be Urild by the
------------------------------------------------------------------------ Descent Condition

Since q’(tm,j))ﬁ—l—t(o,j) is satisfied, (1.5, 1.5) is the next [ —" —> - e
design point. A 0.0 0.5 1.0 B
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f(X) = X2+ X2 —3%,X,

Use of the Descent Condition for SQP Instead of the Golden Section Search Method (4) (x)=1xf e 10<0
' 6 6°

M

The step size obtained by Descent Condition is
different from the step size obtained by Golden
section search method.

Since the improved design points obtained by two
method are different, the number of iteration of
defining the QP problem is changed.

If we use the Golden section search method in the
right example,

- The number of iteration of the one dimensional search in the
first iteration of CSD is 62.

0,(0) =%, <0

Initial point to be found by
the Golden sectionsearch
method

Initial point to be found by the
Descent Condition

- By defining the QP problem two times, we find the optimal
design point.

+ The step size obtained by one dimensional search direction is exact
Size respectively.

If we use the Descent condition in the right example,

- The number of iteration of the one dimensional search in the
first iteration of CSD is 1.

- Since the step size obtained by one dimensional search

direction is not exact size, the QP problem is defined in 20 times

to find the optimal solution

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee
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Comparison between the Golden Section Search Method and Descent Condition Method (1)

Minimize f(X) =X +X5 —3X,X,

Subject to g,(X) :%xf +%x22 -1.0<0 ,

gz(x):_xl <0
g3(x):_xl <0
f=-20
92204_ f=-10
f=
3_
2_
Optimal Solution: 17 (0% (1, 1) L =X2+X,2-6.0=0
X :(\/é,\/§),f(X):_3 T |B T T >
A1 2773 \g3:o X1
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Comparison between the Golden Section Search Method and Descent Condition Method (1)

Minimize: f(X)= X+ X5 —3%,X, Subject to: g, (X) = x +1x _10<0
6
Solution: X =(V/3, V3), f(x)=-3 gz(X)Z—Xlﬁo
g3(X) ==X = 0
- Itera_tion el Iter.ation .Of M€ Local Optimum Optimum
Initial vale Method defining the dimensional Point Value
QP problem search method

r=0.0 19 19 (1.732, 1.732) 3.0

Descent r=0.1 19 19|  (1.732, 1.732) 3.0

(1, 1) Condition r=0.5 19 19 (1.732,1.732) 3.0

r=0.9 19 19| (1.732, 1.732) 3.0

Golden section search method 1 62 (1.732, 1.732) -3.0

r=0.0 35 85| (1.732, 1.732) 3.0

Descent r=0.1 36 52| (1.732, 1.732) 3.0

(0.1, 0.1) Condition r=0.5 29 44| (1.732,1.732) -3.0

r=0.9 44 124]  (1.732, 1.732) 3.0

Golden section search method 1 38 (1.732, 1.732) -3.0

r=0.0 18 18 (1.732, 1.732) -3.0

Descent r=0.1 18 18]  (1.732, 1.732) 3.0

(1.5, 1.5) Condition r=0.5 18 18]  (1.732, 1.732) 3.0

r=0.9 18 18]  (1.732, 1.732) -3.0

Golden section search method 2 68 (1.732, 1.732) -3.0
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Comparison between the Golden Section Search Method and Descent Condition Method (2)

Minimize: (X, X,) =X —X, +2X +2X,X, + X

Solution: x=(-1.0, 1.5), f(x)=-1.25

" IteraFion <y Iter.ation .Of M| Local Optimum Optimum
Initial vale Method defining the dimensional Point Value
QP problem | search method
r=0.0 39 59 (-1.0, 1.5) -1.25
Descent r=0.1 38 58 (-1.0, 1.5) -1.25
0, 0) Condition r=0.5 41 67 (-1.0, 1.5) -1.25
r=0.9 60 127 (-1.0, 1.5) -1.25
Golden section search method 17 329 (-1.0, 1.5) -1.25
r=0.0 40 63 (-1.0, 1.5) -1.25
Descent r=0.1 40 63 (-1.0, 1.5) -1.25
(1, 1) Condition r=0.5 40 66 (-1.0, 1.5) -1.25
r=0.9 72 194 (-1.0, 1.5) -1.25
Golden section search method 17 282 (-1.0, 1.5) -1.25
r=0.0 35 55 (-1.0, 1.5) -1.25
Descent r=0.1 35 55 (-1.0, 1.5) -1.25
(-1, 2) Condition r=0.5 37 61 (-1.0, 1.5) -1.25
r=0.9 66 177 (-1.0, 1.5) -1.25
Golden section search method 18 299 (-1.0, 1.5) -1.25
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Comparison between the Golden Section Search Method and Descent Condition Method (3)

Minimize

f (%, %) =—[ 25— (% —5)° = (%, —5)° |
Subject to

0,(X, X,) =—32+4X, +X,” <0

gz(Xsz):_Xl <0

gs(Xy Xz) =X <10

g4(X1,X2)=—X2 <0

95(X1’ Xz) =X, <10

Solution
x, =4.374,x, =3.808, f(x,,x, )=—4.815
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Comparison between the Golden Section Search Method and Descent Condition Method (3)

Minimize: f(xi,xz):—[25—(x1—5)2—(x2—5)2} Subject to:  g;(X,%,) =-32+4% +X,” <0
9, (X, %) =—x% <0
Solution: x=(4.374, 3.808), f(x)=-4.815 050, %,) =% <10
04(X, %) ==X, <0
05(X1, X;) = %, <10

- IteraFion o Iter'ation .Of M€ Local Optimum Optimum
Initial vale Method defining the dimensional Point Value
QP problem search method
r=0.0 22 23 (4.374, 3.808) -23.188
Descent r=0.1 22 23 (4.374, 3.808) -23.188
(0, 0) Condition r=0.5 22 23 (4.374, 3.808) -23.188
r=0.9 22 24| (4.374, 3.808) -23.188
Golden section search method 590 13,509 (4.374, 3.808) -23.188
r=0.0 15 22| (4.374, 3.808) -23.188
Descent r=0.1 15 22| (4.374, 3.808) -23.188
(7, 1) Condition r=0.5 15 22| (4.374, 3.808) -23.188
r=0.9 24 45 (4.374, 3.808) -23.188
Golden section search method 1143 26,804 (4.374, 3.808) -23.188
r=0.0 19 35 (4.374, 3.808) -23.188
Descent r=0.1 19 35 (4.374, 3.808) -23.188
(-3, -10) Condition r=0.5 19 35 (4.374, 3.808) -23.188
r=0.9 28 61 (4.374, 3.808) -23.188
Golden section search method 884 20,005 (4.374, 3.808) -23.188 N
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Comparison between the Golden Section Search Method and Descent Condition Method (4)

Find X(=BI/T),x,(=1/C;)
Minimize f(X,,X,) =X’ +2X5 —4x, —2X,X, +10

Subject to gl(xl’ XZ) — Xl _ 3 < OIb Optimization probl_em havi_ng two unl_mown variables and
two inequality constraints

g,(x,%,) =X, -5/3<0 Contour line(f = const.) of objective function
X5 f

4 / ]
2 _ gz 5/ /

5/3 /i
0 Feasible region ]
2 ‘ _

’:‘.,.:.-:’:.'{:.{.::-.' L 1

- RS X, ) A: 'l'rue solut|9n i /
2 4 X, =3.0, X, = 1.5, f(x; ,%X,)=2.5 |
A
> 10 5 0 3 5 x, 10
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Comparison between the Golden Section Search Method and Descent Condition Method (4)

Minimize: f(X,,X,)=X>+2X —4%, —2XX, +10 Subject to: 9,(X,X,) =% —-3<0
g,(X,%,)=X%,—-5/3<0
Solution: x=(3.0, 1.5), f(x)=2.5

- IteraFion o Iter'ation .Of M€ Local Optimum Optimum
Initial vale Method defining the dimensional Point Value
QP problem search method
r=0.0 22 24 (3.0, 1.5) 2.5
Descent r=0.1 22 24 (3.0, 1.5) 2.5
(0, 0) Condition r=0.5 22 26 (3.0, 1.5) 2.5
r=0.9 24 33 (3.0, 1.5) 2.5
Golden section search method 13 203 (3.0, 1.5) 2.5
r=0.0 19 20 (3.0, 1.5) 2.5
Descent r=0.1 19 20 (3.0, 1.5) 2.5
(2, 1) Condition r=0.5 19 20 (3.0, 1.5) 2.5
r=0.9 19 20 (3.0, 1.5) 2.5
Golden section search method 4 89 (3.0, 1.5) 2.5
r=0.0 26 52 (3.0, 1.5) 2.5
Descent r=0.1 25 28 (3.0, 1.5) 2.5
(-3, -5) Condition r=0.5 25 28 (3.0, 1.5) 2.5
r=0.9 25 30 (3.0, 1.5) 2.5
Golden section search method 9 255 (3.0, 1.5) 2.5
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Comparison between the Golden Section Search Method and Descent Condition Method (5)

Goldstein-Price Function

Minimize
f (%, %) ={L+ (X + X, +1)? - (19—14x, + 3x,° —14x, +6X,X, +3x,)}
{30+ (2%, —3%,)% - (18 —32x, +12x,” + 48x, —36X,X, + 27x,°)}

Subject to
gl(xl’XZ):_z_Xlsoi gz(xl,x2)=—2—X2 <0, \\\&\\\\\\\J: /
N
95(X, X,) =% —2<0,9,(X,X)=X,-2<0 . \\::‘\SS\\:E‘:%E::::Z:':%%..
' ' ' ' 150000 W &:’:&:?’:’:’.:':"’":

100000

f(x1, %)

50000

A : Global Minimum
X" =0.0, x," =-1.0, f(x;", Xx,") = 3.0 X1

B : Local Minimum
Xl* = '0.6, X2* = '0.4, f(Xl*’ XZ*) = 300

C : Local Minimum
X;"=1.2,x,"=0.8, f(x;", x,") = 840.0

D : Local Minimum
X" = 1.8, x," = 0.2, f(x,", X,) = 84.0 e
X H
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Comparison between the Golden Section Search Method and Descent Condition Method (5)

Com|

Minimize:
P0G %) ={L+ (% + % +1)°
x(19—14x, +3x%° —14x, +6XX, +3X,°)}
x{30+ (2x, —3X,)?
x(18—32x, +12x,° +48x, —36X,X, +27X,°)}

Subject to:
gl(xl,xz) :_z_xl <0, gz(xlixz) :_Z_Xz <0,
gS(X1’X2) = X]__ZSO’ g4(X]_’X2) = X2 -2<0

In this example, since there are some local minimum design points, the optimal solution to be obtained is changed
depending on the initial design point. So, the calculating the optimal solutions by assuming the initial design point in many
times and comparing the results are needed.

" IteraFion S Iter.ation .Of "¢l Local Optimum Optimum
Initial vale Method defining the dimensional Point Value
QP problem | search method
r=0.0 30 302 (-0.6, -0.4) 30.0
Descent r=0.1 26 258 (-0.6, -0.4) 30.0
0, 0) Condition r=0.5 21 208 (-0.6, -0.4) 30.0
r=0.9 62 739 (-0.6, -0.4) 30.0
Golden section search method 15 467 (-0.6, -0.4) 30.0
r=0.0 77 605 (0.0, -1.0) 3.0
Descent r=0.1 31 194 (0.0, -1.0) 3.0
(2, 3) Condition r=0.5 28 172 (0.0, -1.0) 3.0
r=0.9 56 523 (0.0, -1.0) 3.0
Golden section search method 13 417 (0.0, -1.0) 3.0
r=0.0 70 545 (0.0, -1.0) 3.0
Descent r=0.1 24 135 (0.0, -1.0) 3.0
(-5, -5) Condition r=0.5 24 136 (0.0, -1.0) 3.0
r=0.9 51 459 (0.0, -1.0) 3.0
Golden section search method 17 - 497 (0.0, -1.0) 3.0




Comparison between the Golden Section Search Method and Descent Condition Method (6)

Rastrigin’s Function

Minimize
f (X, X,)=20+x—-10cos(27-X,) + x> —10c0s(27 - X,)
Subject to
g,(x;,%X,) =-5.12-x <0
g,(X,X,)=-9.12-X%, <0
d.(x,X,) =% —-95.12<0
g,(X,%X,)=%X,-5.12<0

Solution

Xl* — OO, XZ* = OO, f (Xl*’ XZ*) — OO

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee
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Comparison between the Golden Section Search Method and Descent Condition Method (6)

A : Global Optimum

s Function

H

Global and Local minimum point of the Rastrigins
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Comparison between the Golden Section Search Method and Descent Condition Method (6)

9,(X,%,)=-512-x <0

Com|

Minimize:

f(x,X,)=20+X%

—10cos(2r - x,)

+x; —10cos(27 - X,)

Subject to:

9, (X, %) =-5.12-x, <0
g3(X11 Xz) — Xl _512 < 0
0,(X,%,) =%,-5.12<0

In this example, since there are some local minimum design points, the optimal solution to be obtained is changed
depending on the initial design point. So, the calculating the optimal solutions by assuming the initial design point in many
times and comparing the results are needed.

" IteraFion S Iter.ation .Of "¢l Local Optimum Optimum
Initial vale Method defining the dimensional Point Value
QP problem | search method
r=0.0 18 147 (0.0, 0.0) 0.0
Descent r=0.1 18 147 (0.0, 0.0) 0.0
(0.1, 0.1) Condition r=0.5 9 82 (0.0, 0.0) 0.0
r=0.9 39 427 (0.0, 0.0) 0.0
Golden section search method 1 47 (0.0, 0.0) 0.0
r=0.0 16 134 (1.990, 1.990) 7.960
Descent r=0.1 16 134 (1.990, 1.990) 7.960
(2.1, 2.1) Condition r=0.5 7 69| (1.990, 1.990) 7.960
r=0.9 32 358 (1.990, 1.990) 7.960
Golden section search method 1 45]  (1.990, 1.990) 7.960
r=0.0 18 144| (-1.990, -2.985) 12.934
Descent r=0.1 18 144| (-1.990, -2.985) 12.934
(-2.1, -3) Condition r=0.5 9 82| (-1.990, -2.985) 12.934
r=0.9 36 395| (-1.990, -2.985) 12.934
Golden section search method 7 - 229 (-1.990, -2.985) 12.934




Comparison between the Golden Section Search Method and Descent Condition Method

. Descent Condition Golden Section
Step of calculation

method Search method
Iteration number of defining :
the QP problem I Ll
lteration number of one Little Many

dimensional search method

M Comparison between the Golden Section Search Method
and Descent Condition Method

B When we use the one dimensional search method, we have to
calculate the value of the objective function and constraints
repetitively.

W If it takes much time to calculate the value of the objective
function and constraints, the Descent condition method is more
useful.

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee
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8.1 Owner’s Requirements

M Owner’'s Requirements

B Ship’s Type
B Deadweight(DWT)

B Cargo Hold Capacity(V..)
® Cargo Capacity: Cargo Hold Volume / Containers in Hold & on Deck / Car Deck Area.
® Water Ballast Capacity.

B Service Speed (V,)
® Service Speed at Draft with Sea Margin, Engine Power & RPM.

B Dimensional Limitations : Panama canal, Suez canal, Strait of Malacca, St. Lawrence Seaway,
Port limitations.

B Maximum Draft(T,,,)
B Daily Fuel Oil Consumption(DFOC) : Related with ship’s economy.

B Special Requirements
® Ice Class, Air Draft, Bow/Stern Thruster, Special Rudder, Twin Skeg.

B Delivery Day
® Delivery day, with ( )$ delay penalty per day.
® Abt. 21 months from contract.

B The Price of a ship

® Material & Equipment Cost + Construction Cost + Additional Cost + Margin.
Computer Alded Shlp Desngn 1-8 Determination of the Optlmum Main Dimensions of a Sh|p by usmg an Optlmnzatlon Method, FaII 2011, Kyu Yeul Lee

G2 s PNSDAL
Y [ ¥ National Advanced Ship Design Automation Lab.

Soax. Univ. http://asdal.snu.ac.kr

395




Ch.8 Determination of the Optimum
Main Dimensions of a Ship by using
an Optimization Method

8.2 Design Model for the
Determination of the Optimum Main
Dimensions(L,B,D,T,C;)

This section presents the summary of the design Model for the
Determination of the Optimum Main Dimensions. For the detailed
description of the design model, please refer to “OCW, 2012
Innovative Ship Design”

P eI )SDAL
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Design Model for the Determination of the Optimum Main Dimensions(L,B,D,T,C;)

Find(Design variables) L, B, D, CB Td Given(owner's requirement) DWT y VH req’ TS (: Tmax)’ V
length breadth depth block design deadweight Required cargo  Scantling ship
coefficient draft hold capacity Draft speed

(maximum)

Physical constraint

— Hydrostatic equilibrium(Weight equation) - Equality constraint
L-B-T,-C;:p,, C,=DWT,., +LWT(L,B,D,C;)

a given

=DWT,, . +C, -U'°(B+D)+C,-L-B

given

(L-B-T,-Cy)** V3 --.(2.3)

power

Economical constraints(owner's requirements)

- DFOC(Daily Fuel Oil Consumption)

— Required cargo hold capacity(Volume equation) - Equality constraint .7 . - v propulsion.

Vii g =Cy-L-B-D---(3.2)
- - Delivery date
: It is related with the shipbuilding process.

Regulatory constraint

— Freeboard regulation(1966 ICLL) - Inequality constraint

D>T,+C,, D -(4)

Objective FunCtiOI‘l(Criteria to determine the proper main dimensions)

Building Cost=C, -C,-L"*(B+D)+C,,-C,-L-B+C,,, -C_., - (L-B-T,-C;)**-V?

power

Computer Alded Ship Desngn 1-8 Determination of the Optlmum Main Dimensions of a Sh|p by usmg an Optlmnzatlon Method, Fall 2011, Kyu Yeul Lee
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9.1. WHAT IS THE LIQUEFACTION CYCLE OF A
LNG FPSO?

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee
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1. What is the Liquefaction Cycle of a LNG FPSO?
Concept of a LNG FPSO(FIoating Production Storage Offloading)

Production of the LNG by onshore facility

ProductionT E['mimal—i

Natural gas on the offshore
production site is transported
PLATE ORM by the pipe line to the onshore
LNG plant where the NG is
liquefied to the LNG.

LIQUEFACTION

el ]

FROCESS FLANT

EXPORT

FIFELINE . - SUBSEASY STEM

The LNG FPSO is a floating vessel having the production facility, storage tanks, offloading system
for the LNG, and turret system.

Production of the LNG on the LNG FPSO

B tiqurrsction The natural gas is liquefied

;g\, direct on the LNG FPSO.

EXPORT :1 RO CEiE PLANT - Onshore LNG plant and
transport pipeline are not
needed

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee



1. What is the Liquefaction Cycle of the LNG FPSO?
[Article] Shell decides to move forward with groundbreaking LNG FPSO

Shell, the world’s largest oil company,
is now ready to start construction of
what will be the world’s first LNG
FPSO, in a ship yard, Samsung heavy
industry, in South Korea.

LNG FPSO cools down the
temperature of the natural gas(NG)
from 27° Cto -162° C

to shrink in volume by 600 times.

The liquefaction process system The World’s First LNG FPSO
for LNG is most iImportant system Reference) [Article]Yonhapnews, SHELL DECIDES TO MOVE FORWARD WITH
of the LNG FPSO. GROUNDBREAKING FLOATING LNG, 2011. 5. 20
1) MTPA: Million Ton per Annual 402
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1. What is a LNG(Liquefied Natural Gas) '+ NG(Natural Gas): Main component is methane(CH4). |
. . . i+ LPG(Liquefied Petroleum Gas): Main components are
FPSO(Floating Production Storage Off-loading) ? | propane(C3H8) and butane(CAF10)
1 * NGL(Natural Gas Liquids): Main components are ethane(C2H6),
[ ] [ ] 1
onfiguration of a LNG FP = .

Condensate: Main components are Pentane(C5H12) and
Hexane(C6H14). It exists in the liquid phase at 1 atm and 20°C, so

propane(C3H8) and butane(C4H10). It exists in the gas phase at 1
o T . i called oil.
LNG FPS Hull — Separation process L

atm and 20°C. That is, NGL = LPG + ethane(C2H6)
20%of INGFPSO | S reF T e T

20% of Process system Fractionation process system

. -Pretreatment Process (Separates the NGL into the ethane, propane and
:a’\;:‘t?:;:nu:::rc;:: -Topside PFOEESS SySt.em_ 10% of Process system butane by compressing the NGL)
distribution) 70% of LNG 70% of Topside . _ ‘
FPSO —Fractionation Process Flare Tower

\

15% of Process system

Utility system
~Turret 30% of Topside '—Liquefaction Process
10% of LNG 55% of Process system

EPSO (27% of LNG FPSO) _
Liguefaction process syste
(Separates the gas components into the NGL
and natural gas(NG) and liquefies NG) >

__________________________

1
For the compactness of the topside !
process systems, the pretreatment :
1
1
1

and liquefaction process systems are
arranged to cross each other.

.

Utility system . ‘
(Gas turbine, etc.) e . v \
I Separation process system

Turret

(mooring)

\ ’ (separates water, condensate(liquid) and gas

components(NGL+NG) using the difference of density)
LiVing Quarter Pretreatment process system
water and mercury )

(Removes the impurities such as CO,, H,S,

= Production: LNG(3.6MTPA) - ® The liquefaction process system for LNG is most important.

*MTPA: million ton per annual

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditionsre&Fefie HGderatisniereJEEDf RIEPENTS MO FRAARD INITH AR QUM PBREAKING FLOATING LNG, 2011. 5. 20



1. What is the Liquefaction Cycle of the LNG FPSO?
Topside Process Systems of LNG FPSO (1/3)

NG(Natural Gas): Main component is methane(CH4).
LPG(Liquefied Petroleum Gas): Main components are
propane(C3H8) and butane(C4H10).

NGL(Natural Gas Liquids): Main components are ethane(C2H6),

atm and 20°C. That is, NGL = LPG + ethane(C2H6)
Condensate: Main components are Pentane(C5H12) and

Hexane(C6H14). It exists in the liquid phase at 1 atm and 20°C, so

. 1
1. Separation process system I called oil.

|
|
|
|
l
|
propane(C3H8) and butane(C4H10). It exists in the gas phase at 1 |
|
|
|
|
|
|
1

1-1. Slug Catcher: Stabilizing Slug Flow from gas well . condensate + NGL+ NG

1-2. Gas/Liquid Separator: Separating water, condensate(liquid) and gas components(NGL+NG)
using the difference of density

Gas/Liquid separator, separating the gas components from the condensate again, returning it to the gas
flow and storing the left condensate in the condensate tank

1
i For the compactness of the topside process |
1 systems, the pretreatment process system and |
' liquefaction process system are arranged to |
| cross each other. '

=== : condensate(C5~C6)
1-3. Stabilizer: Since a part of gas components is not separated from the condensate completely in the == NGL + NG

Separation process system

Well

Gas Well
(500~1,000m)

process system

1.

Separation process
system

1-1. Slug Catcher

1-2. Gas/Liquid
Separator

2. Pretreatment Ql;u)_l

C1~Cé Gas(C1~C4|

1-3. Stabilizer

Pretreatment process system

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee
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NG(Natural Gas): Main component is methane(CH4).
LPG(Liquefied Petroleum Gas): Main components are
propane(C3H8) and butane(C4H10).

NGL(Natural Gas Liquids): Main components are ethane(C2H6),
propane(C3H8) and butane(C4H10). It exists in the gas phase at 1
atm and 20°C. That is, NGL = LPG + ethane(C2H6)
Condensate: Main components are Pentane(C5H12) and
Hexane(C6H14). It exists in the liquid phase at 1 atm and 20°C, so

1. What is the Liquefaction Cycle of the LNG FPSO?
Topside Process Systems of LNG FPSO (2/3)

2. Pretreatment process system i

2-1. Acid Gas Removal System: Removing the acid gases(H,S, CO,) which are corrosive to
materials and toxic to human being

2-2. Dehydrate System: Removing the water which can forms the ice
2-3. Mercury Removal System: Removing the mercury which can damage the
equipment and pipes
2-4. CO, Compression System: Re-injecting the CO, removed from the gas
into the CO, well

*CO, well: To prevent the global warming, CO, is stored in the CO, well
which is separated from the gas well.

Liguefaction process syste

(500~1,000m)

called oil.

: condensate + NGL+ NG
: condensate(C5~C6)

—
=P : NGL + NG
: CO,

Separation process system

Well

1.

Separation process
system

Gas Well

2. Pretreatrient process

sygfem

2-1. Acid Gas
Removal System

v

CO, Well

TN\

( co,well

Pretreatment
process system

2-4. CO,

2-2. Dehydrate
System

Compression
System

v

2-3. Mercury Removal
System

N g
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NG(Natural Gas): Main component is methane(CH4).
LPG(Liquefied Petroleum Gas): Main components are

1. What is the Liquefaction Cycle of the LNG FPSO? LPGiiquafied Putrcoutn Gas: s
Topside Process Systems of LNG FPSO (3/3) e Ry S A

atm and 20°C. That is, NGL = LPG + ethane(C2H6)
Condensate: Main components are Pentane(C5H12) and

3. Fractionation process SyStem(—E—.ﬁ. Hexane(C6H14). It exists in the liquid phase at 1 atm and 20°C, so

3.1 Ethane Distillation System: Separating NGL into the ethane and LPG and using it as the refrigerant in the i caledoil.
liquefaction system. Some of LPG is stored in the LPG tank and the rest goes to Propane Distillation system
3.2 Propane Distillation System: Separating LPG into the propane(C3) and butane(C4) by compressing them which : condensate + NGL+ NG

are used as the refrigerant in the liquefaction system

4. Liquefaction process system
4-1. Natural Gas Liquids(NGL) Extraction System: Separating the NGL from the gas

Fractionation process system == :condensate(C5~C6)

: NG composition for maximizing the
amount of methane and satisfying the
required the heating value of NG

=P : NGL + NG ", Natural gas composition: |

compom?nts(.NGL+NG') in the pretreai_:ment .process system by precot_)llng _ . CO ' Components Natural gas(mol %) !

4-2. Main Liquefaction System : Liquefying the natural gas by using the refrigerant . 2 ' !

4-3. End Flash system: Reducing the pressure of the LNG(-161.5 C°, 60 bar) to the > . ' Nitrogen 6.0 !

atmospheric pressure (1~2 bar) : NGL(C2~C4) ' Methane 83.2 i

. I |

Liguefaction process system =P : LPG(C3~C4) ! Ethane 7.1 !

*C2(ethane) tank, C3(propane) tank and C4(butane) =P : | NG(C1) i Propane 2.25 i
tank: Storage tanks of the refrigerant used in the ! ; I
. . 1 i-Butane 0.40 1
liquefaction process I i
: n-Butane 0.60 :

. : i-Pentane 0.12 :

Separation | :

n-Pentane 0.33 :

1

1

1

1

1

1

1. Separation process
system
Gas Well \ 4
(500~1,000m) 2. Pretreatment process
system
V4
3. Fractionation 4. Liquefaction Mcess system
(C2) | process system 4-1. Natural Gas Liquids(NGL)
€2 Tanks 3.1 Ethane ‘// Extraction System
LPG Tank Distillation System
(€2-C4) I A 2 4-2. Main Liquefaction
(C3) 3.2 Propane S
C3 Tanks Il Distillation System ystem
/\ Pretreatment ¢ . 4
( CO,Well process system Ca Tanks |'(cay LNG Tank P> 4-3. End Flash system
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1. What is the Liquefaction Cycle of the LNG FPSO?
Major Considerations for the Selection of the Liquefaction Cycle for Offshore

AEEIication

<Exploration and Production
of the Natural Gas>

<LNG FPSO>

> Reliability
= All major oil companies required that liquefaction cycles shall have reliability based on

the results from previous onshore projects.

» Dual Mixed Refrigerant(DMR) cycle was verified from the SAKHALIN onshore
liquefaction cycle in 2005.

> SAFETY

» Safety studies : HAZard and Operability(HAZOP), HAZard Identification (HAZID), Failure
Modes and Effects Analysis(FMEA), Fault Tree Analysis(FTA), Event Tree Analysis (ETA),

CFD Exhausts Dispersion Study — Helideck Study Report, Dropped Object Study ,
Explosion Risk Analysis, Failure, etc.

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee




1. What is the Liquefaction Cycle of the LNG FPSO?
Major Considerations for the Selection of the Liquefaction Cycle for Offshore

AEEIication

<L|quefact|on process system> <Exploration and Production
of the Natural Gas>

<LNG FPSO>

> Sh|p Motion Effect

If the LNG FPSO is inclined more than 1.5 degrees, the capacity of LNG production can be reduced by
10%.

* Therefore, the liquefaction cycle in the LNG FPSO has to be designed by considering compactness,
mechanical damping devices, internal turret system, and dynamic positioning system.

» COMPACTNESS

* Available area for the liquefaction cycle of offshore application is smaller than that of onshore plant.

» By determining the optimal operating conditions and doing the optimal synthesis of the liquefaction
cycle, the required power for the compressors can be reduced which will result in the reduction of the
compressor size and the flow rate of the refrigerant. Thus, the overall sizes of the liquefaction cycle
including the pipe diameter, equipment and instrument can be reduced.

» Therefore, the compactness can be achieved by optimization studies such as determination of the
optimal operating condition or optimal synthesis of the liquefaction cycle.

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee



9.2. PROCESS OF THE REFRIGERATOR
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Introduction to the Cooling System for Refrigerator (1/2)

. I [
° f In compressor, low-pressure fitt
Re rl g e ra to r [ vapor becomes high-pressure
vapor !
low-pressure’ | / high-pressure - — i
Evaporator y,p0r vapor \

v Refrigerant @ Work(n) |/ / R
-Boiling point below 0 ° C Trefrigerant=-20 °C v\ @ Trefrigerant = 47.7 °C T
at low pressure Prefigerant=1.34 bar (EEiiinistass IRERIIP figeram=10.17 bar '

To main the temperature
(-18 °C) in the
refrigerated spaced

To cool the refrigerant

FIGURE 21.19 Condenser coils of a refrigerator.

Heat transfer to
ambient air(Qy)

Heat transfer from
refrigerated spaced(Q,)

While passing through
evaporator,

low pressure liquid and vapor
becomes low-pressure vapor.

TRefrigerant =-20 °C

While passing through condenser,
high pressure vapor becomes
high-pressure liquid.

TRefrigeram =40 °C
Prefrigerant=1o-17 bar

Prefrigerant=1.34 bar low-pressure xpansion high-pressure
Liquid and vapor// valve hiquid v REfrigera Nt(the working substance in the refrigerator)
While passing through - .Boiling point near the room temperature at
expansion valve, high pressure

high-pressure liquid becomes
low-pressure liquid and vapor.

v Refrigerator :heat engine that operates backward to extract heat from a low-temperature reservoir and transfer it to a high-
temperature reservoir. Because the natural tendency of heat is to flow a hot region to a cold one, energy must be provided to a
refrigerator to reverse the flow, and this energy adds to the heat exhausted by the refrigerator.

v" Refrigeration system process
- ®2>®@ : The compressor, usually driven by an electric motor brings the refrigerant to a high pressure, which raises its temperature as well.
- @2>® : The hot refrigerant passes through the condenser corresponded with the sea water cooler in the liquefaction cycle, an array of thin
tubes that give off heat from the refrigerant to the atmosphere. The condenser is on the back of most house hold refrigerators. As it cools, the
refrigerant becomes a liquid under high pressure.
- ®2>® : The liquid refrigerant goes into the expansion valve, from which it emerges at a lower pressure and temperature.

- @>® : In the evaporator corresponded with the heat exchanger in the liquefaction cycle, the cool liquid refrigerant absorbs heat from the

goes back to the compressor to start another cycle
Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee




9.2.
9.2.1 EQUATION OF STATE
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Equation of State for an Ideal Gas

Equation of state

: Any equation that relates the pressure(P), temperature(T) and

specific volume(v) of a substance

Ideal gas state: The condition that

1) the volume of the molecules is negligible compared with the

total volume of the gas

2) the force that binds the molecules to each other is zero.

Equation of state for an ideal gas

P.v=R-T

P : pressure
T :temperature

V : specific volume(the volume that the molecules can
move = the volume of the box)

R : gas constant

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee




Cubic Equations of State for Liquids and Vapors

Ideal gas state: The condition that

1) the volume of the molecules is negligible compared with the total !
volume of the gas i

2) the force that binds the molecules to each other is zero.

P : pressure
T : temperature L

V : specific volume(the volume that the molecules can move .
= the volume of the box)

In case of the liquids and vapors,

1) the volume of the molecules is not negligible
compared with the total volume of the gas

- The specific volume(v) has to be decreased.

2) the force that binds the molecules to each
other is not zero.

- The pressure(P) has to be modified.
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Note: Summary of the History of the Cubic *EoS: Equation of State
Equations of State for Liquids and Vapors

To improve the equation of state for the liquids and vapors, the equation of state for
an ideal gas is modified by using the experiment and experience.
Mo == = = = = = = = - == - === === === === = = 1

(1) Ideal gas EoS* 11(2) van der Waals EoS(1873) (3) Redlich-Kwong EoS(1949) i
(1802) I I
l a a(T) _ ]
_ 2 lv_h) = @) |P+—————|(v—-b)=RT
(1) Pv=RT ﬁ)l 2) (P+V2j(v b)=RT |$ ( VD) (v-b) :
2 T2 . -U
1| a2 R LRT o(T) = 2:42748-(T/T,) 2-R2-TC2,b:O.08664-R-TC |
| 64 P 8 P P P :
N - ;
(4) Soave-Redlich-Kwong EoS(1972) (5) Peng-Robinson EoS(1976) I
| 9 9 l
[
a(T a(l :
I 4) (P+Lj(v—b):RT ) | P+ (T) (v—=b)=RT |
|:> V- (v+b) 'f? (V+(1=~/2)-b)-(v+(1+~/2)-b) :
: a(T) = 242748 e (L/ T;o)-R*-T a(T) = 245724 0 (T /T, ) - R* T |
¢ P [
I | o (T /T 0) = oo (T /T, 0) = C |
2 2P )
: [1+(0.480+1.574- ©-0.176- ") - (1- (T /T,)"* ] [1+(0.37464+1.54226- 0026992 ) - (L (T /T,)** | I
~0.08664-R-T, 0.07780-R-T, |
| |b=—T e b=
R P |
- ]
T: temperature[ K] Tc: critical temperature[K] R: gas constant(=8.314[m3Pa/(mol-K)]
P: pressure{Pa] P! critical pressure{Pa]
V. molar volume[m3/mol] . acentric factor
414
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Note: History of the Cubic *EoS: Equation of State
Equations of State for Liquids and Vapors(1)

To improve the equation of state for the liquids and vapors, the equation of state for
an ideal gas is modified by using the experiment and experience.

(1) Ideal gas EoS* (2) van der Waals EoS(1873)
(1802)
a
1) Pv=RT @ |P+—=|(v-b)=RT
) [ v j( )
L 24 RTE LR
64 P ' 8 P

(1) Ideal gas equation > (2) van der Waals(vdW) Eos

@ Considering the attractive forces between molecules

: The pressure depends on both the frequency of collisions with the walls and the
force of each collision. Because both the frequency and the force of the collisions are
reduced by the attractive forces, the pressure(P) is reduced in proportion to the
square of the concentration(a/v?, a is a positive constant characteristic of each gas).

@ Considering the volume of the molecules
: The volume that the molecules can move(molar volume, V) is decreased by the
volume of the molecules(b)

T: temperature[ K] Tc: critical temperature[K] R: gas constant(=8.314[m3Pa/(mol-K)]
P: pressure{Pa] P! critical pressure{Pa]

V: molar volume[m?3mol] @' acentric factor o
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Note: History of the Cubic *EoS: Equation of State

Equations of State for Liquids and Vapors(2)

To improve the equation of state for the liquids and vapors, the equation of state for
an ideal gas is modified by using the experiment and experience.

(1) Ideal gas EoS* (2) van der Waals EoS(1873) (3) Redlich-Kwong EoS(1949)
(1802)
a(T)
a _
_ 2 lv_h) = @) |P+—————|(v—-b)=RT
(1) Pv=RT |$ (2) (P+V2j(v b)=RT |$ [ v-(v+b)]( )
24 R%*.T? 1 R-T . V2 np2 T2 .R.
A RTS 1R o(T) = 042748-(T/T)™"-R*T7 ) 0.08664-R-T,
64 P 8 P P, P
(2) van der Waals(vdW) EoS > (3) Redlich-Kwong(RK) EoS
@ Modify the pressure reduction due to the attractive
forces
: The fact that the pressure reduction depends on the
temperature(T)(inverse proportional to the T2) and
taking v(v+b) instead of V2 to calculate the pressure
reduction is more accurate is proved by the experiment.
T: temperature[ K] Tc: critical temperature[K] R: gas constant(=8.314[m3Pa/(mol-K)]
P: pressure{Pa] P! critical pressure{Pa]
V. molar volume[m3/mol] o: acentric factor
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Note: History of the Cubic *EoS: Equation of State

Equations of State for Liquids and Vapors(3)

To improve the equation of state for the liquids and vapors, the equation of state for
an ideal gas is modified by using the experiment and experience.

(1) Ideal gas EoS* (2) van der Waals EoS(1873) (3) Redlich-Kwong EoS(1949)
(1802)

T
1) Pv=RT |$ (2) (P+\%j(v—b)=RT |$ (3) [P—F%](V—b):RT

24 R*.T? 1 R-T . V2 Rp2.T72 ‘R.
a=2". ¢ p==. c a(_I_):0.42748 (T/T,) R°-T, | b:O.08664 R-T,
64 P 8 P P P
- This equations are exact for the simple i
(4) Soave-Redlich-Kwong EoS(1972) fluid such as argon and methane.
» The force between the molecules , H
a(T) is acting on the center of that. o
4 | P+—"— (V — b) =RT > The shape of the molecules is ” JH
|$ V- (V + b) sphere <methane>
a(T)= 0.42748 - o, (T /T, ) -R* -T2 (3) Redlich-Kwong(RK) EoS - (4) Soave-Redlich-Kwong EoS
P. . . .
g (T 1T 20) = @ Modify the pressure reduction due to the attractive
i - forces
[1+(0480+1.574-~0.176- ") - (1— (T /T,)" | : The pressure reduction depending on the
,_ 0-08664-R-T, temperature(T) is modified by introducing the acentric
- P, factor(w) for general fluid including the simple fluid.
T: temperature[ K] Tc: critical temperature[K] R: gas constant(=8.314[m3Pa/(mol-K)]
P: pressure{Pa] P! critical pressure{Pa]
V: molar volume[m?3mol] @' acentric factor o
a7
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*EoS: Equation of State

Note: History of the Cubic
Equations of State for Liquids and Vapors(4)
To improve the equation of state for the liquids and vapors, the equation of state for

an ideal gas is modified by using the experiment and experience.
(3) Redlich-Kwong EoS(1949)

(1) Ideal gas EoS* (2) van der Waals EoS(1873)
(1802)

) Pv=RT |D)|e P+ |(v—b)=RT ) @ [P+ _|_b)=RT

1) Pv= (2) V2 = v-(v+b)

24 R%*.T? 1 R-T . V2 p? T2 .R.
g A RIS LR a(ry = 042748 (T /T )™ R*T7 | 0.08664 R T,
64 P 8 P P P
(4) Soave-Redlich-Kwong EoS(1972) (5) Peng-Robinson EoS(1976)
a(T a(T
4) P+L (v—b)=RT ) | P+ (T) (v—b)=RT
|f‘> v-(v+Db) g‘) (V+(1—+/2)-b)-(v+(1+~/2)-b)
. 2 2
a(T) = 242748 G (T T0) R T, a(T) = 245724 @ (T [T;;0) -R* T
R P
OCSRK(T/TC;O)): aPR(T/TC;a)): c
2
[1+(0.480+1574-©-0.176- &) - (L (T / T,)"" | [1+(0.37464+1.54226 - ©—0.26992 - ) - (L— (T /T, |
b 0.08664-R-T, b 0.07780-R-T,
PC - PC
T: temperature] K] Te: critical temperature[K] (4) Soave-Redlich-Kwong EoS - (5) Peng-Robinson EoS
\F/).' pressuretPal Pe: critical pressure{Pa] @ Modify the pressure reduction due to the attractive forces
: molar volume[m3/mol]  : acentric factor . . .
: The pressure reduction depending on the molar volume(v) is
modified by (v+(@1-+2)-b)-(v+(@1++2)-b) instead of v(v+b).

R: gas constant(=8.314[m3Pa/(mol-K)]
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Note: General Form of
the Cubic Equations of State for Liquids and Vapors

The van der Waals(vdW), Redlich-Kwong(RK), Soave-Redlich-Kwong(SRK) and Peng-
Robinson(PR) equation of state are represented as the following cubic equations form.

a(T) vob)=rT o poRT a(T)

_|_ — —_
(V+ &b)(v+ ob) v—b (v+&b)(v+ob)
2 2
a(T )RT RT
a(T) = ‘P ( r) ¢ , b — Q ¢
P P,

EoS a(T)) o € Q P 7.

vdW(1873) | 0 0 1/8 24/64 3/8

RK(1949) 703 1 0 0.08664 | 0.42748 1/3

SRK(1972) | agpp(T., @) 1 0 0.08664 | 0.42748 1/3

PR(1976) | aw(l, ®) | 1+ \/E 1—~/2 | 0.07780 | 0.45724 | 0.30740

Grong (T, @) = [L+ (0.480 +1.57400— 0.1760°)1-T,%° ]}

G (T 0) = [L+(0.37464+1.54226 00— 0.26992002) 1T, |f T =TIT,
T: temperature[ K] Te: critical temperature[K]
P: pressure{Pa] Pc: critical pressure{Pa]
V. molar volume[m¥mol]  ¢: acentric factor

R: gas constant(=8.314[m3Pa/(mol-K)]
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Note: Cubic Equations of State for Liquids and Vapors
- Compressible Factor for the Ideal Gas

The compressible factor(Z):

R : gas constant(=8.314 [m3Pa/((mol K)])
7 = P-v B P-v P : pressure[Pa]
= ig . T :temperature[K]
(P . V) R-T V : molar volume[m3/mol]

« If P—>0, v—0. So, the volume of the molecules is not negligible
compared with the total volume of the gas and the force that binds the
molecules to each other is not zero(Ideal gas state).

P.v—>R-T
Z =1
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Note: Cubic Equations of State for Liquids and Vapors
- Compressible Factor for the Liquids and Vapors Obtained by the Cubic Equations of State

The compressible factor(Z):

R : gas constant(=8.314 [m3Pa/((mol K)])
7 = P-v B P-v P : pressure[Pa]
= ig . T :temperature[K]
(P . V) R-T V : molar volume[m3/mol]

« By using the cubic equations of state for the liquids and vapors, we
can obtain the compressible factor(zZ) of the liquids and vapors.

RT a(T)
v-b (V+e&-b)(v+o-b)

P.v v R.Tv a(T)

v-b R-T (v+g b)(v+o-b)
Vv a(T)

“v-b R-T (v+g b)(v+o-b)
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Mathematical Model of the Refrigerator — Equations of state

Equations of state: Any equation that relates the pressure(P),

temperature(T) and specific volume(V) of a substance.

P1V1 = RTl
Pyv, =RT,

[Equation of state for an ideal gas]
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To improve the equation of state for the liquids and
vapors, the equation of state for an ideal gas is
modified by using the experiment and experience.

Example) Soave, Redlich, Kwong(SRK) equation

RT b_a(T) v—b

V=—+
P P (v—gb)(v—ab)

_ﬂ _a(Tl) Vl_b

h="p TPy (v, —b)(v, —ab)
_RT, . a(T,) v,,—b

Yo =7p +b Py (Vay—&b)(v,, —ob)
_RT, . a(m) v,, —b

Y =T T L b (v, —ob)

<Inlet>

Example) Ammonia:
@ = 0.253, Pc=112.80 (bar), Tc=405.7 (K)

r <0_ut|et>
Efff?fi?i"ww—' BT,
< q.
Given)] |
Q, =20[kwW]
[Find]

Pi T Vi Tg v, Vau Vo v_f,w, M, q,,qy (i=1,2,3,4)
Minimize(m-w)

1 |
1 |
1 |
1 |
1 |
1 |
| |
1 |
i Operating Conditions [20]: |
|

1 |
1 |
| |
1 |
| Refrigerant: Ammonia |
! P: pressure [bar] |
! T: temperature [K] |
1 v: specific volume [m3/kg] |
i T temperature of the refrigerant in the |
| compressor at isentropic process [K] |
! v specific volume of the refrigerant in the |
' compressor at isentropic process [m3/kg] |
1 v_f: vapor fraction |
| q,: specific heat transfer from the refrigerant
| to the atmosphere [kJ/kg] |
1 q.: specific heat transfer from the refrigerated |
| space to the refrigerant [kJ/kg] |
! M: mass flow rate of the refrigerant [kg/s] |
|

|

S: specific entropy

2T2

a(T):y/a(T')R TS
PC

w =0.42748 for SRK equation

R: gas constant (=8.314 Jmotik)
Pc: critical pressure of the refrigerant

Tc: critical temperature of the refrigerant
0 =0.08664 for SRK equation,
RT, .
b=Q—5 £=0 for SRK equation
Cc o =1 for SRK equation




9.2.
9.2.2 COMPRESSION
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2.2 Process of the Refrigerator — Compression
Pressure(P)-Specific Volume(v) Diagram

Pa
Assumption:
P=10.17 bar - [ ___\_. @ 1. There is not sufficient time to transfer
s much heat from the refrigerant and
ubcooled . .
Liquid the compressor is typically well
o insulated. “Adiabatic process”
Liquid Vapor * Adiabatic process: Process for which there is no heat transfer
between system and it surroundings.
P=1.34 bar -------4f-------------mmmmoom oo
Saturated liquid line Saturated vapor line = : Adiabatic compression
; P A == Isothermal process
Purpose, Assumption, Result va _ Constant (y = constant > 1)
Process Temperature | Pressure
Compressor | 122 | Adiabatic t t
compression Pv=RT
iWhy is the temperature of the refrigerant raised Pv=RT
after the compressor? (T=T
. . . at |1 =
Because of the adiabatic compression, the !
temperature of the refrigerant is increased T,<T,
form T, to T,. >
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Note: P-V Graph of the Adiabatic Process (1/3)

-
’f

* According to the first law for the closed system,

A '
Uu=q+w
. . P, f=mm- == PV =Constant
1) In the adiabatic process, =0 . v "
1 2
2) In the first law, the sign of w acting u: specific internal energy
toward the System is positive. g- heat tranSfer from the Surrounding to
the system
N2 w: work acting toward the system
C/ : constant volume heat-capacity for
AU = —-W ideal gas
T: temperature
du —_ —dW P: pressure

v: specific volume

1) If the state of the substance in the system is an ideal gas state,

u=u", du' =C2dT

0 2) dw=P-dv
=—P-dv

. . P-v Vv P
1) Equation of state for ideal gas P.v=R.T>T=—— > dT =—dP+—dv
q 9 R R R

@w

(R : gas constant)

Cie %dp+§m/=-an
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Note: P-V Graph of the Adiabatic Process (2/3)

—-dv

Im13

P

_______________________________________________

' u: specific internal energy

i g: heat transfer from the surrounding to
' the system

. w: work acting toward the system

1 C/: constant volume heat-capacity for

, ideal gas

| T: temperature

. P: pressure

' v: specific volume

i R: gas constant

_______________________________________________

R,
_J‘ ot

If the CY is the constant,

). v
vV

R .dv

R ). v
=—| +1|In2
C\/ ) Vi
—[iig+1\
V,

V

I
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_______________________________________________

u: specific internal energy

g: heat transfer from the surrounding to
the system

w: work acting toward the system

C/ : constant volume heat-capacity for
ideal gas

T: temperature

P: pressure

v: specific volume

R: gas constant

Note: P-V Graph of the Adiabatic Process (3/3)

0|0
N
|
VY
5" o
+
\:/

R

—+1
V [ ig ] P (Isothermal process) [nguj
L Pv=Constant Pv'® /= Constant
I:)1 \Vz

Y,
~

Increase of the temperature
(Adiabatic compression)

p

R R

—ig+1] [—ig+1]
P-v; /=P.v™ /=constant

R 1
@4- = 7(constant) > 1 Pl

Cf) P-V Graph of the Isothermal Process Decrease of the temperature [Cigﬂj
D R.T P2 (Adiabatic expansion) Pv = Constant
. V —_— 3
Vi v V

=Constant
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u: specific internal energy

Note: Specific Enthalpy(h)-(1/2) P: pressure

v: specific volume

1. Definition: P

W flow

h=[Internal energy of the flow]+[Flow work] |

CV

=U+P-v

2. Pressure(P)-Specific Enthalpy(h) diagram v

| .
Cv
|
T=-20 °C  T=40 °C  T=Tc(Critical temperature)
P 4 : : (b) After entry
: reritical_flui
_“Supe critical_fluid FIGURE 4-12
“n.o Critical state Flow work is the energy needed to
- P=P e Gas push a fluid into or out of a control
(Critical pressure Ny volume, and it is equal to Pv.
Liquid A
P=10.17 bar
* Vapor: Vapor can be condensed either by
compression at constant temperature or by
Saturated liquid line cooling at constant pressure.
P=1.34 bar

* Gas: The vapor phase of a substance is
customarily called a gas when it is above the
critical temperature. Gas cannot be condensed
by compression at constant temperature.

i Vapor

Liquid and Vapor

* Supercritical fluid: A single phase at and above

2 ; the critical temperature and pressure
SatLEratedEvapor line" :

=
-
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Note: Specific Enthalpy(h)-(2/2) h=u+P.v

3. Calculation of the specific enthalpy(h) for a pure substance

Many tables of thermodynamics properties does not give values for internal energy.
To allow calculation of enthalpy from the pressure, specific volume and temperature,
the following equation is derived by using the definition(h=u+Pv), equation of state
and experiment.

h _ h IG h R hio: Ideal gas value of the enthalpy
— + hk: Residual enthalpy(correction of the ideal gas state values to the real gas values)

____________________________________________________________________________________________________________________________

h'® =h'® (T)=a+b-T +¢-T?+d -T3+e-T*+f.T°
where

a, b, ¢, d, e and f: constants characteristic of the particular substance
T: temperature

T(daj—a
h® =h® (P,v,T)=RT(Z 1)+ 9T = )In{“a"g}

b (o-¢ Z+¢e-fB
where
CZ(T /TC ' 0)) RZTCZ P: pressure
a=y v: specific volume
R P critical pressure of the substance
Equation «(Tr, o) ol e 0 " T, critical temperature of the substance

Z: compressible factor

SRK | a(,;0) =1+ (0480 +15740-0.0760) (1-(T /7)) | 1 | 0 | 0.08664 | 0.42748

sV v a(T) bP RT,
v-b R-T (V+&-b)(v+o-b) " RT
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- Mathematical Model of the Refrigerator - Calculation of Specific Enthalpy(h) h=u+P-v

« Calculation of the specific enthalpy(h) for a pure substance

Many tables of thermodynamics properties does not give values for internal energy. To allow
calculation of enthalpy from the pressure, specific volume and temperature, the following
equation is derived by using the definition(h=u+Pv), equation of state and experiment.

P[Pa]
v[m?]

h _ h IG h R h'¢: Ideal gas value of the specific enthalpy TIK]
— + hR: Residual specific enthalpy(correction of the ideal gas state values to the real gas values)

h' =h"®(T)=a+b-T+c-T?+d-T°+e-T*+f.T°
Example) Ammonia:

5 where a=-1.8514, b =1.9937, ¢ = -5.3266x10

w =0.253, Pc=112.80 (bar), Tc=405.7 (K)

() =[1+(0480+15740-017607) (1(1,)"*) | | 1| 0 | o0.08664 | 0.42748

a, b, ¢, d, e and f: constants characteristic of the particular substance d = 2.0615x10°6, e = -1.3386x10",
hig[J/g], T: temperature[K] f = 3.0533x1013
___________________________________________________________________________________________________________________________ ]
| da
: T[ L _aq) .
| h® =h®(P,v,T)=RT(Z -1 aT L | 2fas :
: - ( Vs )_ (Z-D+ b (O‘—g) n Zief R: Gas constant (=8.314 J/(mol*K) i
! = 8.314m3Pa(mol*K))
' where * 1 bar = 100kPa !
| T,w)R°T? T RT |
: a(T):Wm Tr:_ Z= v — v . a(T) ﬂ:b_P b=Q c |
| P, T, v-b R.-T (Vv+e-b)(v+o-b) RT P, !
' 1) The values of parameters a, o, ¢, 2, ¥ are depending on the type of the cubic equation of state.  2) The values of o, critical pressure(Pc), i
| For example, the value of the parameters for the Soave-Redlich-Kwong(SRK) equation of state and temperature(Tc) are depending on the;
| are given in the following table. substance. |
E a(T,, ®) ole Q " Example) Ammonia: :

E 3) Since the unit of h'C is J/g and hR is J/mol, h? is devided by molar mass(M, g/mol). 4) Central difference approximation i

| i -a(T- |

! h*[J /g]= M Example) Ammonia (EJ _ a(T+e)-a(T —e) , (e :10—6) |

; Mg /mol] Manmonia = 17.031 (g/mol) a7 2:e !
ey
Reference: Smith, J.M., Introduction to Chemical Engineering Thermodynamics, 7t edition, McGraw-Hill, 2005, pp.199-253 430
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2.2 Process of the Refrigerator — Compression

Pressure(P)-Specific Enthalpy(h) Diagram

low-density high-gansity
gas

compressor

T=-20° C T=40° C

PA
S e :Isentropic curve
Critical state - P
.'. :' . gh-pressure liquid
siis0’ Assumption:
, 1. Adiabatic process
P=10.17 ba 30l 2. The process of the compressor is “reversible”.
$21.8% . . e u . . . ”
T yapor ->Since this process is “Adiabatic and reversible”,
sl g, R . " " °
L the quality of energy “entropy” is not changed
P=1.34 bar 15 E seles s “Isentropic process”.
Saturat ¥ K] VS
liquid J SR :. $=2.00
AN A
}'E .,E".: o < T T T T T T T T T T oo m oo —m—— oo —————-—-- oo
S J i R R i - Enthalpy
aturated vapor fine S iy . h ' h=[Internal energy of the flow]+[Flow work]
L, - : =u+P-v
! : i h : specific enthalpy
Purpose, Assumption, Result : U : internal energy=U(T,P)
Work or heat : P: pressure
Temperature Pressure transfer Enthalpy Entropy i T : temperature
1 ) +W 7 0

According to the first law of thermodynamics (The total quantity of energy is constant)
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Total energy of the
refrigerant entering |+
the compressor

Total energy of the
= refrigerant leaving

the compressor

Total entering energy
as Work in the compressor

h(R.v,.T,)+w=h,(P,V,.T,)




Note: Specific Entropy(s)-(1/2) R

The second law of the thermodynamics : Actual processes occur in
the direction of decreasing quality of energy, “Entropy”.

1. Definition: The quality of energy
d
ds= 1

T
2. Temperature(T)-Specific Entropy(s) diagram

P=Pc
T‘ (Criti¢al pressure) Entropy can be viewed as a measure of molecular
s : disorder, or molecular randomness.
Supercritical fluid Gas As a system becomes more disordered, the positions of
= the molecules become less predictable and the entropy
o7 Critical St‘a‘te‘ ?_10.17 bar increases.
=1C X

(Critical temperature)
o

Saturated Ilquld.
line

T=40 °C| Las®

T=-20 °C

|
|

S

On the T-S diagram, the area under the process curve
represents the heat transfer of the process. s

|
|
|
|
|
|
|
|
|
|
I
|
|
|
1

|

|

I

I 2 I
|Area =J TdS = Q|
| 1

|

1

Saturated
vapor line

> 432
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Note: Specific Entropy(s)-(2/2) ds = 39

3. Calculation of the specific entropy(s) for a pure substance

To allow calculation of entropy from the pressure, specific volume and temperature,
the following equation is derived by using the definition(ds=dq/T), equation of state
and experiment.

_ ~lG R s'9: Ideal gas value of the entropy
S=3 + S sR: Residual entropy(correction of the ideal gas state values to the real gas values)
o tC9 9T P
s9=sY(P,T)=R| —L—-In—
nR T P

where
CM _prg.T+Cc.T2+D.T7: heat capacity of the particular substance(A, B, C, and D are i
R constants characteristic of the particular substance) !

T: temperature, R: gas constant, P: pressure, v: specific volume

R R R [ R R R R R R R R R e 1

T.: critical temperature of the substance
(o— L+e-B| 4 P

Z: compressible factor
a(TIT, o) RT? '

where

a=
v P

c

Equation
of state a(Tr, w) o & Q 4

SRK a(T,:a))=l71+(0.480+1A574(u—0.176wz)(1—(T/TC)D'S)-IZ1 0 | 0.08664 0.42748

sV vV a(m) QRTC _bP
v—b R-T (v+e&-b)(v+o-b) P CRT

da
ESR ZSR(P,V,T)Z R|I’I(Z—ﬂ)+(de 1 )|n|:z +O"ﬁ:| P critical pressure of the substance
| &
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Mathematical Model of the Refrigerator - Calculation of Specific Entropy(s) ds = d_q

« Calculation of the specific entropy(s) for a pure substance
To allow calculation of entropy from the pressure, specific volume and temperature, the following

equation is derived by using the definition(ds=dg/T), equation of state and experiment. P[[Pa]]
v[m3
_ alG R si9: Ideal gas value of the entropy TIK]
S=S +S sR: Residual entropy(correction of the ideal gas state values to the real gas values)
S'¢ = +b-|n(T)+2-c-T+§-d-T2+ﬂ-e To42. f.T4
=9 2 3 4 Example) Ammonia:

a=-1.8514,b =1.9937, ¢ = -5.3266x10*

where d = 2.0615x10°, e = -1.3386x10°°, i

a, b, ¢, d, e and f: coefficients of the ideal gas Enthalpy equation
s'9[J/(g-K)], T: temperature[K]
g : Entropy coefficient (i.e. the Entropy of the ideal gas at T=0 K) = 1.00

f=3.0533x1013

w = 0.253, Pc=112.80 (bar), Tc=405.7 (K)

a(;w)= [l+(0 480+1.5740—0.1760° )( -(T, )05)] 1 0 0.08664 0.42748

* 1 bar = 100kPa

3) Since the unit of s'° is J/(g-K) and h? is J/(mol-K), hR is devided by molar mass(M, g/mol). 4) Central difference approximation

(aa P critical pressure of the substance |
P aT 1 y A T, critical temperature of the substance
sf=s*(P,v,T)=RIn(Z-pB)-RIn| — In b Z: compressible factor l
P, b (o-¢) |[Z+&-pB !

where
a(T,,0)R°T} T VooV a RT, !
a(r):,/,@ T =— z=—"+ Y M) ﬁ:b_P b=Q—< !

P T, v—-b R-T (v+é&-b)(v+o-b) RT P, !

1) The values of parameters a, o, ¢, Q, ¥ are depending on the type of the cubic equation of state. 2) The values of w, critical pressure(Pc), |
For example, the value of the parameters for the Soave-Redlich-Kwong(SRK) equation of state and temperature(Tc) are depending on the |
are given in the following table. substance. i
oT,, ®) ole Q " Example) Ammonia: i

R . i a(T+e)—a(T —e :

S*[3/(g-K)] = s"[J/(mol-K)] Example) Ammclnla da _ ( ) ( ) ’ (e 210—6) |

M [g / mOI] MAmmonia - 17-031 (g/mOI) dT 2e 77777777777777 :

Reference: Smith, JM., Introduction to Chemical Engineering Thermodynamics, 7% edition, McGraw Hill, 2005, pp199-253 ______  TTTTTIITIITTITTIIIIIIIII T ey
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2.2 Process of the Refrigerator — Compression

Temperature(T)-Specific Entropy(s) Diagram

P=10.17 bar

A
T
Critical state

T=47.7 °C
Saturated
liquid line,

Liquid
T=-20 °C

Purpose, Assumption, Result

Assumption:

1. Adiabatic process

2. The process of the compressor is “reversible”.

->Since, this process is “Adiabatic and reversible”,
the quality of energy “entropy” is not changed
“Isentropic process”.

Saturated
vapor line

Temperature Pressure Wc;:';:srf:fat Enthalpy Entropy
7 7 +W ) 0
According to the assumption
Specific entropy of the Specific entropy of the

refrigerant entering

the compressor

=| refrigerant leaving
the compressor

Sl(Pl’Vl’Tl) =3, (Pz Vs ’Tz)

- Entropy
: The quality of energy
s=5"°+sk
7 Ce(T)

=| /—2dT —InE+sR(P,v,T)
o T P,

CLQ (T): heat capacity at constant pressure
Cl
PT(D: A+B-T+C-T?+D-T?

R: gas constant(=8.314 Jmol1K1)

T: temperature
SR(P,T): residual entropy
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2.2 Process of the Refrigerator — Compression

Mathematical Model of the Compressor (1/2)

° Compressgr: bt:ings Fhe vapor refrigerant to a high pressure,
which raises its temperature as well

W
<Inlet> . <Outlet>
Refrigerant . Refrigerant

I:)1’T1’ Vl PZ’TZ’ V2

1. Design variables(Operating Conditions): P, T, v;, P,, T,, V,, W

2. Assumption:

Natural Gas(NG)

Compressor

EVAVAVAVAVAVANE

Liquefied Natural Gas(LNG)
Heat Exchanger

1) There is not sufficient time to transfer much heat from the refrigerant*. “Adiabatic process”

2) The process of the compressor is “reversible”.

> Since, this process is “Adiabatic and reversible”, the quality of energy “entropy” is not changed.

3. Equality constraints
1) The first law of the thermodynamics(Energy conservation)

h(P,v,T,)+w=h,(P,,v,,T,)

Energy of the
refrigerant at
the inlet

Work input to N
the compressor
per mass

Energy of the
refrigerant at
the outlet
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T: temperature

P: pressure

v: specific volume
h: specific enthalpy




2.2 Process of the Refrigerator — Compression

Mathematical Model of the Compressor (2/2)

° Compressgr brings the vapor refrigerant to a high pressure,
which raises its temperature as well

W

<Inlet> " <OQutlet> Valve Compressor
Refrigerant Refrigerant AN

I:)1’T1’ Vl PZ’TZ’ V2

NNNNNN\_
Natural Gas(NG) Liquefied Natural Gas(LNG)

Heat Exchanger

3. Equality constraints

2) The second law of the thermodynamics
(For the adiabatic and reversible process, the quality of energy(entropy) is not changed.)

Sy ( Pl WV ’Tl) =5, ( P2 WV, 1T2) T: temperature
Quality of energy  Quality of energy P Pres§yre
of the refrigerant of the refrigerant V: SpeC‘If.IC volume
at inlet at outlet S: specific entropy
a(T):Wa(Tr)RZTCZ
. . . PC
3) Equations of state(Soave, Redlich, Kwong(SRK) equation) w =0.42748 for SRK equation
RT. a (Tl) Vv, —b - R: gas constant (=8.314 Jmol-1K-1)
V= ~+b- . Equation Of_State P: critical pressure of the refrigerant
P RL (Vl - gb) (Vl - Gb) : Any equation that relates the T critical temperature of the refrigerant
pressure(P), temperature(T) and RT
_ specific volume(V) of a substance. b=Q—¢
Vv —ﬂ_,_b_a(TZ) Vv, b P V) P
2 P P2 (V2 — gb) (V2 — O'b) Example) Equation of state for an ideal gas Q=0.08664 for SRK equation
Pv=RT &£=0 for SRK equation
w@wmwmﬂ for SRK equation

., Seoul D A L i
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9.2.
9.2.3 CONDENSATION
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2.3 Process of the Refrigerator - Condensation
Pressure(P)-Specific Volume(v) Diagram

P=10.17 bar

P=1.34 bar

Vr

Purpose, Assumption, Result
Process Temperature | Pressure
Condenser | 2->3 | Isobaric ' 0

heat reinjection

Assumption:
There is no pressure drop of the refrigerant
through the condenser. “Isobaric process”

(i; Why do we assume the isobaric process in the condenser?

1. Carnot cycle is the most efficient and ideal refrigeration cycle and condenses the refrigerant

isothermally(Isothermal process).

2. However, the isothermal heat transfer from the refrigerant in a single phase is not easy to
accomplish in practice.

3. Since maintaining a constant pressure in the condenser means maintain ng a constant
temperature when the refrlgerant is in a two-phase(liquid and vapor), the isothermal process is

replaced by the isobaric process in the condenser
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2.3 Process of the Refrigerator - Condensation

Pressure(P)-Specific Enthalpy(h) Diagram

Total energy of the
refrigerant entering |—
the condenser

Total energy of the
=| refrigerant leaving

{Total leaving energy }
the condenser

as Heat in the condenser

hz(Pz’Vz ’TZ)_qH = h3(P3’V3’T3)

h : specific enthalpy

U : internal energy=U(T,P)
P : pressure

T: temperature

- The first law of the thermodynamics:

p4 T=-205° C T=40 °C
Critical state
b-1017 b Assumption:
S ) There is no pressure drop of the refrigerant
H . ! u . "
Liquid : Vapor through the condenser. “Isobaric process

H El |

P=1.34 bar LY A '

Saturated FR :
liquid li Pl |
e g: i - Enthalpy |
: i h=[Internal energy of the flow]+[Flow work] |
! | | =U+P-v |
Saturatpd vapor line i | = |
' il > ! b |
T T » 1 Wiow ™ | cv |
h,=h,-q, K 'h : it |
3 2 qH : _qH ! 2 i —-—]1 |
1 (a) Before entry :
Purpose, Assumption, Result i R S |
1 | SRR |
Work or heat : T |
Temperature Pressure transfer Enthalpy Entropy : ‘” N |
- : (b) After entry :
l 0 Q'H i l ' FIGURE 4-12 I
1 Fl(]»w w]nrkl is the energy needed to :
. ° . : push a fluid into or out of a control :
According to the first law of thermodynamics : " el and a0 o :
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2.3 Process of the Refrigerator - Condensation

Temperature(T)-Specific Entropy(s) Diagram (1/2)

P=10.17 bar

Criﬁs\tate
T=47.7 °C

Saturated
liquidine
T=40 °C 3

T=-20 °C

Assumption:
There is no pressure drop of the refrigerant
through the condenser. “Isobaric process”

- Entropy :

______________________________

. Saturated vapor:
line

v

Purpose, Assumption, Result

Work or heat
transfer

! 0 -Qy v l

2 — 2' Decrease of the temperature of the refrigerant:
Because the heat of refrigerant is taken off to the atmosphere.

Temperature Pressure Enthalpy Entropy

2 — 2' Decrease of the entropy of the refrigerant:
Entropy can be viewed as a measure of molecular disorder, or molecular randomness.
The molecular disorder of the substance is decreased when the temperature of that is decreased.

441
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2.3 Process of the Refrigerator - Condensation

Temperature(T)-Specific Entropy(s) Diagram (2/2)

low-d ity high-densif
e i

compressor

'z
T
Criﬁs\tate P=10.17 bar e
T=47.7 °C .
Saturated Assumption:
liquid-lip >¢ There is no pressure drop of the refrigerant
T=40 °C < through the condenser. “Isobaric process”
- A . Emmmmm s
L d * - V 1
oe*” | : The quality of ener
and P=1.34 bar Ay e L
vapor o
T=-20 °C
‘$’. @ @ LV'Yu 1 ],
+* Saturated vapor. &7
Iine MPRESSED [< ‘?A/ 2,

REGION /], SUPERHEATED
VAPOR

S g REGION
Purpose, Assumption, Result : LIQUID VAR
Temperature Pressure Wc)t:I;:Srf:fat Enthalpy Entropy
! 0 -Qy | !

P-v-T surface

2 ' — 3 Constant temperature of the refrigerant:

v-T Diagram

The temperature remains constant during the entire phase-change process if the pressure is held
constant.
2 ' — 3 Decrease of the entropy of the refrigerant:

Entropy can be viewed as a measure of molecular disorder, or molecular randomness.
The molecular of the substance in the vapor phase is more disordered than that in liquid phase.

Therefore, since the liquid part of the refrigerant increases, the entropy of that is decreased.
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2.3 Process of the Refrigerator — Condensation

Mathematical Model of the Sea Water Cooler

e Sea Water(SW) Cooler: takes off the heat from the hot vapor

refrigerant to the sea water

Sea Water Cooler

<Outlet> Valve
Refrigerant

— P, T;, Vv,

<Inlet>
Refrigerant

P, T, vV, —>

Natural Gas(NG)

Compressor

EVAVAVAVAVAVANE

Liquefied Natural Gas(LNG)

Heat Exchanger

1. Design variables(Operating Conditions): P,, T,, v,, P5, T, V3

2. Assumption:

- There is no pressure drop of the refrigerant through the sea water cooler. “Isobaric process”

3. Equality constraints
1) The first law of the thermodynamics(Energy conservation)

hz(Pz’Vz’Tz)_CIH = hs(P3’V3’T3)

Energy of the Energy of the refrigerant
refrigerant at the inlet at the outlet

2) Isobaric process

P, =P,

gy Specific heat transfer from the
refrigerant to sea water(Given)

3) Equations of state(Soave, Redlich, Kwong(SRK) equation)
_ﬂ_}_b_a(n) Va_b
P P, (v;—é&b)(v;—ob)

Vs
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T: temperature
P: pressure
V. specific volume
h: specific enthalpy
oz(T,)RzTC2
PC
w =0.42748 for SRK equation
R: gas constant (=8.314 JmolK)
PC: critical pressure of the refrigerant

a(T)=vy

TC: critical temperature of the refrigerant
RT,

b=Q ¢
P

[}

Q=0.08664 for SRK equation
&£=0 for SRK equation

o =1 for SRK equation




9.2.
9.2.4 EXPANSION
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2.4 Process of the Refrigerator - Expansion
Pressure(P)-Specific Volume(v) Diagram

P 4
P=10.17 bar .
Assumption:
1. There is not sufficient time to transfer much heat from
the refrigerant. “Adiabatic process”
P=1.34 bar
= Adiabatic expansion
V; P A == Isothermal process
Purpose, Assumption, Result PVy — Constant
Process Temperature | Pressure
Expansion 3>4 | Adiabatic
valve expansion ‘ ‘ Pv=RT
T
iWhy is the temperature of the refrigerant Pv=RT
decreased after the expansion valve? (T=T
. . . at | =
Because of the adiabatic expansion, the L
temperature of the refrigerant is decreased T,<T,
from T, to T,. >
Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquef] v
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2.4 Process of the Refrigerator - Expansion

Pressure(P)-Specific Enthalpy(h) Diagram

low-density high-density
gas

compressor

- The first law of the thermodynamics:
h3(P3 V3 ’Ts) =h, (P4 Vg ,T4)

|
446 |
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p4 T=-205° C T=40° C
Critical state
Assumption:
P=10.17 baf 1. There is not sufficient time to transfer much heat from
: the refrigerant. “Adiabatic process”
Liquid : :Vapor
P=1.34 bar : s :

Saturated :
liquid fin TEnthalpy T |
i h=[Internal energy of the flow]+[Flow work] |
! | =u+P-v |
Saturatpd vapor line i = |
! ! P |
h _ h . >h ' Viow =, i cv |
3~ 4 : i i |
1 (a) Before entry :
Purpose, Assumption, Result i e i
1 | SRR |
Work or heat ' Wiiow =~ |
Temperature Pressure Enthalpy Entropy ! ; |
transfer | —h - i
l l O O T : (b) After entry :
' FIGURE 4-12 |
. . . : Flow work is the energy needed to :
According to the first law of thermodynamics | ekl s P ,
Total energy of the Total energy of the h: specific enthalpy |
. . . . 1 U : internal energy=U T,P :
refrigerant entering |=| refrigerant leaving ! p. p:essure oy=Hhe) |
the valve the valve i T : temperature |



2.4 Process of the Refrigerator - Expansion

Temperature(T)-Specific Entropy(s) Diagram

A
-
Criti/cﬂs\tate P:= 10.17 bar
T=47.7 °C
Saturated
liquid-line Natural Phenomena
T=40 °C . By restricting t.he row. of the refrigerant, thg pressure
Liquid Liquid A Vapor of the refrigerant is decreased. “Irreversible process”
. and - Increase the specific entropy of the refrigerant
[o0® vapor
1.34 bar
T=-20 °C .
Assumption:
Saturated vapo 1. There is not sufficient time to transfer much heat from the refrigerant.
line “Adiabatic process”
s .
Purpose, Assumption, Result i- Entl_'l?hpy lity of |
| : The quality of energy !
Temperature Pressure Wc;rrI;::fzfat Enthalpy Entropy R .
l l 0 0 1

3 — 4 Decrease of the temperature of the refrigerant:
When the pressure of the refrigerant is decreased, the boiling temperature of that is also decreased. Since
the boiling temperature is decreased, a part of the liquid refrigerant is evaporated by absorbing the heat
from itself. Therefore, the temperature of the refrigerant is decreased.

3 — 4 Increase of the entropy of the refrigerant:
Entropy can be viewed as a measure of molecular disorder, or molecular randomness.
The molecular disorder of the substance is decreased when the temperature of that is decreased.
The molecular of the substance in the vapor phase is more disordered than that in liquid phase.
Since the increase of the entropy caused by the phase-change is larger than the decrease of that
caused by the decrease of the temperature, the entropy of the refrigerant is increased. | |
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2.4 Process of the Refrigerator - Expansion

Mathematical Model of the Valve

° Valve: decreases the pressure of the liquid refrigerant, which decreases its
temperature as well

a Water Cooler

<Outlet> Valve
Refrigerant

— P, T,,v,

<Inlet>
Refrigerant

P, Ts, V,

Compressor

ONN WV 1

EVAVAVAVAVAVANE

Natural Gas(NG) Liquefied Natural Gas(LNG)

Heat Exchanger

1. Design variables(Operating Conditions): P;, T;, v,, Py, T4, v,

2. Assumption:
1) There is not sufficient time to transfer much heat from the refrigerant.
“Adiabatic process”
2) By restricting the flow of the refrigerant, the pressure of the refrigerant
is decreased. “Irreversible process”

3. Equality constraints
1) The first law of the thermodynamics(Energy conservation)

hs(Ps’Vs’Ts): h4(P4’V4’T4)

Energy of the refrigerant
at the outlet

Energy of the
refrigerant at the inlet

2) Equations of state(Soave, Redlich, Kwong(SRK) equation)
_ﬂ_,_b_a(n) V4_b
P P, (v,—&b)(v,-ob)

Vy
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T: temperature
P: pressure
V. specific volume
h: specific enthalpy
oz(T,)RzTC2
PC
w =0.42748 for SRK equation
R: gas constant (=8.314 JmolK)
PC: critical pressure of the refrigerant

a(T)=vy

TC: critical temperature of the refrigerant
RT,

b=Q ¢
P

[}

Q=0.08664 for SRK equation
&£=0 for SRK equation

o =1 for SRK equation




9.2.
9.2.5 EVAPORATION
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2.5 Process of the Refrigerator - Evaporation
Pressure(P)-Specific Volume(v) Diagram

P,
@
P=10.17 bar
Assumption:
v There is no pressure drop of the refrigerant
apor u ° n
through the evaporator. “Isobaric process
P=1.34 bar
©)
v
Purpose, Assumption, Result
Process Temperature | Pressure
Evaporator | 4>1 | Isobaric 0
heat absorption

A
(i; Why do we assume the isobaric process in the condenser?

1. Carnot cycle is the most efficient and ideal refrigeration cycle and condenses the refrigerant
isothermally(Isothermal process).

2. However, the isothermal heat transfer from the refrigerant in a single phase is not easy to
accomplish in practice.

3. Since maintaining a constant pressure in the condenser fixes the temperature when the
refrigerant is in a two-phase(liquid and vapor), the isothermal process is replaced by the
isobaric process in the condenser e
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2.5 Process of the Refrigerator - Evaporation

H H :h
h1=h4+Q|_

p4 T=-205° C T=40 °C
Critical state
P=10.17 baf
Liquid :EVapor

P=1.34 bar ;
Saturated :
liquid lin i
1
Saturatpd vapor line 1
1=
1 1
I
I
1

s i +0,
Purpose, Assumption, Result
Temperature Pressure Wo;l;:srf:reat Enthalpy Entropy
0 0 +Q, 1 7

According to the first law of thermodynamics

Total energy of the
refrigerant entering |+
the evaporator

Total energy of the
=| refrigerant leaving
the evaporator

h(P,.v, T,)+a, =h(R.v.T,)

Total leaving energy
as Heat in the evaporator
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Assumption:
There is no pressure drop of the refrigerant
through the evaporator. “Isobaric process”

Pressure(P)-Specific Enthalpy(h) Diagram

____________________________________________

h=[Internal energy of the flow]+[Flow work]

=u+P-v

P i
Ui | Ccv
I
I
I
I

]

(a) Before entry

w, —
flow

(b) After entry
FIGURE 4-12
Flow work is the energy needed to
push a fluid into or out of a control
volume, and it is equal to Pu.

h : specific enthalpy
U : internal energy=U(T,P)
P : pressure
T: temperature
- The first law of the thermodynamics:
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2.5 Process of the Refrigerator - Evaporation

Temperature(T)-Specific Entropy(s) Diagram

'z
T
Criﬁs\tate P:= 10.17 bar
T=47.7 °C .
Saturated Assumption:
liquid line There is no pressure drop of the refrigerant
T=40 °C < through the condenser. “Isobaric process”
Liquid Liquid A Vapor FomTmmmmmmmmmmooomooooooe !
o and ' - Entropy !
e P=1.34 bar ___ 1 The quality of energy .
T=-20 °Cl—; @
o+’ Saturated vapor. /
Iine MPRESSED /= ({/ 2

REGION /], SUPERHEATED
VAPOR

REGION

SATURATED
LIQUID-VAPOR
REGION

Purpose, Assumption, Result

Work or heat
transfer

) 0 +Q ) )

Temperature Pressure Enthalpy Entropy

4 — 1 Constant temperature of the refrigerant:
The temperature remains constant during the entire phase-change process if the pressure is held
constant.

4 — 1 Increase of the entropy of the refrigerant:

Entropy can be viewed as a measure of molecular disorder, or molecular randomness.
The molecular of the substance in the vapor phase is more disordered than that in liquid phase.

Therefore, since the vapor part of the refrigerant increases, the entropy of that is also increased. !
45
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2.5 Process of the Refrigerator - Evaporation

Mathematical Model of the Heat Exchanger (1/2)

° Heat Exchanger: takes off the heat from the natural gas to cool

liquid and vapor refrigerant

<Inlet> <Outlet>
Refrigerant Refrigerant Sea Water Cooler
P T V P ’ T ’ V Valve Compressor
41 "41 74 4 4 4
Heat du g
Natural Gas(NG) Liquefied Natural Gas(LNG) ST Heat Exchanger e S

T\=26.85C, Ps=65 bar, T, ne=-160.15 C, P, x=65 bar

1. Design variables(Operating Conditions): P,, T,, v,, P,, T, v,

2. Assumption:

- There is no pressure drop of the refrigerant through the heat exchanger. lf temperature
" . ” . pressure
Isobaric process V: specific volume
3. Equality constraints N speciic enthalpy

1) The first law of the thermodynamics(Energy conservation)

h4(P4’V4’T4)+q|_ — hl(Pl’Vl’Tl)

Energy of the Energy of the refrigerant
refrigerant at the inlet at the outlet

q.: Heat transfer for the liquefaction

2) Isobaric process of the natural gas(Given)

P,=HR
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2.5 Process of the Refrigerator - Evaporation

Mathematical Model of the Heat Exchanger (2/2)

° Heat Exchanger: takes off the heat from the natural gas to cool
liquid and vapor refrigerant
<Inlet> <Outlet>
Refrigerant Refrigerant Sea Water Cooler
Valve Compressor
Par Tar Vi AAAN P 1o Vi
— > I @
jiHeat q
Natural Gas(NG) Liquefied Natural Gas(LNG) hatural SasNG) | cat Exchanger Hiauefied Naturel Gas(LNG)
T\e=26.85T, P\g=65 bar, T ne=-160.15 C, P =65 bar

To produce the M; MTPA(Million ton per annual) LNG, the refrigerant has to take off
the heat QL from NG. My : Mass flow rate of the natural
o gas(Given, usually 3.6 MTPA)
QL =My -,

q, - Specific heat transfer for the
liguefaction of the natural

1. Design variables(Operating Conditions): P,, T, vy, Py, Ty v, M gas(Given)

My : Mass flow rate of the refrigerant

3. Equality constraints

1) The first law of the thermodynamics(Energy conservation) T: temperature

P: pressure

V: specific volume
h: specific enthalpy

Energy of the Energy of the refrigerant
refrigerant at the inlet at the outlet

2) Isobaric process

P4:P1
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2.5 Thermodynamics in the Liquefaction Cycle

Introduction to the Cooling System for Refrigerator (2/2)

 Refrigerator

v Refrigerant

-Boiling point below 0 ° C Trerigerant=-20 °C
when at low pressure

To main the temperature

(-18 °C) in the
refrigerated spaced

Prefrigerant=1'34 bar -.— ADREEE S 5

vapor becomes high-pressure

vapor

[ In compressor, low-pressure

]

low-pressure’

Evaporator vapor

Heat transfer from

refrigerated spaced(Q,)

While passing through
evaporator,

low pressure liquid and vapor
becomes low-pressure vapor.

TRefrigeram='2° °C
Prefrigerant=1.34 bar low-pressure

Work ()

high-pressure
vapor

@

NAh
&)

TRefrigerant =47.7 °C
Prefrigerant=10-17 bar

To cool the refrigerant

et i RS B
condenser
- AL

SRS NS

Heat transfer to
ambient air(Qy)

xpansion high-pressure
liquid

While passing through

expansion valve,

high-pressure liquid becomes
low-pressure liquid and vapor.

I [TTIT
il

FIGURE 21.19 Condenser coils of a refrigerator.

high-pressure liquid.

high pressure vapor becomes

TRefrigeram =40 °C
Prefrigerant=1o-17 bar

v Refrigera Nt(the working substance in the refrigerator)
- Boiling point near room temperature when at

high pressure

Purpose, Assumption, Result

Ol

Process Temperature Pressure Work or heat transfer Enthalpy Entropy

Compressor 1->2 | Adiabatic

compression t t +W t 0
Condenser 2->3 | Isobaric

heat reinjection ‘ 0 'QH ‘ ‘
Expansion valve | 3>4 | Adiabatic ‘ 0 0 t

expansion
Evaporator 4->1 | Isobaric t t t

heat absorption 0 +QL




9.2.
9.2.6 OPERATING CONDITION
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2.6 Efficiency of a Refrigerator(CP: coefficient of performance)

° Because the natural tendency of heat is to flow a hot region to a cold one,
* Refl'lgel'ator energy must be provided to a refrigerator to reverse the flow, and this
energy adds to the heat exhausted by the refrigerator
W
low high-density

refrigerator box , 8as 8as

Inside of the q Outside of the
H H o
Refrigerator A Refrigerator(25 °C)
To main the temperature(-18 °C) 0 .
in the refrigerator e To cool the refrigerant

high-pressure liquid

T
(i’} What is the efficiency of a refrigerator(CP: coefficient of performance)?
_ What we want
What we pay for

_Q
Wi

To increase the efficiency of a refrigerator, when Q_ is given, we have to determine the
operating conditions such as pressure, temperature, specific volume and flow rate for
decreasing the work provided to the compressor.
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2.6 Effect of the Operating Condition to the Refrigerator
— Position of the Point @ (Superheating)

A

T=-20 °C
p :
[bar]

P=Pc

T=40 °C

T=Tc(Critical temperature)

Supercritical-fluid

(Critical
pressure) Liquid

P=10.17

Saturated liquid Iine:
— :

P=1.34

®

T

=
©)

ey gt R R K T

(What we want)

7
Vi
b
Liquid and V: o
iquid an : apor '
[} I I .. 1
| L =
: | Saturated: vapor line
| i AN A :
| f LAV =4
Q.: Heat absorbed by the refrigerant I ' ! ol ¢
from the inside of the refrigerator | %L : i : h(EnthaIpy)
1 1 1
1 L : 1
W: Work provided to the compressor i Q. b
(What we pay) |Q | ' |
—I<L 1 ' '
. Q

CP(Coefficient of Performance) =—
Computer Aided Ship Design, I-9 Determina I\N|
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State of the refrigerant entering the
compressor

@®-1): Liquid and Vapor - Bad

1. Since Q, of @-1) is smaller than that
of @-2), CP is decreased comparing
with @-2).

2. Since refrigeration compressors are
designed as vapor pumps, if any
amount of liquid is allowed to enter
the compressor, serious mechanical
damage to the compressor may resulit.

@®-3), ®-4): Vapor state

1. For the superheated cycles @-3) and
D-4), a greater quantity of heat must
be dissipated at the condenser than
for the cycle ®-2). > Increase of the
size of the condenser

2. The work provided to the
compressor for superheated cycle is
slightly greater than that for the
cycle @-2).

3. For the cycle @-4), since the increase
in Q, is greater than the increase in
W, the CP is higher than that of the
cycle ®-2). © Good

4. For the cycle @-3), since the increase
in Q, is smaller than the increase in
W, the CP is lower than that of the
cycle ®-2). > Bad

Therefore, we have to determine the
proper temperature of the refrigerant
entering the compressor.



2.6 Effect of the Operating Condition to the Refrigerator
— Position of the Point 3 (Subcooling)

T=-20°C T=40°C  T=Tc(Critical
pt : : C(c?tlca temperature) + State of the refrigerant entering the
: valve

[bar] ®-1): Liquid and Vapor > Bad
: : K 1. Since Q, of ®-1) is smaller than that
of ®-2), CP is decreased comparing

P=Pc .
(Critical with @)-2).
pressure) ® -3), ® -4): Liquid state
1. For the subcooled cycles 3)-3) and ®
-4), the increase of QL is
P=10.17 accomplished without increasing the
energy input to the compressor.
- Increase of CP-> Good
2. However, to subcool the refrigerant
in condenser, the additional
P=1.34 equipment is needed to cool the

refrigerant. > Bad

Therefore, we have to determine the
proper temperature of the refrigerant
entering the valve considering the Q,
and cost of the additional equipment
caused by the subcooling.

|
l
I : :
: Saturated: vapor line :
! : :
1

Q.: Heat absorbed by the refrigerant QL h(EnthaIpy)
from the inside of the refrigerator :
(What we want) QL

W: Work provided to the compressor

(What we pay) |QL|
CP(Coefficient of Performance) =——

Vo Yo Yo V- -

Q
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2.

2.7 MATHEMATICAL MODEL OF THE SINGLE
LIQUEFACTION CYCLE
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2.7 Mathematical Model of the Single Liquefaction Cycle (1/2)

« Single Cycle for the LNG Liquefaction Process

T,=-160.8 C, P;=24 bar
Liquid

T,=110.2°C, P,=24 bar
Vapor

T: temperature
P: pressure
v: specific volume

M.t : Mass flow rate of the refrigerant

Valve |I Compressor

T,=-164.0 C, P,=4 bar
Liquid and Vapor

T,=23.0 C, P,=4 bar
BAVAVAVAVAVAN @ Vapor

Liquefied Natural Gas(LNG)

Natural Gas(NG) el AN NN NN\ _ e
Ting=-161 C, P =65 bar

T\e=26.85T, Py=65 bar,

Heat Exchanger

1. Design Variables(Operating Condition, 14): P, T, v;, w, M (i=1,2,3,4)
2. Equality Constraint(11)

- compressor(4) The first law of the thermodynamics (Conservation of energy, Enthalpy)
- Sea Water COOIer(3) The second law of the thermOdynamiCS(Actual processes occur in the direction of decreasing quality of energy, Entropy)
- Valve(Z) Equation of state(Eexample: Soave, Redlich, Kwong(SRK) equation)

- Heat Exchanger(2)

- Number of the design variables is larger than the number of the
equality constraints. 2> Indeterminate Equation!

3. Objective Function: Minimize the compressor powe Min(m. - W)

- Optimization Problem!
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2.7 Mathematical Model of the Single Liquefaction Cycle (2/2)

1. Design Variables(Operating Condition, 14): P, T, v;, w, M (i=1,2,3,4)

2. Equality Constraint(11)
1) Compressor(4)
h (P, T,)+w=h,(P,,v,,T,)

[The first law of the thermodynamics]

[The second law of the thermodynamics]

51(P11V11T1) = 52(P2'V2!T2)

v1:ﬂ+b—a(Tl) v, —b

P P (v,—é&b)(v,—ob)

[Equation of state]

RTz a(TZ) Vs -b
+b-
P P, (v,—¢&b)(v,—ob)

2) Sea Water Cooler(3)

hz (P2 y V2 ;Tz ) - qH = h3 (P31V31T3) [The first law of the thermodynamics]

V2 = [Equation of state]

P, =P,

[Isobaric process]

v3=%+b—ag3) Vs —b
) (V3 —b)(v; —ob)

3) Valve(2)
hy (P Vs, Ty) =h, (P v,, T,)

[Equation of state]

[The first law of the thermodynamics]

V4:RT4+b_a(T4) V4_b
P P, (v,—¢b)(v,—oh)

[Equation of state]

4) Heat Exchanger(2)
Mo 'h4(P4'V4'T4)+mNG O =My 'hl(Pl’Vl'Tl)

[The first law of the thermodynamics]

P4 = P1 [Isobaric process]
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EAVAVAVAVAVA

Natural Gas(NG) Liquefied Natural Gas(LNG)

Heat Exchanger

. T: temperature, h: specific enthalpy, s: specific entropy,

| P: pressure

i V: specific volume

E w: work provided to the compressor per mass

i Qy: Specific heat transfer from the refrigerant to sea water(Given)
q.: Heat transfer for the liquefaction of the natural gas(Given)

i my : Mass flow rate of the natural gas(Given, usually 3.6 MTPA)
E m. : Mass flow rate of the refrigerant

212
a(T)=y a(T,)RT R: gas constant (=8.314 Jmol-1K-1)
RT o PC: critical pressure of the refrigerant
b= QP—C TC: critical temperature of the refrigerant
c

w =0.42748, 0 =0.08664,¢ =0 ando =1 for SRK equation

3. Objective function(f)
f=m, w




9.3. CONCEPT OF OPTIMAL SYNTHESIS OF
LIQUEFACTION CYCLE
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What is “Optimal Synthesis(Design)” of Liquefaction Cycle of a LNG FPSO?
- Synthesis: Combination of Equipment

“Adiabatic process: There is no heat transfer between system and it surroundings ,
because there is no sufficient time to transfer much heat.

“Isentropic process: “Entropy” does not change. “Adiabatic process” and “Reversible”

“Isobaric process”: There is no pressure drop

« An example of Simplified Liquefaction Cycle

T,=30.1 C, P,=11.7 bar T,=117.1°C, P,=11.7 bar
Liquid Vapor
| “Adiabatic Conden ser
N A | “Isentropic” |
Expansion lsobaric’} L\ e
Compressor
Valve
"i%b'fé'é'r?_é_f_'.
T4:'17O OC, P4:21 bar Tl: '170 OC, P1:21 bar
Liquid and Vapor > _/\/\/\/\/\/\_ Vapor
EVAVAVAVAVAVAN >
Evaporator

1) Compressor brings the vapor refrigerant to a high pressure, which raises its temperature as well.

2) The hot vapor refrigerant passes through the condenser, an array of thin tubes that transfer heat from the refrigerant to the
cooling medium. As it cools, the vapor refrigerant becomes a liquid under high pressure.

3) The liquid refrigerant goes into the expansion valve, from which it emerges at a lower pressure and temperature. While
passing through the expansion valve, high-pressure liquid becomes low-pressure liguid and vapor.

4) In the evaporator, the cool liquid refrigerant completely evaporates by absorbing heat from the warm refrigerant. While passing
through the evaporator, the temperature remains constant at the constant pressure during the phase-change process. The low-
pressure liquid and vapor becomes low-pressure vapor. The refrigerant leaves the evaporator as saturated vapor and reenters the
COMPressor. |

5) In the end flash system, the pressure of LNG is expanded to the atmospheric pressure (1,01 bar) to be stored in the LNG tank 464
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« Another combination of equipment of a simplified liquefaction cycle

T,:112.8°C |
Ip,: 11.7 bar

T,:40.3°C
\' P,: 5.0 bar

Common
Header

Ty:44.4°C
v P;: 5.0 bar

T6:4.3°C T5:30.1°C
P6: 5.0 bar Ps: 11.7 bar
L H LV L
Ph
Tg 43°C Se;:(:ator Expansmr_\__!allfle Condenser
Pgz5.0bar{ | e (4) Add one
v (2) Add phase separator more expansion valve
Expansion
Valve v
T,:43°C
P,: 5.0 bar
Ty P
v
Py: 2.1 bar WWW Pio: 2.1 bar
Evaporator

« Multistage Compression Refrigeration:

2) Phase separator separates a liquid-vapor mixture refrigerant into the vapor and liquid

i (1) Add one

= header

more

s

4 common

Compressor 1

3) Common header mixes the saturated vapor from the phase separator and the superheated vapor from the

compressor 1, and the cooled mixture enters the compressor 2.
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[Thermodynamics] Pressure(P)-Specific Volume(v)-Temperature(T) Surface Tc: critical temperature
- Pure Su bStance Pc: critical pressure

I EE———
* Critical point: The point where the saturated liquid
and saturated vapor lines meet.

* Vapor vs. Gas
* Vapor: Vapor can be condensed either by compression
at constant temperature or by cooling at constant
pressure. The ‘condense’ means the change of the state of
substance from vapor phase to liquid phase

* : The vapor phase of a substance is customarily
called a gas when it is above the critical temperature.
Gas cannot be condensed by compression at constant
temperature, because the motional energies of the
molecules are greater than the attractive forces that lead to
the liquid state regardless of how much the substance is
compressed to bring the molecules closer together?.
 Supercritical fluid:

- Assingle phase at and above the critical
temperature and pressure

- Like a gas, it still expands to fill the confines? of
its container. And like liquids, supercritical fluids
can behave as solvents?, dissolving a wide rage
of substances.

- Using supercritical fluid extraction, the
components of mixture, which is composed of the
dissoluble substance® and non-dissoluble
substance, can be separated.

ant>T. - For example, supercritical CO, is now used to
extract sesame?® oil from the sesame caffeine from
coffee, and nicotine from tobacco.

Tzconstant<Tc 1) confine: place within the closed boundaries
2) solvent: a liquid that can dissolve other substances.
3) dissoluble substance: a substance which can be dissolved

4) sesame: &

T=T¢

VA * Triple line: The line where all three phases(Vapor,
Liquid, and Solid) of a pure substances coexist
Reference: The triple line marks the lowest pressure at which
Brown, T.L., LeMay, Jr,., H.E. and Bursten, B.E., Chemistry the central science, 10t a quuid phase of a substance can exist. i
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3. Thermodynamics in the Liquefaction Cycle
- Process of the Refrigerator - Evaporation

Pressure(P)-Specific Volume(v)-Temperature(T) Surface

Saturated
liquid line
Constant <.
temperature
line <
:
1
1
1
1
1
1
i
P i
1
1
1
1
1
1
L D
1 [ =
i O
id T
Soli
/.
_--Critic
e - 2

[ P-v-T surface of a substance that contract on
freezing(General case)]

f eat transfer to the

atmosghere (@)

- @>® : While passing through evaporator, low pressure liquid

and vapor becomes low-pressure vapor by absorbing the heat

from the refrigerated space at constant temperature in the two

phase.

p
A 1 II| I|I
1 [ Y
1 [N L
' ! \ Critical state
AY
i Vo
- Y
\N\\\ \ ‘\\ """""""""
~ 1
> P=10.17 bar |______ Yo ©
1 \ “s.  Superheated
': Comprgssed \\ Vapor
I' l":qmd Liquid and . \\
! \ vapor s RN
: I\ N \‘
1 1 N N
i i S TE417 T
1
Compressed \ =40 T
Liquid P=134 bar [-----------> .
1 N
'. S.at\frat‘ed . \‘\
II| liquid line \ ~ T1=-20 <
1 g
; Critical
| point -
: e
2 -
% /, 2 Constant
Quy / pressure lirfe
) S N \
O,. \‘\ ,;”
N, Ptag
o \\~ /’,—
P '/‘/"”?; _____________:—\:::’ ___________________________________
5 N The evaporator has the same !
. / T iconcept of the condenser. ;
"2,0 e 11 o R
Q/. S .
3 Assumption:
%0, %, There is no pressure drop of the refrigerant through the
evaporator. “Isobaric process”
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3. Thermodynamics in the Liquefaction Cycle
- Process of the Refrigerator - Evaporation mgeosesseososengosoogone oo

Pressure(P)-Specific Enthalpy(h) Diagram concept of the condenser. i

A= ®’
ps 17207 C T=40° C .ﬂﬂma
o _— ® <"|®
E : Critical point Cond

Expansion < ::l
':Ialve Compressor — ) Work(w)

Il I I B B S . I . l
Evaporator

h, "JUUYUUU h, !

= |
R4 |

Heat transfer from i
|

|

_____________________________

P=10.17 baf

0
Superheated @
i Vapor |

0
0
0
S

P=1.34 bar

Saturated
liquid lin

the refrigerated
S gcg(

Saturated vapor line N

1

h

: = :h
4 hl = h4 +0, Assumption:

There is no pressure drop of the refrigerant through the
evaporator. “Isobaric process”

According to the first law of thermodynamics

Energy of the
refrigerant entering |+

e

———r - --—-—-—--==

Energy of the

Energy transferred from the _ )
=| refrigerant leaving

refrigerated space as Heat

the evaporator the evaporator

h4(P4’V4’T4)+qL = hl(Pl’Vl’Tl)
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4. Determination of the Optimal Operating Conditions for the Refrigerator

- Mathematical Model of the Refrigerator — Evaporator (1/2)

3. Equality constraints
2) The first law of the thermodynamics(Energy conservation)

M -h, (

N

PV, T,)+Q, =

The ratio of the mass of vapor to the total
mass of the mixture of saturated liquid and
saturated vapor is called “ vapor fraction”.

-y (

P11V11T1)

T=-20°C T=40°C T=47.7°C T=67.5°Cy_T,
P 4 ! F P
J 1
! v ' | Superecritical fluid
I 1
i ! ' L.
. ' . ' ‘. Critical state
\ ~
P=Pcl- === === === Ly e Ll e
H . ~ Gas
1 1 \\
\
A
\
v
[ B S eeppp—— § N
P=10.17F------- -~~~ S [6) Ao
1 vl
bar] ! Nl
||
Vi
i
i
!
Saturated liquid ling
P=1.34f ——-——-__ P A W— S”J?\‘:;"J:teﬂ
bar] P! i
| |

v f

1

1

1

1 I

: Liq\dmlfandi Vapor
1

1

1

]

v

n4,|

h,

<Inlet>

P, T, v

<Outlet>
Refrigerant_> — Refrigerant
41 141 Yy |lll!!|l|l|l I:)1!T11V1
< q.
' [Given] |
Q. =20[kw]
[Find]

Operating Conditions [20]:
Pi, Tir Vi Tg Vg, Vaur Vaur v_f,w, M, q., 0y (i=1,2,3,4)

Minimize(m-w)

Refrigerant: Ammonia
P: pressure [bar]

v: specific volume [m3/kg]

i T temperature of the refrigerant in the

| compressor at isentropic process [K]

! v specific volume of the refrigerant in the

' compressor at isentropic process [m3/kg]

. v_f: vapor fraction

| qy: specific heat transfer from the refrigerant

| to the atmosphere [kJ/kg]

1 q.: specific heat transfer from the refrigerated

| space to the refrigerant [kJ/kg]

! M: mass flow rate of the refrigerant [kg/s] |
! Q: heat transfer from the refrigerated space tO\

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|
1 T: temperature [K] 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

h,, : enthalpy at the saturated liquid
*n | h,,: enthalpy at the saturated vapor

: : Design variables

Compu

er Aide ip Design, I-

etermination O

ptima

perating Conditions tor

M ’[(1_V_ 1:)'h4,| (P4’V4,|’T4)+V— f 'h4,V(P

e Liquertaction Cycle O

v, T,) |+Q =M

-h (Rovy,Ty)

Rate of heat transfer from the
refrigerated space to the
refrigerant(Given)
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3. Thermodynamics in the Liquefaction Cycle
- Process of the Refrigerator — Compression

1. Evaporator =2 Compressor -2 Londenser =2
Expansion valve &2 2 X}& Xt

Pressure(P)-Specific Enthalpy(h) Diagram (1/5)

Heat transfer to the
T=-20 °C T=40 °C T=47.7°C T=67.5°CT:TC atmosphere (q,)
1 1 1
P 4 1 v ] 1 7
ll o i ‘l‘SupercriticaI fluid .@ _5 —
1 1
1 .y
| 1 ! i . Critical state I I
1 1 1 S
P:Pc ——————— J| —————— o e e - - - I | I
1 1 1 S~ .
|| || : : \G\as X xp\)lar;smn Compreior :I]<:|Work(w)
Compréssed bl 1 “ ave
e ar b e v ~
Liquid . S ‘\‘ _ bvaporater || |
i | < — . 3! |
| ! VWY
P=10.17 bar : 2 _“__%___ = .
i v &
: || l| Heat transfer from the refrigerated
! i |l space(q,)
! [ 1y
1 1 " 1
! !
Saturated liquid lin ' il (mmmmmmmmmmmmee- bbb bbb
P=1.34 bar : @ ’ ! { l + The compressor is a device in which work is
@ :‘@ ' E i i done on the substance flowing through itin |
1 . 1
1y o i H i order to increase the pressure. In !
iy Suderhgated, | ! !
1 apbr |1 i compressor(®—>@), low-pressure vapor .
1 1 o . 1
o T I i becomes high-pressure vapor and its '
Liquid and Vapor | [ b ! . . !
T i i temperature is raised as well. :
1 D e e e e e e e = =
N Iy
fotea H
! I
I R
| — >
h- W "h=h+w
Example) Mollier Diagram of the Ammonia

Natural Phenomena: To compress the refrigerant, the work(w) is provided to the refrigerant. And

the energy of the refrigerant is increased by the work(w).

Total energy of the refrigerant
entering the compressor

|

Computer Aided Ship Design, I-9 Determination of Optimal Opetlgt

Total entering energy
as Work in the compressor

+

ing Condition

Total energy of the refrigerant
leaving the compressor

il H

W e h52fort

|

2>The enthalpy

he Liguefaction Cycle’of the

According to the first law of thermodynamics(The total quantity of energy is constant)

of therefriaer




3. Thermodynamics in the Liquefaction Cycle
- Process of the Refrigerator— Condensation

Pressure(P)-Specific Enthalpy(h) Diagram

T=20  T=40 T=47.7 I---------------
°C °C :°C
Pt : . [ Heat transfer to the |
Critical point | atmosphere(q,) |
: .............................. 3 I@ 3 2 @ I
P=10.17 baf : | I
iqui E: | =] R =1, L S —— —
S
perheated Expansion Compressor ork(w!
P=1.34 bar :SJ Vapor Valve P K Work(w)
:: Evaporator
: ®
)i
1
1
1
1
I

h, q h,=q, +h, Assumption:
H . .
There is no pressure drop of the refrigerant through the
condenser. “Isobaric process”

According to the first law of thermodynamics

Energy of the
refrigerant entering | = {
the condenser

hz(Pz’Vz ’T2)= Oy +h3(Pa’V3’T3)

Energy of the
+| refrigerant leaving

Energy transferred }
the condenser

to the atmosphere as Heat
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3. Thermodynamics in the Liquefaction Cycle Heat transfer to the
- Process of the Refrigerator - Expansion atmosghere (3.

.egs . > )’
Pressure(P)-Specific Enthalpy(h) Diagram (1/3) @ ®
T=-20°C  T=40 °C T=47.7°C T=67.5°Cy_1, I
P A 1 \ \ ': 'l: ' '
\ Supercritical fluid | Compressof :<:|Work(w)
\ Critical state
P=PC)m= = = e o =
Comprei'lssed
et Heat transfer from the refrigerated
quulfl pacer)
P=10.17 bar

Saturated liquid Ié‘n
P=1.34 bar A

> Superheated

@! @ Vapor

Liquid and: Vapor
i
1
1
1

\4

1. Natural Phenomena:
Expansion valves are any kind of flow-restricting devices that cause a significant pressure drop in the fluid.
Therefore, there is no work done to decrease the pressure.

2. Assumption:
There is not sufficient time to transfer much heat from the atmosphere to the refrigerant in the expansion
valve, “Adiabatic process”.

Therefore, the energy values at the inlet and outlet “enthalpy” of the expansion valve are the same
(@>®). S
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What is “Optimal Synthesis(Design)” of a Liquefaction Cycle of a LNG FPSO?

- Optimal Synthesis

Combination #1: Simplified Liquefaction Cycle

| ]
T=Tc
A 1
P ! " . Condenser
| Supercritical fluid
\ Compressor
\\\N Critical state % Expansion
PP | o - ——— - - L S T =~ Foo@) e e ——— - Valve
¢ i “Black Line” - \\Gas
Compressed i Simplified “
Liquid  Liquefaction \
qui . \
i Cycle \ Py
P=117 “Blue Line” L ' =P
bar| Multistage ‘
Compression Evaporator
Refrigeratio

Saturated liquid lin
P=2.1 A

bar

1]
Ay —— =

Combination #2: Multistage Compression Refrigeration

1
1
1
1
1
1
1
1
\
: ! ‘ i ompressor
| | I i Phase  Expansion Condenser 2
| | i || | 1 Separator Valve
. - I
Liquéd and Vapor I < §i | Ei Common
| | |IWh i Header
i I C [ Expansion
: : e S |1 Valve
. bw, ! c
: : ; : [ P ompressor
! ! J " "h 1
| : UL I W, - =T
oS q | Evaporator
L2 :

What is the efficiency of liquefaction cycle?
(CP: coefficient of performance)

_ What we want _|q,|
~ Whatwe pay for  |w]

1) CP of Simplified Liquefaction Cycle: CR =M

||

2) CP of Multistage Compression Refrigeration: CP

_ |Q|_2|
2w, + wy

» To increase the efficiency of a liquefaction cycle, when g, is given, we have to

determine the operating conditions such as pressure, temperature, specific volume by

Computer Aided Ship Design, I-9 Determination of Optimal

minimizing the specific work[J/g] provided to the compressor, “objective function”.




Simplified Liquefaction Cycle
| T=Te - Multistage Compression Refrigeration
p 4 |
"‘Supercritical fluid g<h ><]¢ @‘ ompressor
\ - A Phase  Expansioncond 2
\\Crltlcal state ) Separator Valve ondenser
PePem === === . T “Black Line” ;i-.*--.::\aa—s——- X Common
Compressed L.s'm‘;hf'?d ™ Header
Liquid quEe aICt'O" \ Expansion
TG L, Yee \‘ Valve
P=11.7 ue Line
bar Multistage ‘ - P Compressor
Compression ! — A= 1
__B_?fr_'f_’f_fatm". | o
"""" H Evaporator
Saturated liquid lin : . . . . *
p=g.1 N ol £l Various combination of equipments ¢,
o o AR of liquefaction cycle
. - 1
Liquid and Vapor ! |é'>: i i ,® Given: The quantity of the specific heat '
! | |1 W i i i transfer from the refrigerated space to the |
| | PN | \  refrigerant(q,) in the evaporator. !
; : | WZ ; R e e bl m Bl :
! 1 I ~w h @
< q,, i Constraint
1. Optimal synthesis of liquefaction cycles

G>Design variables
* Find:! '

‘Various combination of equipments that makes up the liquefaction cycle :

_ minimizing the power provided to the compressors~,Objective function Design

2. To calculate the minimized power, we have to determine the optimal operating condition éariables

* Find:| i The operating conditions such as the pressure, temperature and specific volume

TN  The nowel REOVIAeH 0 R LOMIATES SRS i e S Dbiective function




1. What is the Liquefaction Cycle of the LNG FPSO?
Introduction to the Liquefaction Cycle

 Goal of the LNG Liquefaction Cycle
To liquefy NG to LNG for decreasing the volume of the NG

« An example of Simplified LNG Liquefaction Cycle

FIGURE 21.19 Condenser coils of a refrigerator.

T,=30.1 C, P,=11.7 bar ® @ T,=117.1C, P,=11.7 bar
Liquid Vapor

Sea Water(SW) Cooler

Valve Compressor
T,=-17.0 C, P,=2.1 bar @ ) ,=-17.0 C, P,=2.1 bar
Liquid and Vapor > /\/\/\/\/\\ Vapor
SIVAVAVAVAVAVA >
Evaporator

Equipment used in the cycle
1) Compressor: brings the vapor refrigerant to a high pressure, which raises its temperature as well
2) Sea Water Cooler(a kind of condenser): transfer heat from the hot vapor refrigerant to the sea water
3) Valve: decreases the pressure of the liquid refrigerant, which decreases its temperature as well
4) Heat Exchanger(a kind of evaporator): absorbs heat from the natural gas to cool down the NG, while the
refrigerant is vaporized
1) The temperature and pressure of the natural gas and liquefied natural gas are the values of the general case.

2) In the end flash system, the pressure of LNG expanded to the atmospheric pressure (1,01 bar) to be stored in the LNG tank.



2. Determination of the Optimal Operating Conditions for the Refrigerator

Heat transfer to the

atmosphere (q,)
T;: 30.1°C T,: 117.1°C
P;: 11.7 bar P,: 11.7bar

\/f Xpansion
/\

Cooler .

(Condenser)

Compressof :<:|Work(w)

Evaporator

a0 | UUWUUUY J: -17.0°C

P,: 2.1 bar

K P,: 2.1bar

Heat transfer from the refrigerated

space(q)

- Optimal Design of Liquefaction Cycles
for LNG FPSO
T=Tc
P 4 i
| Supercritical fluid
‘\ Critical state
P =P o o e i s
Compressed
Liquid
P=11.7
bar
p=?
bar

P=2.1

- A A

bar

q,.: specific heat transfer from the refrigerated space
to the refrigerant(Given)

w: work

provided to the compressor(Minimizing)

i * Given: The quantity of the specific heat
i transfer from the refrigerated space to the
i refrigerant(q,) in the evaporator.

Constraint

Design variables

A ,

* F|nd The operating conditions such as the pressure, temperature and specific volume i

' minimizing the work or power provided to the compressor.

_[>Object|ve function




Mathematical Model of the Liquefaction Cycle : Calculation of Specific ErF]thaIpy(hlg)
=Uu+P-v

 Physical Constraint based on Thermodynamics #1

Energy conservation

Calculation of the specific enthalpy(h)

Many tables of thermodynamics properties does not give values for
internal energy. To allow calculation of enthalpy from the pressure,
specific volume and temperature, the following equation is derived
by using the definition(h=u+Pv), equation of state and experiment.

h=h" +h" [3/g]

h'c: Ideal gas value of the specific enthalpy
hR: Residual specific enthalpy(correction of the ideal gas state values to the real gas values)

Reference: Smith, J.M., Introduction to Chemical Engineering Thermodynamics, 7t edition, McGraw-Hill, 2005, pp.199-253 477
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Calculation of Specific Enthalpy(h) h=u+P-v

« Calculation of the specific enthalpy(h) for a pure substance

Many tables of thermodynamics properties does not give values for internal energy. To allow
calculation of enthalpy from the pressure, specific volume and temperature, the following
equation is derived by using the definition(h=u+Pv), equation of state and experiment.

P[Pa]
v[m?]

h _ h IG h R h'¢: Ideal gas value of the specific enthalpy TIK]
— + hR: Residual specific enthalpy(correction of the ideal gas state values to the real gas values)

h' =h"®(T)=a+b-T+c-T?+d-T°+e-T*+f.T°
Example) Ammonia:

5 where a=-1.8514, b =1.9937, ¢ = -5.3266x10

w =0.253, Pc=112.80 (bar), Tc=405.7 (K)

() =[1+(0480+15740-017607) (1(1,)"*) | | 1| 0 | o0.08664 | 0.42748

a, b, ¢, d, e and f: constants characteristic of the particular substance d = 2.0615x10°6, e = -1.3386x10",
hig[J/g], T: temperature[K] f = 3.0533x1013
___________________________________________________________________________________________________________________________ ]
| da
: T[ L _aq) .
| h® =h®(P,v,T)=RT(Z -1 aT L | 2fas :
: - ( Vs )_ (Z-D+ b (O‘—g) n Zief R: Gas constant (=8.314 J/(mol*K) i
! = 8.314m3Pa(mol*K))
' where * 1 bar = 100kPa !
| T,w)R°T? T RT |
: a(T):Wm Tr:_ Z= v — v . a(T) ﬂ:b_P b=Q & |
| P, T, v-b R.-T (Vv+e-b)(v+o-b) RT P, !
' 1) The values of parameters a, o, ¢, 2, ¥ are depending on the type of the cubic equation of state.  2) The values of o, critical pressure(Pc), i
| For example, the value of the parameters for the Soave-Redlich-Kwong(SRK) equation of state and temperature(Tc) are depending on the;
| are given in the following table. substance. |
E a(T,, ®) ole Q " Example) Ammonia: :

E 3) Since the unit of h'C is J/g and hR is J/mol, h? is devided by molar mass(M, g/mol). 4) Central difference approximation i

| i -a(T- |

! h*[J /g]= M Example) Ammonia (EJ _ a(T+e)-a(T —e) , (e :10—6) |

; Mg /mol] Manmonia = 17.031 (g/mol) a7 2:e !
ey
Reference: Smith, J.M., Introduction to Chemical Engineering Thermodynamics, 7t edition, McGraw-Hill, 2005, pp.199-253 478
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Mathematical Model of the Liquefaction Cycle : Equation of state

 Physical Constraint based on Thermodynamics #2

Equation of state

Plvl — RTl

[Equation of state for an ideal gas]

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee

The equation of state for the liquids and vapors is
constructed by considering experimental results based on
the equation of state for an ideal gas.

Example) Soave, Redlich, Kwong(SRK) equation

a(T) oy
(P+ b)](\/ b) = RT

V- (V+

RT a(T) v-b
D V= ) v—ob)

Example) Ammonia:
@ = 0.253, Pc=112.80 (bar), Tc=405.7 (K)

w =0.42748 for SRK equation

1 R: gas constant (=8.314 Jmol 1K)

1 Pcitical pre of the refrigerant |
1

I T ritical temperature of the

! Q 0 08664 for SRK equatlon
! RT,

I b=Q—= &=0 for SRK equation

! ¢  o=1 for SRK equatlon




4) SRK EoS -> 5) PR EoS
=Xt Zte| o1&of ofot A= ol ZEAZOo|M Fa| o|FE/d 0l

[

V(V+b)CH & V(V+b)+b(V-b)E AESIH &H| Ztojl £C

¥ags AHNOE 5.

*EoS: Equation of State

To improve the equation of state for the liquids and vapors, the equation of state for
an ideal gas is modified by using the experiment and experience.

(1) Ideal gas EoS* (2) van der Waals EoS(1873) (3) Redlich-Kwong EoS(1949)
(1802)
a(T)
a _
_ 2 ltv—_nh) = 3) | P+——————|(v-b)=RT
(1) Pv=RT |$ (2) [P+V2)(v b)=RT |$ (3) [ v-(v+b)j( )
24 R%*.T? 1 R-T . V2 p? T2 .R.
Q24 RIS LRT ary = 042748 (T/T) " R T7 | 0.08664-R-T,
64 P, 8 P P, P
(4) Soave-Redlich-Kwong EoS(1972) (5) Peng-Robinson EoS(1976)
a(T a
4) (P+Lj(v—b):RT 5) | P+ () (v—b)=RT
'f? v-(v+b) 'f? (V+(1-~2)-b)- (v+(1+~/2)-b)
0427480, (T I T ;) -R*-T . LN p? T2
a(T) = s - a(T) = 0.45724 - a1, (TP/ T;w)-R*-T,
(ZSRK(T/TC;O)): aPR(T/TC;a)): c
2 2 7? 2
[1+(0.480+1.574: 0—0.176- ) - (L~ (T /T | [1+(0.37464+1.54226- 0026992 ) - (L (T /T,)** |
b 0.08664-R-T, b 0.07780-R-T,
- PC - PC
T: temperature] K] Te: critical temperature[K] (4) Soave-Redlich-Kwong EoS - (5) Peng-Robinson EoS
\F/).: nﬁﬁfiﬁ?e[wmm] Pe: critical pressure{Pa] @ Modify the pressure reduction due to the attractive forces
' @ acentric factor : The pressure reduction depending on the molar volume(v) is
R: gas constant(=8.314[m3Pa/(mol-K)]

modified by (v+(1-+2)-b)-(v+@++2)-b) instead of v(v+b).

480
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9.6 Thermodynamics in the Liquefaction Cycle
General Form of the Cubic Equations of State for Liquids and Vapors

The van der Waals(vdW), Redlich-Kwong(RK), Soave-Redlich-Kwong(SRK) and Peng-
Robinson(PR) equation of state are represented as the following cubic equations form.

a(T) RT a(T)
+ (v—b)=RT P=— -
(V+ &0)(V + ob) v—b (v+&b)(v+ob)
T RT
a(T):‘POK(Tf)R T o b=Q—¢
P P,
EoS a(T)) o € Q P 7.
vdW(1873) 1 0 0 1/8 24/64 3/8
RK(1949) 703 | 0 0.08664 | 0.42748 1/3
SRK(1972) | aguT.m) | 1 0 |0.08664 | 0.42748 | 1/3
PR(1976) | aw(T, ®) |1+~/2|1=A/2 | 0.07780 | 0.45724 | 0.30740

Grong (T, @) = [L+ (0.480 +1.57400— 0.1760°)1-T,%° ]}

o (T, 0) = [L+ (0.37464 +1.5422600— 02699207 )T, |f T =TIT,
T: temperature[ K] T critical temperature[K]
P: pressure{Pa] P! critical pressure{Pa]
V: molar volume[m3/mol] ' acentric factor

R: gas constant(=8.314[m3Pa/(mol-K)]
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Mathematical Model of the Liquefaction Cycle : Calculation of Specific EntropyI@):C_]lr—q

 Physical Constraint based on Thermodynamics #3

Criteria for quality of the energy
Calculation of the specific entropy(s)

To allow calculation of entropy from the pressure, specific volume
and temperature, the following equation is derived by using the
definition(ds=dq/T), equation of state and experiment.

s =5'° £ sy g

s'9: entropy for the ideal gas
s?: Residual entropy(correction of the ideal gas values for the real gas)

Reference: Smith, J.M., Introduction to Chemical Engineering Thermodyn edition, McGraw-Hill, 2005, pp.199-253 482
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Calcula&lon of Specific Entropy(s)

ds=—
T

« Calculation of the specific entropy(s) for a pure substance
To allow calculation of entropy from the pressure, specific volume and temperature, the following

equation is derived by using the definition(ds=dg/T), equation of state and experiment. P[[Pa]]
v[m3
_ alG R si9: Ideal gas value of the entropy TIK]
S=S +S sR: Residual entropy(correction of the ideal gas state values to the real gas values)
S'¢ = +b-|n(T)+2-c-T+§-d-T2+ﬂ-e To42. f.T4
=9 2 3 4 Example) Ammonia:

a=-1.8514,b =1.9937, ¢ = -5.3266x10*

where d = 2.0615x10°, e = -1.3386x10°°, i

a, b, ¢, d, e and f: coefficients of the ideal gas Enthalpy equation
s'9[J/(g-K)], T: temperature[K]
g : Entropy coefficient (i.e. the Entropy of the ideal gas at T=0 K) = 1.00

f=3.0533x1013

w = 0.253, Pc=112.80 (bar), Tc=405.7 (K)

a(;w)= [l+(0 480+1.5740—0.1760° )( -(T, )05)] 1 0 0.08664 0.42748

* 1 bar = 100kPa

3) Since the unit of s'° is J/(g-K) and h? is J/(mol-K), hR is devided by molar mass(M, g/mol). 4) Central difference approximation

(aa P critical pressure of the substance |
P aT 1 y A T, critical temperature of the substance
sf=s*(P,v,T)=RIn(Z-pB)-RIn| — In b Z: compressible factor l
P, b (o-¢) |[Z+&-pB !

where
a(T,,0)R°T} T VooV a RT, !
T A U p=os  b=Q =

P T, v—-b R-T (v+é&-b)(v+o-b) RT P, !

1) The values of parameters a, o, ¢, Q, ¥ are depending on the type of the cubic equation of state. 2) The values of w, critical pressure(Pc), |
For example, the value of the parameters for the Soave-Redlich-Kwong(SRK) equation of state and temperature(Tc) are depending on the |
are given in the following table. substance. i
oT,, ®) ole Q " Example) Ammonia: i

R . i a(T+e)—a(T —e :

S*[3/(g-K)] = s"[J/(mol-K)] Example) Ammclnla da _ ( ) ( ) ’ (e 210—6) |

M [g / mOI] MAmmonia - 17-031 (g/mOI) dT 2e 77777777777777 :

Reference: Smith, JM., Introduction to Chemical Engineering Thermodynamics, 7% edition, McGraw-Hill, 2005, pp199-253 T TTTTTITTIITIITTIITIIITT N gey
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Mathematical Model of the Liquefaction Cycle

 Physical Constraint based on Thermodynamics #4

Physical assumptions for the liquefaction process

“Isobaric process”

- There is no pressure drop

“Adiabatic process”

- There is no heat transfer between <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>