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Ch.1 Overview of Optimal Design 
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Indeterminate Equation 

Variable: x1, x2, x3 

Equation: x1 + x2 + x3 =3 

 Number of variables: 

 Number of equations: 

3 

1 

Because  the number of variables is 
larger than that of equations, 
these equation form an  

indeterminate system. 

Solution for the 
indeterminate equation 

:We assume  

two unknown variables 

Example) assume that x1 = 1, x2 = 0 

      x3 = 2 

Number of variables(3) – Number of equations(1) 

0 1y a a x  0 1, :a aWhere                are   given  

 Number of variables: 

 Number of equations: 

2   

1 

0 1y a a x 

0 1y b b x 

 Number of variables: 

 Number of equations: 

2 

2 

,x y

0 1 0 1, , ,a a b b

Find intersection point (x*, y*) of two straight lines 

Equation of straight line 

,x y

☞ We can get the value of y by assuming x. 

변수의 개수가 식의 개수보다 많으므로 

위의 문제는 부정 방정식이다. 

위의 부정 방정식 해법 

2개의 변수를 가정한다. 

예) x1 = 1, x2 = 0로 가정 

      x3 = 2 

변수의 개수(3) – 식의 개수(1) 

 변수의 개수: 

 식의 개수: 

2

개   
1개 

 변수의 개수: 

 식의 개수: 

2개 

2개 

☞ x를 가정하여 임의의 x 에 대한  y를 알 수 있다. 
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1

4 0f 

Added Equation Solution 
1 1 1

1 2 3( , , )x x x

2

4 0f  2 2 2

1 2 3( , , )x x x

We can get many sets of 

solution by assuming different  

equations. 

 Indeterminate equation 

We need a certain criteria to determine the 
proper solution. By adding the criteria, this 
problem can be formulated as an 
optimization problem. 

Indeterminate Equation and Solution 

 Number of variables : 

 Number of equations : 

3 

3 

If f1,  f2,  and f3  are linearly independent, 

Variable: x1, x2, x3 

Determinate equation 

f2(x1 , x2 , x3)=0 

f3(x1 , x2 , x3)=0 

Equation: f1(x1 , x2 , x3)=0 

Since the number of equations is equal to 

that of variables, this problem can be 

solved. 

What happens if 2×f3 = f2? 

 Since the number of equations, which are 
linearly independent, is less than that of 
variables, these equations form an 
indeterminate systems. 

f2 and f3  are linearly dependent. 

 Number of variables : 

 Number of equations : 

3 

2 

If f1 and  f2 are only linearly independent, then 

Since the number of equations is less than 

that of variables, one equation should be 

added to solve this problem. 

Indeterminate equation 

Variable: x1, x2, x3 

f2(x1 , x2 , x3)=0 

f3(x1 , x2 , x3)=0 

Equation: f1(x1 , x2 , x3)=0 

연립 방정식 

 변수의 개수: 

 식의 개수: 

3개 

3개 

If the set of equations f1,  f2,  and f3  is linearly 
independent, 

식의 개수와 변수의 개수가 

같으므로 풀 수 있는 문제 

만일 2×f3 = f2 라면? 

서로 독립인 식의 개수가 변수의 개수 

보다 적으므로 부정 방정식이 된다.  

f2는 f3 로 표현이 가능하므로 독립이 아님 

 변수의 개수: 

 식의 개수: 

3개 

2개 

식  f1,  f2 만 서로 독립이라면 

식의 개수가 변수의 개수보다 적으므로 

식을 추가하여 해를 구한다. 

1

4 0f 

추가한 식 구한 해 
1 1 1

1 2 3( , , )x x x

2

4 0f  2 2 2

1 2 3( , , )x x x

추가한 식에 따라  

무수히 많은 해가 구해짐 

 부정 방정식 

무수히 많은 해 중 어떤 것이 좋은지 판단할 기
준이 필요하며, 기준으로서 목적함수를 추가하
면 최적화 문제가 된다. 

4/130 
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Design 

Esthetic* Design 

Find(Design variables) 

- Size, material, color, etc. 

Constraints 

Objective function(Criteria to determine the proper design variables) 

- Preference, cost, etc. 

- It is difficult to formulate the objective function. 

- There are some constraints,  but it is difficult to formulate them. 

- By using the sense of designer, the constraints are satisfied. 

구하는 값(설계 변수) 

- 팔 길이, 소재, 색상 등.. 

제약 조건 

목적 함수(주요 치수 선정 기준) 

- 선호도, 가격 등.. 

- 설계 변수로서 수치화 하기 어려움 

- 제약 조건이 있지만 수치화 하기 어려움 

- Designer의 설계 감각으로 제약 조건을 만족시킴 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

6 
Computer Aided Ship Design, I-1. Overview of Optimal Design, Fall 2011, Kyu Yeul Lee  

Mathematical Model for Determination of the Main Dimensions(L,B,D,T,CB) of a 
Ship(Summary) 
- “Conceptual Ship Design Equation” 

Given(Owner’s requirement) 
_ max, , ( ),H reqDWT V T T V

deadweight ship 

speed 

Required cargo  

hold capacity 

maximum 

draft 

Objective Function(Criteria to determine the proper main dimensions) 

1.6 2/3 3 ( ) ( )PS s PO o PM power BBuilding Cost C C L B D C C L B C C L B T C V              

4 variables(L,B,D,CB), 2 equality constraints,( (2.3),(3.1) ), 1 inequality constraint((4))  Optimization problem:  

1.6

2/3 3

( , , , )

( )

( ) (2.3)

B sw given B

given s o

power B

L B T C C DWT LWT L B D C

DWT C L B D C L B

C L B T C V

      

      

     

Physical constraint 

→ Displacement - Weight equilibrium (Weight equation) – Equality constraint 

Economical constraints(Owner’s requirements) 

_ (3.1)H req HV C L B D   
→ Required cargo hold capacity (Volume equation) - Equality constraint 

- DFOC(Daily Fuel Oil Consumption) 
  : It is related with the resistance and propulsion. 

- Delivery date 
  : It is related with the shipbuilding process. 

→ Freeboard regulation(1966 ICLL) - Inequality constraint 

(4)FBD T C D  

Regulatory constraint 

선박 주요 치수 (L,B,D,T,CB) 결정 문제의 수학적 모델(요약)  
- “개념설계 방정식” 

1.6

2/3 3

( , , , )

( )

( ) (2.3)

B sw given B

given s o

power B

L B T C C DWT LWT L B D C

DWT C L B D C L B

C L B T C V

      

      

     

물리적 제한 조건 

구하는 값(설계 변수) 
BCDBL ,,, 주어진 값(선주 요구 조건) 

_ max, , ( ),H reqDWT V T T V
길이 재화 중량 방형 계수 폭 깊이 선속 요구 화물창 용적 최대 흘수 

선주 요구 조건(인위적 제한 조건) 

_ (3.1)H req HV C L B D   

→ 최소 요구 건현 조건(1966 ICLL)(부등호 제약 조건) 

(4)FBD T C D  

목적 함수(주요 치수 선정 기준) 

1.6 2/3 3 ( ) ( )PS s PO o PM power BBuilding Cost C C L B D C C L B C C L B T C V              

 미지수 4개(L,B,D,CB), 등호 제약 조건 2개 ( (2.3),(3.1) ) 부등호 제약 조건 1개((4))인 최적화 문제 

→ 부력(buoyancy)-중량(Weight) 평형 조건(등호 제약 조건) 

→ 요구되는 화물창 용적(cargo capacity) 조건(등호 제약 조건) 
- DFOC(Daily Fuel Oil Consumption) 

  + 저항 추진과 관련이 있음 

- 납기일(Delivery Date) 

  + 생산 공정과 관련이 있음 국제 규약 조건 

Find(Design variables) 

length block  

coefficient 

breadth depth 

, , , BL B D C

수정 중: Ts, Td 구분 
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Determination of the Optimal Main Dimensions of a Ship 

Engineering Design 

Find(Design variables) 

x1, x2, x3, x4 

1 2 3 4( ), ( ), ( ), ( )BL x B x D x C x   
length block  

coefficient 

breadth depth 

Find(Design variables) 

f  (x1 , x2 , x3 , x4) 

Objective function 

Optimization problem 

 Minimize/maximize the 

objective function with the  

constraints on the design 

variables 

1 2 4 1 2 1 2 3 4 1 2 3 4( , , , ) ( , , , ) 0x x x C C h x x x x h x x x x      

( , , , )B sw given BL B T C C DWT LWT L B D C      

Weight equation 

1 2 4 1 2 1 2 3 4( , , , )x x x C C h x x x x    

Objective Function(Criteria to determine the proper main dimensions) 

1.6 ( )PS s PO o PM maBuilding Cost C C L B D C C L B C C NMCR          

1.6

1 2 3 4 3 1 2 3 4 1 2 5( , , , ) ( )f x x x x C x x x C x x C       

- T, Cα , ρsw , DWTgiven , CPS , Cs, CPO , Co, CPM , Cma,  NMCR  are  Given 

g(x1 , x2 , x3 , x4)≤0 

Inequality constraint  

Equality constraint 

h(x1 , x2 , x3 , x4)=0 

Characteristics of the constraint 

 Physical constraints  are usually formulated as the equality constraints. 
      (Example of ship design: Weight equation) 

 Economical constraints, regulatory constraints, and constraints related with politics and  culture 

are formulated as the inequality constraints. 
     (Example of ship design : Required cargo hold capacity(Volume equation), Freeboard regulation(1966 ICLL) ) 

선박 주요치수 결정 최적화 

구하는 값(설계 변수) 

x1, x2, x3, x4 

g(x1 , x2 , x3 , x4)≤0 

등호 제약 조건 

f  (x1 , x2 , x3 , x4) 

목적 함수 

Optimization problem 

 제약 조건을 만족하면서  

목적함수를 최소화(최대화)하는  

설계 변수를 결정 하는 것 

부등호 제약 조건 

h(x1 , x2 , x3 , x4)=0 

Engineering Design 

( , , , )B sw given BL B T C C DWT LWT L B D C      

부력(buoyancy)-중량(displacement) 평형 조건(등호 제약 조건) 

목적 함수(주요 치수 선정 기준) 

1 2 3 4( ), ( ), ( ), ( )BL x B x D x C x   
길이 방형 계수 폭 깊이 

구하는 값(설계 변수) 

1 2 4 1 2 1 2 3 4( , , , )x x x C C h x x x x    

1 2 4 1 2 1 2 3 4 1 2 3 4( , , , ) ( , , , ) 0x x x C C h x x x x h x x x x      

1.6 ( )PS s PO o PM maBuilding Cost C C L B D C C L B C C NMCR          

1.6

1 2 3 4 3 1 2 3 4 1 2 5( , , , ) ( )f x x x x C x x x C x x C      

- Ci , ρsw , DWTgiven , NMCR : 주어진 계수 

제약조건의 특징  

 물리 법칙은 보통 등식으로 표현 됨 (선박 설계의 예: 부력-중량 평형 조건) 

 정치, 경제, 사회, 문화적으로 정의된 규약이나 조건은 부등호 제약 조건식으로 표현 된다. 

   (선박 설계의 예: 최소 요구 건현 조건, 요구되는 화물창 용적 조건) 

앞이랑 매칭이 안됨. 

수정 중: Ts, Td 구분 
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Classification of Optimization Problems and Optimization Methods  

Unconstrained optimization 

problem 
Constrained optimization problem 

Linear Nonlinear Linear Nonlinear 

Objective 

function 
(example) 

Constraint 
(example) 

None None 

Optimization 

methods 

-continuous 

value 

① Direct search method 

- Hooke & Jeeves method 

- Nelder & Mead method 

 

② Gradient method 

- Steepest descent method 

- Conjugate gradient method 

- Newton method 

- Davidon-Fletcher-Powell(DFP) 

  method 

- Broyden-Fletcher-Goldfarb- 

  Shanno(BFGS) method 
 

Penalty Function Method: Converting the constrained 

optimization problem to the unconstrained optimization problem 

by using the penalty function, the problem can be solved using 

unconstrained optimization method. 

Simplex Method 

(Linear programming) 

Quadratic 

programming(QP) 

method 

SLP(Sequential Linear Programming) 

First, linearize the  nonlinear  

problem and then obtain the solution to  

this linear approximation problem using 

the linear programming method. 

And ,then, repeat  the  linearization 

Sequential Quadratic 

Programming(SQP) method 

First,  approximate a quadratic 

objective function and linear 

constraints, find the search direction 

and then obtain the solution to this 

quadratic programming problem in this 

direction. And ,then,  repeat  the  

approximation 

Optimization 

methods -

discrete value 

Integer programming: ① Cut algorithm ② Enumeration algorithm ③ Constructive algorithm 

Heuristic 

optimization 

Genetic algorithm(GA), Ant algorithm, Simulated annealing, etc 

21

2

2

2

1 3)( xxxxf x
21

2

2

2

1 3)( xxxxf x
1 2( ) 2f x x x 1 2( ) 2f x x x

1 2

1

( ) 5 0

( ) 0

h x x

g x

  

  

x

x

Minimize  f(x) Minimize  f(x) Minimize  f(x) Minimize  f(x) 

2 2

1 1 2

2 1

1 1
( ) 1.0 0

6 6

( ) 0

g x x

g x

   

  

x

x

21

2

2

2

1 3)( xxxxf x

Minimize  f(x) 

1 2

1

( ) 5 0

( ) 0

h x x

g x

  

  

x

x

Linear programming 

(LP) method is 

usually used. 

Unconstrained Optimization 

problem 
Constrained Optimization problem 

Linear Nonlinear Linear Nonlinear 

Objective 

function 
(example) 

Constraint 
(example) 

None None 

Mathematical 

Optimization 

-Continuous 

value 

① Direct Search Method 

- Hooke&Jeeves 

- Nelder&Mead 

 

② Gradient Method 

- Steepest Descent Method 

- Conjugate Gradient Method 

- Newton Method 

- Davidon-Fletcher-Powell(DFP) 

  Method 

-Broyden-Fletcher-Goldfarb- 

  Shanno(BFGS) Method 
 

- Penalty Function1)을 구성한 후 비제약 최적화 문
제로 변환한 후 해를 구함 

- Simplex method 

(Linear Programming) 

-Quadratic 

Programming 

- 근사화 방법 – SLP 

선형 계획 문제2)로 근사화 후 

개선된 탐색점을 찾고, 그 점
에서 다시 선형 계획 문제를 

푸는 방법 

- 근사화 방법 – SQP 

2차 계획 문제3)로 근사화 후 

개선된 탐색점을 찾고, 그 점
에서 다시 2차 계획 문제를 

푸는 방법 

Mathematical 

Optimization 

-Discrete value 

-Integer programming 

① Cut Algorithm 

② Enumeration Algorithm 

③ Constructive Algorithm 

Heuristic 

Optimization 

Genetic Algorithm(GA), Ant Algorithm, Simulated Annealing, etc 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

9 
Computer Aided Ship Design, I-2. Problem Statement of Optimal Design, Fall 2011, Kyu Yeul Lee  

N
a
v
a
l 
A

r
c
h

it
e
c
tu

r
e
 &

 O
c
e
a
n

 E
n

g
in

e
e
r
in

g
 

SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

Computer Aided Ship Design, I-2. Problem Statement of Optimal Design, Fall 2011, Kyu Yeul Lee  

Computer Aided Ship Design 
 

Part I. Optimization Method 
 

- Ch. 2 Problem Statement of Optimal Design  

September, 2011 

Prof. Kyu-Yeul Lee 
 

Department of Naval Architecture and Ocean Engineering, 
 Seoul National University of College of Engineering 

Computer Aided Ship Design Lecture Note 
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Ch.2 Problem Statement of Optimal 
Design  

2.1 Components of Optimal Design Problem 
 
2.2 Formulation of Optimal Design Problem 
 
2.3 Classification of Optimization Problems 
 
2.4 Classification of Optimization Methods 
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2.1 Components of Optimal Design Problem(1) 

Design variable 
 A set of variables that describes the system such as size 

and position, etc. 

 It is also called ‘Free variable’ or ’Independent variable’. 

 Dependent Variable 
: A variable that is dependent on the design variable(independent 
variable) 

Constraint 
 A certain set of specified requirements and restrictions 

placed on a design 

 Inequality Constraint, Equality Constraint 
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2.1 Components of Optimal Design Problem(2) 

Objective function 

A criteria to compare the different design and 
determine the proper design such as cost, profit, 
weight, etc. 

 It is a function of the design variables. 

- Ch.1Introduction to Optimal Design 

Constraint 

Objective Function 

(Minimization) 

Design variable 

Design variable 

 Objective function 

최적(Optimum)을 나타내는 기준으로 비용, 무게 등과 
같은 값을 비교하여 어느 설계 대안(Design Alternative)
이 보다 나은지를 나타낼 수 있는 함수 
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2.1 Components of Optimal Design Problem(3) 

Local 

optimum 

= 

Global 

optimum 

The region 

satisfying the 

constraint 

Optimal design 

can be changed 

subject to the 

constraints. 

Determination of the optimal design considering  the 

objective function(maximization) and constraints 

목적 함수와 제약 조건에 

따른 최적해(최대값)의 결정 
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2.2 Formulation of Optimal Design Problem 

)(xf

Objective Function 
Minimize: 

Constraints 
Subject to: mjg j ,,1,0)( x

: Inequality constraint 

pkhk ,,1,0)( x
: Equality constraint 

ul xxx 
: Constraint  

21 54 xxf Minimize: 

1 20 ,x x

2 

2 

4 

4 

6 

6 

x1 

x2 

x1  + x2 = 6 

(f *= -29 ) Optimal solution 

5x1+x2=10 

1 2

1 2

4

6

x x

x x

  

 

Subject to 
1 2

1 2

4 0

6 0

x x

x x

   

  

1 25 10x x  1 25 10 0x x  

수정중 

1. 수식 띄우기 

2. 그림크게 

3. 에니메이션 수정 

: 설계 변수 벡터에 대한 상·하한값 제약 조건 

feasible region 

 xf
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2.3 Classification of Optimization Problems(1) 

Existence of the constraints 

 Unconstrained optimization problem(Unconstrained 
optimization problem) 
Minimize the objective function f(x) without any constraints on the 

design variables x. 

 

 

 
 

 Constrained optimization problem 
Minimize the objective function f(x) with some constraints on the 

design variables x. 

Minimize f(x) 

Minimize       f(x) 

Subject to    h(x)=0 

                        g(x)≤0 
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2.3 Classification of Optimization Problems(2) 

Number of the objective functions 

 Single-objective optimization problem 

 

 

 

 

 Multi-objective optimization problem 
Weighting Method, Constraint Method 

 

Minimize       f(x) 

Subject to    h(x)=0 

                        g(x)≤0 

Minimize       f1(x), f2(x), f3(x) 

Subject to    h(x)=0 

                        g(x)≤0 
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2.3 Classification of Optimization Problems(3) 

Linearity of the objective function and constraints 

 Linear optimization problem 
 The objective function(f(x)) and constraints(h(x),  g(x)) are linear 

functions of the design variables x. 

 

 

 

 

 

 Nonlinear optimization problem 
 The objective function(f(x)) or constraints(h(x),  g(x)) are nonlinear 

functions of the design variables x. 

 

 

1 2( ) 2f x x x

1 2

1

( ) 5 0

( ) 0

h x x

g x

  

  

x

x

21

2

2

2

1 3)( xxxxf x

1 2

1

( ) 5 0

( ) 0

h x x

g x

  

  

x

x

2 2

1 1 2

2 1

1 1
( ) 1.0 0

6 6

( ) 0

g x x

g x

   

  

x

x

21

2

2

2

1 3)( xxxxf x

Minimize 

Subject to 

Minimize 

Subject to 

Minimize 

Subject to 
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2.3 Classification of Optimization Problems(4) 

Type of the design variables 
 Continuous Problem 

 The design variables in the optimization problem are continuous. 

 

 

 Discrete Problem 
 The design variables in the optimization problem are discrete. 

 It is also called the ‘Combinatorial optimization problem’. 

 Example) Integer programming problem 

 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

19 
Computer Aided Ship Design, I-2. Problem Statement of Optimal Design, Fall 2011, Kyu Yeul Lee  

2.4 Classification of Optimization Method 

 Global Optimization Methods 
 Advantage 

 It is useful for solving the global optimization 
problem which has many local optimum solution. 
 

 Disadvantage 
 It needs many iterations to obtain the optimum 

solution(much time). 
 

 Genetic Algorithms(GA), Simulated Annealing, etc. 

 Local Optimization Methods 
 Advantage 

 It needs relatively few iterations to obtain the optimum solution(less time). 
 

 Disadvantage 
 It is only able to find the local optimum solution which is near to the 

starting point. 
 

 Sequential Quadratic Programming(SQP), Method of Feasible 
Directions(MFD), Multi-Start Optimization Method, etc. 
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Computer Aided Ship Design 
 

Part I. Optimization Method 
 

- Ch.3 Unconstrained Optimization Method 
 

September, 2011 

Prof. Kyu-Yeul Lee 
 

Department of Naval Architecture and Ocean Engineering, 
 Seoul National University of College of Engineering 

Computer Aided Ship Design Lecture Note 
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Ch.3 Unconstrained Optimization Method  

3.1 Gradient Method 

1. Steepest Descent Method 
2. Conjugate Gradient Method 
3. Newton’s Method 
4. Davidon-Fletcher-Powell(DFP) Method 
5. Broyden-Fletcher-Goldfarb-Shanno(BFGS)              
Method 
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 Step 2: Iterate successively to find the optimum design point. 
 

3.1 Gradient Method 
  1. Steepest Descent Method(1) 
 Step 1: The search direction(d) is taken as the negative of the gradient of the objective function(f) at 

current iteration since the objective function f decrease mostly rapidly. 

 The direction of gradient vector of  f , f(x), is the direction of maximum increase of f at x  

 

 

f(x(1)) 

Search  

direction 

ex) Minimize the objective function 

( )f   d c xSearch direction 

x* 

x(0) 

x(2) 

x(1) 
x(3) 

f(x(0)) 

Search  

direction 
x1 

x2 

Ref) Appendix  A.1: 

 Directional Derivative & Gradient Vector  

 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

23 
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2011, Kyu Yeul Lee  

3.1 Gradient Method 
  1. Steepest Descent Method(2): Example 

 By using the steepest descent method, find the minimum design 
point in the following function of 2-variables.  

 

  Given: Starting design point x(0) = (0, 0), convergence tolerance  = 0.001    

  Find: x(1), x(2) 
2

221

2

12121 22),( xxxxxxxxf Minimize 
 Optimization problem with 

two unknown variables 

4 2 0 2 4

4

2

0

2

4

x2 

A 

A: True minimum design point 

x1
* = -1.0, x2

* = 1.5, f (x1
*, x2

*) = -1.25 

4

2

0

2

4

4

2

0

2

4

0

50

100

4

2

0

2

4

f(x1, x2) 

x1 

x2 

x1 , 03 Unconstrained Optimization Method 
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2 1.5 1 0.5 0 0.5 1

1

0.5

0

0.5

1

1.5

2

3.1 Gradient Method 
  1. Steepest Descent Method(3): Example 

 1st Iteration: Find   
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














1

1

0

0

(1) 2 2 2

2

( ) 2 2

2

f     

 

     

 

x

(1)( )
 2 2 0 1.0
df

d
 


    

x

2

221

2

12121 22),( xxxxxxxxf Minimize 















21

21

21
221

241
),()(

xx

xx
xxff x

x1 

x2 











1

1
)1(

x

)0(x

)1(
x

Starting design point  x(0) = (0, 0) 

How can we differentiate  f  with respect to     ?  
(1)

x

(1) ( , )  xSubstituting                into the objective 
function 

To minimize        , (1) ( )f x

Replacing       to     for 
convenience 

(0)   
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3.1 Gradient Method 
   1. Steepest Descent Method(4): Example 

 2nd Iteration: Find 

 )( )1()1()1()2( xxx f 









































1

1

1

1

1

1

125)( 2)2(  xf





































1

1

221

241

1

1
)(

21

21)1(

xx

xx
ff x

2 1.5 1 0.5 0 0.5 1

1

0.5

0

0.5

1

1.5

2

x1 

x2 

)0(x

)1(
x

)2(x

(2)
x

Replacing       to     for 
convenience 

(1)   

(2) ( 1 ,1 )    xSubstituting                      into the objective 
function 

(2)( )
 10 2 0 0.2
df

d
 


    

x

To minimize        , (2) ( )f x

(2)
0.8

1.2

 
   

 
x

2

221

2

12121 22),( xxxxxxxxf Minimize Starting design point  x(0) = (0, 0) 
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1 2(2)

1 2

1 4 20.8 0.2
( )

1.2 1 2 2 0.2

x x
f f

x x

      
       

       
x

 )( )2()2()2()3( xxx f 







































2.02.1

2.08.0

2.0

2.0

2.1

8.0

2.108.004.0)( 2)3(  xf

2 1.5 1 0.5 0 0.5 1

1

0.5

0

0.5

1

1.5

2

x1 

x2 

)0(x

)1(
x

)2(x

)3(x

 3rd Iteration: Find (3)
x

2

221

2

12121 22),( xxxxxxxxf Minimize Starting design point  x(0) = (0, 0) 

Replacing        
to       for  
convenience 

(1) 
 

(3) ( 0.8 0.2 ,1.2 0.2 )    xSubstituting                                  into the 
objective function 

(3)( )
 0.08 0.08 0 1.0
df

d
 


    

x

To minimize        , (3) ( )f x

(3)
1

1.4

 
   

 
x

3.1 Gradient Method 
   1. Steepest Descent Method(5): Example 
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2 1.5 1 0.5 0 0.5 1

1

0.5

0

0.5

1

1.5

2

x1 

x2 

)0(x

)1(
x

)2(x

)3(x

2

221

2

12121 22),( xxxxxxxxf Minimize Starting design point  x(0) = (0, 0) 

 4th Iteration: Find the minimum design point. 

To obtain the minimum design point, we have to iterate. 

If                   , then stop the iterative process because x(k+1)  can be 

assumed as the minimum design point. 

( 1) ( )x xk k   

3.1 Gradient Method 
   1. Steepest Descent Method(6): Example 
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To minimize                 , 
*( )f x x

[Reference] Differentiation of Function of x with Respect to the Another Variable 

(1) 2 2 2

2

( ) 2 2

2

f     

 

     

 

x

1 2( , ) ( )f x x f x : f  is the function of x. 

(1) ( , )  x : x(1)  is the function of α 

Substituting x (1)  into  f ,  f  is ,then, function 

of α and can be differentiated  f  with respect 

to α . 

* * *1
( ) ( ) ( ) 

2

T Tf f      x x x c x x H x x

*( )f x xThe second-order Taylor series expansion of 

* * *1
( ) ( ) ( ) 

2

T Tf f      x x x c x x H x x

In the above equation, we assume that   

x* is constant and        is a variable. x

*1
( ) ( ) 

2

T Tf      x c x x H x x

To minimize f , 

In the similar way, we can consider the followings: 

*

*

* 1

( )
( ) 0

( ) 

 ( )

df

d




   



   

   

x
c H x x

x

H x x c

x H x c ‘Newton’s method’ 

(1) ( , )  xSubstituting                into the objective 
function 

(1)( )
 2 2 0 1.0
df

d
 


    

x










1

1
)1(

x

How can we differentiate  f  with respect to     ?  

To minimize        , (1) ( )f x

2

221

2

12121 22),( xxxxxxxxf Minimize Starting design point  x(0) = (0, 0) 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

29 
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2011, Kyu Yeul Lee  

3.1 Gradient Method 
  2. Conjugate Gradient Method(1) 

 This method requires only a simple modification to the 
steepest descent method and dramatically improves the 
convergence rate of the optimization process.  
 

 The current steepest descent direction is modified by 
adding a scaled direction used in the previous iteration. 

 

 Step 1 : Estimate a starting design point as     . Set the iteration 
counter       . Also, specify a tolerance    for stopping criterion. 
Calculate 
 

    

    Check stopping criterion. If            , then stop. Otherwise, go 
to Step 4(note that Step 1 of the conjugate gradient and 
steepest descent method is the same). 

)0(x

0k 

)( )0()0()0( xcd f

)0(
c

, 03 Unconstrained Optimization Method 
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3.1 Gradient Method 
  2. Conjugate Gradient Method(2) 

 Step 2 :Compute the gradient of the objective function as                . 

   If           , then stop; otherwise continue. 

 

 Step 3 : Calculate the new search direction as 
 

 

 

 

)( )()( kk f xc 

)(k
c

2)1()(

)1()()(

)/( 







kk

k

k

k

kk

cc

dcd



 Previous search direction 

The current search direction is calculated by adding a scaled direction used in the previous iteration. 

 Step 4 :  Compute a step size       to minimize                . 

 

 

 Step 5 : Change the design point as follows, set          and go to 
Step 2. 
 

)( )()( kkf dx k 

)()()1( k

k

kk
dxx 

1 kk
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2 1.5 1 0.5 0 0.5 1

1

0.5

0

0.5

1

1.5

2

3.1 Gradient Method 
   2. Conjugate Gradient Method(3) : Example 

 Ist Iteration: Find  

2

221

2

12121 22),( xxxxxxxxf Minimize 















21

21

21
221

241
),()(

xx

xx
xxff x

x1 

x2 

)0(x

)1(
x

(1)x

Starting design point  x(0) = (0, 0) 

Replacing       to     for 
convenience 

0   

(1) 2 2 2

2

( ) 2 2

2

f     

 

     

 

x

(1) ( , )  xSubstituting                into the objective 
function 

(1)( )
 2 2 0 1.0
df

d
 


    

x











1

1
)1(

x

To minimize        , (1) ( )f x

 (0) (0) (0)
0

0
f f

 
       

 
d c x

(1) (0) (0)

0 x x d

1 2

1 2

1 4 2 1 1

1 2 2 1 1

x x

x x

       
         

       

0 1

0 1






      
       
     

Note: Step 1 of the conjugate gradient and 

steepest descent method is the same 
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2)1()(

)1()()(

)/( 







kk

k

k

k

kk

cc

dcd





)()()1( k

k

kk
dxx 

3.1 Gradient Method 
   2. Conjugate Gradient Method(4): Example 

2

221

2

12121 22),( xxxxxxxxf Minimize 

 2nd Iteration-Find (2)
x

Compute the gradient of the objective function as  

 (1) (1)

1 2

1 2

1 4 21 1

1 2 21 1

f

x x
f

x x

 

      
       

       

c x

Calculate the new search direction as 

 

 

2
(1)

(1) (1) (0) (1) (0)

1 2
(0)

1 1 02

1 1 22

f

f



     



      
        

     

x
d c d c d

x

 (0) (0)
1

1
f

 
    

 
d x

(1)
1

1

 
  
 

x
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2 1.5 1 0.5 0 0.5 1

1

0.5

0

0.5

1

1.5

2

x1 

x2 

)0(x

)1(
x

)2(x

3.1 Gradient Method 
   2. Conjugate Gradient Method(5): Example 

2

221

2

12121 22),( xxxxxxxxf Minimize 

Replacing       to     for convenience 1   

(2) (1) (1)

1 x x d

1 0 1

1 2 1 2




      
       

     

(1)
0

2

 
  
 

d(1)
1

1

 
  
 

x

(2) ( 1,1 2 )  xSubstituting                    into the objective function 

(2) 2( ) 4 2 1f    x

(2)( )
 8 2 0 0.25
df

d
 


    

x

To minimize        , (1) ( )f x

(2)
1

1.5

 
   

 
x

 (2) (2)
1 0

1.5 0
f f

   
       

   
c x















21

21

21
221

241
),()(

xx

xx
xxff x

Check stopping criterion. 

(2) 0  c →Stop! 

→Minimum design point 

)()()1( k

k

kk
dxx 

, 03 Unconstrained Optimization Method 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

34 
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2011, Kyu Yeul Lee  , 03 Unconstrained Optimization Method 

3.1 Gradient Method 
   3. Newton’s Method(1) 

Consider the quadratic approximation of the 
function f(x) at x=x(k) using the second-order Taylor 
expansion. 

   
( ) 2 ( )

2 3
( ) ( ) ( ) ( ) ( ) ( )

2

( ) 1 ( )
( ) ( ) ( )

2

k k
k k k k k kdf x d f x

f x x f x x x O x
dx dx

        

x* which minimizes f (x) 

Given: 

Find: 

NO 

1k k 

YES 

 Set                   and stop the iteration 
* ( 1)kx x 

Calculate the small change           in design. 
( )kx

( ) 2 ( )
( )

2

( ) ( )
/

k k
k df x d f x

x
dx dx

   
     

   

f(x) 

x 0 x(k) 

f(x(k)) 

x(k+1) 

f(x(k+1)) 

( )kx

x* 

( 1)kx 

x(k+2) 

Differentiate this equation with respect to         . 
( )kx

( ) ( ) 2 (( ) )

2

( )

( )

( ) ( ) ( )
0

kk
k

k

k kdf x x
x

x

df x d f x

d dx dx



 




The necessary condition 

for minimization of this 

function 

 In this equation, x(k) is a constant and         is a variable. So, 

the following equation is a quadratic function in terms of       . 

( )kx

 (
( ) 2 ( )

2
( ) ( )) ( )

2

( )( ) 1 ( )
( ) ( )

2

k kk k
k k

k df x d f x
f x f x

d
x

x
x x

dx
     

( 1) ( ) ( )k k kx x x  Assume that f(x) has minimum at                     .  

 Is |           |< ε ? ( )kx

( )f x

( )kx
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x* which minimizes f (x) 

Given: 

Find: 

f(x) 

x 0 x(0) 

f(x(0)) 

x(1) 

f(x(1)) 
(0)x

2( ) 2 2f x x x   Consider the quadratic approximation of the 
function f(x) at x=x(0) using the second-order Taylor 
expansion. 

   
(0) 2 (0)

2 3
(0) (0) (0) (0) (0) (0)

2

( ) 1 ( )
( ) ( ) ( )

2

df x d f x
f x x f x x x O x

dx dx
        

NO 1

0 1 1

k k 

  

Calculate the small change           in design. (0)x

   

(0) 2 (0)
(0)

2

3 3

( ) ( )
/

2 2 / 2 2
x x

df x d f x
x

dx dx

x
 

   
     

   

    

 Is |           |< ε ? (0)x

1

0k 

3

2 

3.1 Gradient Method  
3. Newton’s Method(2): Example 

Differentiate this equation with respect to         . 
(0)x

(0) (0) 2 (0)

2

(0)
(0)

(0)

( ) ( ) ( )
0

df x df x d f x

d d

x
x

x x dx








 

The necessary condition 

for minimization of this 

function 

 In this equation,  x(0) is a constant and         is a variable. So, 

the following equation is a quadratic function in terms of       . 

(0)x

 
(0) 2 (0)

(0) (0)
2

(0) (0) 0

2

( )( ) 1 ( )
( ) ( )

2

df x d f x
f x f x

d
x x

x
x

dx
     

(0)x

( 1) ( ) ( )k k kx x x  Assume that f(x) has minimum at                     .  

Starting design point  x(0) = 3 

, 03 Unconstrained Optimization Method 
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f(x) 

x 0 

f(x(0)) 

f(x(1)) 

x* 

Is it possible to find the x* which minimizes a 
cubic function at once? 

Consider the quadratic approximation of the 
function f(x) at x=x(1) using the second-order Taylor 
expansion. 

   
(1) 2 (1)

2 3
(1) (1) (1) (1) (1) (1)

2

( ) 1 ( )
( ) ( ) ( )

2

df x d f x
f x x f x x x O x

dx dx
        

YES 

 Set                   and stop the iteration 
* (1)x x

Calculate the small change           in design. (1)x

   

(1) 2 (1)
(1)

2

1 1

( ) ( )
/

2 2 / 2 0
x x

df x d f x
x

dx dx

x
 

   
     

   

   

(2) (1) (1)x x x Assume that f(x) has minimum at                     .  

Is  |           |< ε? (1)x

1k 

x(0) x(1) 

(0)x

1 3

2 

3.1 Gradient Method  
3. Newton’s Method(3): Example 

Differentiate this equation with respect to         . 
(1)x

(1) (1) 2 (1)

2

(1)
(1)

(1)

( ) ( ) ( )
0

df x df x d f x

d d

x
x

x x dx








 

The necessary condition 

for minimization of this 

function 

 In this equation,  x(1) is a constant and         is a variable. So, 

the following equation is a quadratic function in terms of       . 

(1)x

 
(1) 2 (1)

(1) (1)
2

(1) (1) 1

2

( )( ) 1 ( )
( ) ( )

2

df x d f x
f x f x

d
x x

x
x

dx
     

(1)x

x* which minimizes f (x) 

Given: 

Find: 

2( ) 2 2f x x x  

Starting design point  x(0) = 3 
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f(x) 

x 0 

x(0) 

f(x(0)) 

x(1) 

f(x(1)) 
(0)x

Consider the quadratic approximation of the 
function f(x) at x=x(0) using the second-order Taylor 
expansion. 

   
(0) 2 (0)

2 3
(0) (0) (0) (0) (0) (0)

2

( ) 1 ( )
( ) ( ) ( )

2

df x d f x
f x x f x x x O x

dx dx
        

NO 
1

0 1 1

k k 

  

Calculate the small change           in design. 
(0)x

   

(0) 2 (0)
(0)

2

2

33

( ) ( )
/

11
3 6 2 / 6 6

12xx

df x d f x
x

dx dx

x x x


   
     

   

      

(1) (0) (0)x x x Assume that f(x) has minimum at                     .  

Is  |           |< ε? (0)x

0k 

3

1
2

12


x* which minimizes f (x) 

Given: 

Find: 

3 2( ) 3 2f x x x x  

Is it possible to find the x* which 
minimizes a cubic function at once? 

Differentiate this equation with respect to         . 
(0)x

(0) (0) 2 (0)

2

(0)
(0)

(0)

( ) ( ) ( )
0

df x df x d f x

d d

x
x

x x dx








 

The necessary condition 

for minimization of this 

function 

 In this equation,  x(0) is a constant and         is a variable. So, 

the following equation is a quadratic function in terms of       . 

(0)x

 
(0) 2 (0)

(0) (0)
2

(0) (0) 0

2

( )( ) 1 ( )
( ) ( )

2

df x d f x
f x f x

d
x x

x
x

dx
     

(0)x

3.1 Gradient Method  
3. Newton’s Method(4): Example 

Starting design point  x(0) = 3 
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f(x) 

x 

0 

x(0) 

f(x(0)) 

x(1) 

f(x(1)) 

(1)x

Consider the quadratic approximation of the 
function f(x) at x=x(1) using the second-order Taylor 
expansion. 

   
(1) 2 (1)

2 3
(1) (1) (1) (1) (1) (1)

2

( ) 1 ( )
( ) ( ) ( )

2

df x d f x
f x x f x x x O x

dx dx
        

NO 1

1 1 2

k k 

  

Calculate the small change           in design. 
(1)x

   

(1) 2 (1)
(1)

2

2
2525

1212

( ) ( )
/

3 6 2 / 6 6 0.388
xx

df x d f x
x

dx dx

x x x


   
     

   

      

(2) (1) (1)x x x Assume that f(x) has minimum at                     .  

Is  |           |< ε? (1)x

1k 

3

2.083f(x(2)) 

x(2) 1.70

Why is it not possible to 
find the x* which minimizes 
a cubic function at once? 

Since the second-order Taylor expansion is just an approximation for f(x) at the point x(0), x(1) will 
probably not be the precise minimum design point of f(x). 

Is it possible to find the x* which 
minimizes a cubic function at once? 

Differentiate this equation with respect to         . 
(1)x

(1) (1) 2 (1)

2

(1)
(1)

(1)

( ) ( ) ( )
0

df x df x d f x

d d

x
x

x x dx








 

The necessary condition 

for minimization of this 

function 

 In this equation,  x(1) is a constant and         is a variable. So, 

the following equation is a quadratic function in terms of       . 

(1)x

 
(1) 2 (1)

(1) (1)
2

(1) (1) 1

2

( )( ) 1 ( )
( ) ( )

2

df x d f x
f x f x

d
x x

x
x

dx
     

(1)x

3.1 Gradient Method  
3. Newton’s Method(5): Example 

x* which minimizes f (x) 

Given: 

Find: 

3 2( ) 3 2f x x x x  
Starting design point  x(0) = 3 
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3.1 Gradient Method 
   3. Newton’s Method(6): Example of Function of Two Variables 

 1st Iteration: Find  





























21

21

21
221

241
),()(

2

1

xx

xx

f

f
xxff

x

x
x  

2 2

2

1 1 2

2 2

2

1 2 2

4 2
,

2 2

f f

x x x

f f

x x x

  
 

            
 
   

H x

(1)x

(1) (0) (0)  x x xAssume that f(x) has minimum at                         . 

In this equation,  x(0) is a constant and         is a variable. So, the following 
equation is a quadratic function in terms of       . 

(0) (0) (0) (0(0) (0) (0) (0) )1
( ) ( ) ( ) ( ) ( )

2

T Tf f f      x x xx x xHx x

(0)x

Consider the quadratic approximation of the function f(x) at x=x(0) using the 
second-order Taylor expansion. 

(0) (0) (0) (0) (0) (0) (0) (0)1
( ) ( ) ( ) ( ) ( )

2

T Tf f f       x x x x x x H x x

Minimize 
2 2

1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x Starting design point  x(0) = (0, 0) 

How? 

(0)x
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3.1 Gradient Method 
   3. Newton’s Method(7): Example of Function of Two Variables 

 1st Iteration: Find  (1)x
(0) (0) (0) (0(0) (0) (0) (0) )1

( ) ( ) ( ) ( ) ( )
2

T Tf f f      x x xx x xHx x

(0)(0)
(0) (0 (0)

(0)

)( )
( ) ( ) 0

( )

f
f

 
 


 

 

x
xH

x

x
x x

Differentiate this equation with respect to         . 
(0)x

The necessary condition for 
minimization of function f(x1, x2) 





























21

21

21
221

241
),()(

2

1

xx

xx

f

f
xxff

x

x
x

Minimize 
2 2

1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x Starting design point  x(0) = (0, 0) 

2 1.5 1 0.5 0 0.5 1

1

0.5

0

0.5

1

1.5

2

x1 

x2 

)0(x

)1(
x(0)(0) (0)( ) ( )f H x xx

Calculate the small change           in design. 
(0)x

 

2 2

2

1 1 2(0) (0)

2 2

2

1 2 2

1 4 2
( ) ,

1 2 2

f f

x x x
f

f f

x x x

   
  

                   
       

x H x

1

(0)

(0) 1

2

4 2 1

2 2 1


     

         



  

x

x

1

(0)

(0)

2

1

1.5

   
      



 

x

x

(1) 0) ( )(0
0 1 1

0 1.5 1.5
x x

      
          

    



x

How? 

( )( )) 1 ([ ( )] ( )k kk f   H x xx
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3.1 Gradient Method 
   3. Newton’s Method(8): Example of Function of Two Variables 

 2nd Iteration-Find  (2)
x

(2) (1) (1)  x x xAssume that f(x) has minimum at                         . 

In this equation, x(1) is a constant and         is a variable. So, the following 
equation is a quadratic function in terms of       . 

(1) (1) (1) (1(1) (1) (1) (1) )1
( ) ( ) ( ) ( ) ( )

2

T Tf f f      x x xx x xHx x

(1)x

Consider the quadratic approximation of the function f(x) at x=x(1) using the 
second-order Taylor expansion. 

(1) (1) (1) (1) (1) (1) (1) (1)1
( ) ( ) ( ) ( ) ( )

2

T Tf f f       x x x x x x H x x

Minimize 
2 2

1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x Starting design point  x(0) = (0, 0) 

(1)
1

1.5
x

 
  
 

(1)(1)
(1) (1 (1)

(1)

)( )
( ) ( ) 0

( )

f
f

 
 


 

 

x
xH

x

x
x x

Differentiate this equation with respect to         . 
(1)x

The necessary condition 
for minimization of 
function f(x1, x2) 

In the same way as 1st Iteration, 

(1)x

, 03 Unconstrained Optimization Method 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

42 
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2011, Kyu Yeul Lee  

3.1 Gradient Method 
   3. Newton’s Method(9): Example of Function of Two Variables 

 2nd Iteration-Find  (2)
x

Minimize 
2 2

1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x Starting design point  x(0) = (0, 0) 

(1)
1

1.5
x

 
  
 





























21

21

21
221

241
),()(

2

1

xx

xx

f

f
xxff

x

x
x(1)(1) (1)( ) ( )f H x xx

Calculate the small change           in design. 
(1)x

 

2 2

2

1 1 2(1) (1)

2 2

2

1 2 2

0 4 2
( ) ,

0 2 2

f f

x x x
f

f f

x x x

   
  

                   
       

x H x

1

(1)

(1) 1

2

4 2 0

2 2 0


     




           

x

x

1

(1)

(1)

2

0

0

   
 




      

x

x

(2) (1) (1)
1 0 1

1.5 0 1.5
x x

      
          

    



x

Check stopping criterion. 
(1) 0   x

→Stop! 

→Optimal design point  

2 1.5 1 0.5 0 0.5 1

1

0.5

0

0.5

1

1.5

2

x1 

x2 

)0(x

)1()2(
xx 

( )( )) 1 ([ ( )] ( )k kk f   H x xx
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3.1 Gradient Method 
   3. Modified Newton’s Method(1) 

 In this method, we treat                              of the Newton’s 
method as the search direction and use any of the one-
dimensional search methods to calculate the step size in the 
search direction. 
 

 Step 1 : Estimate a starting design point     .  

   Set iteration counter         . Specify a tolerance   for the stopping   

   criterion. 
 

 

 Step 2 :  Calculate                         for       to    . If           , stop 
the iterative process. Otherwise, continue. 
 

 

 Step 3 : Calculate the Hessian matrix       at current design 
point      . 

 

 

 

 

)0(x

0k 

1i ni

kk

i xfc  /)( )()(
x ( )k c

( )k
H

( )k
x 2

( )( ) , 1, , ; 1, ,k

i j

f
i n j n

x x

 
   

   

H x

( ) ( ) 1 ( )[ ( )] ( )k k kf   x H x x
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3.1 Gradient Method 
   3. Modified Newton’s Method(2) 

 Step 4 : Calculate the search direction as follows: 
 

 

 

( ) ( ) 1 ( )k k k   d x H c * * *1
( ) ( ) ( ) 

2

T Tf f      x x x c x x H x x

*

* * 1

( ) / ( ) 0

( )  ( )

df d



     

       

x x c H x x

H x x c x H x c

When                                                                 , 

the necessary condition for minimization of this function is as follows: 

 

 

 Step 5 : Update the design point as                          , where      
is calculated to minimize                   . Any one-dimensional 
search method may be used to calculate     . 

 

 

 Step 6 : Set             and go to Step 2. 
 

( 1) ( ) ( )k k k  x x d


)( )()( kkf dx 

1 kk


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1. It requires the storing of the n×n matrix         . 
 

2. It becomes very difficult and sometimes, impossible 
to compute the elements of the matrix         . 
 

3. It requires the inversion of the matrix           at each 
iteration. 
 

4. It requires the evaluation of the quantity                       
at each iteration. 

( )( )k
H x

( )( )k
H x

( )( )k
H x

( ) 1 ( )( ) ( )k kf H x x

 The Newton’s method is not very useful in practice, due to 
following features of the method: 

3.1 Gradient Method 
   3. Disadvantages of the Newton’s Method 

, 03 Unconstrained Optimization Method 
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3.1 Gradient Method 
   4. Davidon-Fletcher-Powell(DFP) Method(1) 

 This method builds an approximation for the inverse of 
the Hessian matrix of        using only the first derivatives. 

 

 Step 1 : Estimate a starting design point     .  

 Choose a symmetric positive definite nxn matrix       as an 
 approximation for the inverse of the Hessian matrix of the 
 objective function. In the absence of more information,             
 may be chosen. Also, specify a tolerance    for the stopping  
 criterion. Set        . Compute the gradient vector 
 as                           . 

 

 Step 2 : Calculate the norm of the gradient vector as       . 
 If            , then stop the iterative process. Otherwise, continue   
(note that Step 1 and 2 of this method and the steepest descent 
method are the same). 

)0(x
)0(A

IA )0(

0k



)( )0()0()0( xcd f

)(k
c

)(k
c

 f x
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1H
A

)()()( kkk
cAd 

)( )()( kkf dx  k

)()()1( k

k

kk
dxx 

 Step 3 : Calculate the search direction as follows: 

 

 

 That is,      matrix is used as an estimate for the inverse of the 
 Hessian matrix        of the objective function. 

 

 

 Step 4 : Compute optimum step size           to minimize              . 

 

 

 Step 5 : Update the design point as                          . 

 

 

3.1 Gradient Method 
   4. Davidon-Fletcher-Powell(DFP) Method(2) 
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 Step 6 : Update the matrix      - approximation for the inverse of 

 the Hessian matrix of the objective function – as 

 
 

 where the correction matrices        and       are calculated as 
 follows: 

 

)(kA

nnkkkk     ;     )()()()1( CBAA

1 kk Step 7 : Set              and go to Step 2. 

matrix 

( )k
B ( )k

C

nn
kk

Tkk
k 


    ;        

)(

)(
)()(

)()(
)(

ys

ss
B nn

kk

Tkk
k 




     ;      

)(

)(
)()(

)()(
)(

zy

zz
Cmatrix matrix 

( ) ( )

( ) ( 1) ( )

( 1) ( 1)

( ) ( ) ( )

                 :    1

         :    1

( )        :    1

              :

k k

k

k k k

k k

k k k

n

n

f n





 

 

  

  



s d

y c c

c x

z A y

matrix 

matrix 

matrix 

matrix [ ][ 1] [ 1]n n n n   

3.1 Gradient Method 
   4. Davidon-Fletcher-Powell(DFP) Method(3) 

( )

( )

k

k

d : search direction 

: optimum step size 
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













21

21

21
221

241
),()(

xx

xx
xxff x

IAx 







 )0()0(   ,

0

0

2 1.5 1 0.5 0 0.5 1

1

0.5

0

0.5

1

1.5

2

x1 

x2 

)0(x

)1(
x

 1st Iteration: Find  

Minimize 
2 2

1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x Starting design point  x(0) = (0, 0) 

(1)x

(0) (0)
1 4 0 2 0 1

( )
1 2 0 2 0 1

f
      

      
        

c x

(0) (0) (0) (0) (0)
1

1

 
        

 
d A c Ic c

(1)( )
 2 2 0 1.0
df

d
 


    

x










1

1
)1(

x

To minimize        , (1) ( )f x

(0) 2 21 ( 1) 2     c

Replacing       to     for 
convenience 

0   

Check stopping criterion. 

(1) (0) (0)

0

0 1

0 1








 

      
       
     

x x d

3.1 Gradient Method 
   4. Davidon-Fletcher-Powell(DFP) Method(4): Example 

(1) 2( ) 2f   x

(1) ( , )  xSubstitute                into the objective 
function 
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 (0) (0) 1
1




 s d

 (0) (0) 1  1
1  1

T 



s s

 Update the matrix      - approximation for 

the inverse of the Hessian matrix of the 

objective function – as 

(1)
A

 (1) 1
1





c

(0) (0) 4 y z

(0) (0) 2 s y

 (0) (0) (0) 2
0


 z A y

 (0) (1) (0) 2
0


  y c c

(0) (0)
(0)

(0) (0)

T




s s
B

s y

 (0) (0) 4  0
0  0

T

z z

 1  0
0  0




(1) (0) (0) (0)

1 0 0.5 0.5 1 0

0 1 0.5 0.5 0 0

0.5 0.5

0.5 1.5

  
      

       
     

 
  

 

A A B C

(1) (0) (0) (0)  A A B C

 0.5  0.5
0.5  0.5






(0)
1

,
1

 
  

 
c

(0) (0)
(0)

(0) (0)

T




z z
C

y z

(0)
1 0

0 1

 
   

 
A I

Minimize 
2 2

1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x Starting design point  x(0) = (0, 0) 

3.1 Gradient Method 
   4. Davidon-Fletcher-Powell(DFP) Method(5): Example 














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241
),()(

xx
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xxff x

 2nd Iteration: Find  
(2)x
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(1) 2  c











1

0
)1()1()1(

cAd

1)( 2)2(  xf











5.1

1
)2(

x

(2) 0  c

2 1.5 1 0.5 0 0.5 1

1

0.5

0

0.5

1

1.5

2

x1 

x2 

)0(x

)1(
x

)2(x

(2)( )
2 1 0 0.5

df

d
 


    

x

(2) (1) (1)

1

1 0 1

1 1 1






 

      
       

     

x x d

Replacing       to      
for convenience 

1   

(2) ( 1,1 )  xSubstitute                   into the objective 
function 

To minimize        , (2) ( )f x















21

21

21
221

241
),()(

xx

xx
xxff x

(2) (2)
1 4 ( 1) 2 1.5 0

( )
1 2 ( 1) 2 1.5 0

f
       

      
        

c x
Check stopping criterion. 

→Stop! 

→Optimal design point 

Check stopping criterion. 

Minimize 
2 2

1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x Starting design point  x(0) = (0, 0) 

3.1 Gradient Method 
   4. Davidon-Fletcher-Powell(DFP) Method(6): Example 

 2nd Iteration: Find  (2)
x
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3.1 Gradient Method 
   5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method(1) 

 This method updates the Hessian matrix rather than its 
inverse at every iteration. 

 
 Step 1 : Estimate a starting design point     .  

 Choose a symmetric positive definite nxn matrix       as an 
 approximation for the Hessian matrix of the objective function. 
 In the absence of more information, let            . Specify a 
 tolerance     for the stopping criterion. Set        , and compute 
 the gradient vector as                   . 

 

 Step 2 : Calculate the norm of the gradient vector as       .  

 If             , then stop the iterative process. Otherwise, continue 
 (note that Step 1 and 2 of this method and the steepest descent 
 method are the same). 

 

(0)H

(0) H I
0k

)( )0()0(
xc f

)(k
c

)(k
c

)0(x
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)( )()( kkf dx  k

)()()1( k

k

kk
dxx 

 Step 3 : Solve the linear system of the following equation to 
obtain the search direction. 

 

 

 This equation looks like                     of Newton’s Method, but   

    is an approximated Hessian matrix      . 

 

 Step 4 : Compute optimum step size           to minimize              . 

 

 

 Step 5 : Update the design point as                          . 

 

 

( ) ( ) ( )k k k H d c

( )k
H

( ) ( ) ( )k k k H d c
( )k

H

3.1 Gradient Method 
   5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method(2) 
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 Step 6 : Update the matrix       - approximation for the Hessian  

 matrix of the objective function - as 

 
 

 where the correction matrices        and        are give as follows: 

 

 Step 7 : Set              and go to Step 2. 

3.1 Gradient Method 
   5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method(3) 

matrix ( 1) ( ) ( ) ( )       :    k k k k n n    H H D E

)(kD )(kE

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
; ;

( ) ( )

T Tk k k k
k k

k k k k
 

 

y y c c
D E

y s c d

( ) ( )

( ) ( 1) ( )

( 1) ( 1)( )

k k

k

k k k

k kf





 



 

 

s d

y c c

c x

: change in design 

: change in gradient 

1 kk

( )

( )

k

k

d : search direction 

: optimum step size 

( )k
H
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 1st Iteration: Find  

Minimize 
2 2

1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x Starting design point  x(0) = (0, 0) 

(1)x

(0) (0)
1 4 0 2 0 1

( )
1 2 0 2 0 1

f
      

      
        

c x

(0) (0) 1 (0) (0) (0)
1

( )
1


 

        
 

d H c Ic c

(1)( )
 2 2 0 1.0
df

d
 


    

x 







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1

1
)1(

x
To minimize        , (1) ( )f x

(0) 2 21 ( 1) 2     c

Replacing       to     for 
convenience 

0   

Check stopping criterion. 

(1) (0) (0)

0

0 1

0 1








 

      
       
     

x x d

(0) (0)
0

,
0

 
  
 

x H I

3.1 Gradient Method 
   5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method(4): Example  

(1) 2( ) 2f   x

(1) ( , )  xSubstitute                into the objective 
function 
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 (0) (0) 1
1




 s d

(0) (0)
4 0

0 0

T  
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 

y y

Update the matrix       - approximation for 

the Hessian matrix of the objective 

function - as 
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Minimize 
2 2

1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x Starting design point  x(0) = (0, 0) 

(0)
1

,
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 
  

 
c

(0)
1

1

 
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d

3.1 Gradient Method 
   5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method(5): Example  
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 2nd Iteration: Find  (2)x
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(1) 2  c

(2) 2( ) 4 2 1f    x
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x x d

Replacing       to      
for convenience 

1   

(2) ( 1,1 2 )  xSubstitute                     into the objective 
function 

To minimize        , (2) ( )f x
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1 4 ( 1) 2 1.5 0
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      
        

c x
Check stopping criterion. 

→Stop! 

→Optimal design point  

Check stopping criterion. 

Minimize 
2 2

1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x Starting design point  x(0) = (0, 0) 

(1) (1) (1) H d c

 (1) 0
2

d(1)
2.5 0.5

,
0.5 0.5

 
  
 

H  (1) 1
1





c

3.1 Gradient Method 
   5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method(6): Example  

 2nd Iteration: Find  (2)
x
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Ch.3 Unconstrained Optimization 
Method 

 

3.2 Golden Section Search Method 
(One Dimensional Search Method) 
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3.2 Golden Section Search method  
- Phase 1: Global Search(1) 

 Search for the interval in which the minimum lies 

 In the figure, starting at         , we evaluate         at          ,where         
is a small number. If the value        is smaller than the value       , we 
then take an increment of            in the step size(i.e., the increment is 
1.618 times the previous increment     ). (See  Fibonacci sequence) 

 
)(f )0(f

618.1

f() 

 0 5.236 

2 4 … 

16.326 9.472 

3 

 

q = 0 

2.618 

1 

  0;0q

... ,2 ,1 ,0  ,)618.1(
0

 


q
q

j

j

q 
...

)618.1(326.16)618.1(472.9;4
4

0

4

4 



j

jq 





3

0

3

3 )618.1(472.9)618.1(236.5;3
j

jq 





2

0

2 )618.1(236.5)618.1(618.1618.2;2
j

jq 





1

0

1 )618.1(618.2618.1;1
j

jq 

0q  ( )f  0 


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3.2 Golden Section Search method  
- Phase 1: Global Search(2) 

 If the function at        is smaller than that at the previous point       

and the next point      , (i.e.,                                                                         ) the 

minimum point lies between    and        . 

   (The interval in which the minimum lies is called the interval of uncertainty.) 

1q 2q

q )()(   ),()( 121 qqqq ffff   

q 2q











2

0

2

0

)618.1(,)618.1(
q

j

j

ql

q

j

j

qu 
upper lower 

q-2 q-1 q 

f() 

 0 

… 

16.326 2.618 

q-2 

5.236 

q-1 

9.472 

q 

=
 

=
 

=
 

f() 

 

upper 

 (u) 

lower 

(l) 

the interval of uncertainty 
the interval of uncertainty 

 

0 

… 

… 

1.0 1.618 

1.0:1.618 = 0.382:0.618 

 

(a) 

1

1

0

, (1.618)
q

j

a q

j

  






 

 Therefore, upper and lower limits on the interval of uncertainty are 
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Note: Fibonacci sequence 

 Fibonacci sequence defined as 

0 10;    1;F F  1 2 ,    2,  3,  n n nF F F n   

 

 
11

1

1
lim lim

1

nn

n

nnn n
n

F

F

 

 
 



 


 

 

 

1

11

1

1

lim
1

nn

n

nnn

n

 



 









 


 

 
1

1

1
1

lim
1

1

n

nn


 











 
   

 
 

 
 

1
1





 
 

 



 1 1 5
,   1.6180339887

25

nn

nF
 


  

  General term: 

1

lim ,n

n
n

F

F





Property: 
1

1 


  

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, … 

 Any number of the Fibonacci sequence for n>1 is obtained by adding the 
previous two numbers, so the sequence is given as follows. 

, 03 Unconstrained Optimization Method 
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(1 - )I(k)=(1/3)I(k) I(k)=(2/3)I(k) 

b 

I(k) 

l u 

(a) 

(1 - )I(k)=(1/3)I(k) I(k)=(2/3)I(k) 

a 

< If  = 2/3 > 

If f(a) < f(b), then minimum 

point  lies between l and b. 

q-2 q 

f() 

the interval of uncertainty 

l u 

=
 

=
 

Repeat to reduce 

the interval of 

uncertainty 

I(k+1)=I(k)=(2/3)I(k) 

l 

(b) 
u 

I(k+1) (1 - )I(k+1) 

b a 

 l a b u 

For new interval of uncertainty, we always 

have to compute f(a),  f(b ). 

<Question> 

Is there any method to use the previous 

function values? 

3.2 Golden Section Search method  
- Phase 2: Local Search(1) 

 Reduction of interval of uncertainty by comparing 
function values at a and b 

• We consider two points symmetrically located from 
either end as shown in the figure – points a and b  are 
located at a distance of  I(k) from either end of the 
interval. 

• Comparing function values at a and b , either the left 
(l , a) or the right (b , u) portion of the interval gets 
discarded because the minimum cannot lie there. 
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If f(a) < f(b), then minimum 

point  lies between l and b. 

I(k+1) (1 - )I(k+1) 

b 

(1 - )I(k) I(k) 

a 

(1 - )I(k) I(k) 

I(k) 

l u 
(a) 

I(k+1) =I(k) 

l u 
(b) 

0)1( )()(  kk II 

 Reduction of interval of uncertainty by comparing function values at a and b 

 We consider two points symmetrically located from either end as shown in the figure – points 

a and b  are located at a distance of  I(k) from either end of the interval. 

1.  f(b) will be used for the next interval of uncertainty I(k+1) . 

2. a is determined to equal to a  or b  of the next interval 
of uncertainty I(k+1). 


 aa 

I(k+1) (1 - )I(k+1) 

a 

)1()( )1()1(  kk II 
)()( )1()1( kk II  

)()( kk II 

3-1. Assume that a is equal to a . 

Because  =1, this assumption is wrong. 

3-2. Assume that a is equal to b . 


 ba 
)1()()1(  kk II 

)()()1( kk II  

01 2 

618.1,618.0  618.0

b 

3.2 Golden Section Search method  
- Phase 2: Local Search(2) 
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3.2 Golden Section Search method  
- Phase 2: Local Search(3) 

If f(a)> f(b), then minimum 

point  lies between a and u. 

I(k+1) (1 - )I(k+1) 

b 

(1 - )I(k) I(k) 

(1 - )I(k) I(k) 

b 

I(k+1) =I(k) 

l u 
(b) 

0)1( )()(  kk II 


 bb 

I(k+1) (1 - )I(k+1) 

a 

)1()( )1()1(  kk II 
)()( )1()1( kk II  

)()( kk II 

3-1. Assume that b is equal to b . 

Because  =1, this assumption is wrong. 

3-2. Assume that b is equal to a . 


 ab 
)1()()1(  kk II 

)()()1( kk II  

01 2 

618.1,618.0  618.0

I(k) 

l u 
(a) 

a 

1.  f(a) will be used for the next interval of uncertainty I(k+1) . 

2. b is determined to equal to a  or b  of the next interval 
of uncertainty I(k+1). 

 Reduction of interval of uncertainty by comparing function values at a and b 

 We consider two points symmetrically located from either end as shown in the figure – points 

a and b  are located at a distance of  I(k) from either end of the interval. 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

65 
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2011, Kyu Yeul Lee  

3.2 Golden Section Search method: Summary(1)  

 Step 1: For a chosen small number    , let     be the smallest integer 

 to satisfy                                      where                      are 

 calculated from                                . The upper and lower 

 bounds on    (the optimum value for    ) are given as follows. 

 

  

 

 Step 2 : Compute         and         where                      and 

    (interval of uncertainty               ).  

 

 Step 3 : Compute         and        , and go to Step 4, Step 5 or Step 6. 

)()( ),()( 121 qqqq ffff   

q











2

0

2

0

)618.1(,)618.1(
q

j

j

ql

q

j

j

qu 

luI  

)( af  )( bf  Ila 382.0

Ilb 618.0





)( af  )( bf 

(1 - )I(k) I(k) 

a 

(1 - )I(k) I(k) 

b 

I(k) 

l u 

1 2,q q qand   

0

(1.618) , ( 0,1,2, )
q

j

q

j

q 


 
*
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3.2 Golden Section Search method : Summary(2)  

 Step 4 : If                    , then minimum point      lies between 

 and     , i.e.,                . The new limits for the reduced interval of 

 uncertainty are           and          . Also,           .  Compute          , 

 where                                and go to Step 7. 

 

 Step 5 : If                    , then minimum point      lies between    

 and     , i.e.,                 . Similar to the procedure in Step 4, let        

  and           , so that           . Compute         , where                               

    and go to Step 7. 

 

 Step : If                    ,  let           and            and return to Step 2. 

 

)()( ba ff   * l

b

ll  ' bu  ' ab  '

)''(382.0'' lula  

)'( af 

)()( ba ff   *

al  ' uu  ' ba  '

)''(618.0'' lulb  

a

u

*

l b   

*

a u   

)'( bf 

)()( ba ff   l a  u b 

I(k+1) (1 - )I(k+1) 

b 

(1 - )I(k) I(k) 

a 

(1 - )I(k) I(k) 

b 

I(k) 

l u 

I(k+1) =I(k) 

l u 

I(k+1) (1 - )I(k+1) 

a 

Step 4 

I(k+1) (1 - )I(k+1) 

b 

(1 - )I(k) I(k) 

(1 - )I(k) I(k) 

b 

I(k+1) =I(k) 

l u 
(b) 

I(k+1) (1 - )I(k+1) 

a 

I(k) 

l u a 

Step 5 
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3.2 Golden Section Search method: Summary(3) 

 

 Step 7 : If the new interval of uncertainty                 is small 

 enough to satisfy a stopping criterion (i.e.,        ), let 

 and stop. Otherwise, delete the primes(‘) on                 and     

 and return to Step 3.  

'I 2/)''(*

lu  

' ' 'u lI   

', ', 'l a b   'u

I(k+1) (1 - )I(k+1) 

b 

(1 - )I(k) I(k) 

a 

(1 - )I(k) I(k) 

b 

I(k) 

l u 

I(k+1) =I(k) 

l u 

I(k+1) (1 - )I(k+1) 

a 

Step 4 

I(k+1) (1 - )I(k+1) 

b 

(1 - )I(k) I(k) 

(1 - )I(k) I(k) 

b 

I(k+1) =I(k) 

l u 
(b) 

I(k+1) (1 - )I(k+1) 

a 

I(k) 

l u a 

Step 5 
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Ch.3 Unconstrained Optimization Method 
 

3.3 Direct Search Method  
 

1. Hooke & Jeeves Direct Search Method 
2. Nelder & Mead Simplex Method 
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3.3 Direct Search Method  
  1. Hooke & Jeeves Direct Search Method(1)  

 This method is a sequential technique each step of which consists 
of two kinds of move, the ‘Local Pattern Search’ at a base point 
and ‘Global Pattern Move’ to the optimal design point. 

1
b

2
b

2

0t

3

0t

3
b

4
b 54

0 bt 

1x

2x

5

0t
7 

Global Pattern Move 

Local Pattern Search 

Base point 

2. Global Pattern Move 

3. Local Pattern Search 

1. Base Point 

, 03 Unconstrained Optimization Method 
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3.3 Direct Search Method  
  1. Hooke & Jeeves Method(2): Example 

1x

2x

1
b

2
b

2

0t

1. ‘Local Pattern Search’ at the 

base point b1 

 

•Search in x1 direction. 

  - No improvement of the value of the 

objective function in x1 direction No 

movement in x1 direction 

•Search in x2 direction. 

  - Improvement of the value of the objective 

function in x2 direction Movement in the 

positive x2 direction 

•Move and define the base point b2. 

2. ‘Global Pattern Move’ at the 

base point b2 

 

•Find a temporary base point t0
2 by 

symmetrical displacement of b1 to b2. 

•Because the value of the objective 

function at t0
2 is better than that at b2, 

do the ‘Local Pattern Search’ at t0
2. 

2. Global Pattern Move 

3. Local Pattern Search 

1. Base Point 

, 03 Unconstrained Optimization Method 
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3.3 Direct Search Method 
  1. Hooke & Jeeves Method(3) 

1x

2x

1
b

2
b

2

0t

3

0t

3
b

3. ‘Local Pattern Search’ at the 

temporary base point t0
2 

 

•Search in x1 direction. 

 - Improvement of the value of the objective 

function in x1 direction  Movement in the 

positive x1 direction 

•Search in x2 direction. 

 - Improvement of the value of the objective 

function in x2 direction  Movement in the 

positive x2 direction 

•Move and define the base point b3. 

4. ‘Global Pattern Move’ at the 

base point b3 

•Find a temporary base point t0
3 by 

symmetrical displacement of b2 to b3. 

•Because the value of the objective 

function at t0
3 is not better than that at b3, 

perform the ‘Local Pattern Search’ at b3. 

2. Global Pattern Move 

3. Local Pattern Search 

1. Base Point 

, 03 Unconstrained Optimization Method 
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3.3 Direct Search Method 
  1. Hooke & Jeeves Method(4) 

1x

2x

1
b

2
b

2

0t

3

0t

3
b

4
b

4

0t

5. ‘Local Pattern Search’ at the 

base point b3 

 

•Search in x1 direction. 

  - Improvement of the value of the objective 

function in x1 direction  Movement in the 

positive x1 direction 

•Search in x2 direction. 

  - No improvement of the value of the objective 

function in x2 direction  No movement in  x2 

direction 

•Move and define the base point b4. 

6. ‘Global Pattern Move’ at the 

base point b4 

 

•Find a temporary base point t0
4 by 

symmetrical displacement of b3 to b4. 

•Because the value of the objective 

function at t0
4 is better than that at b4, 

perform the ‘Local Pattern Search’ at t0
4 . 

2. Global Pattern Move 

3. Local Pattern Search 

1. Base Point 

, 03 Unconstrained Optimization Method 
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3.3 Direct Search Method 
  1. Hooke & Jeeves Method(5) 

1x

2x

1
b

2
b

2

0t

3

0t

3
b

4
b

4

0t

7. ‘Local Pattern Search’ at the 

temporary base point t0
4 

•Search in x1 direction. 

  - No improvement of the value of the objective 

function in x1 direction  No movement in x1 

direction 

•Search in x2 direction. 

  - No improvement of the value of the objective 

function in x2 direction  No movement in x2 

direction 

•Because there is no improvement of the 

value of the objective function in x1 and 

x2 direction, the current base point is 

defined as the base point b5. 

8. ‘Global Pattern Move’ at the 

base point b5 

•Find a temporary base point t0
5 by 

symmetrical displacement of b4 to b5. 

•Because the value of the objective 

function at t0
5 is not better than at b5, 

perform the ‘Local Pattern Search’ at b5. 

5 b
5

0t

2. Global Pattern Move 

3. Local Pattern Search 

1. Base Point 

, 03 Unconstrained Optimization Method 
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3.3 Direct Search Method 
  1. Hooke & Jeeves Method(6) 

1x

2x

1
b

2
b

2

0t

3

0t

3
b

4
b

4

0t

9. ‘Local Pattern Search’ at the 

base point b5 

•Search in x1 direction. 

  - No improvement of the value of the 

objective function in x1 direction  No 

movement in x1 direction 
 

•Search in x2 direction. 

  - No improvement of the value of the 

objective function in x2 direction  No 

movement in x2 in x2 direction 
 

•Because there is no improvement of the 

value of the objective function in x1 and 

x2 direction, the current base point 

defined as base point b6. 
 

•Because b5 = b6, reduce the step size by 

half and perform the ‘Local Pattern 

Search’ at b6. 

5 b
5

0t

6 b

2. Global Pattern Move 

3. Local Pattern Search 

1. Base Point 
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3.3 Direct Search Method  
  1. Hooke & Jeeves Method(7): Rule of the ‘Local Pattern Search’(1) 

Case ① Search in the positive xi direction. 

- If the value of 

the objective 

function is 

increased(Fail) 

Rule of the ‘Local Pattern Search’ 

- If the value of the 

objective function is 

decreased(Success) 

- Move the exploratory point in the positive 

xi direction and evaluate the value of the 

objective function at that point. 

bk
 

- Come back to the previous point and 

search in the negative xi direction. 

bk
 

F 

- Search in the xi+1 direction at the 

current point. 

bk
 

S 

Case ② Search in the negative xi direction. 

- If the search in the positive xi direction is 

failed, move the exploratory point in the 

negative  xi direction and evaluate the 

value of the objective function at that 

point. 

bk
 

F 

- If the value of the 

objective function 

is increased(Fail) 

- If the value of the 

objective function is 

decreased(Success) 

- Come back to the previous point 

and search in xi+1 direction. 

bk
 

F 

- Search in the xi+1 direction at the 

current point. 

bk
 

F 

F 

S 

- This process of the ‘Local Pattern Search’ is continued for i = 1,…, n. 

- After searching in xn direction, the current point is defined as new base point bk+1. 

(F: Fail, S: Success) 
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bk
 

 Rule of the Local Pattern Search 

<Case 1> <Case 2> 

(F: Fail, S: Success) 

F F 

S 

bk
 

S 

S <Case 3> 

bk 
F F 

F 

F 

bk 

Step/2 
bk+1

 bk+1
 

1
b

2
b

2

0t

3

0t

3
b

4
b 54

0 bt 

1x

2x

5

0t
7 

Global Pattern Move 

Local Pattern Search 

Base point 

Case 1 

Case 2 

Case 3 

* Super script ‘k’ means the number of step. 

3.3 Direct Search Method  
  1. Hooke & Jeeves Method(8): Rule of the ‘Local Pattern Search’(2) 
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Example of the ‘Local Pattern Search’  

in the problem with  

two independent variables(x1, x2) 

(Search in x1 direction) 

3.3 Direct Search Method 
  1. Hooke & Jeeves Method(9): Algorithm Summary(1) 

1) Local Pattern Search (Problem with n independent variables) 

1
b

1. Compute the value of the objective function at 

the starting base point b1. 

2. Compute the value of the objective function at  

b1±δ1, where δ1 is input step size and a vector 

with n elements(δ1 = [δ1, 0, 0, …, 0]T).  If the value 

of the objective function is decreased, b1±δ1  is 

adopted as t1
1(and the search is continued. 

3. Compute the value of the objective function at  

t1
1±δ2, where δ2  is also input step size and a 

vector with n elements( δ2 = [0, δ2, 0, …, 0]T). If 

the value of the function is decreased, t1
1±δ2  is 

adopted as t2
1. 

1x

2x
1

1 t

Example of the ‘Local Pattern Search’  

in the problem with  

two independent variables(x1, x2) 

(Search in x2 direction) 

1
b

1x

2x
1

1 t

1

2t

, 03 Unconstrained Optimization Method 
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3.3 Direct Search Method 
  1. Hooke & Jeeves Method(10): Algorithm Summary(2) 

4. After the ‘Local Pattern Search’ for all independent variables, new base point 

is defined. (new base point b2 = tn
1) 

5. Perform the ‘Global Pattern Move’ from the previous base point along the line 

from the previous to current base point. 

1) Local Pattern Search (Problem with n independent variables) 

, 03 Unconstrained Optimization Method 
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3.3 Direct Search Method 
  1. Hooke & Jeeves Method(11): Algorithm Summary(3) 

2) Global Pattern Move 

1. Define the temporary base point located the same distance between the 

previous and current base point(obtained from ‘Local Pattern Search’) from 

the current base point (‘Global Pattern Move’), and calculate the value of the 

objective function at this point. The temporary base point is calculated by 

‘Global Pattern Move’ as follows. 

kkkkkk
bbbbbt   111

0 2)(2

2
b

2

0t

3

0t

3
b

4
b

Example of the ‘Global Pattern Move’ in the 

problem with two independent variables(x1, x2) 

When the value of the objective function at 

the temporary base point is not improved. 

2. If the result of the temporary base point is a better point 

than the previous base point, perform the ‘Local Pattern 

Search’ at the temporary base point. Otherwise, come 

back to the previous base point and perform the ‘Local 

Pattern Search’. 

, 03 Unconstrained Optimization Method 
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3.3 Direct Search Method 
 1. Hooke & Jeeves Method(12): Algorithm Summary(4) 

2
b

2

0t

3

0t

3
b

4
b

3) Closing Conditions 

1. When even this ‘Local Pattern Search’ fails(bk+1 = bk, there is no 

improvement), reduce the step sizes δi by halt, δi/2, and resume the 

‘Local Pattern Search’. 

 
Example of the ‘Global Pattern Move’ in the 

problem with two independent variables(x1, x2) 

When the value of the objective function at 

the temporary base point is not improved. 

2. If the step size δi is smaller than  εi, stop the iteration 

and current base point is the optimal design point. 

, 03 Unconstrained Optimization Method 
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3.3 Direct Search Method 
  1. Hooke & Jeeves Method(13): Example 

 If the contour line of the objective function of shipbuilding cost with two 
independent variables, L/B and CB, is given as shown in the Figure, find the 
optimal value of the L/B and CB to minimize the shipbuilding cost by using 
the ‘Hooke & Jeeves Direct Search Method’ and plot the procedures in the 
graph. 

 Hooke & Jeeves Direct Search Method 

 Starting design point: L/B = 7.0, CB = 0.2 

 Step size at the starting design point: (L/B) = 0.5, (CB) = 0.1 

CB 

L/B 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

Contour line of the objective function(f = const.)  

Optimization problem with two 

 unknown variables      
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BCxBLx  21   ,/

• Iteration 1  : Local Pattern Search 1

1

2t

1

2

1
tb 

•Iteration 2  : Global Pattern Move 1

0 1

2

0

Define the temporary base point by using  and  

(6,   0.4) 

b b

t

2

0t

CB 

L/B 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

0
b

1

1t

2

0t

1

2t
1

b

Because the value of the objective 
function at    is improved, this point is 
adopted as a new base point. 

0

1 2

1 0

0

1 1

0 1 1

1 1

1 2 2

(7,   0.2),   0.5,   0.1,

Search from in  direction (6.5, 0.2)

Search from in  direction (6.5, 0.3)

x x

x

x

    



  

  

b

t b

t t

t t

Because the value of the objective function at    is improved, perform the ‘Local Pattern 
Search’ at this point. 

 
3.3 Direct Search Method 
  1. Hooke & Jeeves Method(14): Example 
 

, 03 Unconstrained Optimization Method 
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•Iteration 3  :  Local Pattern Search 2

2

2

2 tb 

•Iteration 4  : Global Pattern Move 2
1 2

3

0

Define the temporary base point by using  and  

(4.5,   0.7) 

b b

t

•Iteration 5  : Local Pattern Search 3

3

2

3 tb 

CB 

L/B 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

0
b

1

1t

1
b

2

0t
2

1t

3

0t 3

1t

2

2t
2

b
3

2t

3
b

2 2

0 1 1

2 2

1 2 2

Search from  in  direction (5.5,   0.4)

Search from  in  direction (5.5,   0.5)

x

x

  

  

t t

t t

2

2t
Because the value of the objective 
function at    is improved, this point is 
adopted as a new base point. 

3 0

0 1 1

3 3

1 2 2

Search from  in +  direction (5,   0.7)

Search from  in -  direction (5,   0.6)

x

x

 

 

t t

t t

2

2tBecause the value of the objective function at       is improved, this point is adopted 
as a new base point. 

 
3.3 Direct Search Method 
  1. Hooke & Jeeves Method(15): Example 
 

3

2t
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•Iteration  6  : Global Pattern Move 3

•Iteration 7  : Local Pattern Search 4

•Iteration  8  : Global Pattern Move 4

•Iteration  9 : Stopping the iteration of search

CB 

L/B 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

0
b

1

1t

1
b

2

0t
2

1t

2
b

3

0t 3

1t
3

b

4

0t

4 3

0 t b

4

0t
Because the value of the objective 
function at    is not improved,  

2 3

4

0

Define the temporary base point by using  and  

(4.5,   0.7) 

b b

t

4 4 4

2 1 0 t t t

4

0t

Because there is no improvement of 
the value of the objective function 
from the temporary base design point       
    in x1 direction and x2 direction, 

4 3

1 2

5 4

0

  0.25,   0.05,x x     



b b

t b

/ 5.0,   0.6BL B C 

1 2( , ) ( / , ) (5.0, 0.6)Bx x L B C 

Because there is no improvement of the value of the objective function from base design 
point                                      in x1 direction and x2 direction by performing the ‘Local 
Pattern Search’ and ‘Global Pattern Move’, the optimal design point is                     . 

 
3.3 Direct Search Method 
  1. Hooke & Jeeves Method(16): Example 
 

, 03 Unconstrained Optimization Method 
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3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(1) 

1x

2x

1. This method uses n+1 points in 

the function of n design 

variables. 

(ex) If the number of the design 

variables is two, this method 

use three points.) 

 

2. The simplex is reflected in the 

direction where the value of the 

objective function is improved. 

 

3. If the value of the objective 

function is improved, the 

simplex is expanded. Otherwise, 

the simplex is reduced. 

, 03 Unconstrained Optimization Method 
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= 

= 

= 

3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(2) 

 This method is used to find optimal design point by 
successively reflecting, expanding, contracting and reducing 
the simplex with (n+1) corners in the function of n design 
variables. Following figure shows an example of 2-
dimensional case.  

 

= 

= 

xe 
New Simplex 
Expansion 
to xe when 

xh 

xb 

xr 

xh: Simplex point having the largest objective function value 
xb: Center point between x1 and x2 

x2 

f(xr) < f(xl) & f(xe) < f(xl) 

xl 

Reflection 
to xr 

xh 

xb 

xr 

Reflection 

x2 
xl(= xl) 

Original 
Simplex 

Expansion 

xc 

Contraction 
 to xc when 

)()( hr ff xx 

xh 

xb 

Contraction 

x2 

xh 

xb 
xl 

Reduction 
toward xl when 

Reduction 

x2 

f(xc)  f(xh) 

= 

= 

xr 
Contraction 
 to xc when 

)()( hr ff xx 

xh 

xb 
xl xl 

xc 

x2 
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3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(3) 

 Step 1 : Calculate the value of the objective function f at the n+1 corners 
of the simplex. 

 

 Step 2 : Establish the corners which yield the highest, xh, and lowest, xl, f(x) 
in the current simplex. 

 

 Step 3 : Calculate the value of the objective function f at the centroid(xb) 
of all xi except xh , i.e., 

1

1

1
(with   excluded)

n

b i h

in





 x x x

xh 

xb 
xl 

x2 2

21 xx
x


b

Example) 
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= 

= 

3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(4) 

 Step 4 : Test stopping condition: 

 

 

 

 If the stopping condition is satisfied, stop and return f(xl) as minimum. 
Otherwise, continue. 

 

 Step 5 : Reflection 

 Reflect xh through xb to give                    . 

 Calculate the value of the objective function f at xr  

 and change the simplex as following conditions. 








2/12
1

1

})]()([
1

1
{ b

n

i

i ff
n

xx

hbr xxx  2

Reflection 
to xr 

Original 

Simplex 

xh 

xb 
xl 

xr 

x2 

xh 

xb 

x2 
xl(= xl) 

Average of the distance 

between each corners and xb 
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3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(5) 

 Step 6 : Expansion 

 Step 6-1 : If f(xr) < f(xl), reflect xb through xr to give                   . 

     And then, calculate f(xe) and compare f(xe) and f(xl).  

 

 

 Step 6-1-1 : If f(xe) < f(xl), replace xh by xe(expansion) 

 and return to Step 2. 

 

 

 

 

 Step 6-1-2 : If f(xe)  f(xl), replace xh by xr(reflection) 

 and return to Step 2. = 

= 

= 

= 

= 

bre xxx  2

xe  xh 

Original 

Simplex 

xh 

xb 
xl 

xr 

x2 

Original 

Simplex 

xh 

xb 
xl 

x2 

xr   xh 

 Step 6-1-1 

 f(xe) < f(xl) 

 Step 6-1-2 

 f(xe)  f(xl) 
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= 

= 

3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(6) 

 Step 6 : Expansion 

 Step 6-2 : If f(xr)  f(xl), 

 Step 6-2-1 : test f(xr) < f(xi) for all xi except xh.  

 If true, replace xh by xr(reflection)  

 and return to Step 2. 

 

 

 

 

 

 

 Step 6-2-2 : If false, continue.  

Original 

Simplex 

xh 

xb 
xl 

x2 

xr,xh 

 Step 6-2-1 

 For all xi except xh 

 f(xr) < f(xi) 
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3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(7) 

 Step 7 : Contraction 

 Step 7-1 : If f(xr) < f(xh), 

 calculate the value of the objective function f  

 at                           . 

 

 

 

 

 

 Step 7-2 : If f(xr)  f(xh), 

 calculate the value of the objective function f  

 at                           . 

 

 

 

 

= 

= 

= 

= 

2/)( brc xxx 

2/)( bhc xxx 

xc 

xr 

xh 

xh 

xb 

xb 

xl 

xl 
xc 

x2 

x2 

 Step 7-1 

 f(xr) < f(xh) 

 Step 7-2 

 f(xr)  f(xh) 

2/)( brc xxx 

2/)( bhc xxx 
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= 

= 

= 

= 

3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(8) 

 Step 8 : Reduction 

 Step 8-1 : If f(xc) < f(xh), 

 replace xh by xc (contraction)  

 and return to Step 2. 

 

 

 

 

 

 Step 8-2 : If f(xc)  f(xh), 

 reduce the simplex toward xl  using                          

 (reduction) and return to Step 2.  
xh 

xb 
xl(= xl) 

Reduction 
toward xl 

x2 

2/)( lii xxx 

 Step 8-2 

 f(xc)  f(xh) 

xr 

xh 

xb 
xl 

xcxh 

x2 

xcxh 

xh 

xb 
xl 

x2 or 

 Step 8-1 

 f(xc) < f(xh) 
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3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(9): Example 

 If the contour line of the objective function of shipbuilding cost with two 
independent variables, L/B and CB, is given as shown in Fig, find the value 
of the L/B and CB to minimize the shipbuilding cost by using the ‘Nelder & 
Mead Simplex Method’ and plot the procedures in the graph. 

 Nelder & Mead Simplex Method 

 Starting corners of the simplex: (L/B, CB) = (1, 0.1), (1.5, 0.1), (1.5, 0.2) 

 Stopping criterion: 0.01 

CB 

L/B 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

Contour line of the objective function(f = const.)  

Optimization problem with two 

 unknown variables      



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

94 
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2011, Kyu Yeul Lee  

CB 

L/B 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

1 2,h 

3 

4,e 

5,e 

1 2 3Triangle 1 :  ,   ,   x x x

BCxBLx  21   ,/

r 

r 

2 2

1 3

1 3

4,

1 3 4

Iteration 1) Because  is  reflect  

through the center between and

Because ( ) <  ( ) and ( )  

perform the expansion  

Triangle 2 :  ,   ,   

h

r

r

e

x x x

x x x

f x f x f x

x

x x x







,

.

,

1 1

3 4

3 4

5,

3 4 5

Iteration 2) Because  is  reflect  

through the center between and

Because ( ) <  ( ) and ( )  

perform the expansion  

Triangle 3 :  ,   ,   

h

r

r

e

x x x

x x x

f x f x f x

x

x x x







,

.

,

3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(10): Example  

ixNumber means the index ‘i’ of      . 

ixAlphabet means the kind of       . 

h: maximum point of the 

corner in the simplex(triangle) 

r: reflection 

e: expansion 

c: contraction 
, 03 Unconstrained Optimization Method 
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CB 

L/B 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

3 

4,e 

5,e 

6,e 

7,r 

r 

3 3

4 5

4 5

6,

4 5 6

Iteration 3) Because  is  reflect  

through the center between and

Because ( ) <  ( ) and ( )  

perform the expansion  

Triangle 4 :  ,   ,   

h

r

r

e

x x x

x x x

f x f x f x

x

x x x







,

.

,

4 4

5 6 7,

7, 6

5 6 7

Iteration 4) Because  is  reflect  

through the center between and

Because ( ) >  ( ),go to the next iteration.

Triangle 5 :  ,   ,   

h

r

r

x x x

x x x

f x f x

x x x





,

.

3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(11): Example  

BCxBLx  21   ,/

, 03 Unconstrained Optimization Method 
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CB 

L/B 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

5 

6 

7 

8,c 

9,c 

5 5

6 7

5 6 7

8,

6 7 8

Iteration 5) Because  is  reflect  

through the center between and

Because ( ) >  ( ),  ( ) and ( ),

perform the constraction.  

Triangle 6 :  ,   ,   

h

r

r

c

x x x

x x x

f x f x f x f x

x

x x x







,

.
r 

r 

7 7

6 8

6 8 7

9,

6 8 9

Iteration 6) Because  is  reflect  

through the center between and

Because ( ) >  ( ),  ( ) and  ( ) < ( ),

contract the simplex toward x  

Triangle 7 :  ,   ,   

h

r

r r

r c

x x x

x x x

f x f x f x f x f x

x

x x x







,

.

3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(12): Example 

, 03 Unconstrained Optimization Method 
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CB 

L/B 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

6 
8,c 

9,c 10,e 

11,c 

r 

r 

8 8

6 9

6 9

10,

6 9 10

Iteration 7) Because  is  reflect  

through the center between and

Because ( ) <  ( ),  ( ),

preforme the expansion  

Triangle 8 :  ,   ,   

h

r

r

c

x x x

x x x

f x f x f x

x

x x x







,

.

9, 9,

6 10

6 10 9

11,

6 10 11

Iteration 8) Because  is  reflect  

through the center between and

Because ( ) >  ( ),  ( )and ( ) <  ( )

contract the simplex toward  

Triangle 9 :  ,   ,   

c h c

r

r r

r c

x x x

x x x

f x f x f x f x f x

x x

x x x







,

.

3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(13): Example 

, 03 Unconstrained Optimization Method 
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)1.0  ,7(1x

)2.0  ,5.7(3x

)475.0  ,375.7(5x

)9125.0  ,8125.6(7x

)5375.0  ,4375.6(9x

)66875.0  ,21875.5(11x

)1.0  ,5.7(2x

)25.0  ,75.6(4x

)6875.0  ,1875.6(6x

)6375.0  ,9375.6(8x

)5625.0  ,0625.5(10x

)5796875.0  ,6171875.4(12x

 Performing 10 times iterations, we can recognize that the simplex(triangle) has the 

tendency to approach the result obtained by the ‘Hooke & Jeeves direct search 

method’. 

CB 

L/B 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

6 

10 

11 

12,c 

r 

6 6

10 11

10 11 6

12,

10 11 12

Iteration 9) Because  is  reflect  

through the center between and

Because ( ) >  ( ),  ( )and ( ) <  ( )

contract the simplex toward  

Triangle 10 :  ,   ,   

h

r

r r

r c

x x x

x x x

f x f x f x f x f x

x x

x x x







,

.

3.3 Direct Search Method 
   2. Nelder & Mead Simplex Method(14): Example  

, 03 Unconstrained Optimization Method 
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Computer Aided Ship Design 
 

Part I. Optimization Method 
 

Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition 

September, 2011 

Prof. Kyu-Yeul Lee 
 

Department of Naval Architecture and Ocean Engineering, 
 Seoul National University of College of Engineering 

Computer Aided Ship Design Lecture Note 
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Ch.4 Optimality Condition Using Kuhn-
Tucker Necessary Condition  

 4.1 Optimal Solution Using Optimality Condition 

 4.2 Lagrange Multiplier for Equality Constraints 

 4.3 Kuhn-Tucker Necessary Condition for Inequality 
Constraints 
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Ch.4 Optimality Condition  
Using Kuhn-Tucker Necessary 

Condition  
 

 4.1 Optimal Solution Using Optimality 
Condition 

 

- Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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x 

y 

1 

1 

-1 x 

y 

1 

1 

-1 

Maximum 

Minimum 

1) Maximum value: The increase of the value of the continuous function f(x) is 

changed to the decrease of that at                . 

2) Minimum value: The decrease of the value of the continuous function f(x) is 

changed to the increase of that at                . 

0)(' * xf

(Necessary condition for             to be a maximum or minimum) 

 Review of the Mathematics for the course of high school  

-  “수학의 정석”(Mathematics II) Review“6. Maximum, Minimum and Differentials”(p. 104) 

*xx 

*xx 

*xx 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  

4.1 Optimal Solution Using Optimality Condition 
- Optimality Conditions for Function of Single Variable –  
The Maximum and Minimum of the Function(Review of the Course of High School) 
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4.1 Optimal Solution Using Optimality Condition 
- Optimality Conditions for Function of Single Variable :  
  First-Order Necessary Conditions(1) 

 First-order necessary condition for the function of a single variable: 0)(' * xf

dxx  *
Let                    , the equation is as follows. 

Rdxfdxfxfxf  2*** )(''
2

1
)(')()(

Remainder 

:  If the difference between 

      and        is small, the  

value of the remainder is 

also very small.  

*xx

Rxx
dx

xfd
xx

dx

xdf
xfxf  2*

2

*2
*

*
* )(

)(

2

1
)(

)(
)()(

pf) The Taylor series expansion of f(x) at the point      is as follows. 
*x

Rdxfdxfxf  2** )(''
2

1
)(')(

)()()( * xfxfxf From this equation, the change in the function at       , i.e.,                                         

is given as 

*x

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

104 
Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tucker Necessary Condition, Fall 2011, Kyu Yeul Lee  

*xx 

Rdxfdxfxfxfxf  2*** )(''
2

1
)(')()()(

is neither minimum nor 

maximum. 

)( *xfis minimum. )( *xf

*x dx *dx * *x dx *dx * *x dx *dx *

is maximum. )( *xf

4.1 Optimal Solution Using Optimality Condition 
- First-Order Necessary Conditions(2) 

must be positive, if      is a local minimum point. f *x

Thus, the only way          can be positive regardless of the sign of     in a neighborhood of  

 is                       . 

df

0)(' * xf

*x

In the same way,          must be negative if       is a local maximum point. So, the only way         

can be positive regardless of the sign of     in a neighborhood of      is                    . 

f
*x

f d
*x 0)(' * xf

cf) Since the point satisfying                  can be local minimum, maximum or neither 

minimum nor maximum(inflection points), they are called stationary points. 

0)(' * xf

Since, beacuse 란초스 책을 볼 것 D의 부호에 관계 없이 라는 말이 들어가야 할 것 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  

Since                         is small, the first-order term               dominates other terms. *)( xxd 
*'( )f dx

*'( )f dxAnd the sign if the term               depends on the sing of     .             d
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4.1 Optimal Solution Using Optimality Condition 
- Sufficient Conditions and Second-Order Necessary Condition 

Rdxfdxfxfxfxf  2*** )(''
2

1
)(')()()(

 Now, we need a sufficient condition to determine which of the stationary points are 

actually minimum for the function. 

Since stationary points satisfy the necessary condition                , the change in function 

                                 becomes as follows. Rdxfdxfxf  2** )(''
2

1
)(')(

0)(' * xf

Rdxfxf  2* )(''
2

1
)(

0)('' * xf

Since the second-order term dominates all other higher-order terms, the term can be 

positive for all          , if                        

                (Sufficient condition) 

0d

Cf: confer Since 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  

 First-order necessary condition 

0)(' * xfIf     is a local minimum point,                 . 
*x

cf) If                  ,      is a stationary 

point(minimum, maximum and inflection point). 

0)(' * xf
*x

 Sufficient condition 

0)('' * xf

0)(' * xfIf     is a stationary point(                    )  

and               ,      is a local minimum point. 

*x
*x

Summary 
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Rxx
x

f
xxxx

xx

f
xx

x

f

xx
x

f
xx

x

f
xxfxxf





































2*

222

2

2
*

22

*

11

21

2
2*

112

1

2

*

22

2

*

11

1

*

2

*

121

)())((2)(
2

1

)()(),(),(

Taylor series expansion for the function of two variables                   at                ),( 21 xxf ),( *

2

*

1 xx

 

   ***

*

22

*

11

2

2

2

12

2
21

2

2

1

2

*

22

*

11

*

22

*

11*

222

2

2
*

11

21

2
*

22

12

2
*

112

1

2
2*

222

2

2
*

22

*

11

21

2
2*

112

1

2

)(
2

1

2

1

)()()()(
2

1
)())((2)(

2

1

xxxHxx 



















































































































T

xx

xx

x

f

xx

f

xx

f

x

f

xxxx
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xx
xx

x

f
xx

xx

f
xx

xx

f
xx

x

f
xx
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f
xxxx

xx

f
xx

x

f


 Each terms can be represented as follows: 

)()()()( **

*

22

*

11

2

1*

22

2

*

11

1

xxx 














































 T

T

f
xx

xx

x

f

x

f

xx
x

f
xx

x

f

    Rfff
TT  ******  )(

2

1
)()()()( xxxHxxxxxxx

 22

*

2

*

1

*

21 ,),(,),(  Mxxxx TT Hxx

Element of the 2x2 Matrix 

 
4.1 Optimal Solution Using Optimality Condition 
 [Review] Taylor Series Expansion for the Function of Two Variables  

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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 Matrix form of the Taylor series expansion for the function of two variables 

    Rfff
TT  ******  )(

2

1
)( )()()( xxxHxxxxxxx

 22

*

2

*

1

*

21 ,),(,),(  Mxxxx TT Hxx

 Matrix form of the Taylor series expansion for the function of the several variables 

: It has the same form of the function of two variables. 

nnM

f





H

xx ,, *
: n dimension Vector 

Element of the 2x2 Matrix 

Rfff TT  dxHddxxdx )(
2

1
)()()( ****

 By defining                     , the Taylor series expansion for the function of the several 

variables is as follows. 

dxx  *

,0)( *  Tf x 0)(
2

1 * dxHd
T

Sufficient conditions for              to be 

 a local minimum 

*
xx 

 

4.1 Optimal Solution Using Optimality Condition 
- Optimality Conditions for Function of Several Variables (1) 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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f
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f


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


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2

njni
xx

f

ji

 















H

 Hessian matrix : Differentiating the gradient vector once again, we obtain a matrix of 

second partial derivatives for the function            called the Hessian matrix. )(xf

 Tnxxx 21x

: n-column Vector 

That is, differentiating each component of the gradient vector with respect to                        ,  

we obtain 

nxxx ,,, 21 

 Hessian matrix is denoted as H or         . f2

 Property of the Hessian matrix 

ijji xx

f

xx

f










Therefore, the Hessian matrix is 

 always a symmetric matrix. 

4.1 Optimal Solution Using Optimality Condition  
[Review] Hessian Matrix 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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 Quadratic form: This is a special nonlinear function having only second-order terms. 

ex)  2

332

2

23121

2

1321 546422
2

1
),,( xxxxxxxxxxxxF 

 The elements of symmetric matrix A is defined as follows.(aij: element of the matrix A at (i,j)) 

1) The diagonal terms of the matrix are equal to the coefficient of the squared terms. 

 

2) The all terms except for diagonal terms(aij) are equal to a half of the coefficient of 

the xixj. 

 2oftcoefficien iii xa 

 
2

1
 oft coefficien  jiij xxa

The quadratic form can be written in the following matrix notation. 

    xAx
T

x

x

x

xxxxxxF
2

1

522

261

212

2

1
,,

3

2

1

321321 





































A :Symmetric matrix 

Hdd
T

2

1

4.1 Optimal Solution Using Optimality Condition  
[Review] Quadratic Form 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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 Use of the form of a quadratic form 

Ref) KREYSZIG E., Advanced Engneering Mathematics, WILEY, 2006, 

8.4. Eigenbasis. Diagonalization. Quadratic forms. 

4.1 Optimal Solution Using Optimality Condition  
- Quadratic Form may be either positive, negative, or zero for any X 

① Minimum condition for the function of the 

single variable 

0)('' * xf

0)(' * xfIf     is a stationary point(                  )  

and               ,      is a local minimum  

point. 

*x
*x

 Form of a quadratic form 

1) Positive Definite  

:                      for any x except for           . 

2) Positive Semidefinite  

:               for all x and there exists 

at least one              with                    .  

3) Negative Definite 

:                     for all x except for  

4) Negative Semidefinite  

:                     for all x 

5) Indefinite 

: The quadratic form is positive for 

some vectors x and negative for others. 

0x0Axx
T

0Axx
T

0Axx
T

0Axx
T

0Axx
T

0x

0x

To be >0, H must be positive definite 
아래 부분은 줄일 것 

스크립트를 넣을 것 

A symmetric matrix A is often referred to as a positive 

definite, positive semidefinite, negative definite, 

negative semidefinite, or indefinite  if the quadratic form 

associated with A is positive definite, positive 

semidefinite, negative definite, negative semidefinite, or 

indefinite, respectively. 

A symmetric matrix A is 

often referred to as a 

positive definite if the 

quadratic form associated 

with A is positive definite 

② Minimum condition for the function of the 

several variables 

0)( * dxHdT

If     is a stationary point(                  )  

and                    , i.e., the quadratic form  

is positive definite,       is a local minimum  

point. 

*x

*x

To be                    at    , 

       must be positive definite  

0)( * dxHdT

)( *
xH

*x

0)( *  xf
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1)            is positive definite if and only if all eigenvalues of A are strictly positive, i.e., )(xF

nii ,...,1 ,0 

nii ,...,1 ,0 

3)            is negative definite if and only if all eigenvalues of A are strictly negative, i.e.,  )(xF

2)            is positive semidefinite if and only if all eigenvalues of A are nonnegative, i.e.,  )(xF

nii ,...,1 ,0 

nii ,...,1 ,0 

4)            is negative semidefinite if and only if all eigenvalues of A are nonpositive, i.e., )(xF

0i 0i5)            is indefinite if some              and some other               . )(xF

4.1 Optimal Solution Using Optimality Condition  

 Theorem: Methods for checking positive definiteness or semidefiniteness  of a 

quadratic form or a matrix : 

Let                    be n eigenvalues of a symmetric          matrix A associated 

with the quadratic form                    . Axxx
TF

2

1
)( 

nnnii ,...,1 , 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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For a given matrix A, the eigenvalue problem is defined as      

, where      is an eigenvalue and      is the corresponding eigenvector. 

How to determine the eigenvalues: 

vAv  0)(  vIA  0)det(  IA 



















422

242

224

A

0)8()2(

422

242

224

det 2 































8,root)equal(2

  

Determine the eigenvalues and the form of the following matrix. 

Since all eigenvalues of A are positive, this matrix is positive definite. 

4.1 Optimal Solution Using Optimality Condition  
 - Eigenvalue of a Symmetric Matrix A  associated with the quadratic Form 

vAv lamda 

since 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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 The Taylor series expansion of           , which is the function of n variables gives          )(xf

Rfff TT  dxHddxxx )(
2

1
)()()( ***

4.1 Optimal Solution Using Optimality Condition 
 [Summary] Optimality Conditions for Function of Several Variables 

이 문장 아로라 찾을 것 

cf) If                  ,      is a stationary 

point(minimum, maximum and inflection point). 

If                    , i.e.,                                           ,     is a stationary 

point(minimum, maximum and inflection point). 

1) The first-order necessary condition: 

 

 

 

2) The sufficient condition: 

 If                        a stationary point                                                    is a local minimum. 

 If we assume a local minimum at        then             must be positive. 
*x f

To be                           ,           must be positive definite. )H(x
*

),2,1(,0
)( *

ni
x

f

i




 x

0)dH(xd
*T )0)(    0)(( **  xx ff T

* 0( )f x

0)dH(xd
*T

*x

아래 문장으로 변경할 것 

위와 같이 변경할 것 

To be >0, H must be positive definite, 위의 문장 지울 것 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  

Rff TT  dxHddx )(
2

1
)( **

 From this equation, the change in the function at      , i.e.,                                   , is given as 
*x )()()( *

xxx fff 
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),( *

2

*

1 xxf

),( 21 xxf

),( 2

*

21

*

1 xxxxf 

f
df

),( *

2

*

1 xx

22 dxx 

11 dxx 

1x

2x

1

1

dx
x

f





2

2

dx
x

f





1x

f




slope= 

f

2x

f




slope= 

)  ,( 21 dxdx

- The change in the function at the 
stationary point in arbitrary 
direction df  has to be zero. 

4.1 Optimal Solution Using Optimality Condition 
Necessary condition to be a stationary point :  Total derivative  d f = 0 -> grad f = 0.  

* 0( )f xcf) If                , df=0 , x* is a stationary 

point(minimum, maximum and inflection point). 

Df가 0이면 stationary point 
Df가 0이라는 것은 아래 식이 0이어야 함 
D를 모르니까 부호를 모르니까, 파샬이 0
이되어야 함 
이것이 gradient f가 0이라는 것과 같은 
의미이다. 

Rfff TT  dxHddxxx )(
2

1
)()()( ***

 From this equation, the change in the function at      , i.e.,                                   , is given as 
*x )()()( *

xxx fff 

Rff TT  dxHddx )(
2

1
)( **

2 2 2
2 2

1 2 1 1 2 22 2

1 2 1 1 2 2

1
2

2

f f f f f
f x x x x x x R

x x x x x x

     
             

      

The change in the function is defined as 
follows 

*'( )f dx

If                             , the first-order term  

                dominates other terms.  

1 20, 0x x   

1 2

1 2

f f
x x

x x

 
  

 

Therefore        can be approximated as 

 

f 1 2

1 2

f f
f x x

x x

 
    

 

1 2

1 2

f f
df dx dx

x x

 
 
 

the change of the function in       
direction 1x

the change of the 
function in       direction 

2x

The symbol ”d” refers to the infinitesimal 
change. In accordance with the notation we 
write the change of the function    as follows f

If          , then     is a stationary point. 
*x0df 

1 2

0
f f

x x

 
 

 
0f 

It means that the gradient of function      

is equal to zero. 

f

Thus, the only way          can be positive regardless of the sign of     in a neighborhood of  

 is                       . 

df

0)(' * xf

*x

To be             regardless of the sign of  

      and       ,           and           must be zero. 

0df 

1/f x 2dx1dx 2/f x 
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4.1 Optimal Solution Using Optimality Condition 
Necessary condition to be a stationary point:Total derivative  d f = 0 -> grad f = 0.  

Given: minimize f(x1, x2) 

* *

1 2( , )x x

* *

1 2( , )f x x

- The change in function(df ) at the point(x1*, 

x2*) with the change in variables(dx1, dx2) is as 

follows. 
Find: Stationary point (x1*, x2*) 

The point where the change in function(df) 

is zero is called stationary point . It 

includes the minimum, maximum and 

saddle point. 

1 2( , )f x x

1x

2x

Note: In the general engineering optimization problem, 

the optimum point is more important than the optimum 

value. 

[example] Main dimension of a ship (L, B, D, CB) to 

minimize the shipbuilding cost is more important than 

the shipbuilding cost itself. 

1 2

1 2

f f
df dx dx

x x

 
 
 

컨투어 라인 찾아볼 것 

파란 라인 삭제할 것 

Note 빼고 여기 다 필요 없음 

Note는 앞으로 옮길 것 
, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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Given: 
2 2 2

1 2 3 1 2 3( , , )f x x x x x x  

Find: Stationary point (x1*, x2*, x3*) 

1 2 3 1 2 3( , , ) 1 0h x x x x x x    

Express h (equality constraint) as an explicit 
function of x1. 

1 2 3 1x x x   

Substitute  x1  into the function of  f  

2 2 2

2 3 2 3( 1)f x x x x     
2 2

2 3 2 3 2 3

2 2

2 3

( 1 2 2 2 )x x x x x x

x x

     

 
2 2

2 3 2 3 2 32 2 1 2 2 2x x x x x x     

Determine the stationary point in 
unconstrained optimization problem. 

2 3

0
f f

x x

 
  
 

2 3

2

4 2 2 0
f

x x
x


   



3 2

3

4 2 2 0
f

x x
x


   



The equations are solved as                             .  
2

1
,

3
x  

By substituting these value into the function of 
f,  we obtain  

1

1

3
x  

Therefore, the stationary point is                      . 
1 1 1

, ,
3 3 3

 
   
 

3

1

3
x  

( 0)df 

2 3

2 3

0
f f

df dx dx
x x

 
  
 

Quadratic programming problem 

- Objective function: quadratic form 
- Constraint: linear form 

(참고) 소거법을 이용한 제약 비선형 최적화 기법 
- 2차 계획 문제 

4.1 Optimal Solution Using Optimality Condition 
[Example] Solution of a Quadratic Programming problem 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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Solution 

Express  x2  as an explicit function of  x1 , 

2)( 112  xxx

2

1

2

111 )5.12()5.1())(,(  xxxxf

04

12

1

0)5.0(2)5.1(2

2

1

2

12

1

11

1









dx

fd

xx

x

xx
dx

df

)1,1(),( *

2

*

1  xx : Local minimum point 

Minimize 

4.1 Optimal Solution Using Optimality Condition 
[Example] Solution of a Quadratic Programming problem 

1. Express h (equality constraint) as an explicit function of 
x1. 

2. Substitute x1 into  f  and find the stationary point 
by using df = 0. 

Given: 
2 2

1 2 1 2( , ) ( 1.5) ( 1.5)f x x x x   

Find: Local minimum point(x1*, x2*) 

02),( 2121  xxxxh

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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Ch.4  Optimality Condition Using  
Kuhn-Tucker Necessary Condition  

 
 4.2 Lagrange Multiplier for equality 

constraints 
 

- Ch.3 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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1 2 3

1 2 3

f f f
df dx dx dx

x x x

  
  
  

At the stationary point, the change in the function(df) is zero.  

The gradient of the function at stationary point must be zero for the change in the function(df) to be 

zero regardless of the sign of dx1, dx2, and dx3. 

1 2 3

0
f f f

x x x

  
  

  

0f 

Given: 
1 2 3( , , )minimize f x x x

Find: Stationary point(x1*, x2*, x3*) 

4.2 Lagrange Multiplier for equality constraints 
- Function and Stationary Point for Unconstrained Optimum Design Problem 

Sign of the values are arbitrary, 파샬이 0이어야 함 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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1. Express h (equality constraint) as an explicit function of x1. 

2. Substitute x1 into  f  and find the stationary point by 
using df = 0. 

In many problem, it may not be possible to 
express h (equality constraint) as an explicit 
function of x1. 

Is there any method to obtain the 
stationary point if the equality 
constraint can not be expressed as an 
explicit function? 

 df = 0 at the stationary point. Since h(x1,x2,x3)=0 , dh is also zero. 

Since equation① and ② are equal to zero, the following equation is always satisfied. 

0df dh  

1 2 3

1 2 3

0
f f f

df dx dx dx
x x x

  
   
  

① 1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

② 

3

1 2 3 1 2) ( , , ) tan cos 0
x

ex h x x x x x e   

Example) It is difficult to express the following equality 
constraint as an explicit function. 

: Undetermined Coefficient  
‘Lagrange multiplier’ 

4.2 Lagrange Multiplier for equality constraints 
- Function and Stationary Point for Constrained Optimum Design Problem(1) 

Given: 
1 2 3( , , )minimize f x x x

Find: Stationary point(x1*, x2*, x3*) 

1 2 3( , , ) 0h x x x 
St(subject to) 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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1 2 3

1 2 3

0
f f f

df dx dx dx
x x x

  
   
  

1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

This equation can be rearranged as follows. 

1 2 3 1 2 3

1 2 3 1 2 3

0
f f f h h h

dx dx dx dx dx dx
x x x x x x


      

      
      

1 2 3

1 1 2 2 3 3

0
f h f h f h

dx dx dx
x x x x x x

  
         

         
          

- Because of the equality constraint h,  

dx1, dx2, and dx3 are not linearly independent. 

① 

② 

0df dh   : Undetermined Coefficient  
‘Lagrange multiplier’ 

4.2 Lagrange Multiplier for equality constraints 
- Function and Stationary Point for Constrained Optimum Design Problem(2) 

Given: 
1 2 3( , , )minimize f x x x

Find: Stationary point(x1*, x2*, x3*) 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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1 2 3

1 1 2 2 3 3

0
f h f h f h

dx dx dx
x x x x x x

  
         

         
          

If the dx1, dx2, and dx3 were all independent of each other, all terms in the brackets will be zero. This 
however, is not the case because of the equality constraint h. Therefore, we should make the first term 
to be zero by determining a proper value of λ, so that the following equation is satisfied without 
considering the dx1. 

2 3

2 2 3 3

0
f h f h

dx dx
x x x x

 
     

     
      

Since dx2 and dx3 are independent, the terms in the brackets must be equal to zero to satisfy the 
equation. 

1 1 2 2 3 3

0, 0, 0
f h f h f h

x x x x x x
  

         
          

          
Therefore, the point(                     ) that satisfies the following equations is a stationary point. 

321 ,,, xxx

 4 Unknown variables: (x1,  x2, x3, λ) 

 4 Equations 

There exists a unique solution. 

1 2 3

1 2 3

0
f f f

df dx dx dx
x x x

  
   
  

1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

- Because of the equality constraint h,  

dx1, dx2, and dx3 are not linearly independent. 

① 

② 

0df dh  
: Undetermined Coefficient 

‘Lagrange multiplier’ 

4.2 Lagrange Multiplier for equality constraints 
- Function and Stationary Point for Constrained 
 Optimum Design Problem(3) 

Given: 
1 2 3( , , )minimize f x x x

Find: Stationary point(x1*, x2*, x3*) 

1 1 2 2

1 2 3

3 3

0, 0

0, ( , , ) 0

f h f h

x x x x

f h
h x x x

x x

 



   
   

   

 
  

 

아래 문장 수정 

BOAS 2006, 란초스 
세개 중에 하나를 없애야 나머지 두 개가 독립이 된다. 

1 2 3( , , ) 0h x x x Subject to 
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1 1 2 2

1 2 3

3 3

0, 0

0, ( , , ) 0

f h f h

x x x x

f h
h x x x

x x

 



   
   

   

 
  

 

1 2 3 1 2 3 1 2 3( , , , ) ( , , ) ( , , )L x x x f x x x h x x x  

It is convenient to write these conditions in terms of a Lagrange  function, L , defined as  

1 2 3( , , , ) 0L x x x  

Constrained optimal design problem is transformed to the unconstrained 
optimal design problem. 

1 1 1

0
L f h

x x x


  
  

  

λ : Lagrange Multiplier 

L : Lagrange Function 1 2 3( , , ) 0
L

h x x x



 



2 2 2

0
L f h

x x x


  
  

  

3 3 3

0
L f h

x x x


  
  

  

4.2 Lagrange Multiplier for equality constraints 
 

the point(                     ) that satisfies the 

following equations is a stationary point. 
321 ,,, xxx
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Necessary condition that minimize f  is df = 0.  

df = 0 is eq①’ as following 

Optimization Problem 

Minimize 

Subject to 

① 

② 

③ 

1 1 2 3( , , ) 0h x x x 

2 1 2 3( , , ) 0h x x x 

1 2 3( , , )f x x x Number of variables: 3 

Number of equation : 2 

Number of variables: 3 

Number of equations : 3 

We can solve it! 

How could we generate more equations 
from the indeterminate equation? 

Because ‘Minimize f ’ is formulated as an equation(df = 

0), the number of equations is equal to the number 
of unknown variables. 

(Num of Equation = Num of Variables) 

4.2 Lagrange Multiplier for equality constraints 
- [Summary] Function and Stationary Point for Constrained Optimum Design Problem 
- Solution of the Constrained Optimum Design by using the Lagrange Multiplier(1) 

문장으로 수정할 것 

위 문장 수정 

어떻게 식이 하나 더 나타났는가? 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  

1 2 3

1 2 3

0
f f f

df dx dx dx
x x x

  
   
   ①’ 

1 1 2 3( , , ) 0h x x x 

2 1 2 3( , , ) 0h x x x 

② 

③ 

Since dx1, dx2, dx3 are not independent because  
of the equality constraints h1, h2, we cannot set 
 

1 2 3

0, 0, 0
f f f

x x x

  
  

  

Subject to 
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Optimization Problem 

Minimize 

Subject to 

① 

② 

③ 

1 1 2 3( , , ) 0h x x x 

2 1 2 3( , , ) 0h x x x 

1 2 3( , , )f x x x

1 2 3

1 2 3

0
f f f

df dx dx dx
x x x

  
   
  

①’ 

②’ 

③’ 

1 1 1
1 1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

2 2 2
2 1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

Number of variables: 3 

Number of equation : 2 

4.2 Lagrange Multiplier for equality constraints 
- [Summary] Function and Stationary Point for Constrained Optimum Design Problem 
- Solution of the Constrained Optimum Design by using the Lagrange Multiplier(2) 

To the form of total derivative dh1, dh2 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  

Necessary condition that minimize f  is df = 0.  

df = 0 is eq①’ as following 

1 2 3

1 2 3

0
f f f

df dx dx dx
x x x

  
   
   ①’ 

To find relationship between dx1, dx2, dx3 ,  

we modify the equation(s) ② and ③ to the form  
of total derivative          . 1 2,dh dh

1 1 2 3( , , ) 0h x x x 

2 1 2 3( , , ) 0h x x x 

② 

③ 

Since dx1, dx2, dx3 are not independent because  
of the equality constraints h1, h2, we cannot set 
 

1 2 3

0, 0, 0
f f f

x x x

  
  

  

Subject to 
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Are the equation ①’, ②’ and ③’ the differential equations with respect to f, h1, h2 ? 

Optimization Problem 

Minimize 

Subject to 

① 

② 

③ 

1 1 2 3( , , ) 0h x x x 

2 1 2 3( , , ) 0h x x x 

1 2 3( , , )f x x x
1 2 3

1 2 3

0
f f f

df dx dx dx
x x x

  
   
  

①’ 

②’ 

③’ 

1 1 1
1 1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

2 2 2
2 1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

However, since the function f, h1 and h2(equation ①, ②, ③) are given and differential quantities to dx1, 

dx2 and dx3 are finds, the equation ①’, ②’ and ③’ are the algebraic equations of the variables x1,x2, x3 . 

4.2 Lagrange Multiplier for equality constraints 
- [Summary] Function and Stationary Point for Constrained Optimum Design Problem 
- Solution of the Constrained Optimum Design by using the Lagrange Multiplier(3) 

문장 수정, 애니메이션(문제만 먼저 나오게) 

Then the equation 1, 2, 3 are diff. eq. 함수들은 주어진 것이고 differntail quntity가 구하는 것이기 때문에 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  

1 2 3

1 2 3

0,
f f f

dx dx dx
x x x

  
  

  

1 1 1
1 2 3

1 2 3

0,
h h h

dx dx dx
x x x

  
  

  

2 2 2
1 2 3

1 2 3

0,
h h h

dx dx dx
x x x

  
  

  

 If the problem is given as following  
        

        - Given:                                                                                             

         

          

       - Find:  Function f, h1, h2   

Then the equation ①’, ②’, and ③’ are differential equations.  
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1 1 2 2 0df dh dh   

 Since dx3 is an 
independent variable 

1 2
1 2 1

1 1 1

h hf
dx

x x x
 

  
  

   

1 2
1 2 2

2 2 2

h hf
dx

x x x
 

  
   

   

1 2
1 2 3

3 3 3

0
h hf

dx
x x x

 
  

    
   

To eliminate dx1, dx2 in the equation ①’,  

we multiply the equation②’ and ③’ by     and     respectively 
and add it to the equation ①’. 

Introduce            to the equations ②’ and ③’,  

and substitute  these equations into the equation ①’  

  The equations ④,⑤ and ⑥ are set. 

1 2, 

Optimization Problem 

Minimize 

Subject to 

① 

② 

③ 

1 1 2 3( , , ) 0h x x x 

2 1 2 3( , , ) 0h x x x 

1 2 3( , , )f x x x
1 2 3

1 2 3

0
f f f

df dx dx dx
x x x

  
   
  

①’ 

②’ 

③’ 

1 1 1
1 1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

2 2 2
2 1 2 3

1 2 3

0
h h h

dh dx dx dx
x x x

  
   
  

5 variables:  

5 equations: 2,3,4,5,6 

There exists a 

unique solution. 

4.2 Lagrange Multiplier for equality constraints 
 

 Determine  λ1, λ2  so that  
the first term in the brackets  
becomes zero* 
(to eliminate dx1) 

 Determine  λ1, λ2  so that   
the second term in the brackets  
becomes zero* 
(to eliminate dx2) 

= 0     ④ = 0     ⑤ = 0    ⑥ 

* Since dx1, dx2, dx3 are not independent 
because of the equality constraints h1, h2 

2
먼저 eq.2, 3에 람다1, 2를 곱하고, 그 식을 1에 더했다. 

created 

그 식을 풀었더니 

빨간 문장 설명 찾아볼 것 

문장 확인(확인 함) 

1



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

128 
Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tucker Necessary Condition, Fall 2011, Kyu Yeul Lee  Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tucker Necessary Condition, Fall 2011, Kyu Yeul Lee  

We formulate differently: Constrained optimal design problem becomes 
unconstrained optimal design problem. 1 2 3 1 2 1 2 3 1 1 1 2 3 2 2 1 2 3( , , , , ) ( , , ) ( , , ) ( , , )L x x x f x x x h x x x h x x x     

1 2 3 1 2( , , , , ) 0L x x x   

1 2
1 2

1 1 1 1

0
h hL f

x x x x
 
  

   
   

λ : Lagrange Multiplier 

L : Lagrange Function 

1 1 2 3

1

( , , ) 0
L

h x x x



 



1 2
1 2

2 2 2 2

0
h hL f

x x x x
 
  

   
   

1 2
1 2

3 3 3 3

0
h hL f

x x x x
 
  

   
   

2 1 2 3

2

( , , ) 0
L

h x x x



 



② 

③ 

④ 

⑥ 

⑤ 

1 2 1 2
1 2 1 2

1 1 1 2 2 2

1 2
1 2 1 1 2 3 2 1 2 3

3 3 3

0, 0

0, ( , , ) 0, ( , , ) 0

h h h hf f

x x x x x x

h hf
h x x x h x x x

x x x

   

 

    
     

     

 
    

  

1 2 1 2 3, , , ,x x x 

4.2 Lagrange Multiplier for equality constraints 
 

the point(                          ) that satisfies the following  

equations is a stationary point. 

It is convenient to write these conditions in terms of a Lagrange function, L , defined as  

앞을 참고할 것 

by introducing 라그랑지 펑션 엔드 그라디언트…, we obtained same equation with … 

The Lagrange Function gives us a simple way of stating and remembering how 
to get the equations, which are satisfied at a stationary point. 
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2 2

1 2 1 2( , ) ( 1.5) ( 1.5)f x x x x   

1 2 1 2( , ) 2 0h x x x x   

Original Problem 

75.0f

5.0f

1 2 

1 

2 

1 2( , ) 0h x x 

C 

Minimize 

Subject to 

1 2 1 2 1 2

2 2

1 2

1 2

( , , ) ( , ) ( , )

( 1.5) ( 1.5)

( 2)

L x x f x x h x x

x x

x x

 



 

   

  

Lagrange Function 

Minimize 

1x

2x

0.0)(,5.0)(  CC hf

Necessary Condition:  

* * *

1 2 1, 1x x     (The point C is a stationary 

point.) 

1 1( , ) 0L x ,x  

1

1

2( 1.5) 0
L

x
x




   


2

2

2( 1.5) 0
L

x
x




   


1 2 2 0
L

x x



   



1 2 3 1 2 3 1 2 3( , , , ) ( , , ) ( , , )L x x x f x x x h x x x  

1 2 3( , , , ) 0L x x x  

Quadratic programming problem 

- Objective function: quadratic form 
- Constraint: linear form 

4.2 Lagrange Multiplier for equality constraints 
Example: Quadratic Programming Problem 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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4.2 Lagrange Multiplier for equality constraints 
- [Example] Solving Nonlinear Constrained Optimization Problem by using the Lagrange Multiplier (1) 

There is a sphere whose center is (0,0,0) and 
radius is c. 

Determine the maximum volume of the 
rectangular solid which is circumscribed* in the 
sphere.   

1 2 3( , , )x x x

1x

2x

3x

아래 적을 것 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  

*to draw a geometric figure around another figure so that the two are in contact but do not intersect 
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4.2 Lagrange Multiplier for equality constraints 
- [Example]  

 Mathematical Modeling 

1 2 3( , , )x x x

1x

2x
3x

Because the vertices of the rectangular 

solid are on the surface of the sphere, 

1 2 3 1 2 3( , , ) 2 2 2f x x x x x x  

The volume of the rectangular sold  f is 

2 2 2 2

1 2 3 1 2 3( , , ) 0h x x x x x x c    

2 2 2 2) :cf equation for a sphere x y z r  

1 2 3 1 2 3

1 2 3

: ( , , ) 2 2 2

8

maximize f x x x x x x

x x x

  



2 2 2 2

1 2 3 1 2 3

:

( , , ) 0

constraint

h x x x x x x c    

1 2 3 1 2 3: ( , , ) 8minimize f x x x x x x 

2 2 2 2

1 2 3 1 2 3

:

( , , ) 0

constraint

h x x x x x x c    

22x

12x

32x

구의 방정식을 먼저 적을 것 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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4.2 Lagrange Multiplier for equality constraints 
[Example] 

 Solution(1/2) 

1 2 3 1 2 3: ( , , ) 8minimize f x x x x x x 

2 2 2 2

1 2 3 1 2 3

:

( , , ) 0

constraint

h x x x x x x c    

1 2 3 1 2 3 1 2 3( , , , ) ( , , ) ( , , )L x x x f x x x h x x x  

1 2 3( , , , ) 0L x x x  

2 2 2 2

1 2 3 1 2 38 ( )x x x x x x c     

Lagrange function of this problem is as follow. 

2 3 1

1

8 2 0
L

x x x
x




   


2 2 2 2

1 2 3 0
L

x x x c



    



1 3 2

2

8 2 0
L

x x x
x




   


1 2 3

3

8 2 0
L

x x x
x




   


, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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4.2 Lagrange Multiplier for equality constraints 
[Example] 

 Solution(2/2) 

2 3 18 2 0x x x  

1 3 28 2 0x x x  

1 2 38 2 0x x x  
2 2 2 2

1 2 3 0x x x c   

① 

② 

③ 

④ 

Equation ①  X  x1 

Equation ②  X  x2 

Equation ③  X  x3 

2

1 2 3 18 2 0x x x x  
2

1 2 3 28 2 0x x x x  

2

1 2 3 28 2 0x x x x  

2 1 2 3
1

4x x x
x




2 1 2 3
2

4x x x
x




2 1 2 3
3

4x x x
x




Substitute these into the equation ④ 

21 2 3 1 2 3 1 2 34 4 4
0

x x x x x x x x x
c

  
   

21 2 312x x x
c




1 2 3

2

12x x x

c
 ⑤ 

Substitute the equation ⑤ into the 

equation ① 

1 2 3
2 3 12

12
8 2 0

x x x
x x x

c
  

2

1 2 3
2 3 2

24
8 0

x x x
x x

c
  

2

1
2 3 2

3
8 1 0

x
x x

c

 
   

 

2

1

2

3
1 0

x

c
 

2

1

2

3
1

x

c


2
2

1
3

c
x 

1
3

c
x  

1 ,
3

c
x 

Because x1 is the length, it is positive. 

x2 and x3 are obtained in the same 

way. 

2 ,
3

c
x  3

3

c
x 

3

1 2 3

8
8

3 3

c
x x x 

If x2 and x3 are zero 0, the 

volume of the rectangular 
solid is zero and the result 
is not correct. 

So, the maximum volume is 
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2

2

2

1 )5.1()5.1()(  xxf x

02)( 21  xxh x

Original Problem 

)2(

)5.1()5.1(

)()()  ,(

21

2

2

2

1







xx

xx

hfL



 xxx

Lagrange Function 

Necessary Condition:  

0)()( ***  xx hf 

)()( *** xx hf  

75.0f

5.0f

1 2 

1 

2 

)(xf : )(xfThe direction where       

is increased 

0h
























1

1
)(,

)5.1(2

)5.1(2
)(

2

1
xx h

x

x
f















1

1
)(Cf

C 











1

1
)(Ch

0.0)(,5.0)(  CC hf

02*

2

*

1  xx

)()( *** xx hvf 

At the candidate minimum C, the meaning of                                  is 

0.0)(,75.0)(  DD hf

D 













73.1

0
)(Df











1

1
)(Dh

The gradient vector of the objective function and constraint are 

on the same line and proportional to each other, and the 

Lagrange multiplier  v* is the proportionality constant. 

1,
1

1
)(,

1

1
)( * 





















 CC hf

But point D is not a candidate minimum, because  the gradient 

vector of the objective function and constraint  are not on the 

same line. 

**

2

**

1 )5.1(2  ,)5.1(2 vxvx 

1,1 **

2

*

1  vxx (point C) 

Minimize 

0)( **  ,  L x

Subject to 

Minimize 

1x

2x

Quadratic programming problem 

- Objective function: quadratic form 
- Constraint: linear form 

4.2 Lagrange Multiplier for equality constraints 
  

)(xh : The direction where       

is increased 

)(xh

At the candidate minimum C, the meaning of                                  is 
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4.2 Lagrange Multiplier for equality constraints 
- [Summary] Constrained Optimization Method by using the Lagrange Multiplier 

Constrained Optimization Problem 

 

 

 

Definition of the Lagrange function(L) 

),   ...  ,,()( 21 nxxxff x

pihi ,  ...  ,1     ,0)( x

)()(

)()(),(
1

xhvx

xxvx

T

p

i

ii

f

hvfL



 


Minimize 

Subject to 

vi are the Lagrange multipliers for the equality constraints and are free in sign,  

i.e., they can be positive, negative, or zero. 
<Reason>  

The solution does not change, even if the equality constraint is multiplied by the minus sign,  

- Determination of the propeller main 
dimensions by using the Lagrange multiplier 

1

2
,

p

v

v

v

 
 
 
 
 
  

v

1

2

p

h

h

h

 
 
 
 
 
  

h

- Determination of the main dimension of a 
ship by using the Lagrange multiplier 

찾아서 넣을 것 

부호에 관계 없다. 

문장을 찾아볼 것. 
(반영예정) 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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4.2 Lagrange Multiplier for equality constraints 
- Comparison between Newton’s Method and Method of Lagrange Multipliers  

Rfff TT  dxHddxxdx )(
2

1
)()()( ****

 By defining                     , the Taylor series expansion for the function of multi variables is as follows. dxx  *

Sufficient conditions for               

to be a local minimum 

*
xx 

0)(
2

1 * dxHd
T

 

Minimize Given: ( )f x

Necessary condition for 

              to be a  

candidate local minimum 

(stationary point) 

*
xx  ,0)( *  Tf x

 

Newton’ Method for Unconstrained Optimization Problem  

Method of Lagrange Multipliers for Constrained Optimization Problem  

Minimize Given: ( )f x

1 2 3( , , ) 0h x x x 

0df dh   : Undetermined Coefficient ‘Lagrange multiplier’ 

Find: Local minimum design point 

Find: Local candidate minimum design point 

식으로 수정할 것 

여기 겹치는 것 수정 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  

Define Lagrange function ,  

Necessary condition for 

              to be a candidate local minimum-> grad L =0 

(stationary point) 

*
xx 


 

L df dh  
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,0/),( 121 dxxxdf

0)  ,( *

2

*

1 xxh

0
)(),(),(),(

1

1

2

*

2

*

1

1

*

2

*

1

1

*

2

*

1 










dx

xd

x

xxh

x

xxh

dx

xxdh 

0
)(),(),(

1

1

2

*

2

*

1

1

*

2

*

1 









dx

xd

x

xxf

x

xxf 

221

121

1

1

/*)*,(

/*)*,()(

xxxh

xxxh

dx

xd








0
/*)*,(

/*)*,(*)*,(*)*,(

221

121

2

21

1

21 














xxxh

xxxh

x

xxf

x

xxf

0
),(),(

1

2

2

21

1

21 









dx

dx

x

xxf

x

xxf

0
*)*,(*)*,(

1

21*

1

21 









x

xxh

x

xxf


0
*)*,(*)*,(

2

21*

2

21 









x

xxh

x

xxf


The equation (3) becomes 

), ,( 21 xxf 0),( 21 xxhMinimize Subject to 

)  ,( *

2

*

1

* xxxIf we assume that                      is the local candidate minimum, 

Form the equality constraint                           , 

 

 Equation (1) 

 Equation (2) 

Substitute the equation (2) into the equation (1) 

 

Equation 

(3) 

If we assume that  Equation (4) 

Equation (4) can be rearranged as follows. 

0)  ,( *

2

*

1 xxh

0
*)*,(*)*,(

1

21*

1

21 









x

xxh

x

xxf


0
*)*,(*)*,(

2

21*

2

21 









x

xxh

x

xxf


In summary, for                               to become 

the local candidate minimum, the following 

three conditions have to be satisfied. 

*)  *,(* 21 xxx

v* is called the Lagrange multiplier. 

221

221*

/*)*,(

/*)*,(

xxxh

xxxf






0)  ,( 21 xxhBy using                        , x2 can be expressed as the function of x1, i.e., ))(,(),( 1121 xxfxxf 

To determine the local candidate minimum of the function of the single variable, 

is the explicit form, in general, it is impossible to represent  the constraint 

as this from. 
)( 12 xx 

2

2

21
1

1

21
21

),(),(
),( dx

x

xxf
dx

x

xxf
xxdf









 But, because                                                               ,                                               . 

4.2 Lagrange Multiplier for equality constraints 
- [Reference] Constrained Optimization Method for Candidate Minimum by using the Lagrange 
Multiplier 
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Ch.4 Optimality Condition  
Using Kuhn-Tucker Necessary 

Condition  
 

 4.3 Kuhn-Tucker Necessary Condition 
for Inequality constraints  

 

- Ch.3 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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2

2

2

1 )5.1()5.1()(  xxf x

02)( 21  xxg x

Original Problem 

 

)2(

)5.1()5.1(

)()()  ,  ,(

2

21

2

2

2

1

2

sxxu

xx

sgufsuL





 xxx

Lagrange Function 

Necessary Condition:            

75.0f

5.0f

1 

2 

0g















1

1
)(Cf

C 











1

1
)(Cg

0.5 

0.5 

0.0)(,5.0)(  CC gf

5.0g1 2 

02  ,02

0)5.1(2  ,0)5.1(2

2

21

2

2

1

1





















us
s

L
sxx

u

L

ux
x

L
ux

x

L

0u

(1) If s = 0,(Inequality constraint is transformed to the equality constraint.) 

(2) If u = 0,( the inequality constraint is not active) 

1,1 **

2

*

1  uxx

1,0,5.1 2**

2

*

1  suxx (Point D: the constraint is violated) 

 Candidate minimum point(point C) 

 02)( 2

21

2  sxxsg x D 

0)( ***  ,  s,  uL x

Minimize 

Subject to 

Minimize 

We can transform an inequality 

constraint to by adding a new variable 

to it, called the slack variable. 

Quadratic programming 
problem 

- Objective function: quadratic form 
- Constraint: linear form 

Linear indeterminate 

equation 

Nonlinear indeterminate equation 

- At first, we obtain the 

solution which satisfies 

the nonlinear  

indeterminate equation. 

 

 

- And then, we check 

whether each solution 

satisfies the linear 

indeterminate equation. 

( 0 0)u or s 

Lagrange Multiplier를 이용한 제약 비선형 최적화 기법 
- 부등호 제약 조건을 포함한 2차 계획 문제 

4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
- Quadratic Programming  Problem with Inequality Constraint 

찾아서 넣을 것 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

140 
Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tucker Necessary Condition, Fall 2011, Kyu Yeul Lee  

Inequality constraint 

migi ,  ...  ,1     ,0)( x

To transform  the inequality constraint s to the equality constraints ,  

the slack variable s               are  introduced : 

misg ii ,  ...  ,1     ,0)( 2 x

2

is

)()()()(),(
1

xhvxxxvx
T

p

i

i fhvfL  


vi  are the Lagrange multipliers for the equality 

constraints and are free in sign. 

[Ref] Lagrange function for the equality constrained problem 

Lagrange function in the inequality constrained problem 

Since the inequality constraint is transformed to the equality constraint by introducing the slack 
variable, the Lagrange function is defined as 

),)(()())(()(),,( 2

1

2
sxguxxxsux  



T
m

i

iii fsgufL

ui are the Lagrange multiplier for the inequality constraints and have to be nonnegative. 

si are the slack variables to transform the inequality constraints to the equality. 

0iu

부등호 제약 조건이 있는 문제의 후보 최적성 필요 조건(1/2) 

4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
- The Necessary Condition for a Candidate Local Optimal Solution in the Inequality 
Constrained Problem (1) 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

141 
Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tucker Necessary Condition, Fall 2011, Kyu Yeul Lee  

ui are the Lagrange multiplier for the inequality constraints and have to be nonnegative. 

si are the slack variables to transform the inequality constraints to the equality. 

Lagrange function in the inequality constrained problem 

The Necessary condition for the candidate local optimal solution of the inequality 
constrained problem  

0sux  ),,( ***L

 

nj
x

g
u

x

f

x

L

j

i
m

i

i

jj

,  ...  ,1      ,0
1

* 
















m,  ...  ,1     ,0)(
2** 




isg

u

L
ii

i

x

misu
s

L
ii

i

,  ...  ,1     ,0** 




miui ,  ...  ,1     ,0* 

))(()())(()(),,( 2

1

2
sxguxxxsux  



T
m

i

iii fsgufL

4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
- The Necessary Condition for a Candidate Local Optimal Solution in the Inequality Constrained Problem 
(2) 

In을 check 할 것 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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
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












pih
v

L
i

i

,  ...  ,1     ,0)( * 



x

m,  ...  ,1     ,0)(
2** 




isg

u

L
ii

i

x

misu
s

L
ii

i

,  ...  ,1     ,0** 




miui ,  ...  ,1     ,0*  The value of the objective function and gradient vector are calculated at       . *x

 If x* is the candidate local minimum point, these equations 
have to be satisfied. That is, the Kuhn-Tucker necessary 
condition, which composed of these equations, is the 
necessary condition for x* to be the candidate local 
minimum point. 

 Therefore, K.-T. condition can be used to find the 
candidate local minimum point in the equality and 
inequality constrained problem. 

Optimization 

Problem 

Minimize ) ,  , ,()( 21 nxxxff x

,...,pihi 1   ,0)( xSubject to 

,...,migi 1   ,0)( x

Equality constraints 

Inquality constraints 

Definition of 

the Lagrange function 

Kuhn-Tucker necessary condition: 0suvx  ),,,(L

))(()()(

))(()()(),,,(

2

1

2

1

sxguxhvx

xxxsuvx



 


TT

m

i

iii

p

i

ii

f

sguhvfL

vi  are the Lagrange multipliers for the equality constraints and are free in sign. 

ui are the Lagrange multiplier for the inequality constraints and have to be nonnegative. 

si are the slack variables to transform the inequality constraints to the equality. 

4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
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06)(
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2

1  xxg x

Minimize 

CASE #2 : 0s (The solution point is on the boundary of the inequality  

constraint.) 

 There are two cases. 

)6(3),,( 22

2

2
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2

2

2

1 sxxuxxxxsuL x
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2 
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CASE #1 : 0u
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



xx

xx
0)(,00 2121  **** x,xfx,x

(The inequality constraint is considered as inactive at the solution point.) 

 Point A: 

① 

② 

③ 

Rearrange the 

equation① 1 2 12 3 2 0,x x ux  
2

1

3
1

2

x
u

x
  

Substitute u into 

the equation ② 

2
2 1 2

1

3
2 3 2( 1 ) 0

2

x
x x x

x
    

2

2
2 1 2

1

2 3 2 3 0,
x

x x x
x

   
2

2
1

1

3 3 ,
x

x
x

 2 2

2 1x x

Substitute x2 into 

the equation ③ 

2

12 6,x  1 3x  

A 

4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
[Example] Nonlinear Constrained Optimization Problem (1) 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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CASE #1 : 0u

CASE #2 : 0s
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Minimize 
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2

*

1

*
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*
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2

1
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 Point B: 

2

1
,321  uxx  3),(,3 *

2

*

1

*

2

*

1  xxfxxPoint C: 

 Point E: 

D 

E 

2

5
,321  uxx  Point D: 15),(,3,3 *

2

*

1

*

2

*

1  xxfxx

15),(,3,3 *

2

*

1

*

2

*

1  xxfxx

(The inequality constraint is considered as inactive at the solution point.) 

 Point A: 

 There are two cases. 

(The solution point is on the boundary of the inequality  

constraint.) 

4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
- Finding the Candidate Local Optimal Solution by using the Kuhn-Tucker Necessary Condition - 
Nonlinear Constrained Optimization Problem (2) 
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042)(

042)(
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



xxg

xxg

x

x

Minimize 

Subject to 

222)( 21
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2

2

1  xxxxf x

Lagrange function 

x1 

x2 

1 2 3 4 

1 

2 

3 

4 

A 

g2 = 0 

g1 = 0 

9
2*

3
4

3
4* )(),,(  xx f

Minimum at Point A 

Feasible region 

f = 1.32 

f = 0.64 

2 2

1 2 1 2

2

1 1 2 1

2

2 1 2 2

( , , ) 2 2 2

( 2 4 )

( 2 4 )

L x x x x

u x x s

u x x s

    

    

    

x u s

4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
- Finding the Optimal Solution in the Quadratic Programming Problem 
by using the Kuhn-Tucker Necessary Condition – xi are free in sign (1) 

Quadratic programming 
problem 

- Objective function: quadratic form 
- Constraint: linear form 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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Lagrange function 

Kuhn-Tucker necessary condition:     

2 2

1 2 1 2

2

1 1 2 1

2

2 1 2 2

( , , ) 2 2 2

( 2 4 )

( 2 4 )

L x x x x

u x x s
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
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
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
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2

2 4 0
L

x x s
u


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
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s


 

 2 2

2

2 0
L

u s
s


 


0, 1,2iu i 

4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
- Finding the Optimal Solution in the Quadratic Programming Problem 
by using the Kuhn-Tucker Necessary Condition – xi are free in sign (2) 

Quadratic programming 
problem 

- Objective function: quadratic form 
- Constraint: linear form 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

147 
Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tucker Necessary Condition, Fall 2011, Kyu Yeul Lee  

Lagrange function 

x1 

x2 

1 2 3 4 

1 

2 

3 

4 

A B 

C 

g2 = 0 

g1 = 0 

9
2*

3
4

3
4* )(),,(  xx f

Minimum at Point A 

Feasible region 

f = 1.32 

f = 0.64 

2 2

1 2 1 2

2

1 1 2 1

2

2 1 2 2

( , , ) 2 2 2

( 2 4 )

( 2 4 )

L x x x x

u x x s

u x x s

    

    

    

x u s

D 

I 

Case #1: s1=s2=0, (Minimum at Point A) 

9
2

213
4

21 ,  uuxx

Case #2: u1=s2=0, (Point B) 

5
12

15
2

25
7

25
6

1 ,,,  suxx

Case #3: u2=s1=0, (Point C) 

5
12

25
2

15
6

25
7

1 ,,,  suxx

Case #4: u1=u2=0, (Point D) 

1,1 2

2

2

121  ssxx

It has to be nonnegative(g1). 

It has to be nonnegative(g2). 

It has to be nonnegative(g2, g2). 

4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
- Finding the Optimal Solution in the Quadratic Programming Problem 
by using the Kuhn-Tucker Necessary Condition – xi are free in sign (3) 

Quadratic programming 
problem 

- Objective function: quadratic form 
- Constraint: linear form 
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

xxg

xxg

x

x

Minimize 

Subject to 
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9
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3
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9
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3
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Minimum at Point A 

Feasible region 

f = 1.32 

f = 0.64 
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1 20, 0x x   

2

1 1 2 1

2
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( ) 2 4 0
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g x x s
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     
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Subject to 
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2 2

1 1 2 20, 0x x      

Inequality constraints whose form are“”: 

Introducing the slack variable 

4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
- Finding the Optimal Solution in the Quadratic Programming Problem 
by using the Kuhn-Tucker Necessary Condition – xi are nonnegative (1) 

Quadratic programming 
problem 

- Objective function: quadratic form 
- Constraint: linear form 
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4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
- Finding the Optimal Solution in the Quadratic Programming Problem 
by using the Kuhn-Tucker Necessary Condition – xi are nonnegative (2) 

Quadratic programming 
problem 

- Objective function: quadratic form 
- Constraint: linear form 
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, 0, 1,2i iu i  
1 1

1

2 0
L

 



 



Kuhn-Tucker necessary condition:     ( , , , , )L x u s ζ δ 0

2

1 1

1

0
L

x



  



2

2 2

2

0
L

x



  



1 1

1

2 0
L

 



 



1 1 2 1

1

2 2 2 0
L

x u u
x




     


2 1 2 2

2

2 2 2 0
L

x u u
x




     


2

1 2 1

1

2 4 0
L

x x s
u


     



2

1 2 2

2

2 4 0
L

x x s
u


     



1 1

1

2 0
L

u s
s


 

 2 2

2

2 0
L

u s
s


 



2

1 1x 
2

2 2x 

Substitute Substitute 

Multiply    to the both sides. 1

2

1 12 0   2

2 22 0  

Multiply    to the both sides. 2

2 22 0x 

1 1 2 1

1

2 2 2 0
L

x u u
x




     


2 1 2 2

2

2 2 2 0
L

x u u
x




     


2

1 2 1

1

2 4 0
L

x x s
u


     



2

1 2 2

2

2 4 0
L

x x s
u


     



1 1

1

2 0
L

u s
s


 

 2 2

2

2 0
L

u s
s


 



1 12 0x 

Kuhn-Tucker necessary condition: ( , , , , )L x u s ζ δ 0

, , 0, 1,2i i iu i   

4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
- Finding the Optimal Solution in the Quadratic Programming Problem 
by using the Kuhn-Tucker Necessary Condition – xi are nonnegative (3) 

Quadratic programming 
problem 

- Objective function: quadratic form 
- Constraint: linear form 

, Ch.4 Optimality Condition Using Kuhn-Tucker Necessary Condition  
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It has to be 

nonnegative. 

The constraint is violated. 

The constraint is violated. 

The constraint is violated. 

The constraint is violated. 

The constraint is violated. 

2 2

1 2 1 2

2

1 1 2 1

2

2 1 2 2

2 2

1 1 1 2 2 2

( , , , , ) 2 2 2

( 2 4 )

( 2 4 )

( ) ( )

L x x x x

u x x s

u x x s

x x   

    

    

    

     

x u s ζ δ

4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
- Finding the Optimal Solution in the Quadratic Programming Problem 
by using the Kuhn-Tucker Necessary Condition – xi are nonnegative (4) 

Quadratic programming 
problem 

- Objective function: quadratic form 
- Constraint: linear form 
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4.3 Kuhn-Tucker Necessary Condition for Inequality constraints  
-[Reference] The Reason Why Lagrange Multiplier for the Inequality Constraint has to be Positive 

2

2

2

1 )5.1()5.1()(  xxf x

02)( 21  xxg x

Original Problem 

75.0f

5.0f

1 

2 

0g

1
( )

1
f

 
   

 
C

C 











1

1
)(Cg

0.5 

0.5 

0.0)(,5.0)(  CC gf

5.0g1 2 

Minimize 

Subject to 

Direction of the gradients 

of the objective function 

f: g: 

Direction of the gradients 

of the constraint 

If          , the gradients of the objective and the 

constraint function point in opposite 

directions  f g 

0u 

To reduce the value of the objective function 

f , the design point steps in the negative 

gradient direction. (1.5, 1.5) 

0125.15.1

2)( 21



 xxg x

However, at the green point(1.5, 1.5), for example, 

the constraint is violated. 

Therefore, this way, f  cannot be reduced any 

further by stepping in the negative gradient 

direction without violating the constraint 

That is, the point C is the optimal solution 

satisfying the constraint and minimizing the 

objective function. 
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 EXAMPLE OF A CONSTRAINED NONLINEAR 
OPTIMIZATION METHOD BY USING THE LAGRANGE 
MULTIPLIER 

 - DETERMINATION OF THE OPTIMUM MAIN 
DIMENSIONS OF A SHIP 

 - DETERMINATION OF THE OPTIMUM PROPELLER 
MAIN DIMENSIONS 
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 Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier  

- Determination of the Optimum Main Dimensions of a Ship (1) 

 Find : L, B, CB.s 

 Hydrostatic equilibrium(Weight equation) 

, ,

1.6 2/3 3

,

( , , , )

( ) ( )

s B d sw given B d

given s o power d B d

L B T C C DWT LWT L B D C

DWT C L B D C L B C L B T C V

      

             

 Indeterminate Equation: 3 variables(L,B,CB,d), 2 equality constraints,((a), (b)) 

 Recommended range of obesity coefficient with 
respect to the maneuverability 

 . ...H req HV C L B D b   

 Required cargo hold capacity(Volume equation) 

 
 , 0.15 ...

/

B dC
c

L B


 ... a

 Given: DWT, VH.req, D, Ts, Td, CB.d 

2.0 ( )sC L B D    3(2 2 )power d dC B T L T L B V         

                          is Volume2/3  and means the submerged area of the ship. 

So, we assume that the submerged area of the ship is equal to the submerged  

area of the rectangular box. 

2/3( )BL B T C  

B

T

L

D

Assumption① Assumption② 

It can be solved as the optimization problem to minimize the objective function. 

Lagrange Multiplier를 이용한 제약 비선형 최적화 기법 
- 선박의 주요치수 결정문제 
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2.0 3

.( , , ) ( ) (2 2 )B s PS s PO o PM power d df L B C C C L B D C C L B C C B T L T L B V                    

 Minimize :  Building Cost  

 Subject to  

 Hydrostatic equilibrium(Weight equation) 

2.0 3

( , , , )

( ) (2 2 )

s B sw given B

given s o power d d

L B T C C DWT LWT L B D C

DWT C L B D C L B C B T L T L B V

      

                  

 Recommended range of obesity coefficient with respect to the maneuverability 

 . ...H req HV C L B D c   

 Required cargo hold capacity(Volume equation) 

 
 . 0.15 ...

/

B sC
d

L B


 ... e

 ... b

 Find : L, B, CB.s 

 Given: DWT, VH.req, D, Ts, Td, CB.d 

 Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier  

- Determination of the Optimum Main Dimensions of a Ship (2) 
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 By introducing the Lagrange multipliers λ1, λ2, u, formulate the Lagrange function H. 

         . 1 2 . 1 1 . 2 2 ., , , , , , , , , , , , , , , ...( )B s B s B s B sH L B C u s f L B C h L B C h L B D u g L B C s e         

   2 3

., , ( ) {2 }B s PS s PO o PM power df L B C C C L B D C C L B C C B L T L B V                  

   2.0 3

1 ., , ( ) {2 }B s s B sw given s o power dh L B C L B T C C DWT C L B D C L B C B L T L B V                       

 2 _, , H H reqh L B D C L B D V    

 
 

2.
., , , 0.15

/

B s
B s

C
g L B C s s

L B
  

 

 

1 2 3 1 2

2 3

1 2 1 2 2 1 1 2

, , , , , ,

( ) {2 }PS s PO o PM power d

H x x x u s

C C x x D C C x x C C x x T x x V

 

                 

 2 3

1 1 2 3 1 2 1 2 2 1 1 2[ ( ) {2 } ]s sw given s o power dx x T x C DWT C x x D C x x C x x T x x V                        

 2 1 2 _H H reqC x x D V     

  2

3 1 2/ / 0.15u x x x s   

1 2 3, , BL x B x C x  

...( )f

 Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier  

- Determination of the Optimum Main Dimensions of a Ship (3) 
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 To determine the stationary point(             ) of the Lagrangian function H(equation (f)), 

use the Kuhn-Tucker necessary condition                                           . 

1 2 3, , BL x B x C x  

 1 2 3 1 2, , , , , , 0H x x x u s  

 

   

3

1 2 2 2

1

3

1 2 3 1 2 2 2

2

2 2 3 2 1

2 ( ) 2

( [ 2 ( ) (2 ) ])

/ 0 ...(1)

PS s PO o PM power d

s sw s o power d

H

H
C C x x D C C x C C T x V

x

x T x C C x x D C x C T x V

C x D u x x x

 



               


                 

        

   

2 3

1 1 1

2

2 3

1 1 3 1 1 1

2 1 3 1

(2 )

[ (2 ) ]

/ 0 ...(2)

PS s PO o PM power d

s sw s o power d

H

H
C C x C C x C C T x V

x

x T x C C x C x C T x V

C x D u x x

 



             


              

      

1 2 3, ,x x x

   

 

 

2 3

1 2 3 1 2 1 2 1 2 2 1 1 2

2 3

1 1 2 3 1 2 1 2 2 1 1 2

2 1 2 _ 3 1

, , , , , , ( ) {2 }

[ ( ) {2 } ]

/ /

PS s PO o PM power d

s sw given s o power d

H H req

H x x x u s C C x x D C C x x C C x x T x x V

x x T x C DWT C x x D C x x C x x T x x V

C x x D V u x x



 

 



                 

                      

          2

2 0.15x s  ...( )f

 Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier  

- Determination of the Optimum Main Dimensions of a Ship (4) 
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 Kuhn-Tucker necessary condition                                           .  1 2 3 1 2, , , , , , 0H x x x u s  

 1 1 2 2 1

3

. / 0 ...(3)s sw

H
x x T C u x x

x
 


       



1 2 _

2

0 ...(5)H H req

H
C x x D V




     



2

3 2 1/ 0.15 0 ...(6)
H

x x x s
u


    



 2 0, 0 ...(7)
H

u s u
s


    



 ▽H(x1, x2, x3, λ1, λ2, u, s) : Nonlinear simultaneous equation having the 7 variables((1)~(7)) and 7 equations 

→ It can be solved by using the numerical method! 

   

 

 

2 3

1 2 3 1 2 1 2 1 2 2 1 1 2

2 3

1 1 2 3 1 2 1 2 2 1 1 2

2 1 2 _ 3 1

, , , , , , ( ) {2 }

[ ( ) {2 } ]

/ /

PS s PO o PM power d

s sw given s o power d

H H req

H x x x u s C C x x D C C x x C C x x T x x V

x x T x C DWT C x x D C x x C x x T x x V

C x x D V u x x



 

 



                 

                      

          2

2 0.15x s  ...( )f

 

2

1 2 3 1 2 1 2

1

3

2 1 1 2

( )

{2 } (4)

s sw given s o

power d

H
x x T x C DWT C x x D C x x

C x x T x x V





             



       

1 2 3, , BL x B x C x  

 Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier  

- Determination of the Optimum Main Dimensions of a Ship (5) 
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Maximize 

Subject to 

Q

T
O

K

KJ





2

QP KDn
n

P


52

2



: The propeller absorbs the torque delivered by Diesel Engine  

Find Pi DPJ /,

Where, 

 Optimization problem having the two variables and one equality constraint 

Given 

)/,(

)/,(

)1(

PiQ

PiT

P

DPJfK

DPJfK

Dn

wV
J










P:  Delivered Power to Propeller from the 

Main Engine, KW 

n: Number of Revolutions, 1/sec 

DP: Propeller Diameter, m 

Pi: Propeller Pitch, m 

AE/AO: Expanded Area Ratio 

V: Ship speed, m/s 

O: Propeller efficiency(in open water) 

VAAnP OE ,/,,

Because KT and KQ are a function of J and Pi/Dp, 

the objective  is also a function of J and Pi/Dp. 

- Ch.6 Constrained Nonlinear Optimization Method 

 Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier  

- Determination of the Optimum Propeller Main Dimensions (1) 
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5

2

5
2 A

Q

V

nP

J

K
C








(b)       0)/,( 5  JCKDPJG QPi

(c)      
2

)/,( 0 
Q

T
Pi

K

KJ
DPJF




If the propeller absorbs the torque delivered by Diesel Engine, the constraint is represented 

from the equation (a). 

Propeller efficiency in open water       is as follows. 0

The objective F is a function of J and Pi/Dp and we have to determine the optimal main 

dimensions(J and Pi/Dp) to maximize the propeller efficiency in open water satisfying the 

constraint (b) in this optimization problem. 

(a)      
2

52  QP KDn
n

P



: The propeller absorbs the torque delivered by Diesel 

Engine  

- Ch.6 Constrained Nonlinear Optimization Method 

 Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier  

- Determination of the Optimum Propeller Main Dimensions (2) 
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Introduce the Lagrange multiplier      to the equation (b) and (c). 

(d)      )/,()/,(),/,(  PiPiPi DPJGDPJFDPJH 

Determine the value of the              and     to maximize the value of the function H. Pi DP / 

(e)      0       

}5){(

})(){(

2
)(

2

1 4

2























JC

J

K

K

K
J

K
K

J

K

J

K

K

J

H Q

Q

T

Q

Q
T

Q

T 


(f)      0                 

)
/

(

})
/

()
/

{(

2)/(
2























Pi

Q

Q

T

Pi

Q

Q

Pi

T

Pi DP

K

K

K
DP

K
K

DP

K

J

DP

H




(g)      05 



JCK

H
Q



(b)       0)/,( 5  JCKDPJG QPi

(c)      
2

)/,( 0 
Q

T
Pi

K

KJ
DPJF




- Ch.6 Constrained Nonlinear Optimization Method 

 Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier  

- Determination of the Optimum Propeller Main Dimensions (3) 
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Eliminate      in the equation (e), (f) and (g) rearrange as follows. 

(h)      0)}(5){
)/(

(

}4)(){
)/(

(






















J

K
JK

DP

K

K
J

K
J

DP

K

Q

Q

Pi

T

T
T

Pi

Q

(i)      05  JCKQ

By obtaining the solution of the equation  (h) and (i), we can determine the value of the J and 

Pi/Dp to maximize the propeller efficiency absorbing the torque delivered by Diesel Engine. 

Pi DP /

Therefore, we can obtain the value of the propeller diameter (      ) and pitch(       ). 
PD iP

PDn

wV
J






)1(
Because                           , if we obtain the value of J, we can find the value of Dp. And the value 

of Pi  is obtained from the value of Pi/Dp. 

- Ch.6 Constrained Nonlinear Optimization Method 

 Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier  

- Determination of the Optimum Propeller Main Dimensions (4) 
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To eliminate λ, we calculate as follows. 

4

2

1
(e) : 5 0

( / ) 2 ( / ) 2 ( / ) ( / )

QT
Q T

Q Q Q Q QT

i P i P Q i P i PQ

KK
K K

J JK K K K KK J
C J

P D P D K P D P D JK


 

    
     

                       
                                   

4 4 4

2

( / ) ( / )
( ) 5 : 5 5 0

2 ( / )

QT
Q T

i P i PQ Q Q Q

i PQ

KK
K K

P D P DK K K KJ
f C J C J C J

J J P D JK




    
     

                          
                       

                    

4

2

(e) ( ) 5
( / )

( / ) ( / )1

2 ( / ) 2 ( / ) 2

Q Q

i P

Q QT T
Q T Q T

i P i PQ QT

i P Q i P Q

K K
f C J

P D J

K KK K
K K K K

J J P D P DK KK J J

P D K P D K  

      
         

      

           
            

                  
            

4

2
5 0

Q

Q

K
C J

JK



    

     
   

4

2

1
5 0      (e)

2 2

QT
Q T

QT

Q Q

KK
K K

J J KK J
C J

K JK


 

    
     

           
                    

2

( / ) ( / )
0      (f)

2 ( / )

QT
Q T

i P i P Q

i PQ

KK
K K

P D P D KJ

P DK




    
     

        
       

 

- Ch.6 Constrained Nonlinear Optimization Method 

(참고) e, f, g로부터 h 유도 (1) 

 Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier  

- Determination of the Optimum Propeller Main Dimensions 

- [Reference] Derivation of h from e, f, g (1) 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

164 
Computer Aided Ship Design, I-4. Optimality Condition Using Kuhn-Tucker Necessary Condition, Fall 2011, Kyu Yeul Lee  

4

2

(e) ( ) 5
( / )

( / ) ( / )1

2 ( / ) 2 ( / ) 2

Q Q

i P

Q QT T
Q T Q T

i P i PQ QT

i P Q i P Q

K K
f C J

P D J

K KK K
K K K K

J J P D P DK KK J J

P D K P D K  

      
         

      

           
            

                  
            

4

2
5 0

Q

Q

K
C J

JK



    

     
   

Multiply 2π and the both side of the equation and rearrange the equation as follows. 
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The term underlined is rearranged as follows. 
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Substituting the rearranged term into the above equation. 

- Ch.6 Constrained Nonlinear Optimization Method 

 Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier  

- Determination of the Optimum Propeller Main Dimensions 

- [Reference] Derivation of h from e, f, g (2) 
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- Ch.6 Constrained Nonlinear Optimization Method 

 Example of a Constrained Nonlinear Optimization Method by using the Lagrange Multiplier  

- Determination of the Optimum Propeller Main Dimensions 

- [Reference] Derivation of h from e, f, g (3) 
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Ch.5 Penalty Function Method 

5.1 Interior Penalty Function Method 

5.2 Exterior Penalty Function Method 

5.3 Augmented Lagrange Multiplier Method 

5.4 Descent Function Method 
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Ch.5 Penalty Function Method 

 
5.1 Interior Penalty Function Method 
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))(()()(),,,( 2sxguxhvxsuvx  TTfL

Constrained Optimal Design Problem 

Minimize )(xf

0xh )(Subject to 

0xg )(

Equality constraint 

Inequality constraint 

Transforming this problem to unconstrained optimal design problem by using the 

Lagrangian function 

1) If the constraints are satisfied at the current design point, 

0xh )(In case of the equality constraints: 

In case of the inequality constraints: 0u 

Therefore, )())(()()(),,,( 2 xsxguxhvxsuvx ffL TT   If all the constrains are 
satisfied, the Lagrange 
function is same with the 
original objective function. 

(The constraints are inactive, i.e, the design point is in feasible region.) 

0xg0s  )( (The constraints are active, i.e, the design point 
is on the constraints) 

2) If the constraints are violated at the current design point, 

0xhv )(T
In case of the equality constraints: 

In case of the inequality constraints: 0sxgu  ))(( 2T

Therefore, 
2( , , , ) ( ) ( ) ( ( ) )T TL f   x v u s x v h x u g x s

 This term means augmenting a penalty to the original objective function when the constraints 

are violated. 

By using the necessary condition for the candidate local optimal solution(L=0), are calculated. 

5.1 Interior Penalty function Method 
- The Method of Transformation of Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  

- Lagrange Multiplier 
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- Fiacco and McCormick suggested a method which transforms the constrained optimization problem 
into the unconstrained optimization problem by using the modified objective function in 1968. 
The modified objective function is a function augmenting a penalty to the original objective function. 

- SUMT: Sequential Unconstrained Minimization Technique 

f(x) 

(x, rk) 

g(x) < 0 

g(x) > 0 

x 0 

, f 

Optimum x* 

g(x) = 0 





m

j j

kk
g

rfr
1 )(

1
)(),(

x
xx where rk is given and positive value and 

getting smaller each iteration. 

If the design point approaches to the boundary of 
the inequality constraints in the feasible region,  

( ) 0jg x , the absolute value of this is decreased. 

1
0

( )
k

j

r
g

 
x

, the absolute value of this is increased. 

Since the modified objective function is increased as the 
design point approaches to the boundary of the 
inequality constraint, this method prevents the design 
point violating the constraints. 

5.1 Interior Penalty function Method 
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  

- SUMT: Sequential Unconstrained Minimization Technique(Interior Penalty Function Method) (1) 

Constrained Optimal Design Problem 

Minimize )(xf

0xh )(Subject to 

0xg )(

Equality constraint 

Inequality constraint 
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 If the design point approaches to the boundary of the constraints in the feasible 
region, the objective function is augmented by a penalty. 

 The starting design point has to be in the feasible region. 

( ) ,f x x ( ) 0g x x  

[Example] Function of a single variable 

, (x  0)x  

f(x) = x 

rk > rk+1 

x =  

(x, r1) 

(x, r2) 

(x, r3) 

g(x) < 0 

g(x) > 0 

x 0 

, f 

1,k 

1 1

1
( , )x r x r

x



  



x*
1 x*

2 x*
3 

Optimal design  

point: x*1 

Starting design point: x*0 

x*
0 





m

j j

kk
g

rfr
1 )(

1
)(),(

x
xx (rk is decreased, when k is increased.) 

2,k 

2 2

1
( , )x r x r

x



  



Optimal design  

point : x*2 

Starting design point : x*1 

3,k 

3 3

1
( , )x r x r

x



  


Optimal design  

point : x*3 

Starting design point : x*2 

By iterating the above process, we find the optimal design point(x*). 

- In each iteration, the optimal design point can be obtained 

by using the Gradient method, Hooke&Jeeves, Nelder&Mead. 

Optimum x* 

Transform the unconstrained optimization problem into the 

constrained optimization problem. 
1 1

( , ) ( )
( )

k k kx r f x r x r
g x x




    


- k is the number of iteration. 

x* …
 

5.1 Interior Penalty function Method 
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  

- SUMT: Sequential Unconstrained Minimization Technique(Interior Penalty Function Method) (2) 
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Ch.5 Penalty Function Method 

 
5.2 Exterior Penalty Function Method 
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 There will be a penalty for only violating the constraints. 

 
2

1

( , ) ( ) max ( ),0
m

k k j

j

r f r g


   
 x x x

f(x) = x 

Optimum x* 

x =  

g(x) = 0 

g(x) < 0 g(x) > 0 

rk < rk+1 

x 0 

, f 

(rk  is increased, when k is increased.) 

( ) ,f x x ( ) 0g x x  

[Example] Function of a single variable 

 
2

1 1( , ) max ( ),0x r x r g x      

Optimal design  

point : x*1 

1,k  Starting design point : x*0 

Optimal design  

point : x*2 

Optimal design  

point : x*3 

By iterating the above process, we find the optimal design point(x*). 

x*
0 

2,k  Starting design point : x*1 

 
2

2 2( , ) max ( ),0x r x r g x      

3,k  Starting design point : x*2 

 
2

3 3( , ) max ( ),0x r x r g x      

x*
2 x

*
3 

(x, r3) 

(x, r2) 

(x, r1) 

x*
1 

… x*
 

- In each iteration, the optimal design point can be obtained 

by using the Gradient method, Hooke&Jeeves, 

Nelder&Mead. 

Transform the unconstrained optimization problem into 

the constrained optimization problem. 

    
2 2

( , ) ( ) max ( ),0 max ( ),0k k kx r f x r g x x r g x    

- k is the number of iteration. 

, (x  0)x  

5.2 Exterior Penalty Function Method  
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  

- Exterior Penalty Function Method (1) 
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 There will be a penalty for only violating the constraints. 

 
1

( , ) ( ) max ( ),0
m

k k j

j

r f r g


   x x x

f(x) = x 

Optimum x* 

(x, r1) 

(x, r2) 

(x, r3) 

x =  

g(x) = 0 

g(x) < 0 

g(x) > 0 

rk < rk+1 

x 0 

, f 

( ) ,f x x ( ) 0g x x  

[Example] Function of a single variable 

 1 1( , ) max ( ),0x r x r g x  

Optimal design  
point : we can 
not find it. 

1,k  Starting design point : x*0 

Optimal design  

point : x*2 

Optimal design  

point : x*3 

If rk  is determined properly, the optimal design point(x*) is 
not changed. 

x*
0 

r1 is too low 2,k  Starting design point : x*1 

 2 2( , ) max ( ),0x r x r g x  

3,k  Starting design point : x*2 

 3 3( , ) max ( ),0x r x r g x  
x*

2 

x*
3 

- In each iteration, the optimal design point can be obtained 

by using the Gradient method, Hooke&Jeeves, Nelder&Mead. 

Transform the unconstrained optimization problem into the 

constrained optimization problem. 

    ( , ) ( ) max ( ),0 max ( ),0k k kx r f x r g x x r g x    

- k is the number of iteration. 

x* …
 

, (x  0)x  

5.2 Exterior Penalty Function Method  
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  

- Exterior Penalty Function Method (2) 

(rk  is increased, when k is increased.) 
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 Since there will be a penalty for only violating the constraints, if the 
minimum design point is in the feasible region, the result of the 
optimization method by using the exterior penalty function is the same 
with that only using the objective function. 

 
2

1

( , ) ( ) max ( ),0
m

k k j

j

r f r g


   
 x x x

f(x) = (x-)2 

Optimum x* 

x =  

g(x) = 0 

g(x) < 0 

x 0 

, f 

(x, rk) 

x= 

If the minimum design point(x*) is in the 

feasible region, the penalty term is equal 

to zero. So, the objective function 

augmented by the penalty is the same 

with the original objective function. 

Penalty term 

 
2

( ) ,f x x   ( ) 0g x x  

 max ( ),0 0jg x, ( ) 0,where g x

( , ) ( )kr f x x

[Example] Function of a single variable 

5.2 Exterior Penalty Function Method  
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  

- Relationship between External Penalty Function and Feasible Region (1) 
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 Since there will be a penalty for only violating the constraints, if the 
minimum design point is not in the feasible region, the result of the 
optimization method by using the exterior penalty function is different with 
that only using the objective function. 

f(x) = (x-)2 

x =  

g(x) = 0 

g(x) < 0 

x 0 

, f 

(x, rk) 

x= 

Optimum x* 

g(x) > 0 

 
2

1

( , ) ( ) max ( ),0
m

k k j

j

r f r g


   
 x x x

Penalty term 

 
2

( ) ,f x x   ( ) 0g x x  

[Example] Function of a single variable 

2

1

( , ) ( ) ( )
m

k k j

j

r f r g


   x x x

Optimal design point 

at k iteration 

 max ( ),0 ( )j jg gx x, ( ) 0,where g x

5.2 Exterior Penalty Function Method  
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  

- Relationship between External Penalty Function and Feasible Region (2) 

If the minimum design point(x*) is not in 

the feasible region, the penalty term is 

larger than zero. So, the objective 

function augmented by the penalty is 

different with the original objective 

function. 
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Ch.5 Penalty Function Method 

 
5.3 Augmented Lagrange Multiplier 

Method 
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This method combines the Lagrange multiplier and the penalty 
function methods. 
 
There is no need for the penalty parameter r to go to infinity. 
 
Starting point does not have to be in feasible region. 
 
It has been proven that they possess a faster rate of convergence  
than interior and exterior penalty function method. 

Augmented Lagrange multiplier method 

5.3 Augmented Lagrange Multiplier Method  
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  
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1

( , ) ( ) ( )
m

j j

j

L f h


 x λ x x

Lagrangian function of this problem is as follows. 

Minimize 

Subject to 

)(xf

( ) , 1,2,...,jh j m x 0

2

1 1

( , , ) ( ) ( ) ( )
m m

k j j k j

j j

r f h r h
 

    x λ x x x

Augmented Lagrangian function of this problem is follows. 

Augmented term to 
Lagrangian function 

kr : arbitrary constant 

5.3 Augmented Lagrange Multiplier Method 
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  

- Augmented Lagrange Multiplier Method in Equality Constrained Problem (1) 
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2

1 1

( , , ) ( ) ( ) ( )
m m

k j j k j

j j

r f h r h
 

    x λ x x x

Augmented Lagrangian function 

*

1

0
m

j

j

ji i i

hL f

x x x




 
  

  


Augmented term to Lagrangian 
function 

1

( , ) ( ) ( )
m

j j

j

L f h


 x λ x x

Lagrangian function 

Minimize 

Subject to 

)(xf

( ) , 1,2,...,jh j m x 0

kr : arbitrary constant 

Necessary conditions for the minimum of 
Lagrangian function  

1

( 2 ) 0
m

j

j i j

ji i i

hf
rh

x x x




 
   

  


Necessary conditions for the minimum 
of Augmented Lagrangian function  

( 1) ( ) ( )2 ( ) 1,2,...,k k k

j j k jr h j m    x

* 2 1,2,...,j j k jr h j m   

Find iterative relation 

5.3 Augmented Lagrange Multiplier Method 
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  

- Augmented Lagrange Multiplier Method in Equality Constrained Problem (2) 
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2

1 1

( , , ) ( ) ( ) ( )
m m

k j j k j

j j

r f h r h
 

    x λ x x x Augmented term to Lagrangian 
function 

( 1) ( ) ( )2 ( ) 1,2,...,k k k

j j k jr h j m    x

Minimize 

Subject to 

)(xf

( ) , 1,2,...,jh j m x 0

kr : arbitrary constant 

Iterative relation 

1. In the first iteration(k=1), the values of       are chosen as 
zero, the value of      is set equal to an arbitrary constant. 

(1)

j

kr

2. Find the       that minimize      by using any unconstrained 
 optimization method and set                . 


( 1) ( )*k k x x

( )*kx

Augmented Lagrangian function 

5.3 Augmented Lagrange Multiplier Method 
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  

- Augmented Lagrange Multiplier Method in Equality Constrained Problem (3) 
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Minimize 

Subject to 

)(xf

( ) , 1,2,...,jh j m x 0

3. The values of      and     are then updated by using the 
iterative relation to start the next iteration. 

( )k

j kr

1 , 1k kr cr c  

4. If                   , stop the iteration and take             . 
( 1) ( )k k

j j     * ( )*kx x

( 1) ( ) ( )2 ( ) 1,2,...,k k k

j j k jr h j m    x

2

1 1

( , , ) ( ) ( ) ( )
m m

k j j k j

j j

r f h r h
 

    x λ x x x Augmented term to Lagrangian 
function 

( 1) ( ) ( )2 ( ) 1,2,...,k k k

j j k jr h j m    x

kr : arbitrary constant 

Iterative relation 

Augmented Lagrangian function 

5.3 Augmented Lagrange Multiplier Method 
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  

- Augmented Lagrange Multiplier Method in Equality Constrained Problem (4) 



Computer Aided Ship Design, I-5 Penalty Function Method, Fall 2011, Kyu Yeul Lee  

SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

183 

Start with
(1) (1)

1 max, , , 1,r c rx λ

Set k=1

Minimize ( , , )kr x λ from starting point
( )kx and find 

*( )kx

Check for convergence of 
( )kλ *( )kxand

set 
( 1) ( ) *( )2 ( ), 1,2,...,k k k

j j k jr h j p    x

set 1k kr cr 

If 1 max ,kr r  set 1 max ,kr r 

set 1k k 

Take * *( )kx x

and stop

yes

no

2

1 1

( , , ) ( ) ( ) ( )
m m

k j j k j

j j

r f h r h
 

    x λ x x x

( 1) ( ) ( )2 ( ) 1,2,...,k k k

j j k jr h j m    x

1 , 1k kr cr c  

Iterative relation 

Augmented Lagrangian function 

5.3 Augmented Lagrange Multiplier Method 
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  

- Algorithm of Augmented Lagrange Multiplier Method 
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2 2 2

1 1

( , , , ) ( ) [ ( ) ] [ ( ) ]
m m

k j j j k j j

j j

r f u g s r g s
 

      x u s x x x

Augmented Lagrangian function in the inequality constrained problem 

Augmented term to 
Lagrangian function 

Minimize 

Subject to 

)(xf

( ) , 1,2,...,jg j m x 0

kr : arbitrary constant 

2

1 1

( , , ) ( ) ,
m m

k j j k j

j j

r f u r 
 

    x u x max ( ),
2

j

j j

k

u
g

r


 
  

 
x

This function is equivalent to*  

*Rockafellar,R.T.,’The multiplier method of Hestenes and Powell applied to convex programming’,Journal of 
Optimization Theory and Applications,1973 

( 1) ( ) ( )2k k k

j j k ju u r  

Iterative relation 

5.3 Augmented Lagrange Multiplier Method 
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  

- Augmented Lagrange Multiplier Method in Inequality Constrained Problem  

js : slack variable 
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Ch.5 Penalty Function Method 

 
5.4 Descent Function Method 
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Constrained Optimal Design Problem 

Minimize 

Subject to Equality constraint 

Inequality constraint 

Pshenichny and Danilin suggested a method which transforms the constrained 
optimization problem into the unconstrained optimization by using the descent function* 
in 1978. 

1) If the constraints are satisfied at the current design point, 

)()()()(

0)(0)(

xxxx

xx

fVRf

VRV





2) If the constraints are violated at the current design point, 

)()()()(

0)(

xxxx

x

fVRf

VR





 If the constraints are satisfied at the current design 

point, the descent function is the same with the original 

objective function. 

 If the constraints are violated at the current design 

point, the value of the positive penalty is augmented to 

the original objective function. 

)()()( xxx VRf 

};;0max{)( ghx V

: Penalty parameters which is 

the summation of the all 

Lagrange multipliers 

: Maximum penalty by the constraints 

)(xf

0xh )(

0xg )(

0

1 1

max , ( )
p m

i i

i i

R R r v u
 

 
   

 
 

The value defined by user 

*Descent Function 

- Modified objective function by augmenting 

a penalty to the original objective function 

- It has the same meaning with Penalty 

Function. 

제약 최적화 문제를 비제약 최적화문제로 변환하는 방법 
- Pshenichny의 강하 함수(Descent Function) 사용 

5.4 Decent Function Method 
- The Method of Transformation from Constrained Optimal Design Problem to Unconstrained Optimal Design Problem  
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2 2

1 2( ) 100( 1.5) 100( 1.5)f x x   x

02)( 21  xxg x

Original Problem 

Minimize 

Subject to 

)()()( xxx VRf 
};;0max{)( ghx V

0

1 1

max , ( )
p m

i i

i i

R R r v u
 

 
   

 
 

Since the constraint is satisfied at the point  

C(1,1), the value of the decent function is as 

follows: 

 

 

( ) ( ) ( ) 50 max 0, ( )

50 10 max 0,0 50

f R V R g      

   

C C C C

50f 

1 

2 

0g

C(1,1) 

0.5 

0.5 

( ) 50, ( ) 0.0f g C C

5.0g1 2 

D(1.1, 1.1) 

Since the constraint is violated at the point  

D(1.1, 1.1), the value of the decent function is 

as follows: 
 

 

( ) ( ) ( ) 32 max 0, ( )

32 10 max 0,0.2 32 2 34

f R V R g      

     

D D D D

If ‘R’ is assumed as a constant ’10’, 

Although the constraint is violated, the value of the decent function is decreased. 

Because the change in the original objective function f is larger than the change in the constraint g. 

Therefore, if the decrease  in the original objective function f is larger than the increase in the 

constraint g, the value of  the penalty parameter ‘R’ has to be increased. 

[참고] Pshenichny의 강하 함수(Descent Function)에서 상수 R이 가지는 의미 

5.4 Decent Function Method 
- [Reference] The Meaning of the Constant ‘R’ in the Decent Function 
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2 2

1 2( ) 100( 1.5) 100( 1.5)f x x   x

02)( 21  xxg x

Original Problem 

)()( *** xx guf At point  C, the value of                                          is as 

follows. 

Minimize 

Subject to 

1

2

1

2 *(1,1)
*(1,1)

200( 1.5) 100
( )

200( 1.5) 100

f

x

f

x

x
f

x









      
        

       x
x

x

1

2 *(1,1)
*(1,1)

1 1
( )

1 1

g

x

g

x

g









     
        

       x
x

x

* 100u 

)()()( xxx VRf 
};;0max{)( ghx V

0

1 1

max , ( )
p m

i i

i i

R R r v u
 

 
   

 
 

50f 

1 

2 

0g

C(1,1) 

0.5 

0.5 

( ) 50, ( ) 0.0f g C C

5.0g1 2 

D(1.1, 1.1) 

If the change in the objective function(        ) is larger than the change in the 
constraint(        ) respectively, the value of the Lagrange Multiplier is increased. 
Therefore, we use the value of the Lagrange Multiplier as the value of ‘R’. 

( )g x
( )f x

 

 

( ) ( ) ( ) 32 max 0, ( )

32 100 max 0,0.2 32 20 52

f R V R g      

     

D D D D

If we use the value of the Lagrange Multiplier, 100, 
as the value of ‘R’, the value of the decent 
function at the point D increases by 52. 

5.4 Decent Function Method 
- [Reference] The Meaning of the Constant ‘R’ in the Decent Function 
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Ch.6 Linear Programming 
 

6.1 Linear Programming Problem  
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6.1 Linear Programming Problem 

 Linear Programming(LP) Problem 

 This problem has linear objective 
function and linear constraint functions 
in the design variables. 

 Since all functions are linear in an LP 
problem, the feasible set defined by 
linear equalities or inequalities is convex. 

 Also, the objective function is linear, so 
it is convex. 

 Therefore, the LP problem is convex, and 
if an optimum solution exists, it is global 
optimum solution. 

 

 Linear Programming Method 

 This is the method to solve the linear 
programming problem. 

 George B. Dantzig proposed a kind of LP 
method, “the Simplex method”, in 1947. 

2 

2 

4 

4 

6 

6 

x1 

x2 

x1  + x2 = 6 

feasible region 

f *= -29 
Optimal solution 

A 

B 

Objective 

function: 

Constraints: 

Minimize 

Subject to 

21 54 xxf 

1 2

1 2

1 2

4

6

, 0

x x

x x

x x

  

 


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6.1 Linear Programming Problem 

- Property of the Linear Programming Problem 

 The objective function and constraints 
represent the linear relationship among 
the variables. 
 This problem has one objective function 

and constraints 

 The objective function is minimum or 
maximum. 

 

 The constraints are represented as the  
equality constraints(=) or inequality 
constraints(, ). 

 

 To use the Simplex method, the 
variables have to be nonnegative in the 
LP problem. 
 If the variables are negative, the variable 

should be transformed to nonnegative. 
 Ex) x = -y (x is negative, y is positive) 

 If a variable is unrestricted in sign, it can 
always be written as the difference of 
two nonnegative variables. 
 Ex) x = y – z(x is unrestricted in sign and 

y and z are nonnegative.) 

 Example of variable which is unrestricted in sign. 

+ Profit of the Shipyard =  Price of a ship – Shipbuilding 

cost 

Objective 

function: 

Constraints: 

Minimize 

Subject to 

21 54 xxf 

1 2

1 2

1 2

4

6

, 0

x x

x x

x x

  

 



- 빼고 체크 등으로 바꿀 것 

 Example of problem which has nonnegative variables. 

 + Distribution of the feed for animal : the amount of the 

feed can not be negative. 

 + Distribution of the material for products : the amount of 

the material can not be negative. 
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Minimize 

Subject to 

21 54 xxf 

0,

6

4

21

21

21







xx

xx

xx

 Maximization problem can be transformed 
to a minimization problem. 

The right hand side of the constraints can 
always be made nonnegative by multiplying 
both side of the constraints by -1, if 
necessary. 

Why should we transform the maximization problem to a minimization problem? 
 If the problem is not transformed to a minimization problem, we also have to find the method 
which can solve the maximization problem and minimization problem. 

2 

2 

4 

4 

6 

6 

x1 

x2 

x1  + x2 = 6 

Feasible region 

f *= -29 

 x2 = 0 

Optimal solution 

A D 

B 

C 

E 

F 

Objective 

function: 

Constraints: 

Minimize 

Subject to 

21 54 xxf 

1 2

1 2

1 2

4

6

, 0

x x

x x

x x

  

 



6.1 Linear Programming Problem 

- Example of the Linear Programming Problem: Problem with Two Variables and Inequality 

Constraint(“”) 
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6.2 Geometric Solution of Linear 

Programming Problem 
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6.2 Geometric Solution of the Linear Programming Problem 

Minimize 

Subject to 

21 54 xxf 

0,

6

4

21

21

21







xx

xx

xx

2 

2 

4 

4 

6 

6 

x1 

x2 

x1  + x2 = 6 

f = -10 

f = -20 

Feasible region 

f *= -29 

A D 

B 

C 

E 

F 

Optimum  

solution 

Infeasible solution 

Infeasible  

solution 

Basic feasible  

solution 

Basic feasible solution 

Basic feasible 

 solution 

1. The solution of LP problem lies on a 

vertex point of the polygon. 

2. The vertex points mean the intersection 

of the constraints. 

3. The vertex point (A, B, C, D, E, F) are 

called  “Basic solution”. 

4. Basic solution in the feasible region (A, 

B, C, D) are called  “Basic feasible 

solution”. 

5. The basic feasible solution minimizing 

the objective function is an optimum 

solution. 
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Ch.6 Linear Programming 

 
6.3 Solution of Linear Programming 

Problem Using Simplex Method  
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4321  xxx

 For “” type inequality constraint we introduce a nonnegative slack variable. 

Minimize 

Subject to 

 

Slack variable(nonnegative) 

0,

6

4

21

21

21







xx

xx

xx
21 54 xxf 

421  xx

Standard form of the Linear Programming Problem 

 

1. Right hand side of the constraints should always be nonnegative.  

 2. Inequality constraint should be transformed to an equality constraint 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- Transformation of “” Type Inequality Constraint 
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Transforming the 

inequality constraints to 

the equality constraints 

Because the number of variables(4) is larger than the number 

of equation(2), there are many sets of solution. 

 If we assume the value of two(=4-2) unknown variables, we can 

obtain the solution. 

 When we use the “Simplex method”, the two unknown variables are 

assumed to be zero. 

 At this time, the variables set to zero are called “nonbasic variables”, 

the remaining ones are called “basic variables”. 

To transform “” type inequality constraints 
to the equality constraints, we introduce a 
nonnegative slack variable. 

Minimize 

Subject to 

21 54 xxf 

0,

6

4

21

21

21







xx

xx

xx

Minimize 

Subject to 

0,,,

6           

4       

4321

421

321







xxxx

xxx

xxx
21 54 xxf 

6           

4       

421

321





xxx

xxx

When the number of unknown variables is n and the number of linear independent equations(constraints) 
is m,(n≥m) 
- The degree of freedom is (n-m). 
- If we assume the value of (n-m) unknown variables(degree of freedom), we can obtain the solution. 
- In the “Simplex method”, the (n-m) unknown variables are assumed to zero. 

선형 계획 문제의 해법(1) 

6.3 Solution of Linear Programming Problem(1) 
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6.3 Solution of Linear Programming Problem(2) 

 

2 

2 

4 

4 

6 

6 

x1 

x2 

x1  + x2 = 6 

Feasible region 

f *= -29 

 x2 = 0 
General solution of LP problem:  
“Simplex Method”starts at the initial basic feasible 
solution and finds the optimal solution by improving 
the objective function  We can minimize the 
number of calculating the vertex points. 

Nonbasic 

variables 
(assumed to be zero) 

Basic 

variables 

Solution Location of 

the solution 

(“Vertex point”) 

Objective 

function 
(x1, x2, x3,  x4) 

(x2, x3) (x1, x4) (-4, 0, 0,  10) F 16 

(x1, x4) (x2, x3) (0, 6, -2  0) E -30 

(x1, x2) (x3, x4) (0, 0, 4,  6) A 0 

(x2, x4) (x1, x3) (6, 0, 10,  0) D -24 

(x1, x3) (x2, x4) (0, 4, 0,  2) B -20 

(x3, x4) (x1, x2) (1, 5, 0,  0) C -29 

Minimize 

Subject to 

0,,,

6           

4       

4321

421

321







xxxx

xxx

xxx
21 54 xxf 

Each vertex point is obtained 

by assuming the value of the 

two variables. 

Infeasible 

solution 

Infeasible 

solution 

Basic feasible 

 solution 

Optimal solution Basic feasible 

 solution 

Basic feasible 

 solution 

4) The basic feasible solution minimizing the objective function 

is the optimum solution. 

3) Find the basic feasible solution in the 6 basic variables 

2) Substitute the 6 sets into the equations ①, ② and calculate 

the value of the basic variables(vertex point) 

1) Select the two variables assumed to be zero(Total  6 sets) 

A D 

B 

C 

E 

F 

0,,,

6           

4       

4321

421

321







xxxx

xxx

xxx ① 

② 

Convert the 

inequality 

constraints to 

the equality 

constraint 

Initial basic feasible solution 

in the Simplex method 

Q: Do we have to find all vertex points and calculate the value of 

the objective function? 
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6.3 Solution of Linear Programming Problem 
by Using Simplex Method(1) 
- Classification between basic variables and nonbasic variables 

(1) Transform the inequality   

     constraints to the 

     equality constraints 

           Subject to 

Minimize 
21 54 xxf 

0,

6

4

21

21

21







xx

xx

xx
3x

4x

0                54

6                 

4             

21

421

321







fxx

xxx

xxx

0,,, 4321 xxxx

1row: 

2row: 

3row: 

- In this example, we can solve this problem by assuming the two variables as the nonbasic variables(=0). 

. 

Nonbasic variable 

Mark the basic variable 

included in each row Basic varialbe 

Type of variables Explanation Method to classify 

Nonbasic variables A variable set to zero in variables Objective function is only composed of the nonbasic variables. 

Basic variables 
A variable obtained by setting the nonbasic 

variable and solving the equations simultaneously 
Each basic variable appears in only one row. 

: Nonbasic variable(=0) 

: Basic vraible 

Pivot: It is the same concept with Gauss-Jordan        
Elimination. This eliminates the selected variables 
from all the equations except one equation. 
 
 

링크 확인할 것 

단수가 되어야 함 
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3x

4x

0                54

6                 

4             

21

421

321







fxx

xxx

xxx

0,,, 4321 xxxx

1row: 

2row 

3row: 

: Nonbasic variable(=0) 

: Basic variable 

The greatest reduction in the objective function can be achieved by increasing x2, 

because its coefficient is most negative.  The nonbasic variable x2 should be 

replaced by a basic variable. 

Because two variables should be the nonbasic variables(=0),  

x3 or x4 should be a nonbasic variable. 

Select the variable whose coefficient is positive and the row having the smallest 

positive ratio in the constraints  x3 is selected as the nonbasic variable. 

4/1 = 4 

6/1 = 6 

<Ref.> What would be done if we do not select the row having the smallest positive ratio? 

Right hand side parameter in each row 

Positive coefficient of the element in the 

selected row 

= 

,x2 

                     x1, x2  

                     x3, x4 

,x3 

Interchange the basic variable 
included in 1st row, i.e., x3 and 
the nonbasic  variable, i.e., x2. 

5.3 Simplex 방법을 이용한 선형 계획 문제의 해법(2) 
- 비기저 변수와 기저 변수의 교환 

6.3 Solution of Linear Programming Problem by Using Simplex Method(2) 
- Interchange of Basic and Nonbasic Variables 

Nonbasic variable: 

Basic variable: 

Interchange가 맞음(ARORA) 
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3x

4x

0                54

6                 

4             

21

421

321







fxx

xxx

xxx

0,,, 4321 xxxx

1row: 

2row: 

3row: 

4/1 = 4 

6/1 = 6 

Interchange the basic variable included in 1st 
row, i.e., x3 and the nonbasic variable, i.e., x2 

Pivot on the selected variable(x2 : 1st row, 2nd column) 

312 4 xxx 

and substitute this into the 2 and 3 row. 

2059

)4(54

22

6)4(

31

311

431

4311









fxx

f xxx

xxx

 x xxx

Rearrange 1st row  as: 

20        5        9

2               2

4             

31

431

321







fxx

xxx

xxx

0,,, 4321 xxxx

2x

4x

1st row: 

2nd row: 

3rd row: 

: Nonbasic variable(=0) 

: Basic variable 

Type of variables Explanation Method to classify 

Nonbasic variables A variable set to zero in variables Objective function is only composed of the nonbasic variables. 

Basic variables 
A variable obtained by setting the nonbasic 

variable and solving the equations simultaneously 
Each basic variables appears in only one row. 

5.3 Simplex 방법을 이용한 선형 계획 문제의 해법(3) 
- 선택된 변수를 중심으로 Pivot 

6.3 Solution of Linear Programming Problem by Using Simplex Method(3) 
- Pivot Operation 

,x2 

                     x1, x2  

                     x3, x4 

,x3 Nonbasic variable: 

Basic variable: 

: Nonbasic variable(=0) 

: Basic variable 

Pivot: It is the same concept with Gauss-
Jordan Elimination. This eliminates the 
selected variables from all the equations 
except one equation. 
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x1, x3  

x2, x4 

 New solution B(x1, x2, x3, x4) = (0, 4, 0, 2) 

 Value of the objective function at B = -20 

Substitute x1=x3=0 into the equations(1row, 2row)  x2=4, x4=2 

2 

2 

4 

4 

6 

6 

x1 

x2 

x1  + x2 = 6 

Feasible region 

f *= -29 

Infeasible 

solution 

Infeasible 

solution 

Optimal solution 

Initial basic feasible solution 

in the Simplex method 

A 

B 

20        5        9

2               2

4             

31

431

321







fxx

xxx

xxx

0,,, 4321 xxxx

2x

4x

1row: 

2row: 

3row: 

Type of variables Explanation Method to classify 

Nonbasic variables A variable set to zero in variables Objective function is only composed of the nonbasic variables. 

Basic variables 
A variable obtained by setting the nonbasic 

variable and solving the equations simultaneously 
Each basic variables appears in only one row. 

5.3 Simplex 방법을 이용한 선형 계획 문제의 해법(4) 
- Pivot 후 변경된 기저 해(“꼭지점”) 

6.3 Solution of Linear Programming Problem by Using Simplex Method(4) 
- New Basic Variable(“Vertex Point”) after Pivot Operation 

: Nonbasic variable(=0) 

: Basic variable 

Nonbasic variable: 

Basic variable: 
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,x4 

,x1 

Interchange the basic variable 
included in 2nd row, i.e., x4 and 
the nonbasic variable, i.e., x1. 

20        5        9

2               2

4             

31

431

321







fxx

xxx

xxx

0,,, 4321 xxxx

2x

4x

1row: 

2row: 

3row: 

The greatest reduction in the objective function can be achieved by increasing x1, 

because its coefficient is most negative.  

 The nonbasic variable x1 should be replaced by a basic variable. 

Because two variables should be the nonbasic variables(=0),  

 x2 or x4 should be the nonbasic variable. 

Select the variable whose coefficient is positive and row and the row having the 

smallest positive ratio in the constraints  

 x4 is selected as the nonbasic variable. 

Right hand side parameter in each row 

Positive coefficient of the element in the 

selected row 

= 

2/2 = 1 

Type of variables Explanation Method to classify 

Nonbasic variables A variable set to zero in variables Objective function is only composed of the nonbasic variables. 

Basic variables 
A variable obtained by setting the nonbasic 

variable and solving the equations simultaneously 
Each basic variables appears in only one row. 

5.3 Simplex 방법을 이용한 선형 계획 문제의 해법(5) 
- 비기저 변수와 기저 변수의 교환 

6.3 Solution of Linear Programming Problem by Using Simplex Method(5) 
- Interchange of Basic and Nonbasic Variables 

                     x1, x3  

                     x2, x4 

Nonbasic variable: 

Basic variable: 

: Nonbasic variable(=0) 

: Basic variable 
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29  4.55.0           

1  5.05.0        

5  0.55.0       

43

431

432







fxx

xxx

xxx

0,,, 4321 xxxx

1row: 

2row: 

3row: 

2x

1x

20        5        9

2               2

4             

31

431

321







fxx

xxx

xxx

0,,, 4321 xxxx

2x

4x

1row: 

2row: 

3row: 

2/2 = 1 

Pivot on the selected variable(x1 : 2nd row, 1st column) 

(1 row + 0.52 row) 

(0.52 row) 

(3 row + 4.52 row) 

Type of variables Explanation Method to classify 

Nonbasic variables A variable set to zero in variables Objective function is only composed of the nonbasic variables. 

Basic variables 
A variable obtained by setting the nonbasic 

variable and solving the equations simultaneously 
Each basic variables appears in only one row. 

5.3 Simplex 방법을 이용한 선형 계획 문제의 해법(6) 
- 선택된 변수를 중심으로 Pivot 

6.3 Solution of Linear Programming Problem by Using Simplex Method(6) 
- Pivot Operation 

Interchange the basic variable 
included in the 2nd row, i.e., x4 
and the nonbasic variable, i.e., 
x1. 

: Nonbasic variable(=0) 

: Basic variable 

,x4 

,x1 

                     x1, x3  

                     x2, x4 

Nonbasic variable: 

Basic variable: 

: Nonbasic variable(=0) 

: Basic variable 

X1, x4 fade out 될 것 
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29  4.55.0           

1  5.05.0        

5  0.55.0       

43

431

432







fxx

xxx

xxx

0,,, 4321 xxxx

1row: 

2row: 

3row: 

2x

1x

 New solution C(x1, x2, x3, x4) = (1, 5, 0, 0) 

  Value of the objective function at B = -29 

Substitute x3=x4=0 into the equations(1row, 2row)  x1=1, x2=5 

2 

2 

4 

4 

6 

6 

x1 

x2 

x1  + x2 = 6 

Feasible region 

f *= -29 

Infeasible 

solution 

Infeasible 

solution 

Optimal solution 

Initial basic feasible solution 

in the Simplex method 

A 

B 
C 

Because the coefficients of the 
objective function are nonnegative, 
the current solution is the optimal 
solution. 
 Stop the Simplex 

Type of variables Explanation Method to classify 

Nonbasic variables A variable set to zero in variables Objective function is only composed of the nonbasic variables. 

Basic variables 
A variable obtained by setting the nonbasic 

variable and solving the equations simultaneously 
Each basic variables appears in only one row. 

5.3 Simplex 방법을 이용한 선형 계획 문제의 해법(7) 
- Pivot 후 변경된 기저 해(“꼭지점”) / Simplex 종료 

6.3 Solution of Linear Programming Problem by Using Simplex Method(7) 
- New Basic Variable(“Vertex Point”) after Pivot Operation/ Stop to Simplex 

x3, x4 

x1, x2 

Nonbasic variable: 

Basic variable: 

: Nonbasic variable(=0) 

: Basic variable 
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)6,4( 43  xxThe nonbasic variables(x1 and x2) are equal to zero. 

If there are some variables whose coefficients are nonnegative in the objective function, the 

variables(x1 and x2) can be increased for decreasing the value of the objective function. 

The greatest reduction in the value of the objective function can be achieved by increasing 

x2 , because its coefficient is most negative. 

3x

4x

0                54

6                 

4             

21

421

321







fxx

xxx

xxx

0,,, 4321 xxxx

1row: 

2row: 

3row: 

[참고] Simplex 방법에서 Pivot을 수행할 열을 선택할 때 
          목적 함수의 계수가 최소인 열을 선택하는 이유  

6.3 Solution of Linear Programming Problem by Using Simplex Method 
[Reference] The reason why the column which has the minimum coefficient of the objective function is  
selected for pivot. 

: Nonbasic variable(=0) 

: Basic variable 
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241

231

6                

4             

xxx

xxx





The row 1 and 2 are rearranged as follows. 

3x

4x

0                54

6                 

4             

21

421

321







fxx

xxx

xxx

0,,, 4321 xxxx

1row: 

2row: 

3row: 

4/1 = 4 

6/1 = 6 

The row having the smallest 

positive ratio(1 row) 

[참고] Simplex 방법에서 선택된 열이 양수이며 
 최소의 비율을 갖는 행을 선택하는 이유 

6.3 Solution of Linear Programming Problem by Using Simplex Method 
[Reference] The reason why the row having the smallest positive ratio in the constraints is selected. 

Select the variable whose coefficient is positive and the row having the smallest positive ratio in the 

constraints  x3 will be selected as  the nonbasic variable. 

: Nonbasic variable(=0) 

: Basic variable 

1) If the 1st row is selected, then x3 becomes nonbasic variable. 

4 ,0 231  xxx )variablesnonbasicare,( 31 xx

2,4 ,0 421  xxx

1st row: 

2nd row: 

2) If the 2nd row is selected, then x4 becomes nonbasic variable. 

 The constraint, the variables have to be nonnegative, is violated. 

6,0 241  xxx2nd row: )variablesnonbasicare,( 41 xx

2 ,6,0 321  xxx1st row: 
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20        5        9

2               2

4             

31

431

321







fxx

xxx

xxx

0,,, 4321 xxxx

2x

4x

1row: 

2row 

3row: 

3. If x4 becomes a nonbasic variable, 

The row having the negative coefficient in the 

selected column is not selected. 

2/2 = 1 

143

132

22 

4           

xxx

xxx




1. The row 1 and 2 are rearranged as follows. 

② 

① 

3-2. Equation ① is changed as follows.(nonbasic variable x3=0, x4=0) 

04 12  xx
In 3-1, any value of x1 satisfies the equation ① 

2x

4x

2. x2 or x4 will become a nonbasic variable. 

Nonbasic variable: x1, x3  

Basic variable:      x2, x4 , x1 

1220 x 11 122 xx 

3-1. Equation ② is changed as follows. (nonbasic variable x3=0, x4=0) 

[참고] Simplex 방법에서 선택된 열의 계수가 음수인 행은 
 선택하지 않는 이유 

6.3 Solution of Linear Programming Problem by Using Simplex Method 
[Reference] The reason why the row having the negative coefficient in the selected column is not selected.(1) 

: Nonbasic variable(=0) 

: Basic variable 

 If the row having the positive coefficient in the selected 

column is selected, the row having the negative 

coefficient in the selected column is always satisfied. 

X4가 fade out 되는 것 애니메이션 할 것 

, x4 
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20        5        9

2               2

4             

31

431

321







fxx

xxx

xxx

0,,, 4321 xxxx

2x

4x

1row: 

2row: 

3row: 

3. If x2 becomes a nonbasic variable, 

The row having the negative coefficient in the 

selected column is not selected. 

2/2 = 1 

143

132

22 

4           

xxx

xxx





1. The row 1 and 2 are rearranged as follows. 

② 

① 

2x

4x

2. x2 or x4 will become a nonbasic variable. 

 The constraint, the variables have to be nonnegative, 

is violated. 
140 x 41  x

3-1. Equation ① is changed as follows. (nonbasic variable x2=0, x3=0) 

6.3 Solution of Linear Programming Problem by Using Simplex Method 
[Reference] The reason why the row having the negative coefficient in the selected column is not selected.(2) 

Nonbasic variable: x1, x3  

Basic variable:      x2, x4 , x1 
: Nonbasic variable(=0) 

: Basic variable 

X2가 fade out 되는 것 애니메이션 할 것 

, x2 
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Because all the coefficients of the objective function are nonnegative, 

the current solution is the optimal solution. (x1=1, x2=5, x3=x4=0, f=-29) 

x1 x2 x3 x4 bi bi/ai 

x3 -1 1 1 0 4 4 

x4 1 1 0 1 6 6 

Obj. -4 -5 0 0 f-0 - 

x1 x2 x3 x4 bi bi/ai 

X2 -1 1 1 0 4 -4 

x4 2 0 -1 1 2 1 

Obj. -9 0 5 0 f+20 - 

x1 x2 x3 x4 bi bi/ai 

x2 0 1 0.5 0.5 5 - 

x1 1 0 -0.5 0.5 1 - 

Obj. 0 0 0.5 4.5 f+29 - 

0                54

6                 

4             

21

421

321







fxx

xxx

xxx

Basic variable Basic  

variable 

3x

4x

Nonbasic variable 
(=0) 

Basic variable 

4/1 = 4 

6/1 = 6 

20        5        9

2               2

4             

31

431

321







fxx

xxx

xxx

Basic  

variable 

2x

4x

Nonbasic variable 
(=0) 

1row: 

2row: 

3row: 

1row: 

2row: 

3row: 

Basic variable 

29  4.55.0           

1  5.05.0        

5  0.55.0       

43

431

432







fxx

xxx

xxx

Basic  

variable 

2x

1x

Nonbasic variable 
(=0) 

Pivot on x2(1 row and 2 column) 

Pivot on x1(2 row and 1 column) 

Basic variable 

1row: 

2row: 

3row: 

1row: 

2row: 

3row: 

1row: 

2row: 

3row: 

 

 

 

           4/-1 = -4 
(If the coefficient of the variable is 

negative, the variable is not selected.) 

2/2 = 1 

1row: 

2row: 

3row: 

New 2row = (2row - 1row) 

New 3row = (3row + 51row) 

New  1row = (1row + 0.52row) 

New  2row = (0.52row) 

New  3row = (3row + 4.52row) 

x2 

1 

1 

-5 

x3 -1 1 1 0 4 4 

x1 

-1 

2 

-9 

x4 2 0 -1 1 2 1 

Simplex 단체표를 이용한  
선형 계획 문제의 해법 

6.3 Solution of Linear Programming Problem  
by Using Simplex Tableau 

Pivot: It is the same concept with Gauss-Jordan 
Elimination. This eliminates the selected 
variables from all the equations except one 
equation. 

Pivot on, for? 찾아볼 것 
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Maximize 

Subject to 

Maximization problem can be transformed 

to a minimization problem. 

2

1

21

21

0

632

1223

y

y

yy

yy







is unrestricted in sign. 

21 2yyz 

Minimize 

Subject to 

21 2yyF 

2

1

21

21

0

632

1223

y

y

yy

yy







is unrestricted in sign. 

Minimize 

Subject to 

321 22 xxxf 

0,,

6332

12223

321

321

321







xxx

xxx

xxx

Let be                                             . 
  232211 ,, yxyxyx

The variable  unrestricted in sign is 

expressed with  two nonnegative variables. 
 (                        ) 

  222 yyy

                                            

A 

2 

2 

4 

4 

6 

6 

y1(=x1) 

y2(=x2-x3) 

3y1  + 2y2 = 12 

B 

C 

f = -2 

f = -6 

f = -10 

Optimum Point = (0, 6) 

f* = -12 

선형 계획 문제의 예 
– 2개의 설계 변수와 부등호(“”) 제약 조건을 가진 문제 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- Problem with “” Type Inequality Constraint and Two Design Variable 
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1 2 3 5 62 3 3 6x x x x x    

For “” type inequality constraint, we  introduce a surplus variable and artificial variable. 

Minimize 

Subject to 

 

Surplus variable 

(nonnegative) 

321 22 xxxf 

0,,

6332

12223

321

321

321







xxx

xxx

xxx

6332 321  xxx

Artificial variable(nonnegative) 

“The reason why we introduce the artificial variable” 

At starting the Simplex method,  we assume the original design variables (x1, x2, x3) as “nonbasic 

variables”(x1=x2=x3=0), -x5 = 6. 

 This violates the nonnegativity requirement. For satisfying the requirement, we introduce the 

variable x6 artificially. 

 However, the artificial variable should be equal to zero in the feasible region, because x6 is 

augmented artificially, 

1 2 3 52 3 3        6x x x x   

1 2 3 43 2 2 12x x x x   

[Review]For  “” type inequality constraint: we introduce a nonnegative slack 
variable. 

Simplex 방법을 이용하기 위한 
부등호(“”) 제약 조건의 변환 방법(1) 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- Transformation of “” Type Inequality Constraint 

However, because 찾아볼 것(이렇게는 안쓸 것 같음)  
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Maximize 

Subject to 

21 2yyz 

2

1

21

21

0

632

1223

y

y

yy

yy







is unrestricted 

in sign. 

       

Minimize 

Subject to 

321 22 xxxf 

5  1;0

6332

12223

5321

4321

toix

xxxx

xxxx

i 





Since     is unrestricted in sign, 

transform as                           . 

2y
  222 yyy

2. 

1. Transform  to a minimization problem. 

  232211 ,, yxyxyx
Let be 3. 

4. Transform the inequality 

constraints to the equality constraints 

 (Introduce the slack and surplus variable.) 

                      

Slack variable 

Surplus variable 

),,( 321 xxxAssume the original variables                         as 

nonbasic variables(=0) and calculate the basic 

variable (               ). 54 , xx
6,12 54  xx  This violates the nonnegativity 

requirement 

       

Minimize 

Subject to 

321 22 xxxf 

6  1;0

6332

12223

65321

4321

toix

xxxxx

xxxx

i 





Slack variable 

Surplus 

variable 

Artificial 

variable 

1 2 

3 

Introduce an artificial variable 

       in the “” type inequality 

constraints. 
6x

                                            

A 

2 

2 

4 

4 

6 

6 

y1(=x1) 

y2(=x2-x3) 

3y1  + 2y2 = 12 

B 

C 

f = -2 

f = -6 

f = -10 

Optimum Point = (0, 6) 

f* = -12 

D 
Initial basic solution 

(Infeasible solution) 

 Initial basic solution(Infeasible solution) 

Assume the original design variables( x1, x2, x3) and 

the surplus variable(x5) as nonbasic variables(=0) and 

calculate the basic variable(x4, x6). 

The result is x4=12, x6=6. 

Simplex 단체표를 이용한 선형 계획 문제의 해법 
- “” 형태의 제약 조건을 가진 문제에 대한 Simplex 방법(1) 

6.3 Solution of Linear Programming Problem Using Simplex Method(Simplex Tableau) 

- Simplex Method for the Problem with “” Type Inequality Constraint (1) 

However, the artificial variable should be equal to zero in the 

feasible region, because x6 is augmented artificially. 

However, because 찾아볼 것(이렇게는 안쓸 것 같음)  
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6332

22

6332

12223

5321

321

65321

4321









wxxxx

fxxx

xxxxx

xxxx

Define an artificial objective 

function which is a sum of all 

the artificial variables(w=x6) 

4 

Artificial objective function 

5 Find the basic feasible solution(minimize the 

artificial objective function, w=x6 (“w=0”) 

(Phase 1 of the Simplex method) 

       

Minimize 

Subject to 

321 22 xxxf 

6  1;0

6332

12223

65321

4321

toix

xxxxx

xxxx

i 





Slack variable 

Surplus 

variable 
Artificial 

variable 

3 

6 Find the optimal solution to minimize 

the original objective function(Phase 

2 of the Simplex method) 

6332 65321  xxxxx
Designate x6=w and 

rearrange 

Since x6 is augmented artificially, the artificial 

variable should be equal to zero in the feasible 

region.                                                        
2 

2 

4 

4 

6 

6 

y1(=x1) 

y2(=x2-x3) 

3y1  + 2y2 = 12 

C 

f = -2 

f = -6 

f = -10 

A 

B 
Optimum Point = (0, 6) 

f* = -12 

D 
Initial basic solution 

(Infeasible solution) 

6.3 Solution of Linear Programming Problem Using Simplex Method(Simplex Tableau) 

- Simplex Method for the Problem with “” Type Inequality Constraint (2) 

is a sum of all the 
artificial variables(w=x6) 
확인해볼 것 
 ARORA 문장임 

Because 확인해볼 것 
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6332

22

6332

12223

5321

321

65321

4321









wxxxx

fxxx

xxxxx

xxxx

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 3 2 -2 1 0 0 12 - 

x6 2 3 -3 0 -1 1 6 - 

Obj. -1 -2 2 0 0 0 f-0 - 

A. Obj. -2 -3 3 0 1 0 w-6 - 

At first, we assume the original design variables(x1, …, x3) and 

surplus variable(x5) as nonbasic variables(=0), whereas the slack 

variable(x4) and artificial variable(x6) as basic variables. Then  

solve the equation. (“Starting with the initial basic solution”) 

Phase 1: Repeat Pivot operation until the artificial objective function w becomes zero. 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 3 2 -2 1 0 0 12 6 

x6 2 3 -3 0 -1 1 6 2 

Obj. -1 -2 2 0 0 0 f-0 - 

A. Obj. -2 -3 3 0 1 0 w-6 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 5/3 0 0 1 2/3 -2/3 8 - 

x2 2/3 1 -1 0 -1/3 1/3 2 - 

Obj. 1/3 0 0 0 -2/3 2/3 f+4 - 

A. Obj. 0 0 0 0 0 1 w-0 - 

 

5 

4 

Since the artificial variable(x6) is 

augmented artificially, the variable should 

be equal to zero in the feasible region. 

Since the value of the artificial objective 

function becomes zero, the Phase 1 is 

completed.  

Point A(x1=x3=x5=x6=0, x2=2, x4=8) 

New 1 row = 1 row - (2/3)2 row 

New 2 row = (1/3)2 row 

New 2 row = 3 row- (2/3)2 row 

New 4 row = 4 row + 2 row 

                                                       
2 

2 

4 

4 

6 

6 

y1(=x1) 

y2(=x2-x3) 

3y1  + 2y2 = 12 

B 

f = -2 

f = -6 

f = -10 

Optimum Point = (0, 6) 

f* = -12 

A 

D 
Initial basic solution 

(Infeasible solution) C 

What if x6 is 

substituted for zero  

in advance? 
 

Procedure of 

finding the basic 

feasible solution 

starting with the 

initial basic 

solution 

6.3 Solution of Linear Programming Problem Using Simplex Method(Simplex Tableau) 

- Simplex Method for the Problem with “” Type Inequality Constraint (3) 

Because 확인해볼 것 

!!!!!!!!!문장 확인해볼 것 

문장 확인해볼 것 

For, on 확인해볼 것 
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Phase 1: Repeat Pivot operation until the artificial objective function w becomes zero. 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 3 2 -2 1 0 0 12 6 

x6 2 3 -3 0 -1 1 6 2 

Obj. -1 -2 2 0 0 0 f-0 - 

A. Obj. -2 -3 3 0 1 0 w-6 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 5/3 0 0 1 2/3 -2/3 8 - 

x2 2/3 1 -1 0 -1/3 1/3 2 - 

Obj. 1/3 0 0 0 -2/3 2/3 f+4 - 

A. Obj. 0 0 0 0 0 1 w-0 - 

 

5 

6 Phase 2: Repeat Pivot  operation until all the coefficients of the original objective function f  are 

nonnegative. 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 5/3 0 0 1 2/3 -2/3 8 12 

x2 2/3 1 -1 0 -1/3 1/3 2 -6 

Obj. 1/3 0 0 0 -2/3 2/3 f+4 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x5 5/2 0 0 3/2 1 -1 12 - 

x2 3/2 1 -1 1/2 0 0 6 - 

Obj. 2 0 0 1 0 0 f+12 - 

 

Since all the coefficients of the objective 

function are nonnegative, the current 

solution is the optimal solution. 

(x1=x3=x4=0,x2=6,x5=12,f=-12) 

New 1 row = 1 row  (2/3) 

New 2 row = 2 row + (1/2)1 row 

New 3 row = 3 row + 1 row 

A 

2 

2 

4 

4 

6 

6 

y1(=x1) 

y2(=x2-x3) 

3y1  + 2y2 = 12 

C 

f = -2 

f = -6 

f = -10 

B 
Optimum Point = (0, 6) 

f* = -12 

6.3 Solution of Linear Programming Problem Using Simplex Method(Simplex Tableau) 

- Simplex Method for the Problem with “” Type Inequality Constraint (4) 

For, on 확인해볼 것 

For, on 확인해볼 것 

since 
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1 2 3 7 6x x x x   

For “=” type equality constraint,  we introduce an artificial variable. 

Minimize 

Subject to 

321 22 xxxf 

0,,

6

6332

12223

321

321

321

321









xxx

xxx

xxx

xxx

Artificial variable(nonnegative) 

“The reason why we introduce the artificial variable” 

At starting the Simplex method, we assume the original design variables (x1, x2, x3) as “nonbasic 

variables”(x1=x2=x3=0). Then  the equality constraint is violated(0 = 6). 

 To satisfy the equality constraint , we introduce the variable x7 artificially. 

 However, because x7 is augmented artificially, the artificial variable should be equal to zero in 

the feasible region. 

 6321  xxx

1 2 3 43 2 2 12x x x x   

[Review] For “” type inequality constraint, we introduce a nonnegative 
slack variable. 

1 2 3 5 62 3 3 6x x x x x    
[Review] For “”  type inequality constraint,  

we introduce a surplus variable and artificial variable. 

인위 목적 함수의 구성 방법Simplex 방법을 이용하기 위한 
등호(“=”) 제약 조건의 변환 방법 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- Transformation of Equality(“=”) Constraint 
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Minimize 

Subject to 

321 22 xxxf 

0,,

6

6332

12223

321

321

321

321









xxx

xxx

xxx

xxx

Minimize 

Subject to 

321 22 xxxf 

7    1  ;0

6

6332

12223

7321

65321

4321

toix

xxxx

xxxxx

xxxx

i 





Transform the  inequality 

constraints to  equality 

constraints 

Define an artificial objective 

function which is a sum of 

all the artificial variables 

(w=x6+x7) 

12243

22

6

6332

12223

5321

321

7321

65321

4321











wxxxx

fxxx

xxxx

xxxxx

xxxx

Find the basic feasible solution(minimize the artificial 

objective function, w=x6+x7(“w=0”; x6=x7=0) 

532176

3217

53216

24312)(

6

3326

xxxxxxw

xxxx

xxxxx







1 2 

3 

<Ref.> If we define the artificial objective 

functions for each artificial variable, 

Since the artificial variables are nonnegative, 

solutions of  minimizing the sum of  all the 

artificial objective functions are  the same as 

those of minimizing of each artificial objective 

function . Therefore, it is convenient to define 

the artificial objective function as a sum of all 

the artificial variables. 

6

6332

22

6

6332

12223

2321

15321

321

7321

65321

4321













wxxx

wxxxx

fxxx

xxxx

xxxxx

xxxx

We have to  minimize w1(x6=0) 

and w2 (x7=0). 

인위 목적 함수의 정의 방법 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- Method for Formulating the Artificial Objective Function 

본 문장 다시 볼 것 
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6.3 Solution of Linear Programming Problem  
Using Simplex Method 

- Summary of the Simplex Method 

 This method starts at the initial 
basic feasible solution and finds 
the optimal solution by 
improving the objective function  

 This method is based on the 
theory of the first-order 
simultaneous equations. 
 Matrix calculation is used. 

   (Gauss-Jordan Elimination) 

 Type of the Simplex method 
 One-phase Simplex method 

 The problem only having “” type 
inequality constraints 

 Two-phase Simplex method 
 The problem having “” type 

inequality or equality (“=”) 
constraint 

 Phase 1: Find the initial basic 
feasible solution to satisfy the 
artificial objective function(w) to 
be zero. 

 Phase 2: Find the optimal solution  
by starting with the initial basic 
feasible solution. 

2 

2 

4 

4 

6 

6 

x1 

x2 

x1  + x2 = 6 

Feasible region 

f *= -29 

Infeasible 

solution 

Infeasible 

solution 

Initial basic feasible solution 

in the Simplex method 

A F 

E 

Optimal solution C 

D 
Basic feasible solution Basic feasible 

 solution 

B 

Basic feasible 

 solution 

                                            
2 

2 

4 

4 

6 

6 

y1(=x1) 

y2(=x2-x3) 

3y1  + 2y2 = 12 

f = -2 

f = -6 

f = -10 

C 

Optimal solution= (0, 6) 

f* = -12 

A 

B 

D 
Initial basic solution in the 

Simplex method 

Simplex 방법의 요약 
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6.3 Solution of Linear Programming Problem Using Simplex Method 
- Summary of the Simplex Algorithm 

 Step 1: initial basic feasible solution 

 “<=” type inequality constraints: Find the initial basic feasible variables by 
assuming the slack variables as basic and the original variables as nonbasic 
variables(=0). 

 “>=” type inequality constraints: By using the Two-phase Simplex method, 
find the initial basic feasible variables to satisfy the artificial objective 
function to be zero in the Phase 1. 

 

 Step 2: The objective function must be expressed  with the nonbasic variables. 

 

 Step 3: If all the reduced coefficient of the objective function for nonbasic 
variables are nonnegative, the current basic solution is the optimal solution. 
Otherwise, continue. 

 

 Step 4: Determine the Pivot column and row. At this time, the nonbasic variable 
in the selected Pivot column should become the new basic variable and the 
basic variable in the selected Pivot row should become the new nonbasic 
variable. 

 

 Step 5: Pivot operation by using the Gauss-Jordan Elimination 

 Step 6: Calculate the value of the basic and nonbasic variable and go to Step 3. 
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“” type inequality constraint: 

Introduce the  slack variable. 

“” type inequality constraint: 

Introduce the surplus variable  and  

the artificial variable. 

“” type inequality constraint: 

Introduce the  slack variable. 

“” type inequality constraint: 

Introduce the surplus variable  and  

the artificial variable. 

Minimize 

Subject to 

1 22z y y  

2

1

21

21

0

632

1223

y

y

yy

yy







is unrestricted in sign. 

Minimize 

Subject to 

1 2 22 2f y y y    

1 2 2

1 2 2

1 2 2

3 2 2 12

2 3 3 6

, , 0

y y y

y y y

y y y

 

 

 

  

  



Minimize 

Subject to 

1 2 22 2f y y y    

1 2 2 1

1 2 2 2 3

1 2 2

3 2 2 12

2 3 3 6

, , 0, 0; 1  3i

y y y x

y y y x x

y y y x i to

 

 

 

   

    

  

1 2 1

1 2 2 3

1

2

3 2 12

2 3 6

, 0; 1  3i

y y x

y y x x

y x i to

y

  

   

 

Minimize 

Subject to 

1 22f y y  

is unrestricted in sign. 

Transform the variable 

unrestricted in sign 

 to nonnegative variable 

2 2 2

2 2, 0

y y y

y y

 

 

 



Order (1) 

Order (2) 

Mathematical Model 

[참고] 부호 제약 조건이 없는 변수를 음이 아닌 2개의 변수로  
          치환하는 시점 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Reference] Time to transform the variables unrestricted in sign to the nonnegative variables  

2 2 2

2 2, 0

y y y

y y

 

 

 



Transform the variable 

unrestricted in sign 

 to nonnegative variable 

After formulating the mathematical model, there is no restriction in order between  transforming the variables 

unrestricted in sign to the nonnegative variables and introducing the slack, surplus and artificial variables. 
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When x6 is substituted for zero, 

fxxx

xxxxx

xxxx







321

65321

4321

22

6332

12223

the other variables(x1, x2, x3, x5) in the same equation should not be negative. 

The procedure of the calculating the values of x1, x2, x3, x5 is identical with that of 

reducing the artificial objective function(x6) to zero in the Simplex method. 

[참고] Simplex 방법에서 인위 변수에 처음부터 0을 넣으면 
          어떻게 되는가? 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Reference] What if x6 is substituted for zero in advance? 

Zero into x6 
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The basic feasible solution can be found  

from the initial basic solution through the 

near corner. 

 It is similar with the procedure of 

finding the optimal solution from the 

initial basic feasible solution. (through 

the near corner) 

                                                       
2 

2 

4 

4 

6 

6 

y1(=x1) 

y2(=x2-x3) 

3y1  + 2y2 = 12 

B 

f = -2 

f = -6 

f = -10 

Optimum Point = (0, 6) 

f* = -12 

C 

D 
Initial basic solution 

(Infeasible solution) 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 3 2 -2 1 0 0 12 4 

x6 2 3 -3 0 -1 1 6 3 

Obj. -1 -2 2 0 0 0 f-0 - 

A. Obj. -2 -3 3 0 1 0 w-6 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 0 -5/2 5/2 1 3/2 -3/2 3 - 

x1 1 3/2 -3/2 0 -1/2 1/2 3 - 

Obj. 0 -1/2 1/2 0 -1/2 1/2 f+3 - 

A. Obj. 0 0 0 0 0 1 w-0 - 

Select the first column and perform the Pivot. 
(In the general Simplex method, the second column is selected.) 

Since the value of the artificial objective 

function becomes zero, the Phase 1 is 

completed.  Point E(x2=x3=x5=x6=0, x1=3, x4=3) 

A 

E 

- Since Phase1 is completed, Phase 2 is performed. 

- Phase2: Pivot  operation for the original objective function f 

[참고] Simplex 방법에서 인위 목적 함수를 이용하여 
          초기 기저해를 기저 가능해로 변경하는 과정(1/2)  

Procedure of reaching the basic feasible solution 

form the initial basic solution 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Reference] Procedure of finding the basic feasible solution starting with the initial basic solution(1) 
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x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 5/3 0 0 1 2/3 -2/3 8 12 

x2 2/3 1 -1 0 -1/3 1/3 2 -6 

Obj. 1/3 0 0 0 -2/3 2/3 f+4 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 0 -5/2 5/2 1 3/2 -3/2 3 - 

x1 1 3/2 -3/2 0 -1/2 1/2 3 - 

Obj. 0 -1/2 1/2 0 -1/2 1/2 f+3 - 

A. Obj. 0 0 0 0 0 1 w-0 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 0 -5/2 5/2 1 3/2 -3/2 3 -6/5 

x1 1 3/2 -3/2 0 -1/2 1/2 3 2 

Obj. 0 -1/2 1/2 0 -1/2 1/2 f+3 - 

A. Obj. 0 0 0 0 0 1 w-0 - 

Since the value of the artificial 

objective function becomes zero, 

the Phase 1 is completed. 

Point E(x2=x3=x5=x6=0, x1=3, x4=3) 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 5/3 0 0 1 2/3 -2/3 8 12 

x2 2/3 1 -1 0 -1/3 1/3 2 -6 

Obj. 1/3 0 0 0 -2/3 2/3 f+4 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x5 5/2 0 0 3/2 1 -1 12 - 

x2 3/2 1 -1 1/2 0 0 6 - 

Obj. 2 0 0 1 0 0 f+12 - 

Since all the coefficients of the objective function are nonnegative, 

the current solution is the optimal solution. 

Point B(x1=x3=x4=x6=0,x2=6,x5=12,f=-12) 

New 1row = 1row  (2/3) 

New 2row = 2row + (1/2)1row 

New  3row = 3row + 1row 

                                                       
2 

2 

4 

4 

6 

6 

y1(=x1) 

y2(=x2-x3) 

3y1  + 2y2 = 12 

B 

f = -2 

f = -6 

f = -10 

Optimum Point = (0, 6) 

f* = -12 

C 

D 
Initial basic solution 

(Infeasible solution) 

A 

E 

New 1 row = 1row + 2row  (5/3) 

New 2row = 2row  (2/3) 

New  3row = 3row + 2row  (1/3) 

Point A(x1=x3=x5=x6=0,x2=2,x4=8) 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Reference] Procedure of finding the basic feasible solution starting with the initial basic solution(2) 
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6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Homework 1] Optimal Transportation of Cargo 

Consider a cargo ship departing from the port A to E via the ports B, C, D. 
The maximum cargo loading capacity of the ship is 50,000ton and the 
loadable cargo at each port is as follows. Formulate and find the optimum  
cargo transportation that maximizes the freight rate. 

Type 

of 

cargo 

Port of 

departure 
Port of arrival 

Loadable cargo at  each 

port of  departure 

(1,000ton) 

Freight rate ($/ton) 

1 A B 100 5 

2 A C 40 10 

3 A D 25 20 

4 B C 50 8 

5 B D 100 12 

6 C D 50 6 

5.3 선형 계획 문제의 예 1 
- 선형 계획법을 이용한 최적 화물 수송 문제 
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6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Homework 2] Linear Programming Program 

 Solve the linear programming problem only having the equality 
constraints(linear indeterminate equation). 

0,,,,,

2

32

32

2121

21

22

11















zyxxwhere

xx

zyx

zyx

0,0,1,1 2121  zyxxInitial basic feasible solution: 
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Solution  
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6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Example 1] Optimal Transportation of Cargo 

Consider a cargo ship departing from the port A to E via the ports B, C, D. 
The maximum cargo loading capacity of the ship is 50,000ton and the 
loadable cargo at each port is as follows. Formulate and find the optimum  
cargo transportation  that maximizes the freight rate. 

Type 

of 

cargo 

Port of 

departure 
Port of arrival 

Loadable cargo at  each 

port of  departure 

(1,000ton) 

Freight rate ($/ton) 

1 A B 100 5 

2 A C 40 10 

3 A D 25 20 

4 B C 50 8 

5 B D 100 12 

6 C D 50 6 

5.3 선형 계획 문제의 예 1 
- 선형 계획법을 이용한 최적 화물 수송 문제 
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The loadable cargo at each port 

(xi , i type of cargo) by 1,000ton is as follows. 

Type 

of 

cargo 

Port of 

departur

e 

Port of 

arrival 

Loadable cargo at 

the each ports of 

departure (1,000ton) 

Shipping cost 

rate ($/ton) 

1 A B 100 5 

2 A C 40 10 

3 A D 25 20 

4 B C 50 8 

5 B D 100 12 

6 C D 50 6 

x3 

A B C D 

x2 

x4 

x5 

x6 

x1 

Objective function: Maximization of the shipping cost 

654321 612820105 xxxxxxZ 

Design variables: 654321 ,,,, xxxxxx

Maximize 

 The maximization problem should be converted to a minimization problem by assuming f = -Z 

654321 612820105 xxxxxxf Minimize 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Example 1] Optimal Transportation of Cargo – Solution (1) 
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A B C D 

The maximum cargo to be loaded in the ship: 

50: 321  xxxBA

Constraints: 

50: 5432  xxxxCB

50: 653  xxxDC

The maximum cargo according to the type: 

500  ,500  ,250  ,400 6432  xxxx

The maximum loadable cargoes x1, x5  are larger than 50,000 ton, there are no upper limit related with x1, x5. 

x3 

x2 

x4 

x5 

x6 

x1 

The maximum loadable cargoes x4, x6 are 50,000 ton, there are no upper limit related with x4, x6. 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Example 1] Optimal Transportation of Cargo – Solution (2) 

The loadable cargo at each port 

(xi , i type of cargo) by 1,000ton is as follows. 

Type 

of 

cargo 

Port of 

departur

e 

Port of 

arrival 

Loadable cargo at 

the each ports of 

departure (1,000ton) 

Shipping cost 

rate ($/ton) 

1 A B 100 5 

2 A C 40 10 

3 A D 25 20 

4 B C 50 8 

5 B D 100 12 

6 C D 50 6 
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50321  xxx

Minimize 

Find 654321 ,,,,, xxxxxx

Subject to 

: Constraints related with the maximum cargo 

according to the type: 

: Constraints related with the maximum cargo to be 

loaded in the ship 

 Optimization problem having the 6 unknown variables and 7 

inequality constraints 

654321 612820105 xxxxxxf 

505432  xxxx

50653  xxx

500  ,500

,250  ,400

64

32





xx

xx

6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Example 1] Optimal Transportation of Cargo – Solution (3) 
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1: Slack variable – The variables introduced for converting “” type inequality constraints. 

654321 612820105 xxxxxxf 

Constraints 

Objective function 

1 2 

3 

Solve this problem by using the Simplex method Convert to the standard form 

13121110987 ,,,,, xxxxxxx : slack 

variables1  
Where, 

Perform the Simplex method. 

starts at the initial basic feasible solution and finds the optimal solution by improving the 

objective function 

50321  xxx

505432  xxxx

50653  xxx

500  ,500

,250  ,400

64

32





xx

xx

507321  xxxx

5085432  xxxxx

509653  xxxx

50  ,50

,25  ,40

136124

113102





xxxx

xxxx

654321 612820105 xxxxxxf 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Example 1] Optimal Transportation of Cargo – Solution (4) 
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  x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 bi bi/ai 

x7 1 1 1 0 0 0 1 0 0 0 0 0 0 50 50 

x8 0 1 1 1 1 0 0 1 0 0 0 0 0 50 50 

x9 0 0 1 0 1 1 0 0 1 0 0 0 0 50 50 

x10 0 1 0 0 0 0 0 0 0 1 0 0 0 40  - 

x11 0 0 1 0 0 0 0 0 0 0 1 0 0 25 25 

x12 0 0 0 1 0 0 0 0 0 0 0 1 0 50  - 

x13 0 0 0 0 0 1 0 0 0 0 0 0 1 50  - 

Obj. -5 -10 -20 -8 -12 -6 0 0 0 0 0 0 0 f+0  - 

1 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 bi bi/ai 

x7 1 1 0 0 0 0 1 0 0 0 -1 0 0 25 -  

x8 0 1 0 1 1 0 0 1 0 0 -1 0 0 25 25 

x9 0 0 0 0 1 1 0 0 1 0 -1 0 0 25 25 

x10 0 1 0 0 0 0 0 0 0 1 0 0 0 40 -  

x3 0 0 1 0 0 0 0 0 0 0 1 0 0 25  - 

x12 0 0 0 1 0 0 0 0 0 0 0 1 0 50 -  

x13 0 0 0 0 0 1 0 0 0 0 0 0 1 50 -  

Obj. -5 -10 0 -8 -12 -6 0 0 0 0 20 0 0 f+500 -  

2 

Select the variable 

whose coefficient is 

positive and row has 

the smallest positive 

ratio in the constraints. 

(1) Select the column which has the minimum coefficient of the objective function. 

Right hand side parameter in each column 

Positive coefficient of the element in the selected row 

(3) Pivot on the selected variable(x3 / 5 row, 3 column). 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Example 1] Optimal Transportation of Cargo – Solution (5) 

positive ratio =  
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  x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 bi bi/ai 

x7 1 1 0 0 0 0 1 0 0 0 -1 0 0 25 -  

x5 0 1 0 1 1 0 0 1 0 0 -1 0 0 25  - 

x9 0 -1 0 -1 0 1 0 -1 1 0 0 0 0 0 0 

x10 0 1 0 0 0 0 0 0 0 1 0 0 0 40  - 

x3 0 0 1 0 0 0 0 0 0 0 1 0 0 25  - 

x12 0 0 0 1 0 0 0 0 0 0 0 1 0 50  - 

x13 0 0 0 0 0 1 0 0 0 0 0 0 1 50 50 

Obj. -5 2 0 4 0 -6 0 12 0 0 8 0 0 f+800  - 

3 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 bi bi/ai 

x7 1 1 0 0 0 0 1 0 0 0 -1 0 0 25 25 

x5 0 1 0 1 1 0 0 1 0 0 -1 0 0 25 - 

x6 0 -1 0 -1 0 1 0 -1 1 0 0 0 0 0  - 

x10 0 1 0 0 0 0 0 0 0 1 0 0 0 40  - 

x3 0 0 1 0 0 0 0 0 0 0 1 0 0 25  - 

x12 0 0 0 1 0 0 0 0 0 0 0 1 0 50  - 

x13 0 1 0 1 0 0 0 1 -1 0 0 0 1 50  - 

Obj. -5 -4 0 -2 0 0 0 6 6 0 8 0 0 800 -  

4 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Example 1] Optimal Transportation of Cargo – Solution (6) 
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  x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 bi bi/ai 

x1 1 1 0 0 0 0 1 0 0 0 -1 0 0 25   

x5 0 1 0 1 1 0 0 1 0 0 -1 0 0 25 25 

x6 0 -1 0 -1 0 1 0 -1 1 0 0 0 0 0   

x10 0 1 0 0 0 0 0 0 0 1 0 0 0 40   

x3 0 0 1 0 0 0 0 0 0 0 1 0 0 25   

x12 0 0 0 1 0 0 0 0 0 0 0 1 0 50 50 

x13 0 1 0 1 0 0 0 1 -1 0 0 0 1 50 50 

Obj. 0 1 0 -2 0 0 5 6 6 0 3 0 0 f+925   

5 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 bi bi/ai 

x1 1 1 0 0 0 0 1 0 0 0 -1 0 0 25   

x4 0 1 0 1 1 0 0 1 0 0 -1 0 0 25   

x6 0 0 0 0 1 1 0 0 1 0 -1 0 0 25   

x10 0 1 0 0 0 0 0 0 0 1 0 0 0 40   

x3 0 0 1 0 0 0 0 0 0 0 1 0 0 25   

x12 0 -1 0 0 -1 0 0 -1 0 0 1 1 0 25   

x13 0 0 0 0 -1 0 0 0 -1 0 1 0 1 25   

Obj. 0 3 0 0 2 0 5 8 6 0 1 0 0 f+975   

6 

Because all the coefficients of the objective function are nonnegative, the current 

solution is the optimal solution(x2=x5=0,x1=x3=x4=x6=25,f=-975) 

Therefore, the maximum shipping cost (975,000$) can be achieved by loading 25,000 tons per the 

cargo type(1, 3, 4, 6). 

The row having the 

negative coefficient 

(-1) in the selected 

column is not 

selected. 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Example 1] Optimal Transportation of Cargo – Solution (7) 
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6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Example 2] Linear Programming Program 

 Solve the linear programming problem only having the equality 
constraints(linear indeterminate equation). 

0,,,,,

2

32

32

2121

21

22

11















zyxxwhere

xx

zyx

zyx

0,0,1,1 2121  zyxxInitial basic feasible solution: 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

238 

Computer Aided Ship Design, I-6 Linear Programming, Fall 2011, Kyu Yeul Lee  

3. The artificial objective function is defined as follows. 


 


6

1

0

6

1

3

1

3

1

3

1 j

jj

j i

jij

i

i

i

i XCwXBDYw

where 

8233
3

1

0

3

1













i

i

i

ijj

Dw

BC : Sum the all the elements at the j column in Matrix B and change the sign. 

 (Relative objective coefficient) 

: Sum of all the elements in the Matrix D. 

(Initial basic solution for the artificial objective function) 

1. The problem is the linear programming problem only having the equality constraints(linear 

indeterminate equation). 

2. To solve this problem, we introduce the artificial variables and artificial objective function 

to find the initial basic feasible solution in the Simplex method. 

)13()13()16()63(   DYXB

Artificial variable 

6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Example 2] Linear Programming Program – Solution (1) 
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  X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 bi bi/ai 

Y1 2 0 1 -1 -1 0 1 0 0 3 3/2 

Y2 0 2 1 -1 0 -1 0 1 0 3 - 

Y3 1 1 0 0 0 0 0 0 1 2 2 

A. Obj. -3 -3 -2 2 1 1 0 0 0 w-8 - 

1 

Sum the all the elements at the each column in Matrix B and change the sign. 

(ex. 1 column: -(2+0+1)=-3) 
Artificial objective 

function 

Artificial variable 































































































2

3

3

)(

)(

)(

)(

)(

)(

000011

101120

011102

3

2

1

62

51

4

3

22

11

Y

Y

Y

X

X

Xz

Xy

Xx

Xx





)13()13()16()63(   DYXB

0,,,,,

2

32

32

2121

21

22

11















zyxxwhere

xx

zyx

zyx
6.3 Solution of Linear Programming Problem  
Using Simplex Method 
- [Example 2] Linear Programming Program – Solution (2) 
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  X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 bi bi/ai 

X1 1 0 1/2 -1/2 -1/2 0 1/2 0 0 3/2 - 

Y2 0 2 1 -1 0 -1 0 1 0 3 3/2 

Y3 0 1 -1/2 1/2 1/2 0 -1/2 0 1 1/2 1/2 

A. Obj. 0 -3 -1/2 1/2 -1/2 1 3/2 0 0 w-7/2 - 

2 

  X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 bi bi/ai 

X1 1 0 1/2 -1/2 -1/2 0 1/2 0 0 3/2 3 

Y2 0 0 2 -2 -1 -1 1 1 -2 2 1 

X2 0 1 -1/2 1/2 1/2 0 -1/2 0 1 1/2 - 

A. Obj. 0 0 -2 2 1 1 0 0 3 w-2 - 

3 

  X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 bi bi/ai 

X1 1 0 0 0 -1/4 1/4 1/4 -1/4 1/2 1 

X3 0 0 1 -1 -1/2 -1/2 1/2 1/2 -1 1 

X2 0 1 0 0 1/4 -1/4 -1/4 1/4 1/2 1 - 

A. Obj. 0 0 0 0 0 0 1 1 1 w-0 - 

4 

Since the value of the artificial objective function becomes zero, 

the initial basic feasible solution is obtained. 

→ X1=1, X2=1, X3=1, X4=X5=X6=0 

Therefore, one of the initial basic feasible solutions is                                                                   . 0,1,1 2121  zyvxx

 2121)51( zyxxT X

6.3 Solution of Linear Programming Problem Using Simplex Method 
- [Example 2] Linear Programming Program – Solution (3) 
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Golden Section Method  

Programming Guide 
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Programming Assignment #1 

3 23. ( ) 1f x x x x   

2. ( ) sinf x x

21. ( )f x x

Write a program, which is applying the “Golden Section Method” 

and minimize following functions. 
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Golden Section Search method Program Guide  

Step 1 : Find the interval where  

the minimum is located 
Step 2: Calculate          and )( af  )( bf 

f() 

0  2.618 5.236 9.472 

4 2 1 q = 0 … 

16.326 

3 

l a u 

=
 

=
 

=
 

I 

l a u  

f() 

Upper bound Lower bound 

Interval containing minimum point 

b 

0.618I 0.382I 
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Golden Section Search method Programming Guide 

I 

lower a upper  

f() 

Upper bound Lower bound 

Interval containing minimum point 

b 

0.618I 0.382I 

)()(If ba ff  ① 

Then the optimum point       is between       and     .   

The new lower bound is                and the new  

The upper bound               and                                       .  

* l b

ll  '

bu  '
ab  '

)''(382.0'' lula  

)()(elseIf ba ff  ② 

)()(If ba ff  ③ 

Then                           .  bual    ,

The optimum point       is between       and     .   

The new lower bound is                and the new  

The upper bound               and                                       .  

* a u

al  '

uu  '

ba  '

Step 3: Check in which interval we have the minimum value  

Step 4: Determine if the tolerance is acceptable, if not then enter the loop at step 2 

610||||  ab 

)''(618.0'' lulb  

The distance between the points left and right from the minimum value should be smaller than 

our tolerance 
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Golden Section Search method Programming Guide 

#include "stdafx.h“                  
#include "math.h" 
 
//Function which we want to optimize. 
 
double f1(double x) 
 { 
  return x*x-4*x+4; 
 } 
 
//Main function and variables 
 
int _tmain(int argc, _TCHAR* argv[]) 
{ 
 
 double init_x=0.0; 
 double delta = 0.1; 
 double final; 
 
 double lower; 
 double a; 
 double b; 
 double upper; 
 

f(x) 

0 x 
init_x 

init_x+delta∗1.6180 

 

init_x+delta∗1.6181 

bound)(lower

bound)(upper
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Golden Section Search method Programming Guide 

 //Divide the interval 
 while(true) 
 { 
   
  if (f1(init_x)>f1(init_x+delta) && f1(init_x+delta)<f1(init_x+delta*2.618)) 
  { 
   break; 
  } 
  init_x=init_x+delta; 
  delta = 1.618*delta; 
 } 
 
 final = init_x+2.618 * delta; 
 
 //Check the interval in which we presume the minimum point 
 
 printf("%lf \n", init_x); 
 printf("%lf \n", final); 
 
 //Lower bound, upper bound and point a and b 
 lower=init_x; 
 upper=final; 
 a= ( upper-lower )*0.382+lower; 
 b= ( upper-lower )*0.618+lower; 
 

f(x) 

0 x 

bound)(lower bound)(upper

(a) (b)

(0.618) (0.382)
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Golden Section Search method Programming Guide 

 while(true) 
 { 
  //If the tolerance is not reached keep executing 
  if(fabs(b-a)<0.00000001) 
  { 
   break; 
  } 
  //If a is smaller than b, then the minimum point is in the left interval  
  else if(f1(a)<f1(b)) 
  { 
   lower=lower; 
   upper=b; 
   b=a; 
   a=lower+(upper-lower)*0.382;  
  } 
 
 
 
  //If b is smaller than a, then the minimum point is in the right interval 
  else if(f1(a)>f1(b)) 
  { 
   ...   
  } 
 
  //If a and b are same, then the minimum point is in the interval between a and b 
  else 
  { 
   ... 
  } 
 } 

I(k+1) (0.382)I(k+1) 

b 

(0.681)I(k) I(k) 

a 

(0.382)I(k) (0.618)I(k) 

b 

I(k) 

l u 

I(k+1) =I(k) 

l u 

(0.618)I(k+1) (0.382)I(k+1) 

a 
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Golden Section Search method Programming Guide 

 while(true) 
 { 
  //If the tolerance is not reached keep executing 
  if(fabs(b-a)<0.00000001) 
  { 
   break; 
  } 
  //If a is smaller than b, then the minimum point is in the left interval  
  else if(f1(a)<f1(b)) 
  { 
   ... 
  } 
  //If b is smaller than a, then the minimum point is in the right interval 
  else if(f1(a)>f1(b)) 
  { 
 
 
 
 
   What should we define? 
 
 
 
  } 
  //If a and b are same, then the minimum point is in the interval between a and b 
  else 
  { 
   ... 
  } 
 } 

(0.382)I(k+1) (0.382)I(k+1) 

b 

(0.382)I(k) (0.618)I(k) 

(0.618)I(k) I(k) 

b 

I(k+1) =I(k) 

l u 
(b) 

(0.618)I(k+1) (0.382)I(k+1) 

a 

I(k) 

l u a 
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Golden Section Search method Programming Guide 

…………………… 
…………………… 
//Print the result 
 printf("%lf %lf \n", a,b ); 
 return 0; 
} 
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Simplex Programming Assignment 

 Programming for the following optimization problems 
using Simplex methods 
 Linear programming problem #1: refer page 13 

 Linear programming problem #2: refer page 14 

 Linear programming problem #3: refer page 15 

 

 Caution 
 Separate the procedures for minimizing the objective function, 

and the artificial objective function into two phases 

 Output the simplex tables during the iteration into the console 
window or a file. 

 Find out at list 2 solutions of indeterminate equations by using 
Roll-Back procedure. 
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Linear programming problem #1 

Maximize 

Subject to 

21 54 xxz 

0,

6

4

21

21

21







xx

xx

xx

x1 x2 x3 x4 bi bi/ai 

x3 -1 1 1 0 4 4 

x4 1 1 0 1 6 6 

Obj. -4 -5 0 0 f-0 - 

x1 x2 x3 x4 bi bi/ai 

X2 -1 1 1 0 4 -4 

x4 2 0 -1 1 2 1 

Obj. -9 0 5 0 f+20 - 

x1 x2 x3 x4 bi bi/ai 

x2 0 1 0.5 0.5 5 - 

x1 1 0 -0.5 0.5 1 - 

Obj. 0 0 0.5 4.5 f+29 - 

Optimal solution: x1=1, x2=5, x3=x4=0, f=-29 

1st row: 

2nd row: 

3rd row: 

x2 

1 

1 

-5 

x3 -1 1 1 0 4 4 

x1 

-1 

2 

-9 

x4 2 0 -1 1 2 1 

1st row: 

2nd row: 

3rd row: 

1st row: 

2nd row: 

3rd row: 
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Linear programming problem #2 

Minimize 

Subject to 

321 22 xxxf 

0,,

6332

12223

321

321

321







xxx

xxx

xxx

2) Phase 2: Repeat the pivot  operation 

until all the coefficients of the original 

objective function f  are nonnegative 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 5/3 0 0 1 2/3 -2/3 8 12 

x2 2/3 1 -1 0 -1/3 1/3 2 -6 

Obj. 1/3 0 0 0 -2/3 2/3 f+4 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x5 5/2 0 0 3/2 1 -1 12 - 

x2 3/2 1 -1 1/2 0 0 6 - 

Obj. 2 0 0 1 0 0 f+12 - 
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Linear programming problem #3 

Minimize 

Subject to 

321 22 xxxf 

0,,

6332

12223

321

321

321







xxx

xxx

xxx

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 5/3 0 0 1 2/3 -2/3 8 - 

x2 2/3 1 -1 0 -1/3 1/3 2 - 

Obj. 1/3 0 0 0 -2/3 2/3 f+4 - 

A. Obj. 0 0 0 0 0 1 w-0 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 3 2 -2 1 0 0 12 - 

x6 2 3 -3 0 -1 1 6 - 

Obj. -1 -2 2 0 0 0 f-0 - 

A. Obj. -2 -3 3 0 1 0 w-6 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 3 2 -2 1 0 0 12 6 

x6 2 3 -3 0 -1 1 6 2 

Obj. -1 -2 2 0 0 0 f-0 - 

A. Obj. -2 -3 3 0 1 0 w-6 - 

1) Phase 1: Repeat the pivot operation 

until the artificial objective function w 

becomes zero 

2) Phase 2: Repeat the pivot  operation 

until all the coefficients of the original 

objective function f  are nonnegative 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 5/3 0 0 1 2/3 -2/3 8 12 

x2 2/3 1 -1 0 -1/3 1/3 2 -6 

Obj. 1/3 0 0 0 -2/3 2/3 f+4 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x5 5/2 0 0 3/2 1 -1 12 - 

x2 3/2 1 -1 1/2 0 0 6 - 

Obj. 2 0 0 1 0 0 f+12 - 
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Linear programming problem #4 

0,,,,,

2

32

32

2121

21

22

11















zyxxwhere

xx

zyx

zyx

Solve the following indeterminate equations   X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 bi bi/ai 

Y1 2 0 1 -1 -1 0 1 0 0 3 3/2 

Y2 0 2 1 -1 0 -1 0 1 0 3 - 

Y3 1 1 0 0 0 0 0 0 1 2 2 

A. Obj. -3 -3 -2 2 1 1 0 0 0 w-8 - 

1 

  X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 bi bi/ai 

X1 1 0 1/2 -1/2 -1/2 0 1/2 0 0 3/2 - 

Y2 0 2 1 -1 0 -1 0 1 0 3 3/2 

Y3 0 1 -1/2 1/2 1/2 0 -1/2 0 1 1/2 1/2 

A. Obj. 0 -3 -1/2 1/2 -1/2 1 3/2 0 0 w-7/2 - 

2 

  X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 bi bi/ai 

X1 1 0 1/2 -1/2 -1/2 0 1/2 0 0 3/2 3 

Y2 0 0 2 -2 -1 -1 1 1 -2 2 1 

X2 0 1 -1/2 1/2 1/2 0 -1/2 0 1 1/2 - 

A. Obj. 0 0 -2 2 1 1 0 0 3 w-2 - 

3 

  X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 bi bi/ai 

X1 1 0 0 0 -1/4 1/4 1/4 -1/4 1/2 1 

X3 0 0 1 -1 -1/2 -1/2 1/2 1/2 -1 1 

X2 0 1 0 0 1/4 -1/4 -1/4 1/4 1/2 1 - 

A. Obj. 0 0 0 0 0 0 1 1 1 w-0 - 

4 

0,1,1 2121  zyvxx
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An example of solution for the Linear programming 
problem #1 

Maximize 

Subject to 

21 54 xxz 

0,

6

4

21

21

21







xx

xx

xx

Optimal Solution: x1=1, x2=5, x3=x4=0, f=-29 

x1 x2 x3 x4 bi bi/ai 

x3 -1 1 1 0 4 4 

x4 1 1 0 1 6 6 

Obj. -4 -5 0 0 f-0 - 

x1 x2 x3 x4 bi bi/ai 

X2 -1 1 1 0 4 -4 

x4 2 0 -1 1 2 1 

Obj. -9 0 5 0 f+20 - 

x1 x2 x3 x4 bi bi/ai 

x2 0 1 0.5 0.5 5 - 

x1 1 0 -0.5 0.5 1 - 

Obj. 0 0 0.5 4.5 f+29 - 

x2 

1 

1 

-5 

x3 -1 1 1 0 4 4 

x1 

-1 

2 

-9 

x4 2 0 -1 1 2 1 

1st row: 

2nd row: 

3rd row: 

1st row: 

2nd row: 

3rd row: 

1st row: 

2nd row: 

3rd row: 
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Explanation of Simplex Class 

class Simplex 
{ 
public: 
 Simplex(); 
 Simplex(const Simplex& rhs); 
 virtual ~Simplex(); 
 
 //member variables 
 Matrix m_matSimplexTable; 
 Matrix m_matVar; 
 Matrix m_matBiAi; 
 int m_nPivotRow,m_nPivotCol; 
 int m_nPhase; 
 static std::vector<Simplex*> m_vSimplexStack; 
 
 //member function 
 void SetSimplexTable(Matrix& m_matSimplexTable); 
 void SetPhase(int phase); 
 void FindPivotColumn(); 
 void FindPivotRow(); 
 void Pivot(); 
 bool CheckEndCondition(); 
 void Solve(); 
}; 
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void SetSimplexTable 

(Matrix& m_matSimplexTable); 

Programming Guide for Simplex Method 
1) Construct the Simplex Table using given objective function and constraints 

Basic 

variable 

4x

6x

Matrix 

m_matVar; 

Matrix 

m_biaiTable; 

6332

22

6332

12223

5321

321

65321

4321









wxxxx

fxxx

xxxxx

xxxx

Basic variable 
Nonbasic 

variable(=0) 

1st row: 

2nd row: 

3rd row: 

4th row: 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 3 2 -2 1 0 0 12 - 

x6 2 3 -3 0 -1 1 6 - 

Obj. -1 -2 2 0 0 0 f-0 - 

A. Obj. -2 -3 3 0 1 0 w-6 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 3 2 -2 1 0 0 12 - 

x6 2 3 -3 0 -1 1 6 - 

Obj. -1 -2 2 0 0 0 f-0 - 

A. Obj. -2 -3 3 0 1 0 w-6 - 

Matrix 

m_matSimplexTable; 
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Programming Guide for Simplex Method 

1) Construct the Simplex Table using given objective function and constraints 

 Caution for constructing Simplex Table 

 

1. Elements in the column “bi” must be nonnegative. If there is 
negative element, then multiply “-1” to the row on which the 
negative element is. 
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Programming Guide for Simplex Method 
2) Phase 1. Minimize the artificial objective function 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 3 2 -2 1 0 0 12 - 

x6 2 3 -3 0 -1 1 6 - 

Obj. -1 -2 2 0 0 0 f-0 - 

A. Obj. -2 -3 3 0 1 0 w-6 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 3 2 -2 1 0 0 12 6 

x6 2 3 -3 0 -1 1 6 2 

Obj. -1 -2 2 0 0 0 f-0 - 

A. Obj. -2 -3 3 0 1 0 w-6 - 

1) Select the column whose 

element is the most negative value 

in the last row 

2) Select the row whose bi/ai is the 

smallest nonnegative value. 

void FindPivotColumn(); 

void FindPivotRow(); 

※ Caution for pivot operation 

 Roll Back Function 

 The row whose bi/ai is zero should be 

candidate for selecting row. 

 Round off Error 

Wrong example: if (x==0) 

Right example: if (fabs(x) < 10e-6) 

 When all of the elements in the last row 

are nonnegative and w is not zero, go 

back to the matrix which is saved by Roll 

Back function. 

When the column, whose element is 

most negative value in the last row, is 

selected, if several columns have same 

most negative element: 

 Save the matrix and pivot point. 

And it is same when the row is selected. 
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Programming Guide for Simplex Method 
3) An example of function “FindPivotCol()” 

void Simplex::FindPivotCol() 
{ 
    int i = 0;  // Initialize index for “iteration” 
    double val = 0.0; // Initialize variable to compare the coefficients of the 
   // objective function 
 
    // Input the row number, which store the coefficients of the  objective function 
    int nRow = m_matSimplexTable.GetNumOfRows() - 1; 
 
    // Select the column whose element is most negative value in the last row 
    for (i=0; i<m_matSimplexTable.GetNumOfCols()-1; i++) 
    { 
        if (m_matSimplexTable.GetElement(nRow, i) < val) 
        { 
            val = m_matSimplexTable[nRow][i]; // save the most negative value 
            m_nPivotCol = i;  // save the index for most negative value 
        } 
    } 
} 
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Programming Guide for Simplex Method 
4) An example of roll back function 

※ Implementation of Roll Back 

1. Find the most negative value in the last row using “void FindPivotColumn();”  

2. If several columns have same most negative element, 

3. Then, save the simplex table into the variable “m_SimplexChild” with the pivot column. 

std::vector<Simplex*> m_vSimplexStack; // Initialize the stack to save simplex tables 
…… 
 
 
for(int i=0;i<NumOfColumn;i++) 
{ 
    double element = m_matSimplexTable.GetElement(nRow, i) 
     
    if(fabs(val - element) < 10e-6) 
    { 
        // Copy this simplex table to the temporary variable “temp” 
        Simplex* temp = new Simplex(*this);  
 
        // Save the povot column 
        temp->m_nPivotCol = i; 
 
        // Save this simplex table 
        m_SimplexChild.push_back(temp); 
    } 
} 
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Programming Guide for Simplex Method 
5) End condition of “Phase 1” 

① End condition of “Phase 1” 

1. If all of the element in the last row 

are nonnegative and w is not zero 

if (x==0) (X) 

if (fabs(x) < 10e-6) (0) 

2. Then, start “Phase 2” 

3. Else, go back to the matrix which is 

saved by Roll Back function and carry 

out the pivot operation for “Phase 1” 

② Phase 2 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 5/3 0 0 1 2/3 -2/3 8 - 

x2 2/3 1 -1 0 -1/3 1/3 2 - 

Obj. 1/3 0 0 0 -2/3 2/3 f+4 - 

A. Obj. 0 0 0 0 0 1 w-0 - 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x4 5/3 0 0 1 2/3 -2/3 8 12 

x2 2/3 1 -1 0 -1/3 1/3 2 -6 

Obj. 1/3 0 0 0 -2/3 2/3 f+4 - 

Since the artificial objective function is 

not used anymore, eliminate the last row. 

  carry out pivot operation for 

“Phase 2” 
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Programming Guide for Simplex Method 
6) End condition of “Phase 2” 

If the all element of the last row., i.e., the coefficients of the objective function, are nonnegative, 
then the current solution is the optimal solution. 
 Stop the simplex, and print out the result. 

x1 x2 x3 x4 x5 x6 bi bi/ai 

x5 5/2 0 0 3/2 1 -1 12 - 

x2 3/2 1 -1 1/2 0 0 6 - 

Obj. 2 0 0 1 0 0 f+12 - 

Because all the coefficients of the objective function 

are nonnegative, the current solution is the optimal 

solution. 
(x1=x3=x4=0,x2=6,x5=12,f=-12) 
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Programming Guide for Simplex Method 
7) An example of iteration procedure for “Phase 1” 

bool Simplex::Solve() 
{ 
    while(1) 
    { 
        if (m_pivotColumn == -1) 
            FindPivotColumn(); 
        if (m_pivotColumn == -1) 
        { 
            Simplex temp = m_SimplexChild[m_SimplexChild.size()-1] 
            m_SimplexChild.pop_back(); 
            return temp.Solve(); 
        } 
        if (m_pivotRow == -1) 
            FindPivotRow(); 
        if (m_pivotRow == -1) 
        { 
            //Same as above 
        } 
        Pivot(); 
        if(CheckEndCondition()) 
            return true; 
        if (m_NumOfInteration >= 100 && m_SimplexChild.size() > 0) 
        { 
            //Same as above 
        } 
    }  
    return true; 
} 

※ Implementation of the 

function “Solve” 

Go back to the matrix 

which is saved by 

Roll Back function 

All values of the last row, coefficients of the objective 
function, are positive 

All values of bi/ai are negative 

to prevent the infinite iteration 
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Programming Guide for Simplex Method 
- How to use ‘vector’ library for implementation of Roll Back function 

※ vector의 사용 

1. definition:  #include <vector> 

using namespace std; 

… 

std::vector<int> a; 

std::vector<Simplex*> m_SimplexChild; 

2. Member  

    functions:  
push_back(…) : save a variable 

pop_back() : delete the variable which is saved at last 

size() : the number of variables which are saved 

3. examples :  std::vector<int> a; 

a.push_back(1); //save “1” into a[0] 

a.push_back(2); //save “2” into a[1] 

int b = a.size(); //the number of variables “2” is saved into “b” 

a.pop_back(); //delete a[1] 

b = a.size(); // the number of variables “1” is saved into “b” 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

268 
Computer Aided Ship Design, Programming Assignment, Fall 2011, Kyu Yeul Lee  

An example for use of Vector Library #1 

#include <vector> 

#include <iostream> 

#include <string>  

using namespace std; 

 
void main() 
{ 
  vector<string> sV;  // Declare a new vector 

  sV.push_back(“This”); // Adds an element to the end 
  sV.push_back(“is”); 
  sV.push_back(“a”); 
  sV.push_back(“test”);  
 
  for(vector<string>::iterator p=sV.begin(); p < sV.end(); ++p) 
    cout << *p << endl;  
   
} 
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An example for use of Vector Library #2 

#include <algorithm> 
#include <vector> 
#include <iostream> 
using namespace std; 
 
int main() 
{ 

 vector<char> vec; 

 vec.push_back( 'e'); 
 vec.push_back( 'b'); 
 vec.push_back( 'a'); 
 vec.push_back( 'd'); 
 vec.push_back( 'c'); 
 

 sort( vec.begin(), vec.end() ); // sort the variables using “sort()” 

 
 // print out the results. 
 cout << “After sorting vector\n"; 
 for(vector<char>::iterator it= vec.begin(); it != vec.end(); ++it) 
  cout << *it; 
 
 return 0; 
} 
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Computer Aided Ship Design 
 

Part I. Optimization Method 
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Ch.7 Constrained Nonlinear Optimization 
Method 

 
7.1  Quadratic Programming(QP) 
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xxg

xxg
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Minimize 

Subject to 

222)( 21

2

2

2

1  xxxxf x

Minimum point: 
9
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3
4

3
4* )(),,(  xx f

0,0 21  xx

x1 

x2 

1 2 3 4 
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2 

3 

4 

A 

g2 = 0 

g1 = 0 

9
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3
4

3
4* )(),,(  xx f

Minimum at Point A 

Feasible region 

f = 1.32 

f = 0.64 

042)(

042)(

212

211


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xxg
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x

x

Minimize 

Subject to 

222)( 21

2

2

2

1  xxxxf x

1 20, 0x x   

2

1 1 2 1

2

2 1 2 2

( ) 2 4 0

( ) 2 4 0

g x x s

g x x s

     

     

x

x

Minimize 

Subject to 

222)( 21

2

2

2

1  xxxxf x

2 2

1 1 2 20, 0x x      

Inequality constraints  are transformed  to equality constraints  

by introducing the slack variable 

[Review]4.3 : Finding the optimal solution for the quadratic objective function with linear inequality 
constraints problem by using the Kuhn-Tucker Necessary Condition, where xi are nonnegative (1) 
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[Review]4.3 : Finding the optimal solution for the quadratic objective function with linear 
inequality constraints problem by using the Kuhn-Tucker Necessary Condition, where xi are 
nonnegative (2) 
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Reformulated Kuhn-Tucker necessary condition: 

, , 0, 1,2i i iu i   

[Review]4.3 : Finding the optimal solution for the quadratic objective function with linear inequality 
constraints problem by using the Kuhn-Tucker Necessary Condition, where xi are nonnegative (3) 

We eliminate two variables        ,        and two equations. 1 2
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[Review]4.3 : Finding the optimal solution for the quadratic objective function with linear inequality 
constraints problem by using the Kuhn-Tucker Necessary Condition, where xi are nonnegative (4) 
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Lagrange function 

0, iiu where, 

Equation ① 

Multiply both side of each equation ①, ②  
by          , respectively 21, ss

Equation ② 

multiply both side of each equation ③, ④  
by         , respectively 

21,

Equation ③ Equation ④ 

Summary 
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Another Method for solving the equations 
derived from K.-T. conditions:  

  
Apply the Simplex Algorithm  
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Kuhn-Tucker necessary condition:  
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Reformulated Kuhn-Tucker necessary condition:  

,0222 1211
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where , , , 0i i i iu s x  

 Apply the Simplex Algorithm  
- Eliminate variables using relevant equations and introduce new ‘virtual’ linear 
variables x’ 

- Ch.7 Constrained Nonlinear Optimization Method 

We eliminate two variables using relevant two equations and 

also introduce new variable s’ instead of s. 
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Kuhn-Tucker necessary condition:  
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


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
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
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



Define the standard LP problem  

Multiply both side of the constraints by -1 

Solve the linear indeterminate equations by using the Simplex Algorithm of phase 1 . 

Linear indeterminate equations 

, , , 0i i i iu s x  

Apply the Simplex Algorithm of phase 1 for solving linear indeterminate equations  

- Ch.7 Constrained Nonlinear Optimization Method 
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1 1

2 2

1 3 1

2 4 2

1 5 3

2 6 4

1 7

2 8

( )

( )

( )2 0 2 1 1 0 0 0 2

( )0 2 1 2 0 1 0 0 2

( )2 1 0 0 0 0 1 0 4

( )1 2 0 0 0 0 0 1 4

( )

( )

x X

x X

u X Y

u X Y

X Y

X Y

s X

s X





 
 


 
        
                
      
      

      
  
 
   

Introduce the artificial variables  to treat  the linear equality  constraints 

1 2 1 2 1 2 1 2 1 2 3 45 5 3 3 12x x u u s s Y Y Y Y              

Define the artificial objective function  as sum of all the artificial variables 

(Y1+Y2+Y3+Y4) 

w

1 2 1 2 1 2 1 25 5 3 3 12x x u u s s w             : Artificial objective function 

Apply the Simplex Algorithm of phase 1 for solving linear indeterminate equations  
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  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

Y1 2 0 -2 -1 -1 0 0 0 1 0 0 0 2 1 

Y2 0 2 -1 -2 0 -1 0 0 0 1 0 0 2 - 

Y3 2 1 0 0 0 0 -1 0 0 0 1 0 4 2 

Y4 1 2 0 0 0 0 0 -1 0 0 0 1 4 4 

A. Obj. -5 -5 3 3 1 1 1 1 0 0 0 0 w-12 - 

1 

1 1

2 2

1 3 1

2 4 2

1 5 3

2 6 4

1 7

2 8

( )

( )

( )2 0 2 1 1 0 0 0 2

( )0 2 1 2 0 1 0 0 2

( )2 1 0 0 0 0 1 0 4

( )1 2 0 0 0 0 0 1 4

( )

( )

x X

x X

u X Y

u X Y

X Y

X Y

s X

s X





 
 


 
        
                
      
      

      
  
 
   

1 2 1 2 1 2 1 25 5 3 3 12x x u u s s w             : Artificial objective function 

Apply the Simplex Algorithm of phase 1 for solving linear indeterminate equations  
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  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

X1 1 0 -1 -1/2 -1/2 0 0 0 1/2 0 0 0 1 - 

Y2 0 2 -1 -2 0 -1 0 0 0 1 0 0 2 1 

Y3 0 1 2 1 1 0 -1 0 -1 0 1 0 2 2 

Y4 0 2 1 1/2 1/2 0 0 -1 -1/2 0 0 1 3 3/2 

A. Obj. 0 -5 -2 1/2 -3/2 1 1 1 5/2 0 0 0 w-7 - 

2 

  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

X1 1 0 -1 -1/2 -1/2 0 0 0 1/2 0 0 0 1 - 

X2 0 1 -1/2 -1 0 -1/2 0 0 0 1/2 0 0 1 - 

Y3 0 0 5/2 2 1 1/2 -1 0 -1 -1/2 1 0 1 2/5 

Y4 0 0 2 5/2 1/2 1 0 -1 -1/2 -1 0 1 1 1/2 

A. Obj. 0 0 -9/2 -9/2 -3/2 -3/2 1 1 5/2 5/2 0 0 w-2 - 

3 

  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

X1 1 0 0 3/10 -1/10 1/5 -2/5 0 1/10 -1/5 2/5 0 7/5 14/3 

X2 0 1 0 -3/5 1/5 -2/5 -1/5 0 -1/5 2/5 1/5 0 6/5 - 

X3 0 0 1 4/5 2/5 1/5 -2/5 0 -2/5 -1/5 2/5 0 2/5 1/2 

Y4 0 0 0 9/10 -3/10 3/5 4/5 -1 3/10 -3/5 -4/5 1 1/5 2/9 

A. Obj. 0 0 0 -9/10 3/10 -3/5 -4/5 1 7/10 8/5 9/5 0 w-1/5 - 

4 

Apply the Simplex Algorithm of phase 1 for solving linear indeterminate equations  
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  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

X1 1 0 0 0 0 0 -2/3 1/3 0 0 2/3 -1/3 4/3 - 

X2 0 1 0 0 0 0 7/15 -2/3 2/5 0 -7/15 2/15 4/3 - 

X3 0 0 1 0 2/3 -1/3 -10/9 8/9 -2/3 7/15 10/9 -8/45 2/9 - 

X4 0 0 0 1 -1/3 2/3 8/9 -10/9 1/3 -2/3 -8/9 2/9 2/9 - 

A. Obj. 0 0 0 0 0 0 0 0 1 1 1 1 w-0 - 

5 

And this solution satisfy the all nonlinear indeterminate equation(constraints) 

The one of the initial basic feasible solutions is  X1=X2=4/3, X3=X4=2/9, X5=X6=X7=X8=0. 

Therefore, the optimal solution of this problem is                                                                                 . 4 2
1 2 1 2 1 2 1 23 9

, , 0x x u u s s          

This result is same with the method which solves the nonlinear indeterminate equation at first. 

(1 8) 1 2 1 2 1 2 1 2

T x x u u s s 
  
 

X

Since the value of the objective function becomes zero, the initial basic feasible solution is obtained. 

1 1 0,x  2 2 0x 
1 1 0,u s 2 2 0,u s 

4 2
1 2 1 2 1 2 1 23 9

, , 0x x u u s s          

Apply the Simplex Algorithm of phase 1 for solving linear indeterminate equations  
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  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

Y1 2 0 -2 -1 -1 0 0 0 1 0 0 0 2 - 

Y2 0 2 -1 -2 0 -1 0 0 0 1 0 0 2 1 

Y3 2 1 0 0 0 0 -1 0 0 0 1 0 4 4 

Y4 1 2 0 0 0 0 0 -1 0 0 0 1 4 2 

A. Obj. -5 -5 3 3 1 1 1 1 0 0 0 0 w-12 - 

1 

  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

Y1 2 0 -2 -1 -1 0 0 0 1 0 0 0 2 1 

X2 0 1 -1/2 -1 0 -1/2 0 0 0 1/2 0 0 1 - 

Y3 2 0 1/2 1 0 1/2 -1 0 0 -1/2 1 0 3 3/2 

Y4 1 0 1 2 0 1 0 -1 0 -1 0 1 2 2 

A. Obj. -5 0 1/2 -2 1 -3/2 1 1 0 5/2 0 0 w-7 - 

2 

  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

X1 1 0 -1 -1/2 -1/2 0 0 0 1/2 0 0 0 1 - 

X2 0 1 -1/2 -1 0 -1/2 0 0 0 1/2 0 0 1 - 

Y3 0 0 5/2 2 1 1/2 -1 0 -1 -1/2 1 0 1 2/5 

Y4 0 0 2 5/2 1/2 1 0 -1 -1/2 -1 0 1 1 1/2 

A. Obj. 0 0 -9/2 -9/2 -3/2 -3/2 1 1 5/2 5/2 0 0 w-2 - 

3 

If we choose the second column whose coefficient of the objective function is same with the first 

column of that as the pivot column in the first table, what  will happen? 

Apply the Simplex Algorithm of phase 1 for solving linear indeterminate equations  
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  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

X1 1 0 0 3/10 -1/10 1/5 -2/5 0 1/10 -1/5 2/5 0 7/5 - 

X2 0 1 0 -6/10 1/5 -2/5 -1/5 0 -1/5 2/5 1/5 0 6/5 - 

X3 0 0 1 4/5 2/5 1/5 -2/5 0 -2/5 -1/5 2/5 0 2/5 - 

Y4 0 0 0 9/10 -3/10 3/5 4/5 -1 3/10 -3/5 -4/5 1 1/5 1/4 

A. Obj. 0 0 0 -9/10 3/10 -3/5 -4/5 1 7/10 8/5 9/5 0 w-1/5 - 

4 

  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

X1 1 0 0 3/4 -1/4 1/2 0 -1/2 -1/4 -1/2 0 1/2 3/2 - 

X2 0 1 0 -3/8 1/8 -1/4 0 -1/4 -1/8 1/4 0 1/4 5/4 - 

X3 0 0 1 5/4 1/4 1/2 0 -1/2 -1/4 -1/2 0 1/2 1/2 - 

X7 0 0 0 9/8 -3/8 3/4 1 -5/4 3/8 -3/4 -1 5/4 1/4 - 

A. Obj. 0 0 0 0 0 0 0 0 1 1 1 1 w-0 - 

5 

Since the value of the objective function becomes zero, the initial 

basic feasible solution is obtained. 

But this solution does not satisfy the constraint(             ). 

The another initial basic feasible solution is X1=3/2, X2=5/4, X3=1/2, X4=X5=X6=0, X7=1/4, X8=0. 

Therefore, this solution cannot be the optimal solution. 

(1 8) 1 2 1 2 1 2 1 2

T x x u u s s 
  
 

X

When the smallest(i.e., the most negative) coefficient of the artificial objective function or the smallest positive 

ratio“bi/ai” appears more than one entry, the initial basic feasible solution can be changed depending on the 

selection of the pivot element in the pivot operation. 

We have to check whether the solution obtained by the Simplex algorithm satisfies the nonlinear equation. 

   (constraint, ui*si
’=0). 

52 1 1
1 2 1 2 1 2 1 23 4 2 4

, , , 0, , 0x x u u s s          

1 1 0u s 

* -9/10 is selected originally, but select -9/5. 

Apply the Simplex Algorithm of phase 1 for solving linear indeterminate 
equations  
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  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

X1 1 0 -1 -1/2 -1/2 0 0 0 1/2 0 0 0 1 - 

X2 0 1 -1/2 -1 0 -1/2 0 0 0 1/2 0 0 1 - 

Y3 0 0 5/2 2 1 1/2 -1 0 -1 -1/2 1 0 1 1/2 

Y4 0 0 2 5/2 1/2 1 0 -1 -1/2 -1 0 1 1 5/2 

A. Obj. 0 0 -9/2 -9/2 -3/2 -3/2 1 1 5/2 5/2 0 0 w-2 - 

3 

In the tableau 3, if we choose the column 4 as a pivot column which has the same coefficient of 

the artificial objective function(column 3), what will happen? 

  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

X1 1 0 -3/8 0 -1/4 1/8 -1/4 0 1/4 -1/8 1/4 0 5/4 - 

X2 0 1 3/4 0 1/2 -1/4 -1/2 0 -1/2 -1/4 1/2 0 3/2 - 

X8 0 0 9/8 0 3/4 -3/8 -5/4 1 3/4 3/8 5/4 -1 1/4 - 

X4 0 0 5/4 1 1/2 1/4 -1/2 0 -1/2 -1/4 1/2 0 1/2 - 

A. Obj. 0 0 0 0 0 0 0 0 1 1 1 1 w-0 - 

5 

  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

X1 1 0 -6/10 0 -2/5 1/5 0 -1/5 2/5 -1/5 0 1/5 6/5 - 

X2 0 1 3/10 0 1/5 -1/10 0 -2/5 -1/5 1/10 0 2/5 7/5 - 

Y3 0 0 9/10 0 3/5 -3/10 -1 4/5 -3/5 3/10 1 -4/5 1/5 1/4 

X4 0 0 4/5 1 1/5 2/5 0 -2/5 -1/5 -2/5 0 2/5 2/5 - 

A. Obj. 0 0 -9/10 0 -3/5 3/10 1 -4/5 8/5 7/10 0 9/5 w-1/5 - 

4 

Apply the Simplex Algorithm of phase 1 for solving linear indeterminate 
equations  

- Ch.7 Constrained Nonlinear Optimization Method 
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Since the value of the objective function becomes zero, the 

initial basic feasible solution is obtained. 

  X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 bi bi/ai 

X1 1 0 -3/8 0 -1/4 1/8 -1/4 0 1/4 -1/8 1/4 0 5/4 - 

X2 0 1 3/4 0 1/2 -1/4 -1/2 0 -1/2 -1/4 1/2 0 3/2 - 

X8 0 0 9/8 0 3/4 -3/8 -5/4 1 3/4 3/8 5/4 -1 1/4 - 

X4 0 0 5/4 1 1/2 1/4 -1/2 0 -1/2 -1/4 1/2 0 1/2 - 

A. Obj. 0 0 0 0 0 0 0 0 1 1 1 1 w-0 - 

5 

The another initial basic feasible solution is X1=5/4, X2=3/2, X3=0, X4=1/2, X5=X6=0=X7=0, X8=1/4. 

Therefore, this solution cannot be the optimal solution. 

 21212121)81( ssuuxxT X

54 1 1
1 2 1 2 1 2 1 23 4 2 4

, , 0, , 0,x x u u s s          

But this solution does not satisfy the constraint(             ). 
2 2 0u s 

Apply the Simplex Algorithm of phase 1 for solving linear indeterminate 
equations  

- Ch.7 Constrained Nonlinear Optimization Method 
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[Ref] Decomposition of the Unrestricted Variable into the 
Difference of Two Nonnegative Variables (1) 

For using the Simplex method, the variables have to be nonnegative in the LP problem. 

We can use the Simplex method  only for the case that all the variables are nonnegative at the optimal point. 

The variables unrestricted in sign at the optimal point should be decomposed into the difference of two nonnegative 

variables in the LP problem. 

Minimize 

Subject to 

1 22z y y  

2

1

21

21

0

632

1223

y

y

yy

yy







is unrestricted in sign. 

Since y2 is free in sign, it should be decomposed into the 
difference of two nonnegative variables. 

Minimize 

Subject to 

1 2 22 2f y y y    

1 2 2

1 2 2

1 2 2

3 2 2 12

2 3 3 6

, , 0

y y y

y y y

y y y

 

 

 

  

  



2 2 2

2 2, 0

y y y

y y

 

 

 



For “” type inequality constraint, we 

Introduce the slack variable. 

For “” type inequality constraint, we 

Introduce the surplus variable and 

the artificial variable. 

Minimize 

Subject to 

1 2 22 2f y y y    

1 2 2 1

1 2 2 2 3

1 2 2

3 2 2 12

2 3 3 6

, , 0, 0; 1  3i

y y y x

y y y x x

y y y x i to

 

 

 

   

    

  

Solve the problem 

by using the 

Simplex method. 

[참고] Simplex 방법의 적용을 위해 하나의 변수를  
          두 개의 음이 아닌 변수로 분리하는 경우(1/3) 
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[Reference] Reason to Decompose the Unrestricted Variable into the Difference 
of Two Nonnegative Design Variables for Using the Simplex Method 

Minimize 21

2

2

2

1 22)( xxxxxf   : Quadratic objective function 

022 1

1





x

x

L

022 2

2





x

x

L

①’ 

②’ 

We try to solve this 

problem by using the 

Simplex method 

22 1  x

22 2 x

Since these constraints are the 

equality constraints, we must 

introduce artificial variables for 

the  equality constraints and 

define an auxiliary minimization 

LP problem, and solve it . 

22 11  yx

22 22  yx

Since the artificial objective function is the sum of all the 

artificial variables, its minimum value must be zero. 

22112211 ,,, YyYyXxXx 

422 2121  yyxx

422 2121  yyxx

w

 Basic 

variable 
X1 X2 Y1 Y2 bi bi/ai 

Y1 -2 0 1 0 2 - 

Y2 0 2 0 1 2 1 

A. Obj. 2 -2 0 0 w-4 - 

  Basic 

variable  
X1 X2 Y1 Y2 bi bi/ai 

Y1 -2 0 1 0 2 2 

X2 0 1 0 1/2 1 - 

A. Obj. 2 0 0 1 w-2 - 

- All coefficients of the artificial objective 

function become nonnegative. 

- However, the sum of all the artificial 

variables(w) does not become zero. 

0,2,1,0 2121  yyxx

x1 1 -2 -1 

1 

2 

3 

Optimal solution 

x2 

(-1,1) 

Minimize 21

2

2

2

1 22)( xxxxxf 

Definition of the Lagrange function 

21

2

2

2

121 22),( xxxxxxL 

- The simplex method does not give the optimum solution 

of  x1=-1, x2=1, rather x1=0, x2=1.  
- The reason is that the simplex method assume all the variables are 

nonnegative, whereas the variables x1,x2 of this example are free 

in sign. From this, we can see that to use the simplex method, the 

unrestricted variables must be decomposed into the two 

nonnegative variables. 

③ 

④ 

Eq. ③+④ 

Stop the simplex 

- Ch.7 Constrained Nonlinear Optimization Method 

Redefine the variables as                          
 

and express in Matrix from.  

Simplex 방법으로 

풀면? 

22 1  x

22 2 x

등호 제약 조건이므로 

인위변수 추가 22 11  yx

22 22  yx

인위 변수의 합을 최소(0)로 하도록 인위 목적 함수를 구성 

로 변경 후 Matrix 구성 

Lagrange 함수 구성 

21

2

2

2

121 22),( xxxxxxL 

식 ③+④ 

- 인위 목적 함수 계수가 전부 양으로 변경 되었음 

- 그러나 인위 변수의 합(w)이 0이 되지 않았음 

- x1의 부호 제한이 없음에도 불구하고 

  변수를 분리하지 않았으므로 

  Simplex 방법으로 문제를 풀 수 없다. 

Simplex가 중단됨  

[참고] Simplex 방법의 적용을 위해 하나의 변수를  
          두 개의 음이 아닌 변수로 분리하는 이유(1/3) 
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[Review]  

Definition of the Lagrange function 

)(22),,,( 2

121

2

2

2

121   xxxxxxxL

000 2

111  xxx

Minimize 

Subject to 

21

2

2

2

1 22)( xxxxxf 

Kuhn-Tucker necessary condition: 0),,,( 21  xxL

022 1

1





x

x

L

022 2

2





x

x

L

02 







L

02

1 






x

L

① 

② 

③ 

④ 

0If we assume            , 11 x  The equation ③ is not 

satisfied. 

0 2,1,0 21  xxIf we assume            , 

x1 1 -2 -1 

1 

2 

3 

Optimal  

solution 

x2 

(-1,1) 

- Ch.7 Constrained Nonlinear Optimization Method 

Minimize 

Subject to 

21

2

2

2

1 22)( xxxxxf 

01 x

 : 2차 형식의 목적 함수 

 : 선형화 된 부등호 제약 조건 

Lagrange 함수 구성 

)(22),,,( 2

121

2

2

2

121   xxxxxxxL

Kuhn-Tucker 필요조건으로부터: 0),,,( 21  xxL

022 1

1





x

x

L

022 2

2





x

x

L

02 







L

02

1 






x

L

① 

② 

③ 

④ 

0 이라 가정하면 11 x  식③이 성립 안함 

0 이라 가정하면 2,1,0 21  xx

Simplex 방법으로 

풀면? 

식④에의 양변에    를 곱한 후 식③을 대입  

1. 식①, ②, ⑤를 만족하는 해를 찾아야 한다. 

2. 식①, ②는 선형이므로 Simplex 방법으로 푼다. 

    이때 모든 변수가 음이 아니라고 확신할 수 있으므로 

    인위 변수만 추가하여 Simplex 방법으로 푼다. 

3. 2번에서 구해진 해가 비선형 방정식 ⑤를 만 

    족하는지 확인 한다. 

Simplex 방법으로 풀면? 

Minimize 

Subject to 

21

2

2

2

1 22)( xxxxxf 

01 x

 : Quadratic objective function 

 : Linearized inequality constraint 
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Solving the problem by Using the Simplex Method(1/2) 

000 2

111  xxx

Minimize 

Subject to 

21

2

2

2

1 22)( xxxxxf 

x1 1 -2 -1 

1 

2 

3 

Optimal  

solution 

x2 

(-1,1) 

1st stage: Find the solution satisfying the 

equation ①, ② and ⑤.  

 

2nd stage: Check whether the solution 

obtained in the 1st stage satisfies the 

nonlinear equation ⑤ or not. 

We try to solve this problem by using the Simplex method. 

- Ch.7 Constrained Nonlinear Optimization Method 

Minimize 

Subject to 

21

2

2

2

1 22)( xxxxxf 

01 x

 : 2차 형식의 목적 함수 

 : 선형화 된 부등호 제약 조건 

Lagrange 함수 구성 

)(22),,,( 2

121

2

2

2

121   xxxxxxxL

Kuhn-Tucker 필요조건으로부터: 0),,,( 21  xxL

022 1

1





x

x

L

022 2

2





x

x

L

02 







L

02

1 






x

L

① 

② 

③ 

④ 

0 이라 가정하면 11 x  식③이 성립 안함 

0 이라 가정하면 2,1,0 21  xx

Simplex 방법으로 

풀면? 

식④에의 양변에    를 곱한 후 식③을 대입  

1. 식①, ②, ⑤를 만족하는 해를 찾아야 한다. 

2. 식①, ②는 선형이므로 Simplex 방법으로 푼다. 

    이때 모든 변수가 음이 아니라고 확신할 수 있으므로 

    인위 변수만 추가하여 Simplex 방법으로 푼다. 

3. 2번에서 구해진 해가 비선형 방정식 ⑤를 만 

    족하는지 확인 한다. 

Simplex 방법으로 풀면? 

Multiply the both side of equation ④ by   

and substitute the equation ③ into that. 

We eliminate one variable       and one equation. 



022 1

1





x

x

L

022 2

2





x

x

L

02 







L

02

1 






x

L Since x2 is free in 

sign, we may 

decompose it as 

2 2 2

2 2, 0

x x x

x x

 

 

 



2 2 2x x x  

022 1

1





x

x

L

0222 22

2




  xx
x

L

02 







L

02

1 






x

L

① 

② 

③ 

④ 

01 x ⑤ 

22 1 x① 

222 22   xx② 

2

1 x③ 

02 2 ④ 

Definition of the Lagrange function 

)(22),,,( 2

121

2

2

2

121   xxxxxxxL

Kuhn-Tucker necessary condition: 0),,,( 21  xxL

Minimize 

Subject to 

21

2

2

2

1 22)( xxxxxf 

01 x

 : Quadratic objective function 

 : Linearized inequality constraint 
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Solving the problem by Using the Simplex Method(2/2) 

Minimize 

Subject to 

21

2

2

2

1 22)( xxxxxf 

01 x

 : 2차 형식의 목적 함수 

 : 선형화 된 부등호 제약 조건 

Lagrange 함수 구성 

)(22),,,( 2

121

2

2

2

121   xxxxxxxL

Kuhn-Tucker 필요조건으로부터: 0),,,( 21  xxL

022 1

1





x

x

L

022 2

2





x

x

L

02 







L

02

1 






x

L

① 

② 

③ 

④ 

0 이라 가정하면 11 x  식③이 성립 안함 

0 이라 가정하면 2,1,0 21  xx

Simplex 방법으로 

풀면? 

식④에의 양변에    를 곱한 후 식③을 대입  

1. 식①, ②, ⑤를 만족하는 해를 찾아야 한다. 

2. 식①, ②는 선형이므로 Simplex 방법으로 푼다. 

    이때 모든 변수가 음이 아니라고 확신할 수 있으므로 

    인위 변수만 추가하여 Simplex 방법으로 푼다. 

3. 2번에서 구해진 해가 비선형 방정식 ⑤를 만 

    족하는지 확인 한다. 

Simplex 방법으로 풀면? 

Minimize 

Subject to 

21

2

2

2

1 22)( xxxxxf 

01 x

 : Quadratic objective function 

 : Linearized inequality constraint 

 Basic 

variable 
X1 X2 X3 X4 Y1 Y2 bi bi/ai 

Y1 -2 0 0 1 1 0 2 - 

Y2 0 2 -2 0 0 1 2 1 

A. Obj. 2 -2 2 -1 0 0 w-4 - 

22 1 x

222 22   xx

22 1  x

222 22   xx

The right hand sides of 

the equations have to 

be nonnegative. 

22 1  x

222 22   xx

Since the constraints are 

the equality constraints, 

introduce the artificial 

variables. 

22 11  yx 

222 222   yxx

The artificial variables have to be zero. 

Since the artificial objective function is the sum of all the 

artificial variables, its minimum value is clearly zero. 

4222 21221   yyxxx 

Change the variables as                          
 

and express these as the Matrix from.  
22114322211 ,,,,, YyYyXXxXxXx   

x1 1 -2 -1 

1 

2 

3 

Optimal  

solution 

x2 

(-1,1) 

4222 21221   yyxxx 

w

 Basic 

variable  
X1 X2 X3 X4 Y1 Y2 bi bi/ai 

Y1 -2 0 0 1 1 0 2 - 

Y2 0 2 -2 0 0 1 2 1 

A. Obj. 2 -2 2 -1 0 0 w-4 - 

 Basic 

variable 
X1 X2 X3 X4 Y1 Y2 bi bi/ai 

Y1 -2 0 0 1 1 0 2 2 

X2 0 1 -1 0 0 1/2 1 - 

A. Obj. 2 0 0 -1 0 1 w-2 - 

 Basic 

variable  
X1 X2 X3 X4 Y1 Y2 bi bi/ai 

X4 -2 0 0 1 1 0 2 - 

X2 0 1 -1 0 0 1/2 1 - 

A. Obj. 0 0 0 0 1 1 w-0 - 

0,0,2,0,1,0 214321  YYXXXX

0,0,2,0,1,0 21221   yyxxx 

2 2 2 1 0 1x x x     

0021 x
Since the equation ⑤ is satisfied, 

this is the solution of this problem. ⑤ 
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[Reference] Solution of the Problem Having the Design Variables whose sign is 
Unrestricted (1/2) 

Matrix Form 

mtoisu ii   1;0 

Since the equations                                                                    are introduced, the number of the design 

variables is also increased by n+p. 







  )1()1()1()1()1()1(  and nnnppp dddzyv

Number  

of equation 

n+2m+p 

Number of design 

variable 2n+2m+2p 

The number of the design variables is the same with that of the equations as n+2m+p  in the original problem. 

The interesting variables vi and di  are determined by the equation                                 . )1()1()1(   ppp zyv

52

622

2







yx

zyx

zyx

52

622

2

21

21







yx

zzyx

zzyx

2,0,3,1 21  zzyxSolution 

After replacing the 

variable, this problem 

becomes the 

indeterminate equation. 

The value of z1-z2 is 

always  -2. 

Equation 

2,3,1  zyx

)0,( 21

21





zz

zzReplace z as 
Example 

))222()(( pmnpmn B

)1)222((  pmnX

)1)((  pmnD

)1)(()1)222(())222()((   pmnpmnpmnpmn DXB

행렬식 표현 

식                                                                 에 의해 미지수의 개수가 n+p개만큼 증가 하였다. ,)1()1()1(   ppp zyv 





  )1()1()1( nnn ddd

식의 개수 

n+2m+p 

미지수의 개수 

2n+2m+2p 

본래 위의 식은 미지수의 개수와 식의 개수가 모두 n+2m+p인 방정식이다. 

관심있는 변수vi , di 는                                                                    에 의해 결정 된다. ,)1()1()1(   ppp zyv

해 

치환 후의 방정식은  

부정 방정식이다. 

항상 z1-z2=-2가 된다. 

방정식 
)0,( 21

21





zz

zzz 로 치환 
예시 

[참고] 부호 제약이 없는 변수로 인하여 변수의 개수가  
          증가 하였을 경우 구해지는 해 (1/2) 
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[Reference] Solution of the Problem Having the Design Variables whose sign is 
Unrestricted (2/2) 

0

1132

5







xz

zyx

zyx

0

1132

5

21

21







xz

zzyx

zzyx

Equation 
)0,( 21

21





zz

zzReplace z as 
Example 

1132

5

2

1





Yzyx

Yzyx

Solve this problem by assuming the three design 

variables as zero. 

1132

5

221

121





Yzzyx

Yzzyx

Solve this problem by assuming the four design variables 

as zero. 

Stop the Simplex method, if the sum of all the artificial 

variables(Y1+Y2) zero. 

(x, y, z, Y1, Y2) 

① (4, 1, 0, 0, 0) 

② (6, 0, -1, 0, 0) 

③ (0, 3, 2, 0, 0) 

z=z1-z2 

(x, y, z1, z2, Y1, Y2) 

① (4, 1, 0, 0, 0, 0) 

② (6, 0, 0, 1, 0, 0) 

③ (6, 0, -1, 0, 0, 0) 

④ (0, 0, -, -, 0, 0) 

⑤ (0, 3, 0, -2, 0, 0) 

⑥ (0, 3, 2, 0, 0, 0) 

• Number of the design 

variables: 5 

• Number of the linear 

independent equation: 2 

Stop the Simplex method, if the sum of all the artificial 

variables(Y1+Y2) zero. 

Between the solution ① and ③  obtained by 

using the Simplex method, the final solution has 

to satisfy the equation            . 0xz

Among the solution ①,② and ⑥ obtained by using 

the Simplex method, the final solution has to satisfy 

the equation            . 0xz

If the solution whose value of z (z1-z2) is 

negative is excluded, the solution of the Case #1 

is the same with that of the Case #2.  

Introduce the artificial variables for using the Simplex 

method 

Case #1 
Introduce the artificial variables for using the Simplex 

method 

Case #2 

• Number of the design 

variables: 6 

• Number of the linear 

independent equation: 2 

Simplex 방법으로 구할 수 있는 ①,③번 해 중 

0

1132

5







xz

zyx

zyx

방정식 
)0,( 21

21





zz

zzz 로 치환 
예시 

1132

5

2

1





Yzyx

Yzyx

0xz

3개의 변수를 0으로 가정하여 해를 구함 

인위 변수의 합 Y1+Y2가 0이 되면 Simplex가 종료 됨 

Simplex로 풀기 위해 인위변수 도입 

변수 5개 

선형 독립인 식 2개 

를 만족하는 것이 방정식의 최종 해이다. 

z (z1-z2)가 음수인 것을 제외하면 

Case #1 경우의 해와 Case #2 

경우의 해가 같다. 

Case #1 

1132

5

221

121





Yzzyx

Yzzyx

4개의 변수를 0으로 가정하여 해를 구함 

변수 6개 

선형 독립인 식 2개 

인위 변수의 합 Y1+Y2가 0이 되면 Simplex가 종료 됨 

Simplex로 풀기 위해 인위변수 도입 

Simplex 방법으로 구할 수 있는 ①,②,⑥번 해 중 

0xz 를 만족하는 것이 방정식의 최종 해이다. 

Case #2 
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xx

xxf
xx

x
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x
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x

xxf
xxfxxf

    dxHddcxxxxHxxxxxxx  )(
2

1
)( )(

2

1
)()()()( ******** TTTT ffff  

① 

② 

The second-order Taylor series expansion of                at                        ),( 21 xxf ),( *

2

*

1 xx

)(),( ** xxdxc  fdefine: 

[Ref] Taylor Series Expansion for the Function of Two Variables (Review, 1) 

[참고] 2변수 함수의 테일러 전개 (복습 / 1) 

- Ch.7 Constrained Nonlinear Optimization Method 
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7.1  Quadratic Programming(QP) 
- Approximate the original problem as a Quadratic Programming Problem 

Define: 

ii

ijijijijii

jjjj

xd

xgaxhnxfc

gbhefff







,/)(  ,/)(  ,/)(

),(  ),(  ),()(

xxx

xxxxx

Matrix form 

Minimize 

Subject to 

)1()()1()1()1(

2

1
  nnnn

T

nn
Tf dHddc

)1()1()(

)1()1()(









mnnm
T

pnnp
T

bdA

edN

xHxxxxxx  TTfff 5.0)()()(Minimize 

mtojggg

ptojhhh

T

jjj

T

jjj

  1;0)()()(

  1;0)()()(





xxxxx

xxxxxSubject to 
The first-order(linear) Taylor series expansion of the equality constraints 

The first-order(linear) Taylor series expansion of the inequality constraints 

The second-order Taylor series expansion of the objective function 

 : Quadratic objective function 

 : Linear equality constraints 

 : Linear inequality constraints 

2차 계획 문제(Quadratic Programming Problem)의 정식화 

- Ch.7 Constrained Nonlinear Optimization Method 
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7.1  Quadratic Programming(QP) 
- Construction of Lagrange Function 

Minimize 

Subject to 

)1()()1()1()1(

2

1
  nnnn

T

nn
Tf dHddc

)1()1()(

)1()1()(









mnnm
T

pnnp
T

bdA

edN

Lagrange Function 

)(

)(

2

1

)1()1()()1(

)1(

2

)1()1()()1(

)1()()1()1()1(













pnnp
T

p
T

mmnnm
T

m
T

nnnn
T

nn
TL

edNv

bsdAu

dHddc

0sbdA  
2

)1()1()1()( mmnnm
T

 
2

)1( ms

Simplex 방법을 이용한 2차 계획 문제의 풀이 방법 

- Ch.7 Constrained Nonlinear Optimization Method 
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Lagrange Function 

)(

)(

2

1
),,,(

)1()1()()1(

)1(

2

)1()1()()1(

)1()()1()1()1(


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





pnnp
T

p
T

mmnnm
T

m
T

nnnn
T

nn
TL

edNv

bsdAu

dHddcusvd

Kuhn-Tucker Necessary Condition:       ( , , , , )L d v u s u 0

( , , , )
0,i i

i

L
u s

s


 



d v s u

0
),,,(

)1(

2

)1()1()(

)1(









mmnnm
T

n

L
bsdA

u

usvd

0vNuAdHc
d

usvd









)1()()1()()1()()1(

)1(

),,,(
ppnmmnnnnn

n

L

0edN
v

usvd









)1()1()(

)1(

),,,(
pnnp

T

p

L

0i to m

7.1  Quadratic Programming(QP) 
- Apply the K-T Necessary Condition to the Lagrange function 

- Ch.7 Constrained Nonlinear Optimization Method 
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7.1  Quadratic Programming(QP) 
- Method 1: Direct Solving the Eqs. from the K._T. Conditions 

Optimization problem 

* *

1 1

0,       1,   ...  ,
p m

i i
i i

i ij j j j

h gL f
v u j n

x x x x 

  
    

   
 

*( ) 0,      1,   ...  ,i

i

L
h i p

v


  


x

* *2( ) 0,      1,   ...  ,mi i

i

L
g s i

u


   


x

* * 0,      1,   ...  ,i i

i

L
u s i m

s


  



miui ,  ...  ,1     ,0* 

Kuhn-Tucker necessary condition:                              0suvx  ),,,(L

Minimize ) ,  , ,()( 21 nxxxff x

,...,pihi 1   ,0)( xSubject to 

( ) 0,    1ig i ,...,m x

Equality constraint 

Inequality constraint 

2

1 1

( , , , ) ( ) ( ) ( ( ) )
p m

i i i i i

i i

L f v h u g s
 

    x v u s x x xDefinition of  

Lagrange function 
vi : Lagrange multiplier for the equality constraint(It is free in sign.)  

ui : Lagrange multiplier for the inequality constraint(Nonnegative) 

si : Slack variable transforming an inequality constraint to an equality constraint 

Linear indeterminate equations 

Nonlinear indeterminate equations 

Method 1.  

- Find the solutions which satisfy the nonlinear indeterminate 

equations. 

- Check whether the solutions satisfy the linear indeterminate 

equations and determine the solution of this problem. 

- Human can find the solution of this problem easily by using 

this method. 

- Ch.7 Constrained Nonlinear Optimization Method 
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Kuhn-Tucker Necessary Condition: 

① 

Multiply      both side of the equation①  is

0i iu s 

Although the equation ① is multiplied by     , 
the solution(                     ) is not changed. 

is

0 0i iu or s 
2 0i iu s  

0)1(
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Transform     Kuhn-Tucker Necessary Condition:              

①’ 

( , , , )L d v u s 0

0suvd  ),,,(L

0,i i

i

L
u s

s


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
0i to m

2 0,i i

i

L
u s

s


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
0i to m

7.1  Quadratic Programming(QP) 
- Method 2: Formulate the Problem of the K.-T. Condition as  a LP problem  

- Ch.7 Constrained Nonlinear Optimization Method 
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Kuhn-Tucker Necessary Condition:              

Replace       with      (where             )  
2

is is 0is 
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where mtoisu ii   1  ;0, 

Check whether the solution obtained from the linear 

indeterminate equations satisfies the nonlinear 

indeterminate equations and determine the solution. 

Since these equations are linear in 

the variables d,s’,u,v, this problem is 

a linear programming problem only 

having the equality constraints. 

( , , , )L d v u s 0

①’ 
2 0,i i

i

L
u s

s


 


0i to m

0,i i

i

L
u s

s


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
0i to m

Linear indeterminate equations 
Nonlinear indeterminate equations 

7.1  Quadratic Programming(QP) 

- Ch.7 Constrained Nonlinear Optimization Method 
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where mtoisu ii   1  ;0, 

Check whether the solution obtained from the linear 

indeterminate equations satisfies the nonlinear 

indeterminate equations and determine the solution. 

Since these equations are linear in 

the variables d,s’,u,v, this problem is 

a linear programming problem only 

having the equality constraints. 

0,i i

i

L
u s

s


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
0i to m

Linear indeterminate equations 
Nonlinear indeterminate equations 

,)1()1()1(   ppp zyv

Also, the Lagrange multipliers         for the equality constraints are free in sign, we may 
decompose them as follows to use the Simplex method. 

Since the design variables d(n×1) are free in sign, we may decompose them as follows to use 

the Simplex method. 

)1;0,0(,)1()1()1( ntoidd iinnn  





 ddd

)1( pv

)1;0,0( ptoizy ii 

7.1  Quadratic Programming(QP) 

Kuhn-Tucker Necessary Condition:              ( , , , )L d v u s 0

- Ch.7 Constrained Nonlinear Optimization Method 
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

 dddBecause d and v are 
free in sign. 

Introduce the artificial variables, define the artificial objective function and solve the linear programming 
problem by using the Simplex method. 

7.1  Quadratic Programming(QP) 
- Method 2: Simplex Method for Solving Quadratic Programming Problem  
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where mtoisu ii   1  ;0, 

Check whether the solution obtained from the linear 

indeterminate equations satisfies the nonlinear 

indeterminate equations and determine the solution. 

Since these equations are linear in 

the variables d,s’,u,v, this problem is 

a linear programming problem only 

having the equality constraints. 

0,i i
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L
u s

s


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
0i to m

Linear indeterminate equations 
Nonlinear indeterminate equations 

Kuhn-Tucker Necessary Condition:              ( , , , )L d v u s 0
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( ) ( ) ( ) ( ) ( ) ( ) ( 1)

( 1)

( ) ( ) ( ) ( ) ( ) ( ) ( 1)

( 1)

( ) ( ) ( ) ( ) ( ) ( )

( 1)

( 1)

n

n

n n n n n m n m n p n p n

mT T

m n m n m m m m m p m p m

mT T

p n p n p m p m p p p p

p

p









      



      



     





 
 
    
  

         
 
  

d

d
H H A 0 N N c

u
A A 0 I 0 0 b

s
N N 0 0 0 0 e

y

z

( 1)p

 
 
 
 
 

Introduce the artificial variables, define the artificial objective function and 
solve the linear programming problem by using the Simplex method. 

1

2

n m p

Y

Y

Y  

 
 
 
 
 
  

Artificial variables 

How to define the artificial objective function 

- Define an one equation by sum of all the equations from 1 row to n+m+p row. 
- Define the sum of the all artificial variables(Y1+Y2+…+Yn+m+p) as an objective function(w). 

0,i i

i

L
u s

s


 


0i to m

- Determine an initial basic feasible solution for the linear programming problem by using the 
Simplex method.  
 

- Check whether the initial basic feasible solutions satisfy the following nonlinear 
indeterminate equations and determine that as a solution. 

7.1  Quadratic Programming(QP) 

- Ch.7 Constrained Nonlinear Optimization Method 

인위 목적함수를 만드는 법 

- 1행부터 n+m+p행까지 모두 더해서 하나의 방정식을 만든다. 

- 인위변수의 총 합(Y1+Y2+…+Yn+m+p)를 목적함수(w)로 정의한다. 
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)1)(()1)222(())222()((   pmnpmnpmnpmn DXB

Simplex Method for Solving Quadratic Programming Problem 

Kuhn-Tucker Necessary Condition(Matrix form) 

)1)(()1)(()1)222(())222()((   pmnpmnpmnpmnpmn DYXB
If any of the elements in D is(are) negative, the corresponding equation must be multiplied by -1 to have a nonnegative element on the right side. 

3. The artificial objective function is defined as follows. 

 





















)(2

1

0

)(2

1 111

pmn

j

jj

pmn

j

pmn

i

jij

pmn

i

i

pmn

i

i XCwXBDYw

where 









pmn

i

i

pmn

i

ijj DwBC
1

0

1

,

Add the elements of the j th column of the matrix B and change  its sign.(Initial relative objective coefficient). 

4. Solve the linear programming problem by using the Simplex and check whether the solution 
satisfies the following equation. 

Initial value of the artificial objective function 

1. The problem to solve the Kuhn-Tucker necessary condition is same with the problem having only 
the equality constraints(linear programming problem). 

mtoisu ii   1  ;0  : This equation is used to check whether the solution satisfies this equation. 

7.1  Quadratic Programming(QP) 
- Summary of Method 2 of Simplex Method for Solving Quadratic Programming Problem 

2. To solve the linear indeterminate equations, we introduce the artificial variables, define the 
artificial objective function, and determine the initial basic feasible solution by using the Simplex 
method. 

- Ch.7 Constrained Nonlinear Optimization Method 
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7.1  Quadratic Programming(QP) 
- Comparison between Method 1and 2 

Optimization problem 

* *

1 1

0,       1,   ...  ,
p m

i i
i i

i ij j j j

h gL f
v u j n

x x x x 

  
    

   
 

*( ) 0,      1,   ...  ,i

i

L
h i p

v


  


x

* *2( ) 0,      1,   ...  ,mi i

i

L
g s i

u


   


x

* * 0,      1,   ...  ,i i

i

L
u s i m

s


  



miui ,  ...  ,1     ,0* 

Kuhn-Tucker necessary condition:                              0suvx  ),,,(L

Minimize ) ,  , ,()( 21 nxxxff x

,...,pihi 1   ,0)( xSubject to 

   ( ) 10,i i ,. .,mg .x

Equality constraint 

Inequality constraint 

2

1 1

( , , , ) ( ) ( ) ( ( ) )
p m

i i i i i

i i

L f v h u g s
 

    x v u s x x xDefinition of  

Lagrange function 
vi : Lagrange multiplier for the equality constraint(It is free in sign.)  

ui : Lagrange multiplier for the inequality constraint(Nonnegative) 

si : Slack variable transforming an inequality constraint to an equality constraint 

Linear indeterminate equations 

Nonlinear indeterminate equations 

Method 1.  

- Find the solutions to satisfy the nonlinear indeterminate 

equations. 

- Check whether the solutions satisfy the linear indeterminate 

equations and determine the solution of this problem. 

- Human can find the solution of this problem easily by using 

this method. 

Method 2.  

- Find the solutions to satisfy the linear indeterminate 

equations  by using the Simplex method.  

- Check whether the solutions satisfy the nonlinear 

indeterminate equations and determine the solution of this 

problem. 

- Since the algorithm of this method is more systematical,  

this method is useful for the computational approach. 

- Ch.7 Constrained Nonlinear Optimization Method 
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Ch.7 Constrained Nonlinear Optimization 
Method 

 
7.2 Sequential Linear Programming 
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7.2 Sequential Linear Programming(SLP) 

 Define the linear programming(LP) problem by 
linearizing the objective function and the constraints in 
the current design point. 

 Compute the design change by solving the linear 
programming problem and obtain the improved design 
point. 
 

 

 

 

 This method is to find the optimal solution by solving 
the linear programming problem sequentially. 

)()()1( kkk
dxx 

Current 

design 

point 

Design change obtained by solving the LP problem. Improved 

design 

point 

SLP(Sequential Linear Programming) 
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0)(

0)(

00.1
6

1

6

1
)(

13

12

2

2

2

11







xg

xg

xxg

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x

The optimal solution: 

3)(),3,3( **  xx f

The starting design point: ),1,1()0( x

001.021  

Choose move limits such that a  

15%  design change is permissible. 

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

A 

B 

C 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

x(0) = (1, 1) 

f = -25 

f = -20 

f = -10 

f = -3 

f = -1 

순차적 선형 계획법(SLP; Sequential Linear Programming) 예제 
- 부등호 제약 조건이 있는 경우 풀이 예(1) 

7.2 Sequential Linear Programming(SLP) 
- [Example] Problem with Inequality Constraints (1) 
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0)(

0)(

00.1
6

1

6

1
)(

13

12

2

2

2

11







xg

xg

xxg

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

A B 

C 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

x(0) = (1, 1) 

f = -25 

f = -20 

f = -10 

f = -3 

(1) Iteration 1(k = 0) 

(i) Step 1 

001.0),1,1( 21

)0(  x

From the given point(starting point), the current design 

point is as follows. 

2
1 3

2

3

(1,1) 1

(1,1) 0

(1,1) 1 0

(1,1) 1 0

f

g

g

g

 

  

  

  

 Constraint is satisfied. 

 Constraint is satisfied. 

 Constraint is satisfied. 

(ii) Step  2: Evaluate the objective and constraint function at the current design point. 

f = -1 

순차적 선형 계획법 예제 
- 부등호 제약 조건이 있는 경우 풀이 예(2) 

7.2 Sequential Linear Programming(SLP) 
- [Example] Problem with Inequality Constraints (2) 
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2 2

1 1 2

2 1

3 2

1 1
( ) 1.0 0

6 6

( ) 0

( ) 0

g x x

g x

g x

   

  

  

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x

(1) Iteration 1(k = 0) 

(iii) Step 3: Define the LP problem(linearize the objective function ). 

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

A B 

C 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

x(0) = (1, 1) 

f = -

25 f = -

20 f = -

10 f = -

3 
f = -

1 

(0) (0) (0) (0) (0)( ) ( ) ( )Tf f f   x x x x x
The first-order(linear) Taylor series expansion 

of the objective function 
Minimize: 

001.0),1,1( 21

)0(  x

(0) (0) (0) (0) (0)( ) ( ) ( )Tf f f   x x x x xMinimize: 

  (0)

(0)

(0) (0) (0) 1

1 2 2 1 (0)

2

( ) ( ) 2 3 2 3
d

f f x x x x
d

 
      

 
x

x d xMinimize: 

(0) (0) (0) (0) (0) (0) (0)

1 2 1 2 1 2( ) (2 3 ) (2 3 )f x x d x x d   d

(0) (0) (0)

1 2( )f d d  d

1 2

(0) (0) ,
f fT

x x
f

 

 
      x d

The linearized objective function 

(0) (1,1)xSubstitute   

( ) ( ) ( )

1 2

T
k k kx x   x

)()()1( kkk
dxx 

( ) ( ) ( )

1 2

( ) ( )

1 2

T
k k k

T
k k

d d

x x

   

    

d

순차적 선형 계획법 예제 
- 부등호 제약 조건이 있는 경우 풀이 예(2) 

7.2 Sequential Linear Programming(SLP) 
- [Example] Problem with Inequality Constraints (3) 
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2 2

1 1 2

2 1

3 2

1 1
( ) 1.0 0

6 6

( ) 0

( ) 0

g x x

g x

g x

   

  

  

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x

(1) Iteration 1(k = 0) 

(iii) Step 3: Define the LP problem(linearize the constraints ). 

001.0),1,1( 21

)0(  x

(0) (0) (0)( ) ( ); 1  T

j jg g j to m    x x x

1 2

(0) (0) (0) (0) (0) (0), , ( ) ( ) ( )j jg gT T

j j j jx x
g g g g

 

 
         
 

x d x x x d

Subject to: 

   

 

 

(0)
2 2

(0) (0) (0) (0) (0)11 1
1 2 1 21 3 3 (0)

2

(0)

(0) (0) (0)1

1 12 (0)

2

(0)

(0) (0) (0)1

2 23 (0)

2

1 1
( ) 1.0

6 6

( ) 0

( ) 0

d
g x x x x

d

d
g x x

d

d
g x x

d

   
         

  

 
       

 

 
       

 

d

d

d

2
1 3

2

3

(1,1)

(1,1) 1

(1,1) 1

g

g

g

 

 

 

(0) (0) (0)1 1
1 21 3 3

(0) (0)

12

(0) (0)

23

2
( )

3

( ) 1

( ) 1

g d d

g d

g d

  

  

  

d

d

d

The linearized constraints 

The first-order(linear) Taylor series 

expansion of the constraints Subject to: 
(0) (0) (0) (0) (0)( ) ( ) ( ) 0; 1  T

j j jg g g j to m     x x x x x

)()()1( kkk
dxx 

(0) (1,1)xSubstitute 

7.2 Sequential Linear Programming(SLP) 
- [Example] Problem with Inequality Constraints (4) 

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

A B 

C 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

x(0) = (1, 1) 

f = -

25 f = -

20 f = -

10 f = -

3 
f = -

1 
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Minimize 

Subject to 

21 ddf 

15.015.0

15.015.0

1

1

2

1

2

1

3
2

23
1

13
1











d

d

d

d

dd
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6

1
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13
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2

2

2
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




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xg

xxg

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x

)1,0(),0,1(

),,(),1,1(

1)1,1(,1)1,1(

,)1,1(,1)1,1(

32

3
1

3
1

1

32

3
2

1









gg

gf

gg

gf

Limits must be imposed on changes 

in design called move limit The graphical solution for 

the linearized subproblem 

is as follows. 

15.0,15.0 21  dd

To solve the problem, the Simplex method can be used. 

6 
d1 

d2 

1 2 3 4 5 -1 -2 

-1 

-2 

1 

2 

3 

4 

A B 

C 

d1=-1 

d2=-1 

d1+d2=2 

1 2 0f d d   

0.15 

move limit 

1 2 0.3f d d    

(iv) Step 4: Solve LP problem for the design change(d(0)) 

Linearize the objective 

function and constraints. 

The design change 

is obtained. 

7.2 Sequential Linear Programming(SLP) 
- [Example] Problem with Inequality Constraints (5) 
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(v) Step 5: Check for convergence by using the obtained design change    d(0). 

)15.0,15.0(),( 21

)0(  ddd

     Since                                                                              , the criterion for convergence is not satisfied. 

)15.1,15.1()15.0 ,15.0()1,1()0()0()1,1()1(  dxxx

11 kk

7.2 Sequential Linear Programming(SLP) 
- [Example] Problem with Inequality Constraints (6) 

)001.0(212.015.015.0 2

22)0(  d

1 kk(vi) Step 6: Update the design point   as                               . Set                 and go to Step 2 
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7.2 Sequential Linear Programming(SLP) 
- Summary of Algorithm of SLP 

 Step 1: Estimate a starting design point as x(0). Set k=0. 
Specify two small numbers, 1, 2(criterion for violating 
the constraints and convergence) 

 

 Step 2: Evaluate objective and constraint function at 
current design point x(k). Also evaluate the objective and 
constraint function gradients at the current design point. 

 

 Step 3: Select the proper move limits xil
(k) and xiu

(k)  as 
some fraction of the current design point. Define the 
linear programming problem. 

 )()()( k

iu

k

i

k

il xxx 

SLP(Sequential Linear Programming) 알고리즘의 요약 
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7.2 Sequential Linear Programming(SLP) 
- Summary of Algorithm of SLP 

 Step 4: Solve the linear programming problem for d(k) by 
using the Simplex method. 

 

 Step 5: Check for convergence. If, gi  1(i = 1 to m), |hi| 
 1 (i = 1 to p), and d(k) 2, then stop and the 
current design point x(k) is the optimal solution. 
Otherwise, continue. 

 

 Step 6: Update the design point as x(k+1) = x(k) + x(k), Set 
k = k+1 and go to Step 2. 
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where 

)()()()()( )()()( kkTkkk fff xxxxx Minimize 

mtojggg

ptojhhh

kkT

j
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j

kkT

j

k

j

kk

j

  1;0)()()(

  1;0)()()(

)()()()()(

)()()()()(





xxxxx

xxxxxSubject to 

The first-order(linear) Taylor series 

expansion of the objective function 

The first-order(linear) Taylor series expansion of the equality constraints 

The first-order(linear) Taylor series expansion of the inequality constraints 





n

i

iidcf
1

Minimize 

mtojbda

ptojedn
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ji

n

i

ij

  1;

  1;

1

1













Subject to 

Matrix form 

Minimize 

Subject to 

)1()1(  nn
Tf dc

)1()1()(

)1()1()(









mnnm
T

pnnp
T

bdA

edN

 Linear Programming Problem 

 It can be solved by using the Simplex method. 
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iu

k

i

k

iliuiil xxxddd 

 : Linearized objective 
function 

 : Linearized equality 
constraint 

 : Linearized 
inequality constraint 

제약 최적화 문제의 선형화 
(Linear Programming Problem) 

7.2 Sequential Linear Programming(SLP) 
- Summary of Algorithm of SLP 

Define 
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ijijijijii

jjjj

xd

xgaxhnxfc

gbhefff


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7.2 Sequential Linear Programming(SLP) 
- Limitations of SLP Method 

 The move limits of the design variables are defined by the user. 

 If the move limits are too small, it take much time to find the 
optimal solution. 

 If the move limits are too large, it can cause oscillations in the 
design point during iterations. 

 Thus performance of the method depends heavily on selection of move 
limits 

 
)(xf

x)1( nx)(nx
)2( nx

Original objective function 

Linearized objective function Linearized objective function 

 The optimal solution cannot 

be obtained, because of the 

oscillations in the design 

point during iterations. 

SLP 방법의 한계점 
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Ch.7  Constrained Nonlinear 
Optimization method 

 

7.3 Sequential Quadratic Programming 
(SQP) 
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Assumption: 

ii

ijijijijii

jjjj

xd

xgaxhnxfc

gbhefff







,/)(  ,/)(  ,/)(

),(  ),(  ),()(

xxx

xxxxx

Matrix form 

Minimize 

Subject to 

)1()()1()1()1(

2

1
  nnnn

T

nn
Tf dHddc

)1()1()(

)1()1()(









mnnm
T

pnnp
T

bdA

edN

xHxxxxxx  TTfff 5.0)()()(Minimize 

mtojggg

ptojhhh

T

jjj

T

jjj

  1;0)()()(

  1;0)()()(





xxxxx

xxxxxSubject to 

 : Quadratic objective function 

 : Linear equality constraints 

 : Linear inequality constraints 

The first-order(linear) Taylor series expansion of the equality constraints 

The first-order(linear) Taylor series expansion of the inequality constraints 

The second-order Taylor series expansion of the objective function 

탐색 방향을 결정하기 위한 2차 계획 문제의 정식화(1) 

7.3 Sequential Quadratic Programming (SQP) 
 - Formulation of the Quadratic Programming Problem to Determine the Search Direction 
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7.3 Sequential Quadratic Programming  
(SQP) - Algorithm of the SQP  

x1 

x2 

Optimal  

solution 

Current design point 

Define the quadratic 

programming problem 

at the current point. 

Step 1 

Improved design point 

x1 

x2 

Current design point 

Objective function  is approximated to the 

quadratic form 

Quadratic programming problem 

- Objective function: quadratic form 
- Constraint: linear form 

SQP 알고리즘 요약 
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7.3 Sequential Quadratic Programming  
(SQP) - Algorithm of the SQP  

x1 

x2 

Optimal  

solution 

x1 

x2 

Current design point 

d(0) 

Stopping criteria 
If the magnitude of the 

search direction |d(0)| is 

smaller than small 

value,epsilon, stop. 

Calculate the search direction(d(0)) by 

solving the quadratic programming 

problem. 

Step 2 

Define the quadratic 

programming problem 

at the current point. 

Step 1 

Linearized Constraint  
Improved design point 

x1 

x2 

Current design point 

Objective function  is approximated to the 

quadratic form 

Quadratic programming problem 

- Objective function: quadratic form 
- Constraint: linear form 

SQP 알고리즘 요약 
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7.3 Sequential Quadratic Programming  
(SQP) - Algorithm of the SQP  

x1 

x2 

Optimal  

solution 

x1 

x2 

Current design point 

d(0) 

x1 

x2 

d(0) 

- Penalty Function: 
Modified objective function by adding a 

penalty for possible constraint violations to 

the current value of  the objective 

function(The method of transformation from 

the constrained optimal design problem to 

unconstrained optimal design problem ) 

- Example of the one dimensional search 

method: Golden section search method 

Go to the Step 1 at the 

improved design point. 

Stopping criteria 
If the magnitude of the 

search direction |d(0)| is 

smaller than small 

value,epsilon, stop. 

Calculate the search direction(d(0)) by 

solving the quadratic programming 

problem. 

Step 2 

Define the quadratic 

programming problem 

at the current point. 

Step 1 

After defining the penalty 

function, calculate the step 

size by using the one 

dimensional search method. 

Step 3 

Improved design point 

Linearized Constraint  
Improved design point 

x1 

x2 

Current design point 

Objective function  is approximated to the 

quadratic form 

Quadratic programming problem 

- Objective function: quadratic form 
- Constraint: linear form 

SQP 알고리즘 요약 
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7.3 Sequential Quadratic Programming (SQP) 

 Sequential Quadratic Programming(SQP) 
 ① After defining the quadratic programming problem about the 

objective function and constraints at the current design point, 
solve this problem and calculate the search direction d(k). 

 ② Define the penalty function by adding a penalty for possible 
constraint violations to the current value of  the objective 
function and calculate the step size αk to minimize the penalty 
function. For determination of the step size one dimensional 
search method, e.g., Golden section search method can be used. 
And determine the improved design point. 

 ③ At the improved design point, go to ① 

 The method is to find the optimal solution by solving the 
quadratic programming problem sequentially. 

 CSD(Constrained Steepest Descent) method 
 This method is a kind of the SQP method. 

 When defining the quadratic programming problem, the Hessian 
matrix is assumed to be equal to the identity Matrix. 

 This method uses the Pshenichny’s penalty function. 

 

 

순차적 2차 계획법(SQP; Sequential Quadratic Programming) 
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If the Hessian matrix is equal to the Identity matrix , then the objective function 
is approximated as a centric circle form.  

Define the QP problem 

(0) (0) (0) (0) (0) (0) (0)( ) ( ) ( ) 0.5T Tf f f      x x x x x x H xMinimize: 

(0)

(0)

(0) (0) (0) (0)2 (0)21

1 2(0)

1 2 2

( ) ( ) 0.5( )
df f

f f d d
x x d

   
      

    x

x d xMinimize: 

(0) (0)
(0) (0) (0) (0)2 (0)2

1 2 1 2

1 2

( ) ( )
( ) 0.5( )

f f
f d d d d

x x

 
   

 

x x
d

To find the search direction(d(0)), define the QP problem at 

current design point. 

(0) (0) (0) (0) (0) (0) (0)( ) ( ) ( ) 0.5T Tf f f      x x x x x x H xMinimize: 
The second-order Taylor series 
expansion of the objective 
function 

1 2

(0) (0) , ,
f fT

x x
f

 

 
      x d H I

(In the CSD method, the Hessian matrix is assumed to 

be equal to the  identity matrix.) 

constant  constant   

(0) (0) (0) (0)2 (0)2

1 1 2 2 1 2( ) 0.5( )f c d c d d d   d

It has the same form of the equation of circle. 

2 2

1 2 1 1 2 2 3 0x x c x c x c    Form of the equation of circle: 
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 - Example of  SQP – Iteration 1 (1) 

2 2

1 1 2

2 1

3 2

1 1
( ) 1.0 0

6 6

( ) 0

( ) 0

g x x

g x

g x

   

  

  

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x Optimal solution: 3)(),3,3( **  xx f

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

A 

B 

C 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

x(0) = (1, 1) 

f = -25 

f = -20 

f = -10 

f = -3 

2
1 3

2

3

(1,1) 1

(1,1) 0

(1,1) 1 0

(1,1) 1 0

f

g

g

g

 

  

  

  

 Constraint is satisfied. 

 Constraint is satisfied. 

 Constraint is satisfied. 

(i) Step 1: Evaluate the objective and constraint 

function at the current design point. 

(1) Iteration 1(k = 0) 

Assume that the starting point is                     . 
(0) (1,1)x
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2 2

1 1 2

2 1

3 2

1 1
( ) 1.0 0

6 6

( ) 0

( ) 0

g x x

g x

g x

   

  

  

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x

(1) Iteration 1(k = 0) 

(ii) Step 2: Define the QP problem(The objective function  is approximated to the quadratic form.) 

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

A B 

C 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

x(0) = (1, 1) 

f = -25 

f = -20 

f = -10 

f = -3 

f = -1 

(0) (1,1)x

(0) (0) (0) (0) (0) (0) (0)( ) ( ) ( ) 0.5T Tf f f      x x x x x x H xMinimize: 

  (0)

(0)

(0) (0) (0) (0)2 (0)21

1 2 2 1 1 2(0)

2

( ) ( ) 2 3 2 3 0.5( )
d

f f x x x x d d
d

 
       

 
x

x d xMinimize: 

(0) (0) (0) (0) (0) (0) (0) (0)2 (0)2

1 2 1 2 1 2 1 2( ) (2 3 ) (2 3 ) 0.5( )f x x d x x d d d     d

(0) (0) (0) (0)2 (0)2

1 2 1 2( ) 0.5( )f d d d d    d

(0) (0) (0) (0) (0) (0) (0)( ) ( ) ( ) 0.5T Tf f f      x x x x x x H xMinimize: 

1 2

(0) (0) , ,
f fT

x x
f

 

 
      x d H I

Objective function  is approximated 

to the first order term Objective function  is approximated to the second order term 

 - Example of  SQP – Iteration 1 (2) 
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2 2

1 1 2

2 1

3 2

1 1
( ) 1.0 0

6 6

( ) 0

( ) 0

g x x

g x

g x

   

  

  

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x

(1) Iteration 1(k = 0) 

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

A B 

C 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

x(0) = (1, 1) 

f = -25 

f = -20 

f = -10 

f = -3 

f = -1 
(0) (1,1)x

The first-order(linear) Taylor series expansion 
of constraint 

Subject to: 
(0) (0) (0) (0) (0)( ) ( ) ( ) 0; 1  T

j j jg g g j to m     x x x x x

(0) (0) (0)( ) ( ); 1  T

j jg g j to m    x x x

1 2

(0) (0) (0) (0) (0) (0), , ( ) ( ) ( )j jg gT T

j j j jx x
g g g g

 

 
         
 

x d x x x d

Subject to: 

   

 

 

(0)
2 2

(0) (0) (0) (0) (0)11 1
1 2 1 21 3 3 (0)

2

(0)

(0) (0) (0)1

1 12 (0)

2

(0)

(0) (0) (0)1

2 23 (0)

2

1 1
( ) 1.0

6 6

( ) 0

( ) 0

d
g x x x x

d

d
g x x

d

d
g x x

d

   
         

  

 
       

 

 
       

 

d

d

d

The constraints are linearized 

(0) (1,1)xSubstitute 

(0) (0) (0)1 1
1 21 3 3

(0) (0)

12

(0) (0)

23

2
( )

3

( ) 1

( ) 1

g d d

g d

g d

  

  

  

d

d

d

 - Example of  SQP – Iteration 1 (3) 
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(iii) Step 3: Solve the QP problem to determine the search direction(d(0)) 

Minimize 

Subject to 

)(5.0)( 2

2

2

121 ddddf 

1

1

2

1

3
2

23
1

13
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])2([
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2
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2
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2

1213
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1
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2

2
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sdu

sdu

sddu

ddddL
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





Lagrange function  Kuhn-Tucker necessary condition: 

 

 

(0)

1 2 3
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1 2 3
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1 2
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u u u
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 





 

u

s

d

The optimal direction is 

)1,0(),0,1(
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1)1,1(,1)1,1(
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3
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3
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gg

gf
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gf

* The search direction also can be 

determined by using the Simplex method. 

0sud  ),,(L
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1 1 1 2 2 2,   x d x x d x   

The search direction 
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


     

     

    

    

    

   

0)(

0)(

00.1
6

1

6

1
)(

23

12

2

2

2

11







xg

xg

xxg

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x

Constrained Optimal Design Problem 

(Original problem) 
Quadratic Programming Problem 

(0) (0)

1 21,   1x x Substitute 

1 1 2 21 ,   1d x d x   

 

 - Example of SQP – Iteration 1 (4) 
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(1) (0)

0

(0) x x d

Current 

design point 
Search direction obtained from the QP 

problem 

Improved 

design point 

Find αk : Minimize  (1)f x  (0) )

0

(0f   dx  0f 

Objective function to be given Given 

Find 

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

A B 

C 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 x(0) = (1, 1) 

f = -25 

f = -20 

f = -10 

f = -3 

f = -1 

(iv) Step 4: After the search direction(d(0)) is determined, 

calculate the step size. 

Step size minimizing the value of the objective 

function along the search direction 

The improved design point can be found along the search direction by minimizing the step size of the value of the 

objective function. However, it may violates the constraints, when without considering the original constraints. 

(0)

1 2( , ) (1,1)d d d
The search direction is 

determined. 

(0)
d

0

0

( ) d

Minimum point in the objective function 

Therefore, a penalty function, which considers the constraints, should be constructed by adding the penalty for 

possible constraint violations to the current value of the objective function. 

(0)

1 2 3

(0)

1 2

( , , ) (0,0,0),

( , ) (1,1)

u u u

d d

 

 

u

d

By property of the nature, the objective function is decreased when the constraints is violated, 

we can find the improved design point of minimizing the penalty function while the constraints are satisfied. 

 - Example of  SQP – Iteration 1 (5) 
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( ) ( ) ( )( ) ( ) ( )k k k

kf R V   x x x

 0max ,k kR R r

Rk is a positive number called the penalty parameter 

By adding a penalty for possible constraint violations to the current value of the objective function, 
the constrained optimal design problem is transformed to the unconstrained optimal design problem  

제약 조건의 위배량을 원래 목적 함수에 더한 수정된 목적 함수를  

이용하여 제약 최적화 문제를 Unconstrained optimization 

problem로 변환. 

7.3 Sequential Quadratic Programming (SQP) 
 - Penalty function : Pshenichny’s Descent Function(1)  

0)(

0)(

00.1
6

1

6

1
)(

23

12

2

2

2

11







xg

xg

xxg

x

x

x

21

2

2

2

1 3)( xxxxf x

Penalty function(Pshenichny’s descent function,               ) 
( )( )k x

k: iteration number how many times the QP problem is defined approximately 

where, 

( )( )kf x : current(kth iteration) value of the objective function 

V(x(k)) is either the maximum constraint violation among all the constraints or zero. 

V(x(k)) is nonnegative. If all the constraints are satisfied, the value of the V(x(k)) is zero. 

},,,;,,,;0max{)( 2121

)(

mp

k ggghhhV x

where, 

        hp: value of the equality constraint function at the design point x(k) 

        gp: value of the inequality constraint function at the design point x(k)  

The initially value of Rk is 

specified by the user: 

: Summation of all the Lagrange multipliers 

( ) ( )

1 1

p m
k k

k i i

i i

r v u
 

  
( )k

iv :Lagrange multipliers for the equality constraints(free in sign) 

:Lagrange multiplier for the inequality constraints(nonnegative) 
( )k

iu
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(v) Step 5: Calculate the penalty parameter Rk  (In this example, the initial penalty parameter is assumed as R0=10.) 





m

i

k

i

p

i

k

ik uvr
1

)(

1

)(
)0,0,0(),,( 321

)0(  uuuu and 



m

i

iur
1

)0(

0 0

Therefore,  
0 0 0max{ , } max{10,0} 10R R r  

( ) ( ) ( )( ) ( ) ( )k k k

kf R V   x x x

V(x(k)) is either the maximum constraint violation among all the constraints or zero. 

V(x(k)) is nonnegative. If all the constraints are satisfied, the value of the V(x(k)) is zero. 

},,,;,,,;0max{)( 2121

)(

mp

k ggghhhV x

( ) ( )

0

1 1

max , ( )
p m

k k

k k i i

i i

R R r v u
 

 
   

 
 

: Summation of all the Lagrange multipliers 

Rk is a positive number called the penalty parameter (initially specified by the user). 

( ) ( ) ( )

2 2 ( )

1 2 1 2

( ) ( ) ( )

3 10 ( ),

k k k

k

k

f R V

x x x x V

   

    

x x x

x ( ) ( ) ( ) ( )

1 2 3( ) max{0, ( ), ( ), ( )}k k k kV g g gx x x x

(k is the iteration number how many times the QP problem is defined 

approximately.) 

By adding a penalty for possible constraint violations to the 

current value of the objective function(f(x)), the constrained 
optimal design problem is transformed to the unconstrained 

optimal design problem  

,  (k=0) 

제약 조건의 위배량을 원래 목적 함수에 더한 수정된 목적 함수를  

이용하여 제약 최적화 문제를 Unconstrained optimization 

problem로 변환. 

7.3 Sequential Quadratic Programming (SQP) 
 - Penalty function : Pshenichny’s Descent Function(2)  

Since this problem does not have the equality 
constraints, we do not consider the vi. 

0)(

0)(

00.1
6

1

6

1
)(

23

12

2

2

2

11







xg

xg

xxg

x

x

x

21

2

2

2

1 3)( xxxxf x

)(

2

)(

3

)(

1

)(

2

2)(

2

2)(

1

)(

1

)(

)(

0.1)(
6

1
)(

6

1
)(

kk

kk

kkk

xg

xg

xxg







x

x

x

Penalty function(Pshenichny’s descent function,              ) 
( )( )k x

hp: value of the equality constraint 

function at the design point x(k) 

gp: value of the inequality constraint 

function at the design point x(k)  

( )k

iv :Lagrange multipliers for the equality 

constraints(free in sign) 

:Lagrange multiplier for the inequality 

constraints(nonnegative) 

( )k

iu
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After the k-th search direction is found, one dimensional search for step size is 

started. 

     ( , ) ( , ) ( , ) ,k j k j k j

kf R V   x x x

( ) ( ) ( )

2 2 ( )

1 2 1 2

( ) ( ) ( )

3 10 ( )

k k k

k

k

f R V

x x x x V

   

    

x x x

x

( ) ( ) ( ) ( )

1 2 3( ) max{0, ( ), ( ), ( )}k k k kV g g gx x x x

0)(

0)(

00.1
6

1

6

1
)(

23

12

2

2

2

11







xg

xg

xxg

x

x

x

21

2

2

2

1 3)( xxxxf x

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

f = -10 

f = -3 

0d

A 

B 

( , ) ( ) ( )

( , )

k j k k

k j x x d

x(0,0)=(1, 1) 

The iteration number k  does not change  during the one dimensional search .  

(vi) Step 6:  

By using the one dimensional search method, e.g., 

Golden section search method,  

calculate the step size to minimize the penalty 

function along the search direction(d(0)),  

and determine the improved design point. 

After completing the one 

dimensional search, k is 

changed to k+1: 

 

          is changed to          . ( , )k jx
( 1)kx

,(k=0) 

7.3 Sequential Quadratic Programming (SQP) 
 - Penalty function (3) 

( , ) ( , ) ( , ) ( , )

1 2 3( ) max{0, ( ), ( ), ( )}k j k j k j k jV g g gx x x x
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B A 

     (0, ) (0, ) (0, )

0 1 10 0 1j j jf R V         x x x

0 (1,1),dSearch direction: 

(0, ) (0, ) (0, ) (0, )

1 2 3

2
3

, ( ) max{0, ( ), ( ), ( )}

max{0, , 1, 1} 0

j j j jwhere V g g g

    

x x x x

(0, ) (0) (0)

(0, ) (1,1) 0 (1,1) (1,1)j

j d      x x

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

f = -10 

f = -3 

0d

0.0 
 


(0, ) 0.0j When 

A 

B 

x(0,0)=(1, 1) 
-1 

x(0,0)=(1, 1) 

0, 0k j 

(vi) Step 6:  

 

7.3 Sequential Quadratic Programming (SQP) 
  - Determination of the Step Size by Using  
the Golden Section Search Method (1) 

0)(

0)(

00.1
6

1

6

1
)(

23

12

2

2

2

11







xg

xg

xxg

x

x

x

21

2

2

2

1 3)( xxxxf x
0 0 0max{ , }

max{10,0} 10

R R r

 
)0,0,0(),,( 321

)0(  uuuu





m

i

iur
1

)0(

0 0



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

335 

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee  

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee  

B A 

     (0, ) (0, ) (0, )

0 1.21 10 0 1.21j j jf R V         x x x

(0, ) (0, ) (0, ) (0, )

1 2 3, ( ) max{0, ( ), ( ), ( )}

max{0, 0.57, 1.1, 1.1} 0

j j j jwhere V g g g

    

x x x x

(0, ) (0) (0)

(0, ) (1,1) 0.1 (1,1) (1.1,1.1)j

j d      x x

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

f = -10 

f = -3 

0.0 
 

(0, ) 0.1j Assume                    *, 

A 

B 

x(0,0)=(1, 1) 
-1 

x(0,0)=(1, 1) 

x(0,1)=(1.1, 1.1) 

0.1 

x(0,1)=(1.1, 1.1) 
-1.21 

* The initial value of            (0.1) is defined by user, we can also define 

that as another value(ex. 0.5). 
( , )k j

(vi) Step 6:  

 

0 (1,1),dSearch direction: 0, 1k j 

7.3 Sequential Quadratic Programming (SQP) 
  - Determination of the Step Size by Using  
the Golden Section Search Method (2) 

0)(

0)(

00.1
6

1

6

1
)(

23

12

2

2

2

11







xg

xg

xxg

x

x

x

21

2

2

2

1 3)( xxxxf x
0 0 0max{ , }

max{10,0} 10

R R r

 
)0,0,0(),,( 321

)0(  uuuu





m

i

iur
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)0(
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B A 

     (0, ) (0, ) (0, )

0 1.592 10 0 1.592j j jf R V         x x x

(0,2) (0,2) (0,2) (0,2)

1 2 3, ( ) max{0, ( ), ( ), ( )}

max{0, 0.469, 1.262, 1.262} 0

where V g g g

    

x x x x

(0, ) (0) (0)

(0, ) (1,1) 0.262 (1,1) (1.262,1.262)j

j d      x x

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

f = -10 

f = -3 

0.0 
 


(0, ) 0.1 1.618(0.1) 0.2618j   When 

A 

B 

x(0,0)=(1, 1) 
-1 

x(0,0)=(1, 1) 

x(0,1)=(1.1, 1.1) 

0.1 

x(0,1)=(1.1, 1.1) 

x(0,2)=(1.262, 1.262) 

0.2618 

x(0,2)=(1.262, 1.262) 
-1.592 

-1.21 

(vi) Step 6:  

 

0 (1,1),dSearch direction: 0, 2k j 

7.3 Sequential Quadratic Programming (SQP) 
  - Determination of the Step Size by Using  
the Golden Section Search Method (3) 

0)(

0)(
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1
)(
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2
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





xg

xg

xxg

x

x

x
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2

2

1 3)( xxxxf x
0 0 0max{ , }

max{10,0} 10
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)0,0,0(),,( 321

)0(  uuuu





m

i

iur
1

)0(

0 0



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

337 

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee  

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee  

B A 

     (0, ) (0, ) (0, )

0 2.321 10 0 2.321j j jf R V         x x x

(0, ) (0, ) (0, ) (0, )

1 2 3, ( ) max{0, ( ), ( ), ( )}

max{0, 0.226, 1.524, 1.524} 0

j j j jwhere V g g g

    

x x x x

(0, ) (0) (0)

(0, ) (1,1) 0.524 (1,1) (1.524,1.524)j

j d      x x

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

f = -10 

f = -3 

0.0 
 

2

(0, ) 0.1 1.618(0.1) 1.618 (0.1) 0.5236j    When 

A 

B 

x(0,0)=(1, 1) 
-1 

x(0,0)=(1, 1) 

x(0,1)=(1.1, 1.1) 

0.1 

x(0,1)=(1.1, 1.1) 

x(0,2)=(1.262, 1.262) 

0.2618 

x(0,2)=(1.262, 1.262) 
-1.592 

-1.21 

x(0,3)=(1.524, 1.524) 

0.5236 

x(0,3)=(1.524, 1.524) 
-2.321 

(vi) Step 6:  

 

7.3 Sequential Quadratic Programming (SQP) 
  - Determination of the Step Size by Using  
the Golden Section Search Method (4) 
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0 (1,1),dSearch direction: 0, 3k j 
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B A 

     (0, ) (0, ) (0, )

0 3.792 10 0.2638 1.154j j jf R V         x x x

(0,4) (0,4) (0,4) (0,4)

1 2 3, ( ) max{0, ( ), ( ), ( )}

max{0,0.2638, 1.947, 1.947} 0.2638

where V g g g

   

x x x x

(0, ) (0) (0)

(0, ) (1,1) 0.947 (1,1) (1.947,1.947)j

j d      x x

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

f = -10 

f = -3 

0.0 
 

2 3

(0, ) 0.1 1.618(0.1) 1.618 (0.1) 1.618 (0.1)

0.9472

j    



When 

A 

B 

x(0,0)=(1, 1) 
-1 

x(0,0)=(1, 1) 

x(0,1)=(1.1, 1.1) 

0.1 

x(0,1)=(1.1, 1.1) 

x(0,2)=(1.262, 1.262) 

0.2618 

x(0,2)=(1.262, 1.262) 
-1.592 

-1.21 

x(0,3)=(1.524, 1.524) 

0.5236 

x(0,3)=(1.524, 1.524) 
-2.321 

x(0,4)=(1.947, 1.947) 

0.9472 

x(0,4)=(1.947, 1.947) 
-1.154 

The minimum point exists. 

0 (1,1),dSearch direction: 0, 4k j 

(vi) Step 6:  

 

7.3 Sequential Quadratic Programming (SQP) 
  - Determination of the Step Size by Using  
the Golden Section Search Method (5) 

0)(
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


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2
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1 3)( xxxxf x
0 0 0max{ , }

max{10,0} 10

R R r

 
)0,0,0(),,( 321

)0(  uuuu



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m

i
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1

)0(
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The value of the                     is found which 

minimizes the value of the penalty function  

in the interval between           and          . 

(1) (0) (0)

0 (1,1) 0.732 (1,1) (1.732,1.732)      x x d

(0,2)x (0,4)x

 (1)f x  1.732,1.732 3f  

0 0.732 

0)(

0)(

00.1
6

1

6

1
)(

23

12

2

2

2

11







xg

xg

xxg

x

x

x

21

2

2

2

1 3)( xxxxf x

B A 

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

f = -10 

f = -3 

0.0 
 



A 

B 

x(0,0)=(1, 1) 
-1 

x(0,0)=(1, 1) 

x(0,1)=(1.1, 1.1) 

0.1 

x(0,1)=(1.1, 1.1) 

x(0,2)=(1.262, 1.262) 

0.2618 

x(0,2)=(1.262, 1.262) 
-1.592 

-1.21 

x(0,3)=(1.524, 1.524) 

0.5236 

x(0,3)=(1.524, 1.524) 
-2.321 

x(0,4)=(1.947, 1.947) 

0.9472 

x(0,4)=(1.947, 1.947) 
-1.154 

The minimum point exists. 

SQP(Sequential Quadratic Programming)방법을  
이용한 풀이 예(12) 

(vi) Step 6:  

 

7.3 Sequential Quadratic Programming (SQP) 
  - Determination of the Step Size by Using  
the Golden Section Search Method (6) 

x(0,62)=(1.732, 1.732) 
-3.000 

0.732 
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   

    

  
  

  

(1)

1 5

1 1

1

2

1

3

1 5

1

1.732,1.732 2.999824

1.732,1.732 5.866 10

1.732

1.732

max{0; 5.866 10 , 1.732, 1.732} 0

f f

g g

g

g

V V





  

   

 

 

      

x

x

x

x

x

(2) Iteration 2(k = 1) 

(ii)Step 2: Calculate  maximum constraint violation 
among all the constraints  

From the previous stage, 

)732.1,732.1()1( x

)1,0(),0,1(),577.0,577.0(),()(

)732.1,732.1()32,32()(

3223
1

13
1)1(

1

1221

)1(





ggxxg

xxxxf

x

x

And, 

 Constraint is satisfied. 

 Constraint is satisfied. 

 Constraint is satisfied. 

0)(

0)(

00.1
6

1

6

1
)(

23

12

2

2

2

11







xg

xg

xxg

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x

7.3 Sequential Quadratic Programming (SQP) 
 - Example of  SQP – Iteration 2 (1) 
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(iii) Step 3: Solve the QP problem to determine the search direction(d(0)) 

Quadratic Programming Problem 

Minimize 

Subject to 

)(5.0)732.1732.1( 2

2

2

121 ddddf 

732.1

732.1

10866.5577.0577.0

2

1

5

21





 

d

d

dd

Constrained Optimal Design Problem 

(Original problem) 

0)(

0)(

00.1
6

1

6

1
)(

13

12

2

2

2

11







xg

xg

xxg

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x

)732.1(

)732.1(

]10866.5)(577.0[

)(5.0)732.1732.1(

2

323

2

212

2

1

5

211

2

2

2

121

sdu

sdu

sddu

ddddL











Lagrange function  Kuhn-Tucker necessary condition: 

 

 

(1)

1 2

5

5

(1)

1 2 3

(1)

1 2 3

( , )

(5.081 10 ,

5.081 10 )

( , , )

(3,0,0)

( , , )

(0,1.316,1.316)

d d

u u u

s s s







 











d

u

s

The optimal solution is 

0sud  ),,(L

732.1

,732.1

22

11





xd

xd

where, 

 

1

2

1

2

3

1 1 2

2 1 3

6 2

1 2 1

2

1 2

2

2 3

1.732 0.577 0

1.732 0.577 0

0.577 5.866 10 0

1.732 0

1.732 0

0, 0, 1,2,3
i

L
d

L
d

L
u

L
u

L
u

L
i is

d u u

d u u

d d s

d s

d s

u s u i



















     

     

     

    

    

   

Quadratic programming problem 

- Objective function: quadratic form 
- Constraint: linear form 

7.3 Sequential Quadratic Programming (SQP) 
 - Example of  SQP – Iteration 2 (2) 

 

* The search direction also can be 

determined by using the Simplex method. 

)1,0(,732.1)732.1,732.1(

)0,1(,732.1)732.1,732.1(

)577.0,577.0(,10866.5)732.1,732.1(

)732.1,732.1(,3)732.1,732.1(

33

22

1

5

1











gg
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ff
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(iv) Step 4: Check for the following stopping criteria. 

The stopping criteria is 

satisfied. 
    )001.0(10186.710081.510081.5

)10081.5,10081.5(),(

2

52525)1(

55

21

)1(









d

d dd

(iv) Step 5: Stop 

The optimal solution: 3)(),3,3( **  xx f

The Lagrange multiplier: 

* (3,0,0),u * (0,1.316,1.316)s

Quadratic programming problem 

- Objective function: quadratic form 
- Constraint: linear form 

7.3 Sequential Quadratic Programming (SQP) 
 - Example of  SQP – Iteration 2 (3) 
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Improved 

design point 

Current 

design point 

7.3 Sequential Quadratic Programming (SQP) 
 Summary   

Minimize ) ,  , ,()( 21 nxxxff x

,...,pihi 1   ,0)( xSubject to 

,...,migi 1   ,0)( x

Equality constraints 

Inequality constraints 

Optimization Problem 

( 1) ( ) ( )k k k

k
   x x d

The improved design point  is determined as follows. 

Step size calculated by one dimensional search method(ex. Golden section search method) 

Search direction obtained from the QP problem 

Pshenichny’s descent function: 
( ) ( ) ( )( ) ( ) ( )k k k

kf R V   x x x

V(x(k)) is either the maximum constraint violation among all the constraints or zero. 

V(x(k)) is nonnegative. If all the constraints are satisfied, the value of the V(x(k)) is zero. 

},,,;,,,;0max{)( 2121

)(

mp

k ggghhhV x  If all the constraints are satisfied, the value of the 
V(x(k)) is zero. 

( ) ( )

0

1 1

max , ( )
p m

k k

k k i i

i i

R R r v u
 

 
   

 
 
: Summation of the all Lagrange multipliers 

Rk is a positive number called the penalty parameter(initially specified by the user). 

(k is the iteration number how many times the QP problem is defined.) 

the penalty function is constructed by adding a penalty for possible constraint violations to 
the current value of the objective function 
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7.3 Sequential Quadratic Programming (SQP) 

- Solution of the Quadratic Programming 
Problem to  
Determine the Search Direction by using the 
Simplex Method  



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

345 

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee  

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee  

Solve the QP problem to determine the search direction(d(0)) 

Minimize 

Subject to 

)(5.0)( 2

2

2

121 ddddf 
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Lagrange function  Kuhn-Tucker necessary condition 
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Minimize 

Subject to 

21
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1 3)( xxxxf x

Constrained Optimal Design Problem 

(Original problem) 

Quadratic Programming Problem 

6 d1 

d2 

1 2 3 4 5 -1 -2 

-1 

-2 

1 

2 

3 

4 

5 

6 

8.0 

5.0 

2.0 

1.0 

0.1 

-0.8 

A B 

C 

D 

d1=-1 

d2=-1 

d1+d2=2 

f


 Graphing 

Quadratic programming problem 

- Objective function: quadratic form 
- Constraint: linear form 

Simplex 방법을 이용, 탐색 방향을 결정하기  
위한 2차 계획 문제의 풀이(1/첫번째 QP문제) 

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method  
[Iteration 1] (1) 

 
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Kuhn-Tucker necessary condition  

Replace     with 
2

is is

Kuhn-Tucker necessary condition  
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Quadratic Programming Problem 

2 0i is s 

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method [Iteration 1] (2) 
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Kuhn-Tucker necessary condition  
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Minimize 

Subject to 

)12()22()21()12()21(

2

1
  dHddc

TTf

How can we express the Kuhn-
Tucker necessary condition in a  
matrix form(d, c, H, A, b)? 

(2 2)H (2 2)IAssume that            is equal to         . 

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method [Iteration 1] (3) 

Quadratic Programming Problem 
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Matrix form 

Kuhn-Tucker necessary condition  

 
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Since the design variables d(n×1) are free in 
sign, we may decompose them as follows for 
using the Simplex method. 

= = 
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)105( B )15( D

)110( X= 

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method  

[Iteration 1](4) 
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7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method [Iteration 1] (5) 
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)15()110()105(   DXB

Kuhn-Tucker necessary condition(matrix form) 

 This problem is to find X in the linear programming problem only having the equality 
constraints. 

                          : Check whether the solution obtained from the linear indeterminate 
   equation satisfies the nonlinear indeterminate equation and determine 
   the solution. 

3  1;0 toisu ii 

We want to find. 
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7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method [Iteration 1] (6) 
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Simplex method to solve the quadratic programming problem 

1. The problem to solve the Kuhn-Tucker necessary condition is the same with the problem having 
only the equality constraints(linear programming problem). 

2. To solve the linear indeterminate equation, we introduce the artificial variables, define the 
artificial objective function and determine the initial basic feasible solution by using the Simplex 
method. 

3. The artificial objective function is defined as follows. 


 


10

1

0

10

1

5

1

5

1

5

1 j

jj

j i

jij

i

i

i

i XCwXBDYw

where 

3
14

3
2

5

1

0

5

1

1111 











i

i

i

ijj

Dw

BC : Add the elements of the j th column of the matrix B and change the its 
sign.(Initial relative objective coefficient). 

4. Solve the linear programming problem by using the Simplex and check whether the solution 
satisfies the following equation. 

: Initial value of the artificial objective function 

(summation of the all elements of the matrix D) 

)15()15()110()105(   DYXB

Artificial variables 

3  1;0 toisu ii  : Check whether the solution obtained from the linear indeterminate equation 
satisfies the nonlinear indeterminate equation and determine the solution. 

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method [Iteration 1] (7) 
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Artificial objective 

function 

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

Y1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 - 

Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 - 

Y3 1/3 1/3 -1/3 -1/3 0 0 0 1 0 0 0 0 1 0 0 2/3 2/3 

Y4 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 - 

Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 - 

A. Obj. -1/3 -1/3 1/3 1/3 -2/3 1 1 -1 -1 -1 0 0 0 0 0 w-14/3 - 

1 

Sum all the elements of the row and change the its sign (ex. 1 row: -(1+0+1/3-1+0)=-1/3) 

Artificial variables 

)15()15()110()105(   DYXB  
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Define the artificial objective function for using the Simplex method 

1 1 1 1 2 14
1 2 3 4 5 6 7 8 9 10 1 2 3 4 53 3 3 3 3 3

X X X X X X X X X X Y Y Y Y Y              Sum the all column(1~5): 

Replace the summation of the all 
artificial to w and rearrange: 

w

1 1 1 1 2 14
1 2 3 4 5 6 7 8 9 103 3 3 3 3 3

X X X X X X X X X X w           

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method  
[Iteration 1](8) 
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  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

Y1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 1 

Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 - 

X8 1/3 1/3 -1/3 -1/3 0 0 0 1 0 0 0 0 1 0 0 2/3 2 

X9 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 - 

X10 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 - 

A. Obj. -1 -1 1 1 -2/3 1 1 0 0 0 0 0 1 1 1 w-2 - 

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

Y1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 - 

Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 - 

X8 1/3 1/3 -1/3 -1/3 0 0 0 1 0 0 0 0 1 0 0 2/3 - 

Y4 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 

Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 - 

A. Obj. 0 0 0 0 -2/3 1 1 0 -1 -1 0 0 1 0 0 w-4 - 

2 

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

Y1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 - 

Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 - 

X8 1/3 1/3 -1/3 -1/3 0 0 0 1 0 0 0 0 1 0 0 2/3 - 

X9 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 - 

Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 

A. Obj. -1 0 1 0 -2/3 1 1 0 0 -1 0 0 1 1 0 w-3 - 

3 

4 

7.3 Sequential Quadratic Programming (SQP) 
- Determine the Search Direction by using the Simplex Method  [Iteration 1] (9) 
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  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

X1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 - 

Y2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 1 

X8 0 1/3 0 -1/3 -1/9 1/3 0 1 0 0 -1/3 0 1 0 0 1/3 1 

X9 0 0 0 0 1/3 -1 0 0 1 0 1 0 0 1 0 2 - 

X10 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 - 

A. Obj. 0 -1 0 1 -1/3 0 1 0 0 0 1 0 1 1 1 w-1 - 

5 

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

X1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 - 

X2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 - 

X8 0 0 0 0 -2/9 1/3 1/3 1 0 0 -1/3 -1/3 1 0 0 0 - 

X9 0 0 0 0 1/3 -1 0 0 1 0 1 0 0 1 0 2 - 

X10 0 0 0 0 1/3 0 -1 0 0 1 0 1 0 0 1 2 - 

A. Obj. 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 w-0 - 

6 

Since the value of the objective function 

becomes zero, the initial basic feasible 

solution is obtained. 

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method [Iteration 1] (10) 
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  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

X1 1 0 -1 0 1/3 -1 0 0 0 0 1 0 0 0 0 1 - 

X2 0 1 0 -1 1/3 0 -1 0 0 0 0 1 0 0 0 1 - 

X8 0 0 0 0 -2/9 1/3 1/3 1 0 0 -1/3 -1/3 1 0 0 0 - 

X9 0 0 0 0 1/3 -1 0 0 1 0 1 0 0 1 0 2 - 

X10 0 0 0 0 1/3 0 -1 0 0 1 0 1 0 0 1 2 - 

A. Obj. 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 w-0 - 

6 

Since the value of the objective function 

becomes zero, the initial basic feasible 

solution is obtained. 

So, the optimal solution is                                                                 . 2,0,0,1 32132121  sssuuudd

This solution satisfies the nonlinear indeterminate equation(                                           ) 01  1;0,7  5;03 toiXtoiXX iii 

Why are the values of  u1 and s1 zero at the same time? 

 3213212121)101( sssuuuddddT 
 X

 In the Pivot step, if the smallest(i.e., the most negative) coefficient of the artificial objective function or the 

smallest positive ratio“bi/ai” appears more than one time, the initial basic feasible solution can be changed by 

depending on the selection of the pivot element in the pivot procedure. 

 We have to find and check the solution until the nonlinear indeterminate equation(ui*si=0) is satisfied. 

1 1,X  2 1,X  8 0,X  9 2,X  10 2X 

Basic solution: 

Nonbasic solution: 

3 4 5 6 7 0X X X X X    

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method [Iteration 1] (11) 
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6 d1 

d2 

1 2 3 4 5 -1 -2 

-1 

-2 

1 

2 

3 

4 

5 

6 

8.0 

5.0 

2.0 
1.0 

0.1 

-0.8 

A B 

C 

D 

d1=-1 

d2=-1 

d1+d2=2 

fThis example is graphical displayed  as the right side. 

1 0s 
The optimal solution is on the linearized constraint( g1(x),  d1+d2=2 ). 

0)(

0)(

00.1
6

1

6

1
)(

23

12

2

2

2

11







xg

xg

xxg

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x

The optimal solution in this problem is                                                                  . 

Why are the values of  u1 and s1 are zero at the same time? 

2,0,0,1 32132121  sssuuudd

Minimize 

Subject to 

)(5.0)( 2

2

2

121 ddddf 

1

1

2

1

3
2

23
1

13
1







d

d

dd

Quadratic Programming Problem 

Optimal solution 

2 3 0u u 
The optimal solution is not in the region satisfying the inequality 
constraint. 

The optimal solution is on the inequality constraint(g1(x)) and is equal to the 
optimal solution of the objective function to be approximated to the second 
order. Therefore, although we do not consider the inequality constraint g1(x), 
the optimal solution of QP problem is not changed.(g1(x) does not affect the 
optimal solution of this problem.) 

1 0u 

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method  
[Iteration 1](11) 
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Solve the QP problem to determine the search direction(d(0)) 

Quadratic Programming Problem 

Minimize 

Subject to 

)(5.0)732.1732.1( 2

2

2

121 ddddf 

732.1

732.1

10866.5577.0577.0

2

1

5

21





 

d

d

dd

Constrained Optimal Design Problem 

(Original problem) 

0)(

0)(

00.1
6

1

6

1
)(

13

12

2

2

2

11







xg

xg

xxg

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x

)732.1(

)732.1(

]10866.5)(577.0[

)(5.0)732.1732.1(

2

323

2

212

2

1

5

211

2

2

2

121

sdu

sdu

sddu

ddddL











Lagrange function  Kuhn-Tucker necessary condition: 

 

 

0sud  ),,(L

732.1

,732.1

22

11





xd

xd

where 

 

1

2

1

2

3

1 1 2

2 1 3

6 2

1 2 1

2

1 2

2

2 3

1.732 0.577 0

1.732 0.577 0

0.577 5.866 10 0

1.732 0

1.732 0

0, 0, 1,2,3
i

L
d

L
d

L
u

L
u

L
u

L
i is

d u u

d u u

d d s

d s

d s

u s u i



















     

     

     

    

    

   

)1,0(,732.1)732.1,732.1(

)0,1(,732.1)732.1,732.1(

)577.0,577.0(,10866.5)732.1,732.1(

)732.1,732.1(,3)732.1,732.1(

33

22

1

5

1











gg

gg

gg

ff

1. Multiply  si and the both side 
and replace si

2  with  si’ 

2. Represent si’ to si for the 
convenience 

Quadratic programming problem 

- Objective function: quadratic form 
- Constraint: linear form 

7.3 Sequential Quadratic Programming (SQP) 
 -]Determine the Search Direction by using the Simplex Method  
[Iteration 2](1) 

 
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(3 2) (2 1) (3 1)

T

  A d b

Minimize 

Subject to 

Minimize 

Subject to 

where 

Matrix form 

1

(2 1) (2 1) (2 2)

2

(2 3) (3 1)

1.732 1 0
, , ,

1.732 0 1

0
0.577 1 0

, 1.732
0.577 0 1

1.732

d

d
  

 

     
       

    

 
   

        

d c H

A b

)12()22()21()12()21(

2

1
  dHddc

TTf

2 2

1 2 1 2( 1.732 1.732 ) 0.5( )f d d d d    

1 2

1

2

0.577 0.577 0

1.732

1.732

d d

d

d

 

 

 

Quadratic Programming Problem 
Kuhn-Tucker necessary condition 

 

1

2

1

2

3

1 1 2

2 1 3

6

1 2 1

1 2

2 3

1.732 0.577 0

1.732 0.577 0

0.577 5.866 10 0

1.732 0

1.732 0

0, , 0, 1,2,3
i

L
d

L
d

L
u

L
u

L
u

L
i i i is

d u u

d u u

d d s

d s

d s

u s u s i



















     

     

     

    

    

   

(2 2)H (2 2)IAssume that            is equal to         . 

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method 
[Iteration 2] (2) 
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Matrix form 

1 1 2

2 1 3

1

1

2

2

3

(2 1) (2 2) (2 1) (2 3) (3 1)

1.732 0.577

1.732 0.577

1.732 1 0 0.577 1 0

1.732 0 1 0.577 0 1

d u u

d u u

u
d

u
d

u

    

    
 
    

 
         

                    

   c H d A u 0
































































)13(

)12(

)13(

)13(

)12(

)12(

)33()33()23()23(

)32()32()22()22(

b

c

s

u

d

d

I0AA

0AHH
TT

)105( B= )15( D= 

)110( X= 

1

(2 1) (2 1) (2 2)

2

(2 3) (3 1)

1.732 1 0
, , ,

1.732 0 1

0
0.577 1 0

, 1.732
0.577 0 1

1.732

d

d
  

 

     
       

    

 
   

        

d c H

A b

Kuhn-Tucker necessary condition  

 

1

2

1

2

3

1 1 2

2 1 3

6

1 2 1

1 2

2 3

1.732 0.577 0

1.732 0.577 0

0.577 5.866 10 0

1.732 0

1.732 0

0, , 0, 1,2,3
i

L
d

L
d

L
u

L
u

L
u

L
i i i is

d u u

d u u

d d s

d s

d s

u s u s i



















     

     

     

    

    

   
1 2 1 1

1

1 2 2

2

2 3 3

(3 2) (2 1) (3 1) (3 1)

0.577 0.577 0.577 0.577 0

1.732 1 0 1.732

1.732 0 1 1.732

T

d d s s
d

d s s
d

d s s

   

         
       

             
                

   A d s b 0







  )12()12()12( ddd

Since the design variables d(n×1) are free in sign, we 
may decompose them as follows for using the 
Simplex method. 

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method 
[Iteration 2] (3) 
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






























































)13(

)12(

)13(

)13(

)12(

)12(

)33()33()23()23(

)32()32()22()22(

b

c

s

u

d

d

I0AA

0AHH
TT

where 

(5 10)

1 0 1 0 0.577 1 0 0 0 0

0 1 0 1 0.577 0 1 0 0 0

0.577 0.577 0.577 0.577 0 0 0 1 0 0

1 0 1 0 0 0 0 0 1 0

0 1 0 1 0 0 0 0 0 1



  
 

 
 
   
 
 

  

B

 (1 10) 1 2 1 2 1 2 3 1 2 3 (1 5), 1.732 1.732 0 1.732 1.732T Td d d d u u u s s s   

 
   X D

Kuhn-Tucker necessary condition : 0sudd   ),,,(L

)105( B= )15( D= 

)110( X= 

1 1

(2 1) (2 1) (2 1) (2 2) (2 3) (3 1)

2 2

0
1.732 1 0 0.577 1 0

, , , , , 1.732
1.732 0 1 0.577 0 1

1.732

d d

d d

 

 

      

 
            

                            

d d c H A b

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method [Iteration 2] (4) 
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)15()110()105(   DXB

Kuhn-Tucker necessary condition(matrix form) 

1

2

1

2

1

2

3

1

2

3

1 0 1 0 0.577 1 0 0 0 0 1.732

0 1 0 1 0.577 0 1 0 0 0 1.732

0.577 0.577 0.577 0.577 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 1.732

0 1 0 1 0 0 0 0 0 1 1.732

d

d

d

d

u

u

u

s

s

s









 
 
 
 

     
    

 
    
      
    
    

       
 
 
 
  

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method [Iteration 2] (5) 

 This problem is to find X in the linear programming problem only having the equality 
constraints. 

                          : Check whether the solution obtained from the linear indeterminate 
   equation satisfies the nonlinear indeterminate equation and determine 
   the solution. 

3  1;0 toisu ii 

We want to find. 
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Simplex method to solve the quadratic programming problem 

1. The problem to solve the Kuhn-Tucker necessary condition is the same with the problem having 
only the equality constraints(linear programming problem). 

2. To solve the linear indeterminate equation, we introduce the artificial variables, define the 
artificial objective function and determine the initial basic feasible solution by using the Simplex 
method. 

3. The artificial objective function is defined as follows. 


 


10

1

0

10

1

5

1

5

1

5

1 j

jj

j i

jij

i

i

i

i XCwXBDYw

where 

3
14

3
2

5

1

0

5

1

1111 











i

i

i

ijj

Dw

BC : Add the elements of the j th column of the matrix B and change the its 
sign.(Initial relative objective coefficient). 

4. Solve the linear programming problem by using the Simplex and check whether the solution 
satisfies the following equation. 

: Initial value of the artificial objective function 

(summation of the all elements of the matrix D) 

)15()15()110()105(   DYXB

Artificial variables 

3  1;0 toisu ii  : Check whether the solution obtained from the linear indeterminate equation 
satisfies the nonlinear indeterminate equation and determine the solution. 

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method [Iteration 2] (6) 
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  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

Y1 1 0 -1 0 0.577 -1 0 0 0 0 1 0 0 0 0 1.732 3 

Y2 0 1 0 -1 0.577 0 -1 0 0 0 0 1 0 0 0 1.732 3 

Y3 0.577 0.577 -0.577 -0.577 0 0 0 1 0 0 0 0 1 0 0 0 - 

Y4 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1.732 - 

Y5 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 1 1.732 - 

A. Obj. -0.577 -0.577 0.577 0.577 -1.154 1 1 -1 -1 -1 0 0 0 0 0 w-6.928 - 

1 

Sum all the elements of the row and change the its sign (ex. 1 row: -(1+0+1/3-1+0)=-1/3) 
Artificial objective 

function 

Artificial variables 

)15()15()110()105(   DYXB  

1

2

1

2

1

2

3

1

2

3

1 0 1 0 0.577 1 0 0 0 0 1.732

0 1 0 1 0.577 0 1 0 0 0 1.732

0.577 0.577 0.577 0.577 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 1.732

0 1 0 1 0 0 0 0 0 1 1.732

d

d

d

d

u

u

u

s

s

s









 
 
 
 

     
    

 
    
      
    
    

       
 
 
 
  Define the artificial objective function for using the Simplex method 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 50.577 0.577 0.577 0.577 1.154 6.928X X X X X X X X X X Y Y Y Y Y              Sum the all column(1~5): 

Replace the summation of the all 
artificial to w and rearrange: 

w

1 2 3 4 5 6 7 8 9 100.577 0.577 0.577 0.577 1.154 6.928X X X X X X X X X X w           

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method  
[Iteration 2] (7) 
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  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

X5 1.732  0.000  -1.732  0.000  1.000  -1.732  0.000  0.000  0.000  0.000  1.732  0.000  0.000  0.000  0.000  3.000  -1.732  

Y2 -1.000  1.000  1.000  -1.000  0.000  1.000  -1.000  0.000  0.000  0.000  -1.000  1.000  0.000  0.000  0.000  0.000  0.000  

Y3 0.577  0.577  -0.577  -0.577  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000  

Y4 -1.000  0.000  1.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000  1.000  0.000  1.732  1.732  

Y5 0.000  -1.000  0.000  1.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000  1.000  1.732  - 

A. Obj. 1.423  -0.577  -1.423  0.577  0.000  -1.000  1.000  -1.000  -1.000  -1.000  2.000  0.000  0.000  0.000  0.000  w-3.464  

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

X5 0.000  1.732  0.000  -1.732  1.000  0.000  -1.732  0.000  0.000  0.000  0.000  1.732  0.000  0.000  0.000  3.000  - 

X3 -1.000  1.000  1.000  -1.000  0.000  1.000  -1.000  0.000  0.000  0.000  -1.000  1.000  0.000  0.000  0.000  0.000  - 

Y3 0.000  1.155  0.000  -1.155  0.000  0.577  -0.577  1.000  0.000  0.000  -0.577  0.577  1.000  0.000  0.000  0.000  - 

Y4 0.000  -1.000  0.000  1.000  0.000  -1.000  1.000  0.000  1.000  0.000  1.000  -1.000  0.000  1.000  0.000  1.732  1.732  

X10 0.000  -1.000  0.000  1.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000  1.000  1.732  - 

A. Obj. 0.000  -0.155  0.000  0.155  0.000  0.423  -0.423  -1.000  -1.000  0.000  0.577  1.423  0.000  0.000  1.000  w-1.732  

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

X5 0.000  1.732  0.000  -1.732  1.000  0.000  -1.732  0.000  0.000  0.000  0.000  1.732  0.000  0.000  0.000  3.000  - 

X3 -1.000  1.000  1.000  -1.000  0.000  1.000  -1.000  0.000  0.000  0.000  -1.000  1.000  0.000  0.000  0.000  0.000  - 

Y3 0.000  1.155  0.000  -1.155  0.000  0.577  -0.577  1.000  0.000  0.000  -0.577  0.577  1.000  0.000  0.000  0.000  - 

Y4 0.000  -1.000  0.000  1.000  0.000  -1.000  1.000  0.000  1.000  0.000  1.000  -1.000  0.000  1.000  0.000  1.732  - 

Y5 0.000  -1.000  0.000  1.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000  1.000  1.732  1.732  

A. Obj. 0.000  0.845  0.000  -0.845  0.000  0.423  -0.423  -1.000  -1.000  -1.000  0.577  1.423  0.000  0.000  0.000  w-3.464  

2 

3 

4 

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method [Iteration 2] (8) 
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  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

X5 0.000  1.732  0.000  -1.732  1.000  0.000  -1.732  0.000  0.000  0.000  0.000  1.732  0.000  0.000  0.000  3.000  1.732  

X3 -1.000  1.000  1.000  -1.000  0.000  1.000  -1.000  0.000  0.000  0.000  -1.000  1.000  0.000  0.000  0.000  0.000  0.000  

Y3 0.000  1.155  0.000  -1.155  0.000  0.577  -0.577  1.000  0.000  0.000  -0.577  0.577  1.000  0.000  0.000  0.000  0.000  

X9 0.000  -1.000  0.000  1.000  0.000  -1.000  1.000  0.000  1.000  0.000  1.000  -1.000  0.000  1.000  0.000  1.732  -1.732  

X10 0.000  -1.000  0.000  1.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000  1.000  1.732  -1.732  

A. Obj. 0.000  -1.155  0.000  1.155  0.000  -0.577  0.577  -1.000  0.000  0.000  1.577  0.423  0.000  1.000  1.000  w-0.000  

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

X5 0.000  0.000  0.000  0.000  1.000  -0.866  -0.866  -1.500  0.000  0.000  0.866  0.866  -1.500  0.000  0.000  3.000  

X2 0.000  1.000  0.000  -1.000  0.000  0.500  -0.500  0.866  0.000  0.000  -0.500  0.500  0.866  0.000  0.000  0.000  

X1 1.000  0.000  -1.000  0.000  0.000  -0.500  0.500  0.866  0.000  0.000  0.500  -0.500  0.866  0.000  0.000  0.000  

X9 0.000  0.000  0.000  0.000  0.000  -0.500  0.500  0.866  1.000  0.000  0.500  -0.500  0.866  1.000  0.000  1.732  

X10 0.000  0.000  0.000  0.000  0.000  0.500  -0.500  0.866  0.000  1.000  -0.500  0.500  0.866  0.000  1.000  1.732  

A. Obj. 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  1.000  1.000  1.000  1.000  w-0.000  

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

X5 1.732  0.000  -1.732  0.000  1.000  -1.732  0.000  0.000  0.000  0.000  1.732  0.000  0.000  0.000  0.000  3.000  1.732  

X2 -1.000  1.000  1.000  -1.000  0.000  1.000  -1.000  0.000  0.000  0.000  -1.000  1.000  0.000  0.000  0.000  0.000  0.000  

Y3 1.155  0.000  -1.155  0.000  0.000  -0.577  0.577  1.000  0.000  0.000  0.577  -0.577  1.000  0.000  0.000  0.000  0.000  

X9 -1.000  0.000  1.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000  1.000  0.000  1.732  -1.732  

X10 -1.000  0.000  1.000  0.000  0.000  1.000  -1.000  0.000  0.000  1.000  -1.000  1.000  0.000  0.000  1.000  1.732  -1.732  

A. Obj. -1.155  0.000  1.155  0.000  0.000  0.577  -0.577  -1.000  0.000  0.000  0.423  1.577  0.000  1.000  1.000  w-0.000  

5 

6 

7 

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method [Iteration 2] (9) 
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So, the optimal solution is                                                                               . 1 2 1 2 3 1 2 30,  3,  0,  0,  1.732d d u u u s s s       

This solution satisfy the nonlinear indeterminate equation(                                             ). 01  1;0,7  5;03 toiXtoiXX iii 

 In the Pivot step, if the smallest(i.e., the most negative) coefficient of the artificial objective function or the 

smallest positive ratio“bi/ai” appears more than one time, the initial basic feasible solution can be changed 

by depending on the selection of the pivot element in the pivot procedure. 

 We have to find and check the solution until the nonlinear indeterminate equation(ui*si=0) is satisfied. 

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4 Y5 bi bi/ai 

X5 0.000  0.000  0.000  0.000  1.000  -0.866  -0.866  -1.500  0.000  0.000  0.866  0.866  -1.500  0.000  0.000  3.000  

X2 0.000  1.000  0.000  -1.000  0.000  0.500  -0.500  0.866  0.000  0.000  -0.500  0.500  0.866  0.000  0.000  0.000  

X1 1.000  0.000  -1.000  0.000  0.000  -0.500  0.500  0.866  0.000  0.000  0.500  -0.500  0.866  0.000  0.000  0.000  

X9 0.000  0.000  0.000  0.000  0.000  -0.500  0.500  0.866  1.000  0.000  0.500  -0.500  0.866  1.000  0.000  1.732  

X10 0.000  0.000  0.000  0.000  0.000  0.500  -0.500  0.866  0.000  1.000  -0.500  0.500  0.866  0.000  1.000  1.732  

A. Obj. 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  1.000  1.000  1.000  1.000  w-0.000  

7 

 3213212121)101( sssuuuddddT 
 X

5 3,X  2 0,X  1 0,X  9 1.732,X  10 1.732X 

Basic solution: 

Nonbasic solution: 

3 4 6 7 8 0X X X X X    

7.3 Sequential Quadratic Programming (SQP) 
 - Determine the Search Direction by using the Simplex Method [Iteration 2](10) 
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7.3 Sequential Quadratic Programming (SQP) 

- Summary of the Sequential Quadratic 
Programming  
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Assumption: 

ii

ijijijijii

jjjj

xd

xgaxhnxfc

gbhefff







,/)(  ,/)(  ,/)(

),(  ),(  ),()(

xxx

xxxxx

Matrix form 

Minimize 

Subject to 

)1()()1()1()1(

2

1
  nnnn

T

nn
Tf dHddc

)1()1()(

)1()1()(









mnnm
T

pnnp
T

bdA

edN

xHxxxxxx  TTfff 5.0)()()(Minimize 

mtojggg

ptojhhh

T

jjj

T

jjj

  1;0)()()(

  1;0)()()(





xxxxx

xxxxxSubject to 

 : Quadratic objective function 

 : Linear equality constraints 

 : Linear inequality constraints 

The first-order(linear) Taylor series expansion of the equality constraints 

The first-order(linear) Taylor series expansion of the inequality constraints 

The second-order Taylor series expansion of the objective function 

탐색 방향을 결정하기 위한 2차 계획 문제의 정식화(1) 

7.3 Sequential Quadratic Programming (SQP) 
 - [Summary] Formulation of the Quadratic Programming Problem to Determine the Search Direction 
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Trial design point for which the descent condition is checked 

Determination of  the improved design point              by using the one dimensional search method such  

as the Golden section search method(          is changed to          .) 

( , ) ( ) ( )

( , )

k j k k

k j x x d  How can we determine the value of the (k,j) to find the improved design point? 

Find the improved design point which minimizes the descent function more than the current point 

by changing (k,j). (One dimensional search method, such as the Golden section search method, can 

be used.) 

After finding the interval in which the minimum lies, find the minimum point, x, by reducing  

the interval(Golden section search method) 

0  2.618 5.236 9.472 

4 2 1 q = 0 … 

16.326 

3 

l a u 

=
 

=
 

=
 

The interval in which the 

minimum lies 

)(x

I 

l a u  
상한 하한 

The interval in which the 

minimum lies 

b 

0.618I 0.382I 

)(x

)1( kx

)1( kx
( , )k jx

)1( kx

황금분할법에 의한 이동 거리의 결정 

7.3 Sequential Quadratic Programming (SQP) 
 - [Summary] Determination of the Step Size by using the Golden Section Search Method 
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Minimize 

Subject to 

)1()1()1()1()1()()1()1()1(

2

1

2

1
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nnnn
T

nn
Tf dddcdIddc
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T

bdA

edN

Minimize 

Subject to 

Assumption: H(nn) = I(nn) 

)1()()1()1()1(

2

1
  nnnn

T

nn
Tf dHddc

)1()1()(

)1()1()(









mnnm
T

pnnp
T

bdA

edN

 Since H(nn) = I(nn), the objective function is a 
quadratic form. 

 All constraints are linear. 

 This problem is called the convex 
programming problem and any local optimum 
solution is also a global optimum solution. 

2차 계획 문제(Quadratic Programming Problem)의 정식화 

7.3 Sequential Quadratic Programming (SQP) 
 - [Summary] Formulation of the Quadratic Programming Problem 
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Define the QP problem to determine the search 

direction d(k) and calculate the Lagrange multiplier 

at the given design point x(k). 

Solve the QP problem(solution: search direction 

d(k), Lagrange multiplier) by using the Lagrange 

function and Kuhn-Tucker necessary condition. 

k = k + 1 

 Yes 

Check for the stopping criteria  
d(k) 2 and the maximum  
constraint violation Vk 1. 

Set x* = x(k) 

and stop. 

 Yes 

 No 

Sequential 

Quadratic 

Programming 

Find the improved design point(x(k+1)) to minimize the 

descent function along the search direction (d(k)) by 

using the one dimensional search method(ex: Golden 

section search method) 

SQP 알고리즘의 Flow Diagram 

7.3 Sequential Quadratic Programming (SQP) 
 - Flow Diagram of the SQP Algorithm 
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7.3 Sequential Quadratic Programming (SQP) 
 - Summary of the SQP Algorithm (1) 

 Step 1: Set k=0. Estimate the initial value for the design 
variables as x(0). Select an appropriate initial value for the 
penalty parameter R0, and two small number 1, 2 that 
define the permissible constraint violation and 
convergence parameter values, respectively. 

 

 Step 2: At x(k) compute the objective and constraint 
functions and their gradient. Calculate the maximum 
constraint violation Vk. 

 

 Step 3: Using the objective and constraints function 
values and their gradients, define the QP problem. Solve 
the QP problem to obtain the search direction d(k)(= x(k+1) 

- x(k)) and Lagrange multiplier v(k), u(k). 

SQP 알고리즘의 요약 
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7.3 Sequential Quadratic Programming (SQP) 
 - Summary of the SQP Algorithm (2) 

 Step 4: Check for the stopping criteria d(k) 2 and the maximum 
constraint violation Vk 1. If these criteria are satisfied then stop. 
Otherwise continue. 

 

 Step 5: Calculate the sum rk  of the Lagrange multiplier. Set R = 
max{Rk, rk}. 

 

 Step 6: Set x(k,j) = x(k) + (k,j)d
(k) where  = (k,j) is a proper step size. As 

for the unconstrained problems, the step size can be obtained by 
minimizing the descent function along the search direction d(k). The 
one dimensional search method, such as the Golden section search, 
can be used to determine a step size. 
(If the one dimensional search method is end, the current design 
point x(k,j)  is changed to x(k+1).) 

 

 Step 7: Save the current penalty parameter as Rk = R. Update the 
iteration counter as k = k+1 and go to Step 2. 
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7.3 Sequential Quadratic Programming (SQP) 
 - Effect of the Starting Point in the SQP Algorithm 

The starting point can affect performance 

of the algorithm.  

For example, at some points, the Quadratic 

Programming problem defined to determine 

the search direction may not have any 

solution.  

This need not mean that the original 

problem is infeasible.  

The original problem may be highly 

nonlinear, so that the linearized constraints 

may be inconsistent giving infeasible 

Quadratic Programming problem.  

This situation can be handled by either 

temporarily deleting the inconsistent 

constraints or starting from another point.  
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- Use of the Descent Condition for SQP Instead of 
the Golden Section Search Method 

 
7.3 Sequential Quadratic Programming (SQP) 
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B A 

Use of the Descent Condition for SQP Instead of the Golden Section Search Method (1) 
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x1 

x2 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

f = -10 

f = -3 

0d

0.0 
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B 

( , ) ( ) ( )

( , )

k j k k

k jt x x d

( , )k jx
k iteration of CSD algorithm 

j iteration of one dimensional search method 

-1 

(1, 1) 

     (0,0) (0,0) (0,0)

0 1 10 0 1f R V         x x x

2
( ) 2 2, 0.5(1 1 ) 1k

kwhere     d

 (0,0)

(0, )jt x

 (0, )jt
     (1, ) (0) (0)

(0, ) (0, )

j

j jt t   x x d

2
( ) , ( 0.5,Defined by user)k

k   d (0,0)

(0, )j kt  x where, 

0 (1,1)d (0,0) (1,1),x

Point to be found by the 

Golden section search 

method 

   (0,0)

(0, ) (0, )j j kt t   x

By reducing the value of t from 1 to a half, find the point to satisfy the 

following equation. 

0.5 

Point to be found by 

the Descent Condition 

1.0 

 (0, ) (0, )1j jt t   

( , ) ( , ) ( , )

2 2 ( , )

1 2 1 2

( ) ( ) ( )

3 10 ( )

k j k j k j

k

k j

f R V

x x x x V

   

    

x x x

x

(vi) Step 6: By using the one dimensional search method(ex. 

Descent Condition method) calculate the step size to minimize 

the descent function along the search direction(d(0)) and 

determine the improved design point. 

( , ) ( , ) ( , ) ( , )

1 2 3( ) max{0, ( ), ( ), ( )}k j k j k j k jV g g gx x x x , (k=0) 
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B A 

0)(

0)(

00.1
6

1

6

1
)(

23

12

2

2

2

11







xg

xg

xxg

x

x

x

21

2

2

2

1 3)( xxxxf x

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

f = -10 

f = -3 

0d

0.0 
t 



A 

B 

( , ) ( ) ( )

( , )

k j k k

k jt x x d

( , )k jx
k iteration of CSD algorithm 

j iteration of one dimensional search method 

-1 

(1, 1) 

 (0,0)

(0, )jt x

 (0, )jt

By reducing the value of t from 1 to a half, find the point to satisfy the 

following equation. 

1.0 

 (0, ) (0, )1j jt t   

When (0, ) 1jt 

(0, ) (0) (0)

(0, ) (1,1) 1 (1,1) (2,2)j

jt d      x x

     (0, )

(0, ) 02,2 4 10 0.333 0.667j

jt f R V         x

(0, ) 1
3

, ( ) max{0, , 2, 2} 0.333jwhere V    x

(0, )1 1 1 2jt      

 (0, ) (0, )1j jt t   If   is not satisfied, t is reduced to 0.5. 

( , ) ( , ) ( , )

2 2 ( , )

1 2 1 2

( ) ( ) ( )

3 10 ( )

k j k j k j

k

k j

f R V

x x x x V

   

    

x x x

x

0, 0k j 

(vi) Step 6: By using the one dimensional search method(ex. 

Descent Condition method) calculate the step size to minimize 

the descent function along the search direction(d(0)) and 

determine the improved design point. 

Use of the Descent Condition for SQP Instead of the Golden Section Search Method (2) 

( , ) ( , ) ( , ) ( , )

1 2 3( ) max{0, ( ), ( ), ( )}k j k j k j k jV g g gx x x x , (k=0) 
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B A 

0)(

0)(

00.1
6

1

6

1
)(

23

12

2

2

2

11







xg

xg

xxg

x

x

x

21

2

2

2

1 3)( xxxxf x

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

f = -10 

f = -3 

0d

0.0 
t 



A 

B 

( , ) ( ) ( )

( , )

k j k k

k jt x x d

( , )k jx
k iteration of CSD algorithm 

j iteration of one dimensional search method 

-1 

(1, 1) 

 (0,0)

(0, )jt x

 (0, )jt

By reducing the value of t from 1 to a half, find the point to satisfy the 

following equation. 

1.0 0.5 

Point to be found by the 

Descent Condition 

 (0, ) (0, )1j jt t   

 (0, ) (0, )1j jt t   Since                                           is satisfied, (1.5, 1.5) is the next 

design point. 

2.25  1.5 

     (0, )

(0, ) 01.5,1.5 2.25 10 0 2.25j

jt f R V         x
(0, ) 2

8
, ( ) max{0, , 1.5, 1.5} 0jwhere V     x

When (0, ) 0.5jt 

(0, ) (0) (0)

(0, ) (1,1) 0.5 (1,1) (1.5,1.5)j

jt d      x x

(0, )1 1 0.5 1.5jt      

( , ) ( , ) ( , )

2 2 ( , )

1 2 1 2

( ) ( ) ( )

3 10 ( )

k j k j k j

k

k j

f R V

x x x x V

   

    

x x x

x

0, 1k j 

(vi) Step 6: By using the one dimensional search method(ex. 

Descent Condition method) calculate the step size to minimize 

the descent function along the search direction(d(0)) and 

determine the improved design point. 

Use of the Descent Condition for SQP Instead of the Golden Section Search Method (3) 

( , ) ( , ) ( , ) ( , )

1 2 3( ) max{0, ( ), ( ), ( )}k j k j k j k jV g g gx x x x , (k=0) 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

379 

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee  

Computer Aided Ship Design, I-7 Constrained Nonlinear Optimization Method, Fall 2011, Kyu Yeul Lee  

B A 

0)(

0)(

00.1
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1
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1
)(
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2

2

2

11







xg

xg

xxg

x

x

x

21

2

2

2

1 3)( xxxxf x

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

g2 = 0 

g3 = 0 

f = -10 

f = -3 

0.0 
t 



A 

B 

-1 

 (0,0)

(0, )jt x

 (0, )jt

1.0 0.5 

Point to be found by the 

Descent Condition 

The step size obtained by Descent Condition is 

different from the step size obtained by Golden 

section search method. 

Point to be found by the 

Golden section search 

method 

Since the improved design points obtained by two 

method are different, the number of iteration of 

defining the QP problem is changed. 

Initial point to be found by the 

Descent Condition 

Initial point to be found by 

the Golden section search 

method If we use the Golden section search method in the 

right example, 

- The number of iteration of the one dimensional search in the 

first iteration of CSD is 62. 
- By defining the QP problem two times, we find the optimal 

design point. 

  + The step size obtained by one dimensional search direction is exact 

size respectively. 

If we use the Descent condition in the right example, 

- The number of iteration of the one dimensional search in the 

first iteration of CSD is 1. 

- Since the step size obtained by one dimensional search 

direction is not exact size, the QP problem is defined in 20 times 

to find the optimal solution 

Use of the Descent Condition for SQP Instead of the Golden Section Search Method (4) 
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Comparison between the Golden Section Search Method and Descent Condition Method (1) 

1 2 3 4 

1 

2 

3 

4 

x1 

x2 

A 

B 

C 

g2 = 0 

g3 = 0 

g1 = x1
2 + x2

2 - 6.0 = 0 

)3,3(* x

x(0) = (1, 1) 

f = -25 

f = -20 

f = -10 

f = -3 

0)(

0)(

00.1
6

1

6

1
)(

13

12

2

2

2

11







xg

xg

xxg

x

x

x

Minimize 

Subject to 

21

2

2

2

1 3)( xxxxf x

Optimal Solution: 

3)(),3,3( **  xx f

[참고] 황금 분할법과 Descent Condition 방법의 비교 (1) 
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0)(

0)(

00.1
6

1

6

1
)(

13

12

2

2

2

11







xg

xg

xxg

x

x

x
Minimize: Subject to: 21

2

2

2

1 3)( xxxxf x

( 3,  3),   ( ) 3f  x xSolution: 

Initial vale Method 

Iteration of 

defining the 

QP problem 

Iteration of one 

dimensional 

search method  

Local Optimum 

Point 

Optimum 

Value 

(1, 1) 

Descent 

Condition 

r = 0.0 19 19 (1.732, 1.732) -3.0 

r = 0.1 19 19 (1.732, 1.732) -3.0 

r = 0.5 19 19 (1.732, 1.732) -3.0 

r = 0.9 19 19 (1.732, 1.732) -3.0 

Golden section search method 1 62 (1.732, 1.732) -3.0 

(0.1, 0.1) 

Descent 

Condition 

r = 0.0 35 85 (1.732, 1.732) -3.0 

r = 0.1 36 52 (1.732, 1.732) -3.0 

r = 0.5 29 44 (1.732, 1.732) -3.0 

r = 0.9 44 124 (1.732, 1.732) -3.0 

Golden section search method 1 38 (1.732, 1.732) -3.0 

(1.5, 1.5) 

Descent 

Condition 

r = 0.0 18 18 (1.732, 1.732) -3.0 

r = 0.1 18 18 (1.732, 1.732) -3.0 

r = 0.5 18 18 (1.732, 1.732) -3.0 

r = 0.9 18 18 (1.732, 1.732) -3.0 

Golden section search method 2 68 (1.732, 1.732) -3.0 

Comparison between the Golden Section Search Method and Descent Condition Method (1) 
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Minimize: 
2

221

2

12121 22),( xxxxxxxxf 

Solution:  1.0,  1.5 ,   ( ) 1.25f   x x

Initial vale Method 

Iteration of 

defining the 

QP problem 

Iteration of one 

dimensional 

search method  

Local Optimum 

Point 

Optimum 

Value 

(0, 0) 

Descent 

Condition 

r = 0.0 39 59 (-1.0, 1.5) -1.25 

r = 0.1 38 58 (-1.0, 1.5) -1.25 

r = 0.5 41 67 (-1.0, 1.5) -1.25 

r = 0.9 60 127 (-1.0, 1.5) -1.25 

Golden section search method 17 329 (-1.0, 1.5) -1.25 

(1, 1) 

Descent 

Condition 

r = 0.0 40 63 (-1.0, 1.5) -1.25 

r = 0.1 40 63 (-1.0, 1.5) -1.25 

r = 0.5 40 66 (-1.0, 1.5) -1.25 

r = 0.9 72 194 (-1.0, 1.5) -1.25 

Golden section search method 17 282 (-1.0, 1.5) -1.25 

(-1, 2) 

Descent 

Condition 

r = 0.0 35 55 (-1.0, 1.5) -1.25 

r = 0.1 35 55 (-1.0, 1.5) -1.25 

r = 0.5 37 61 (-1.0, 1.5) -1.25 

r = 0.9 66 177 (-1.0, 1.5) -1.25 

Golden section search method 18 299 (-1.0, 1.5) -1.25 

Comparison between the Golden Section Search Method and Descent Condition Method (2) 
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2 2

1 2 1 2( , ) 25 ( 5) ( 5)f x x x x       

Subject to 

10),(

0),(

10),(

0),(

0432),(

2215

2214

1213

1212

2

21211











xxxg

xxxg

xxxg

xxxg

xxxxg

Solution 

815.4),(,808.3,374.4
*

2

*

1

*

2

*

1  xxfxx

Minimize 

Comparison between the Golden Section Search Method and Descent Condition Method (3) 
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Minimize: Subject to: 

Solution: 

2 2

1 2 1 2( , ) 25 ( 5) ( 5)f x x x x       

10),(

0),(

10),(

0),(

0432),(

2215

2214

1213

1212

2

21211











xxxg

xxxg

xxxg

xxxg

xxxxg

   4.374,  3.808 ,   4.815f  x x

Initial vale Method 

Iteration of 

defining the 

QP problem 

Iteration of one 

dimensional 

search method  

Local Optimum 

Point 

Optimum 

Value 

(0, 0) 

Descent 

Condition 

r = 0.0 22 23 (4.374, 3.808) -23.188 

r = 0.1 22 23 (4.374, 3.808) -23.188 

r = 0.5 22 23 (4.374, 3.808) -23.188 

r = 0.9 22 24 (4.374, 3.808) -23.188 

Golden section search method 590 13,509 (4.374, 3.808) -23.188 

(7, 1) 

Descent 

Condition 

r = 0.0 15 22 (4.374, 3.808) -23.188 

r = 0.1 15 22 (4.374, 3.808) -23.188 

r = 0.5 15 22 (4.374, 3.808) -23.188 

r = 0.9 24 45 (4.374, 3.808) -23.188 

Golden section search method 1143 26,804 (4.374, 3.808) -23.188 

(-3, -10) 

Descent 

Condition 

r = 0.0 19 35 (4.374, 3.808) -23.188 

r = 0.1 19 35 (4.374, 3.808) -23.188 

r = 0.5 19 35 (4.374, 3.808) -23.188 

r = 0.9 28 61 (4.374, 3.808) -23.188 

Golden section search method 884 20,005 (4.374, 3.808) -23.188 

Comparison between the Golden Section Search Method and Descent Condition Method (3) 
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 Optimization problem having two unknown variables and 

two inequality constraints 

10242),( 211

2

2

2

121  xxxxxxxfMinimize 

Find )/1(),/( 21 BCxTBx 

Subject to 

03/5),(

03),(

2212

1211





xxxg

xxxg

10 5 0 5 10

4

2

0

2

4

f(x1, x2) 

x2 

x1 

x1 

x2 
Contour line(f = const.) of objective function 

3 

5/3 

A: True solution 

x1
* = 3.0, x2

* = 1.5, f(x1
*, x2

*) = 2.5 

Feasible region 

A 
g2=5/3 

g1=3 

Comparison between the Golden Section Search Method and Descent Condition Method (4) 
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10242),( 211

2

2

2

121  xxxxxxxf

03/5),(

03),(

2212

1211





xxxg

xxxgMinimize: Subject to: 

Solution:    3.0,  1.5 ,   2.5f x x

Initial vale Method 

Iteration of 

defining the 

QP problem 

Iteration of one 

dimensional 

search method  

Local Optimum 

Point 

Optimum 

Value 

(0, 0) 

Descent 

Condition 

r = 0.0 22 24 (3.0, 1.5) 2.5 

r = 0.1 22 24 (3.0, 1.5) 2.5 

r = 0.5 22 26 (3.0, 1.5) 2.5 

r = 0.9 24 33 (3.0, 1.5) 2.5 

Golden section search method 13 203 (3.0, 1.5) 2.5 

(2, 1) 

Descent 

Condition 

r = 0.0 19 20 (3.0, 1.5) 2.5 

r = 0.1 19 20 (3.0, 1.5) 2.5 

r = 0.5 19 20 (3.0, 1.5) 2.5 

r = 0.9 19 20 (3.0, 1.5) 2.5 

Golden section search method 4 89 (3.0, 1.5) 2.5 

(-3, -5) 

Descent 

Condition 

r = 0.0 26 52 (3.0, 1.5) 2.5 

r = 0.1 25 28 (3.0, 1.5) 2.5 

r = 0.5 25 28 (3.0, 1.5) 2.5 

r = 0.9 25 30 (3.0, 1.5) 2.5 

Golden section search method 9 255 (3.0, 1.5) 2.5 

Comparison between the Golden Section Search Method and Descent Condition Method (4) 
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2
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2
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2

2121

xxxxxxxx

xxxxxxxxxxf





02),( ,02),(

,02),( ,02),(

22141213

22121211





xxxgxxxg

xxxgxxxg
Subject to 

Minimize 

Goldstein-Price Function 

A : Global Minimum 

B : Local Minimum 

C : Local Minimum 

D : Local Minimum 

x1
* = 0.0, x2

* = -1.0, f(x1
*, x2

*) = 3.0 

x1
* = -0.6, x2

* = -0.4, f(x1
*, x2

*) = 30.0 

x1
* = 1.2, x2

* = 0.8, f(x1
*, x2

*) = 840.0 

x1
* = 1.8, x2

* = 0.2, f(x1
*, x2

*) = 84.0 -2 -1 0 1 2

-2

-1

0

1

2

x1 

x2 

A 

B 

C 

D 

Comparison between the Golden Section Search Method and Descent Condition Method (5) 
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Minimize: Subject to: 
2

1 2 1 2

2 2

1 1 2 1 2 2

2

1 2

2 2

1 1 2 1 2 2

( , ) {1 ( 1)

(19 14 3 14 6 3 )}

{30 (2 3 )

(18 32 12 48 36 27 )}

f x x x x

x x x x x x

x x

x x x x x x

   

     

  

     

02),( ,02),(

,02),( ,02),(

22141213

22121211





xxxgxxxg

xxxgxxxg

Initial vale Method 

Iteration of 

defining the 

QP problem 

Iteration of one 

dimensional 

search method  

Local Optimum 

Point 

Optimum 

Value 

(0, 0) 

Descent 

Condition 

r = 0.0 30 302 (-0.6, -0.4) 30.0 

r = 0.1 26 258 (-0.6, -0.4) 30.0 

r = 0.5 21 208 (-0.6, -0.4) 30.0 

r = 0.9 62 739 (-0.6, -0.4) 30.0 

Golden section search method 15 467 (-0.6, -0.4) 30.0 

(2, 3) 

Descent 

Condition 

r = 0.0 77 605 (0.0, -1.0) 3.0 

r = 0.1 31 194 (0.0, -1.0) 3.0 

r = 0.5 28 172 (0.0, -1.0) 3.0 

r = 0.9 56 523 (0.0, -1.0) 3.0 

Golden section search method 13 417 (0.0, -1.0) 3.0 

(-5, -5) 

Descent 

Condition 

r = 0.0 70 545 (0.0, -1.0) 3.0 

r = 0.1 24 135 (0.0, -1.0) 3.0 

r = 0.5 24 136 (0.0, -1.0) 3.0 

r = 0.9 51 459 (0.0, -1.0) 3.0 

Golden section search method 17 497 (0.0, -1.0) 3.0 

In this example, since there are some local minimum design points, the optimal solution to be obtained is changed 

depending on the initial design point. So, the calculating the optimal solutions by assuming the initial design point in many 

times and comparing the results are needed. 

Comparison between the Golden Section Search Method and Descent Condition Method (5) 
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012.5),(

012.5),(

012.5),(

012.5),(

2214

1213

2212

1211









xxxg

xxxg

xxxg

xxxg

0.0),(,0.0,0.0
*

2

*

1

*

2

*

1  xxfxx

Subject to 

Minimize 

Solution 

Comparison between the Golden Section Search Method and Descent Condition Method (6) 

)2cos(10)2cos(1020),( 2

2

21

2

121 xxxxxxf  

Rastrigin’s Function 
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2.5

0

2.5

5
5

2.5

0

2.5

5

0

20

40

60

80

5

2.5

0

2.5

5

x2 

f 

A : Global Optimum 

  x1 = x2 = 0.0, f = 0.0 A 

x1 

4 2 0 2 4

4

2

0

2

4

x2 

A 

Global and Local minimum point of the Rastrigins’s Function 

Comparison between the Golden Section Search Method and Descent Condition Method (6) 
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Initial vale Method 

Iteration of 

defining the 

QP problem 

Iteration of one 

dimensional 

search method  

Local Optimum 

Point 

Optimum 

Value 

(0.1, 0.1) 

Descent 

Condition 

r = 0.0 18 147 (0.0, 0.0) 0.0 

r = 0.1 18 147 (0.0, 0.0) 0.0 

r = 0.5 9 82 (0.0, 0.0) 0.0 

r = 0.9 39 427 (0.0, 0.0) 0.0 

Golden section search method 1 47 (0.0, 0.0) 0.0 

(2.1, 2.1) 

Descent 

Condition 

r = 0.0 16 134 (1.990, 1.990) 7.960 

r = 0.1 16 134 (1.990, 1.990) 7.960 

r = 0.5 7 69 (1.990, 1.990) 7.960 

r = 0.9 32 358 (1.990, 1.990) 7.960 

Golden section search method 1 45 (1.990, 1.990) 7.960 

(-2.1, -3) 

Descent 

Condition 

r = 0.0 18 144 (-1.990, -2.985) 12.934 

r = 0.1 18 144 (-1.990, -2.985) 12.934 

r = 0.5 9 82 (-1.990, -2.985) 12.934 

r = 0.9 36 395 (-1.990, -2.985) 12.934 

Golden section search method 7 229 (-1.990, -2.985) 12.934 

Minimize: Subject to: 

012.5),(

012.5),(

012.5),(

012.5),(

2214

1213

2212

1211









xxxg

xxxg

xxxg

xxxg
2

1 2 1

1

2

2 2

( , ) 20

10cos(2 )

10cos(2 )

f x x x

x

x x





 

 

  

In this example, since there are some local minimum design points, the optimal solution to be obtained is changed 

depending on the initial design point. So, the calculating the optimal solutions by assuming the initial design point in many 

times and comparing the results are needed. 

Comparison between the Golden Section Search Method and Descent Condition Method (6) 
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Comparison between the Golden Section Search Method and Descent Condition Method 

 Comparison between the Golden Section Search Method 
and Descent Condition Method 
 When we use the one dimensional search method, we have to 

calculate the value of the objective function and constraints 
repetitively. 

 If it takes much time to calculate the value of the objective 
function and constraints, the Descent condition method is more 
useful.  

Step of calculation 
Descent Condition 

method 

Golden Section 

Search method 

Iteration number of defining 

the QP problem 
Many Little 

Iteration number of one 

dimensional search method 
Little Many 
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Computer Aided Ship Design 
 

Part I. Optimization Method 
Ch.8 Determination of the Optimum Main Dimensions of 

a Ship by using an Optimization Method 

September, 2011 

Prof. Kyu-Yeul Lee 
 

Department of Naval Architecture and Ocean Engineering, 
 Seoul National University of College of Engineering 

Computer Aided Ship Design Lecture Note 
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Ch.8 Determination of the Optimum 
Main Dimensions of a Ship by using 

an Optimization Method 
 

8.1 Owner’s Requirements 

- Ch.7 Determination of principal particulars of ship using optimization method 
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8.1 Owner’s Requirements 

 Owner’s Requirements  
 

 Ship’s Type 
 Deadweight(DWT) 

 
 Cargo Hold Capacity(VCH) 

 Cargo Capacity: Cargo Hold Volume / Containers in Hold & on Deck / Car Deck Area. 
 Water Ballast Capacity. 

 

 Service Speed (Vs) 
 Service Speed at Draft with Sea Margin, Engine Power & RPM. 

 
 Dimensional Limitations : Panama canal, Suez canal, Strait of Malacca, St. Lawrence Seaway, 

Port limitations. 
 

 Maximum Draft(Tmax) 
 

 Daily Fuel Oil Consumption(DFOC) : Related with ship’s economy. 
 

 Special Requirements 
 Ice Class, Air Draft, Bow/Stern Thruster, Special Rudder, Twin Skeg. 

 
 Delivery Day 

 Delivery day, with (   )$ delay penalty per day. 
 Abt. 21 months from contract. 

 
 The Price of a ship 

 Material & Equipment Cost + Construction Cost + Additional Cost + Margin. 
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Ch.8 Determination of the Optimum 
Main Dimensions of a Ship by using 

an Optimization Method 
 

8.2 Design Model for the 
Determination of the Optimum Main 

Dimensions(L,B,D,T,CB) 

- Ch.7 Determination of principal particulars of ship using optimization method 

This section presents the summary of the design Model for the 
Determination of the Optimum Main Dimensions. For the detailed 
description of the design model, please refer to “OCW, 2012 
Innovative Ship Design” 
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Design Model for the Determination of the Optimum Main Dimensions(L,B,D,T,CB) 

 

1.6

2/3 3

( , , , )

( )

( ) (2.3)

d B sw given B

given s o

power d B

L B T C C DWT LWT L B D C

DWT C L B D C L B

C L B T C V

      

      

     

Physical constraint 

Find(Design variables) Given(Owner’s requirement) 
_ max, , ( ),H req sDWT V T T V

length deadweight block  

coefficient 

breadth depth ship 

speed 

Required cargo  

hold capacity 

Scantling 

Draft 

(maximum) 

Economical constraints(Owner’s requirements) 

_ (3.1)H req HV C L B D   

→ Freeboard regulation(1966 ICLL) - Inequality constraint 

(4)s FBD T C D  

Objective Function(Criteria to determine the proper main dimensions) 

1.6 2/3 3 ( ) ( )PS s PO o PM power d BBuilding Cost C C L B D C C L B C C L B T C V              

→ Hydrostatic equilibrium(Weight equation) – Equality constraint 

→ Required cargo hold capacity(Volume equation) - Equality constraint 
- DFOC(Daily Fuel Oil Consumption) 
  : It is related with the resistance and propulsion. 

- Delivery date 
  : It is related with the shipbuilding process. 

Regulatory constraint 

dT
design 

draft 

, , , BL B D C
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Computer Aided Ship Design 
 

Part I. Optimization Method 
Ch.9 Determination of Optimal Operating Conditions for 

the Liquefaction Cycle of the LNG FPSO 

September, 2011 

Prof. Kyu-Yeul Lee 
 

Department of Naval Architecture and Ocean Engineering, 
 Seoul National University of College of Engineering 

Computer Aided Ship Design Lecture Note 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

399 

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee  

N
a
v
a
l 
A

r
c
h

it
e
c
tu

r
e
 &

 O
c
e
a
n

 E
n

g
in

e
e
r
in

g
 

SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee  

 
Ch.9 Determination of Optimal Operating 
Conditions for the Liquefaction Cycle of 

the LNG FPSO 
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Introduction 

9.1. WHAT IS THE LIQUEFACTION CYCLE OF A 
LNG FPSO? 
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1. What is the Liquefaction Cycle of a LNG FPSO? 

  Concept of a LNG FPSO(Floating Production Storage Offloading) 

Production of the LNG by onshore facility 

 The LNG FPSO is a floating vessel having the production facility, storage tanks, offloading system 
for the LNG, and turret system. 

Production of the LNG on the LNG FPSO 

Natural gas on the offshore 
production site is transported 
by the pipe line to the onshore 
LNG plant where the NG is 
liquefied to the LNG. 
 

The natural gas is liquefied 
direct on the LNG FPSO. 
 Onshore LNG plant and 
transport pipeline are not 
needed  

화살표 좁게 하고, 문장수정, 글 위치 아래로 
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Shell, the world’s largest oil company, 

is now ready to start construction of 

what will be the world’s first LNG 

FPSO, in a ship yard, Samsung heavy 

industry, in South Korea. 

1) MTPA: Million Ton per Annual 

LNG FPSO cools down the 

temperature of the natural gas(NG) 

from 27°C to -162°C  

to shrink in volume by 600 times. 

The World’s First LNG FPSO 
Reference) [Article]Yonhapnews, SHELL DECIDES TO MOVE FORWARD WITH 
GROUNDBREAKING FLOATING LNG, 2011. 5. 20 

The liquefaction process system 
for LNG is most important system 
of the LNG FPSO. 

1. What is the Liquefaction Cycle of the LNG FPSO? 

[Article] Shell decides to move forward with groundbreaking LNG FPSO 
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1. What is a LNG(Liquefied Natural Gas) 
 FPSO(Floating Production Storage Off-loading) ? 

  Configuration of a LNG FPSO 

Turret 
(mooring) 

Flare Tower 

Living Quarter 

LNG FPSO 

Process system 
70% of Topside 

Hull 
20% of LNG FPSO 

Utility system 
30% of Topside 

Separation process 
20% of Process system 

Topside 
70% of LNG 

FPSO 

Pretreatment Process 
10% of Process system 

Liquefaction Process 
55% of Process system 

(27% of LNG FPSO) 

Turret 
10% of LNG 

FPSO 

Fractionation Process 
15% of Process system 

Condensate 

LPG 

LNG 

LNG 

LNG 

LPG 
Separation process system 

(separates water, condensate(liquid) and gas 
components(NGL+NG) using the difference of density) 

Pretreatment process system 
(Removes the impurities such as CO2, H2S, 

water and mercury ) 

Fractionation process system 
(Separates the NGL into the ethane, propane and 

butane by compressing the NGL) 

Liquefaction process system 
(Separates the gas components into the NGL 

and natural gas(NG) and liquefies NG) 

Utility system 
(Gas turbine, etc.) 

 Production: LNG(3.6MTPA),  

*MTPA: million ton per annual 
Reference) [Article]Yonhapnews, SHELL DECIDES TO MOVE FORWARD WITH GROUNDBREAKING FLOATING LNG, 2011. 5. 20 

(Numbers under the 
parts mean the cost 
distribution) 

• NG(Natural Gas): Main component is methane(CH4). 
• LPG(Liquefied Petroleum Gas): Main components are 

propane(C3H8) and butane(C4H10). 
• NGL(Natural Gas Liquids): Main components are ethane(C2H6), 

propane(C3H8) and butane(C4H10). It exists in the gas phase at 1 
atm and 20°C. That is, NGL = LPG + ethane(C2H6) 

• Condensate: Main components are Pentane(C5H12) and  
Hexane(C6H14). It exists in the liquid phase at 1 atm and 20°C, so 
called oil. 

For the compactness of the topside 
process systems, the pretreatment 
and liquefaction process systems are 
arranged to cross each other. 

 The liquefaction process system for LNG is most important. 

1. 교수님이 직접 수정한 자료 
 

2. 먼저 LNG Liquefaction Cycle에 대해 
설명하고 있음 
 

3. 다음으로 Optimal Synthesis 가 나와
야 함 
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Condensate 

LPG 

LNG 

LNG 

LNG 

LPG 

1-1. Slug Catcher: Stabilizing Slug Flow from gas well 

1-2. Gas/Liquid Separator: Separating water, condensate(liquid) and gas components(NGL+NG)  
                                   using the difference of density 

1-3. Stabilizer: Since a part of gas components is not separated from the condensate completely in the 
Gas/Liquid separator, separating the gas components from the condensate again, returning it to the gas 
flow and storing the left condensate in the condensate tank 

1. Separation process system 

(500~1,000m) 

Gas Well 

1. What is the Liquefaction Cycle of the LNG FPSO? 

  Topside Process Systems of LNG FPSO (1/3) 

1-2. Gas/Liquid 

Separator 

2. Pretreatment 

process system 

Gas 

(C1~C4) 

1-1. Slug Catcher 

1. Separation process  

system 

Well 

Separation process system 

Pretreatment process system 

C1~C6 

1-3. Stabilizer 

Condensate Tank 

Condensate(C5~C6) 

Gas(C1~C4) 

: condensate(C5~C6) 

: NGL + NG 

: condensate + NGL+ NG 

• NG(Natural Gas): Main component is methane(CH4). 
• LPG(Liquefied Petroleum Gas): Main components are 

propane(C3H8) and butane(C4H10). 
• NGL(Natural Gas Liquids): Main components are ethane(C2H6), 

propane(C3H8) and butane(C4H10). It exists in the gas phase at 1 
atm and 20°C. That is, NGL = LPG + ethane(C2H6) 

• Condensate: Main components are Pentane(C5H12) and  
Hexane(C6H14). It exists in the liquid phase at 1 atm and 20°C, so 
called oil. 

 For the compactness of the topside process 
systems, the pretreatment process system and 
liquefaction process system are arranged to 
cross each other. 
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Condensate 

LPG 

LNG 

LNG 

LNG 

LPG 

(500~1,000m) 

Separation process system 

Pretreatment 

process system 

2-1. Acid Gas Removal System: Removing the acid gases(H2S, CO2) which are corrosive to 
materials and toxic to human being 

2-2. Dehydrate System: Removing the water which can forms the ice 

2-3. Mercury Removal System: Removing the mercury which can damage the  
  equipment and pipes 

2. Pretreatment process system 

2-4. CO2 Compression System: Re-injecting the CO2 removed from the gas  
         into the CO2 well 

1. What is the Liquefaction Cycle of the LNG FPSO? 

  Topside Process Systems of LNG FPSO (2/3) 

CO2Well 

Liquefaction process system 

2-1. Acid Gas 

Removal System 

1. Separation process  

system 

Well 

2-2. Dehydrate 

System 

2-3. Mercury Removal 
System 

2. Pretreatment process 

system  

2-4. CO2 
Compression 

System 

CO2 Well 

*CO2 well: To prevent the global warming, CO2 is stored in the CO2 well   
                which is separated from the gas well. 

: CO2 

: condensate(C5~C6) 

: NGL + NG 

: condensate + NGL+ NG 

Gas Well 

• NG(Natural Gas): Main component is methane(CH4). 
• LPG(Liquefied Petroleum Gas): Main components are 

propane(C3H8) and butane(C4H10). 
• NGL(Natural Gas Liquids): Main components are ethane(C2H6), 

propane(C3H8) and butane(C4H10). It exists in the gas phase at 1 
atm and 20°C. That is, NGL = LPG + ethane(C2H6) 

• Condensate: Main components are Pentane(C5H12) and  
Hexane(C6H14). It exists in the liquid phase at 1 atm and 20°C, so 
called oil. 
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Condensate 

LPG 

LNG 

LNG 

LNG 

LPG 

(500~1,000m) 

Separation process system 

Pretreatment 

process system 

Liquefaction process system 

3. Fractionation process system(분류) 

 4. Liquefaction process system 
4-1. Natural Gas Liquids(NGL) Extraction System: Separating the NGL from the gas 
components(NGL+NG) in the pretreatment process system by precooling 

3.1 Ethane Distillation System: Separating NGL into the ethane and LPG and using it as the refrigerant in the 
liquefaction system. Some of LPG is stored in the LPG tank and the rest goes to Propane Distillation system  

3.2 Propane Distillation System: Separating LPG into the propane(C3) and butane(C4) by compressing them which 
are used as the refrigerant in the liquefaction system  

4-2. Main Liquefaction System : Liquefying the natural gas by using the refrigerant 

4-3. End Flash system: Reducing the pressure of the LNG(-161.5 C°, 60 bar) to the 
atmospheric pressure (1~2 bar)  

: LPG(C3~C4) 

: NGL(C2~C4) 

: LNG(C1) 

1. What is the Liquefaction Cycle of the LNG FPSO? 

  Topside Process Systems of LNG FPSO (3/3) 

*C2(ethane) tank, C3(propane) tank and C4(butane) 
tank: Storage tanks of the refrigerant used in the 
liquefaction process 

4-1 

Fractionation process system 

1. Separation process  

system 

Well 

2. Pretreatment process 

system  

4. Liquefaction process system 

4-1. Natural Gas Liquids(NGL) 
Extraction System 

LNG Tank 
(C1) 

4-2. Main Liquefaction 
System 

4-3. End Flash system 

3. Fractionation  

process system 

 

 

 

 

 

CO2Well 

Gas Well 

: CO2 

: condensate(C5~C6) 

: NGL + NG 

: condensate + NGL+ NG 

3-2 

3-1 

LPG Tank 
(C2~C4) 

3.1 Ethane 
Distillation System 

C2 Tanks 
(C2) 

3.2 Propane 
Distillation System C3 Tanks 

(C3) 

C4 Tanks (C4) 

• NG(Natural Gas): Main component is methane(CH4). 
• LPG(Liquefied Petroleum Gas): Main components are 

propane(C3H8) and butane(C4H10). 
• NGL(Natural Gas Liquids): Main components are ethane(C2H6), 

propane(C3H8) and butane(C4H10). It exists in the gas phase at 1 
atm and 20°C. That is, NGL = LPG + ethane(C2H6) 

• Condensate: Main components are Pentane(C5H12) and  
Hexane(C6H14). It exists in the liquid phase at 1 atm and 20°C, so 
called oil. 

Components Natural gas(mol %) 

Nitrogen 6.0 

Methane 83.2 

Ethane 7.1 

Propane 2.25 

i-Butane 0.40 

n-Butane 0.60 

i-Pentane 0.12 

n-Pentane 0.33 

• Natural gas composition: 

: NG composition for maximizing the 
amount of methane and satisfying the 
required the heating value of NG 
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1. What is the Liquefaction Cycle of the LNG FPSO? 

  Major Considerations for the Selection of the Liquefaction Cycle for Offshore 
Application 

+ 
<Exploration and Production 

of the Natural Gas> 
<Liquefaction process system> 

<LNG FPSO> 

 Reliability 
 All major oil companies required that liquefaction cycles shall have reliability based on 

the results from previous onshore projects. 

 Dual Mixed Refrigerant(DMR) cycle was verified from the SAKHALIN onshore 
liquefaction cycle in 2005. 
 

 
 

 SAFETY 
 Safety studies : HAZard and Operability(HAZOP), HAZard Identification (HAZID), Failure 

Modes and Effects Analysis(FMEA), Fault Tree Analysis(FTA), Event Tree Analysis (ETA), 
CFD Exhausts Dispersion Study – Helideck Study Report, Dropped Object Study , 
Explosion Risk Analysis, Failure, etc. 
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1. What is the Liquefaction Cycle of the LNG FPSO? 

  Major Considerations for the Selection of the Liquefaction Cycle for Offshore 
Application 

+ 
<Exploration and Production 

of the Natural Gas> 
<Liquefaction process system> 

<LNG FPSO> 

 Ship Motion Effect 
 If the  LNG FPSO is inclined more than 1.5 degrees, the capacity of LNG production can be reduced by 

10%. 

 Therefore, the liquefaction cycle in the LNG FPSO has to be designed by considering compactness, 
mechanical damping devices, internal turret system, and dynamic positioning system. 
 

 COMPACTNESS 
 Available area for the liquefaction cycle of offshore application is smaller than that of onshore plant. 

 By determining the optimal operating conditions and doing the optimal synthesis of the liquefaction 
cycle, the required power for the compressors can be reduced which will result in the reduction of the 
compressor size and the flow rate of the refrigerant. Thus, the overall sizes of the liquefaction cycle 
including the pipe diameter, equipment and instrument can be reduced.  

 Therefore, the compactness can be achieved by optimization studies such as determination of the 
optimal operating condition or optimal synthesis of the liquefaction cycle. 
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9.2. PROCESS OF THE REFRIGERATOR 
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Introduction to the Cooling System for Refrigerator (1/2) 

 Refrigeration system process 
- ①② : The compressor, usually driven by an electric motor brings the refrigerant to a high pressure, which raises its temperature as well. 
- ②③ : The hot refrigerant passes through the condenser corresponded with the sea water cooler in the liquefaction cycle, an array of thin 
tubes that give off heat from the refrigerant to the atmosphere. The condenser is on the back of most house hold refrigerators. As it cools, the 
refrigerant becomes a liquid under high pressure. 
- ③④ : The liquid refrigerant goes into the expansion valve, from which it emerges at a lower pressure and temperature. 
- ④① : In the evaporator corresponded with the heat exchanger in the liquefaction cycle, the cool liquid refrigerant absorbs heat from the 
storage chamber and vaporizes. Along in the evaporator, the refrigerant vapor absorbs more heat and becomes warmer. The warm vapor then 
goes back to the compressor to start another cycle 

 Refrigerator :heat engine that operates backward to extract heat from a low-temperature reservoir and transfer it to a high-
temperature reservoir. Because the natural tendency of heat is to flow a hot region to a cold one, energy must be provided to a 
refrigerator to reverse the flow, and this energy adds to the heat exhausted by the refrigerator. 

• Refrigerator 

 Refrigerant(the working substance in the refrigerator) 

- Boiling point near the room temperature at 
high pressure 

 Refrigerant 
-Boiling point below 0 ° C 
at low pressure 

1. 그림을 앞장의 Liquefaction cycle의 장비와 Matching이 되도록 그릴 것 
2. Liquefaction Cycle 경우 기본 원리가 Refrigerator과 같음을 언급할 것 
3. 본문의 문장 Reference 찾아서 적기(Mabe 샤옴씨리즈) 

1. 그림을 알아보기 쉽게 수정할 
것 

2. Process 순서에 맞추어 그림
에서도 애니메이션 될 수 있
게 수정 
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9.2. Process of the Refrigerator 

9.2.1 EQUATION OF STATE 
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Equation of State for an Ideal Gas 

Ideal gas state: The condition that  

1) the volume of the molecules is negligible compared with the  
total volume of the gas 

2) the force that binds the molecules to each other is zero. 

Equation of state for an ideal gas 

P v R T  
P : pressure 

v : specific volume(the volume that the molecules can 
move = the volume of the box) 

T : temperature 

R : gas constant 

Equation of state 
 : Any equation that relates the pressure(P), temperature(T) and 
specific volume(v) of a substance 

, ,P v T
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Cubic Equations of State for Liquids and Vapors 

Ideal gas state: The condition that  

1) the volume of the molecules is negligible compared with the  total 
volume of the gas 

2) the force that binds the molecules to each other is zero. , ,P v T

In case of the liquids and vapors, 

, ,P v T

P : pressure 

v : specific volume(the volume that the molecules can move  
= the volume of the box) 

T : temperature 

2) the force that binds the molecules to each 
other is not zero. 

H 

O 
H 

H 

O 
H 

H 

O 
H 

H 

O 
H 

H 

O 
H 

H 

O 
H 

H 

O 
H 

H 

O 
H 

H 

O 
H 

H 

O 
H 

H 

O 
H 

H 

O 
H 

 The specific volume(v) has to be decreased. 

1) the volume of the molecules is not negligible 
compared with the  total volume of the gas 

 The pressure(P) has to be modified. 
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Note: Summary of the History of the Cubic  
Equations of State for Liquids and Vapors 

 To improve the equation of state for the liquids and vapors, the equation of state for 
an ideal gas is modified by using the experiment and experience. 

*EoS: Equation of State 

Cubic equations of state 

( )
( )

( (1 2) ) ( (1 2) )

a T
P v b RT

v b v b

 
   

       
(5) 

 (5) Peng-Robinson EoS(1976) 

2 20.45724 ( / ; )
( ) PR c c

c

T T R T
a T

P

   


2
2 1/2

( / ; )

1 (0.37464 1.54226 0.26992 ) (1 ( / )

PR c

c

T T

T T

 

 



        
0.07780 c

c

R T
b

P

 


RTPv (1) 

 (1) Ideal gas EoS* 
(1802) 

( )
( )

( )

a T
P v b RT

v v b

 
   

  
(3) 

1/2 2 20.42748 ( / ) 0.08664
( ) ,c c c

c c

T T R T R T
a T b

P P

    
 

 (3) Redlich-Kwong EoS(1949) 

( )
( )

( )

a T
P v b RT

v v b

 
   

  
(4) 

 (4) Soave-Redlich-Kwong EoS(1972) 

2
( )

a
P v b RT

v

 
   

 
(2) 

 (2) van der Waals EoS(1873) 

2 224 1
,

64 8

c c

c c

R T R T
a b

P P

 
   

0.08664 c

c

R T
b

P

 


2
2 1/2

( / ; )

1 (0.480 1.574 0.176 ) (1 ( / )

SRK c

c

T T

T T

 

 



        

2 20.42748 ( / ; )
( ) SRK c c

c

T T R T
a T

P

   


T: temperature[ K] 

P: pressure{Pa] 

v: molar volume[m3/mol] 

TC: critical temperature[K] 

PC: critical pressure{Pa] 

ω: acentric factor 

R: gas constant(=8.314[m3Pa/(mol∙K)] 
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Note: History of the Cubic  
Equations of State for Liquids and Vapors(1)  

 To improve the equation of state for the liquids and vapors, the equation of state for 
an ideal gas is modified by using the experiment and experience. 

*EoS: Equation of State 

(1) Ideal gas equation  (2) van der Waals(vdW) Eos 

① Considering the attractive forces between molecules 
 : The pressure depends on both the frequency of collisions with the walls and the 
force of each collision. Because both the frequency and the force of the collisions are 
reduced by the attractive forces, the pressure(P) is reduced in proportion to the 
square of the concentration(a/v2, a is a positive constant characteristic of each gas). 

② Considering the volume of the molecules 
 : The volume that the molecules can move(molar volume, v) is decreased by the 
volume of the molecules(b) 

T: temperature[ K] 

P: pressure{Pa] 

v: molar volume[m3/mol] 

TC: critical temperature[K] 

PC: critical pressure{Pa] 

ω: acentric factor 

R: gas constant(=8.314[m3Pa/(mol∙K)] 

RTPv (1) 

 (1) Ideal gas EoS* 
(1802) 

2
( )

a
P v b RT

v

 
   

 
(2) 

 (2) van der Waals EoS(1873) 

2 224 1
,

64 8

c c

c c

R T R T
a b

P P

 
   
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Note: History of the Cubic  
Equations of State for Liquids and Vapors(2)  

 To improve the equation of state for the liquids and vapors, the equation of state for 
an ideal gas is modified by using the experiment and experience. 

*EoS: Equation of State 

(2) van der Waals(vdW) EoS  (3) Redlich-Kwong(RK) EoS 

① Modify the pressure reduction due to the attractive 
forces 
 : The fact that the pressure reduction depends on the 
temperature(T)(inverse proportional to the T1/2) and 
taking v(v+b) instead of v2 to calculate the pressure 
reduction is more accurate is proved by the experiment. 

T: temperature[ K] 

P: pressure{Pa] 

v: molar volume[m3/mol] 

TC: critical temperature[K] 

PC: critical pressure{Pa] 

ω: acentric factor 

R: gas constant(=8.314[m3Pa/(mol∙K)] 

RTPv (1) 

 (1) Ideal gas EoS* 
(1802) 

( )
( )

( )

a T
P v b RT

v v b

 
   

  
(3) 

1/2 2 20.42748 ( / ) 0.08664
( ) ,c c c

c c

T T R T R T
a T b

P P

    
 

 (3) Redlich-Kwong EoS(1949) 

2
( )

a
P v b RT

v

 
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 
(2) 

 (2) van der Waals EoS(1873) 

2 224 1
,
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c c
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Note: History of the Cubic  
Equations of State for Liquids and Vapors(3)  

 To improve the equation of state for the liquids and vapors, the equation of state for 
an ideal gas is modified by using the experiment and experience. 

*EoS: Equation of State 

( )
( )

( )

a T
P v b RT

v v b

 
   

  
(4) 

 (4) Soave-Redlich-Kwong EoS(1972) 

0.08664 c

c

R T
b

P

 


2
2 1/2

( / ; )

1 (0.480 1.574 0.176 ) (1 ( / )

SRK c

c

T T

T T

 

 



        

2 20.42748 ( / ; )
( ) SRK c c

c

T T R T
a T

P

   


(3) Redlich-Kwong(RK) EoS   (4) Soave-Redlich-Kwong EoS 

① Modify the pressure reduction due to the attractive 
forces 
 : The pressure reduction depending on the 
temperature(T) is modified by introducing the acentric 
factor(ω) for general fluid including the simple fluid. 

This equations are exact for the simple 
fluid such as argon and methane. 

<methane> 

 The force between the molecules 
is acting on the center of that. 

 The shape of the molecules is 
sphere 

RTPv (1) 

 (1) Ideal gas EoS* 
(1802) 

( )
( )

( )

a T
P v b RT

v v b

 
   

  
(3) 

1/2 2 20.42748 ( / ) 0.08664
( ) ,c c c

c c

T T R T R T
a T b

P P

    
 

 (3) Redlich-Kwong EoS(1949) 

2
( )

a
P v b RT

v

 
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 
(2) 

 (2) van der Waals EoS(1873) 

2 224 1
,

64 8

c c

c c

R T R T
a b

P P

 
   

T: temperature[ K] 

P: pressure{Pa] 

v: molar volume[m3/mol] 

TC: critical temperature[K] 

PC: critical pressure{Pa] 

ω: acentric factor 

R: gas constant(=8.314[m3Pa/(mol∙K)] 
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Note: History of the Cubic  
Equations of State for Liquids and Vapors(4)  

 To improve the equation of state for the liquids and vapors, the equation of state for 
an ideal gas is modified by using the experiment and experience. 

*EoS: Equation of State 

4) SRK EoS -> 5) PR EoS 
분자 간의 인력에 의한 압력의 감소량에서 부피 의존성인 
V(V+b)대신 V(V+b)+b(V-b)를 사용하면 실제 값에 보다 
접근함을 실험적으로 증명. 

(4) Soave-Redlich-Kwong EoS   (5) Peng-Robinson EoS 

① Modify the pressure reduction due to the attractive forces 
  : The pressure reduction depending on the molar volume(v) is 
modified by                                                 instead of v(v+b). ( (1 2) ) ( (1 2) )v b v b      
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 (5) Peng-Robinson EoS(1976) 
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 (3) Redlich-Kwong EoS(1949) 
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 (2) van der Waals EoS(1873) 

2 224 1
,

64 8

c c

c c

R T R T
a b

P P

 
   

0.08664 c

c

R T
b

P

 


2
2 1/2

( / ; )

1 (0.480 1.574 0.176 ) (1 ( / )

SRK c

c

T T

T T

 

 



        

2 20.42748 ( / ; )
( ) SRK c c

c

T T R T
a T

P

   


T: temperature[ K] 

P: pressure{Pa] 

v: molar volume[m3/mol] 

TC: critical temperature[K] 

PC: critical pressure{Pa] 

ω: acentric factor 

R: gas constant(=8.314[m3Pa/(mol∙K)] 
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Note: General Form of  
the Cubic Equations of State for Liquids and Vapors 

The van der Waals(vdW), Redlich-Kwong(RK), Soave-Redlich-Kwong(SRK)  and Peng-
Robinson(PR) equation of state are represented as the following cubic equations form. 

))((

)(

bvbv

Ta

bv

RT
P

 





,
)(

)(

22

c

cr

P

TRT
Ta




c

c

P

RT
b 

21 21

  25.02 1)176.0574.1480.0(1);( rrSPK TT  

  25.02 1)26992.054226.137464.0(1);( rrPR TT   /r cT T T

  RTbv
bvbv

Ta
P 












))((

)(



T: temperature[ K] 

P: pressure{Pa] 

v: molar volume[m3/mol] 

TC: critical temperature[K] 

PC: critical pressure{Pa] 

ω: acentric factor 

R: gas constant(=8.314[m3Pa/(mol∙K)] 
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Note: Cubic Equations of State for Liquids and Vapors 
- Compressible Factor for the Ideal Gas 

The compressible factor(Z): 

 
ig

P v P v
Z

R TP v

 
 



P : pressure[Pa] 

v : molar volume[m3/mol] 

T : temperature[K] 

R : gas constant(=8.314 [m3Pa/((mol·K)]) 

• If           ,          . So, the volume of the molecules is not negligible 
compared with the total volume of the gas and the force that binds the 
molecules to each other is not zero(Ideal gas state). 

 

0P  0v 

P v R T  

1Z 
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Note: Cubic Equations of State for Liquids and Vapors 
- Compressible Factor for the Liquids and Vapors Obtained by the Cubic Equations of State 

The compressible factor(Z): 

 
ig

P v P v
Z

R TP v

 
 



P : pressure[Pa] 

V : molar volume[m3/mol] 

T : temperature[K] 

R : gas constant(=8.314 [m3Pa/((mol·K)]) 

• By using the cubic equations of state for the liquids and vapors, we 
can obtain the compressible factor(Z) of the liquids and vapors. 

( )

( )( )

R T a T
P

v b v b v b 


 

    

( )

( )( )

P v v v a T

R T v b R T v b v b 


  

      

( )

( )( )

v v a T
Z

v b R T v b v b 
   

     

V

R T




,
P V

Z
R T





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<Inlet> 
Refrigerant 

<Outlet> 
Refrigerant 

4 4 4, ,P T v 1 1 1, ,P T v

Lq

[Given] 

20[ ]LQ kW

[Find] 

 Minimize m w

Operating Conditions [20]: 
 Pi, Ti, vi, Ts, vs, v4,l, v4,v, v_f, w, M, qL , qH (i=1,2,3,4) 

P: pressure [bar] 
T: temperature [K] 
v: specific volume [m3/kg] 
Ts: temperature of the refrigerant in the 
compressor at isentropic process [K] 
vs: specific volume of the refrigerant in the 
compressor at isentropic process [m3/kg] 
v_f: vapor fraction 
qH: specific heat transfer from the refrigerant 
to the atmosphere [kJ/kg] 
qL: specific heat transfer from the refrigerated 
space to the refrigerant [kJ/kg] 
 M: mass flow rate of the refrigerant [kg/s] 
   : heat transfer from the refrigerated space to 
the refrigerant [kW] 
 

LQ

Refrigerant: Ammonia 

Mathematical Model of the Refrigerator – Equations of state 

 

  
11 1

1

1 1 1

a TRT v b
v b

P P v b v b 


  

 

 

  
4,44

4,

4 4, 4,

l

l

l l

v ba TRT
v b

P P v b v b 


  

 

 

  
4,44

4,

4 4, 4,

v

v

v v

v ba TRT
v b

P P v b v b 


  

 

 

Equations of state: Any equation that relates the pressure(P),  

   temperature(T) and specific volume(V) of a substance. 
 
 
 
 
 
 
 
 
 
 
 

1. 자료작성순서: 
가정  에너지보존법칙  상태방정식 
2. Evaporator에 대한 Nomenclature로 수정
할 것 
3. 아래 내용 추가할 것 

s: specific entropy 

 
  2 2

r C

C

T R T
a T

P




C

C

RT
b

P
 

0.42748 for SRK equation 

R: gas constant (=8.314 Jmol-1K-1) 

Pc: critical pressure of the refrigerant 

Tc: critical temperature of the refrigerant 

0.08664

0

1

for SRK equation

for SRK equation

for SRK equation





 





4 4 4P v RT

1 1 1Pv RT

[Equation of state for an ideal gas] 

 

  

a TRT v b
v b

P P v b v b 


  

 

 To improve the equation of state for the liquids and 
vapors, the equation of state for an ideal gas is 
modified by using the experiment and experience. 

Example) Soave, Redlich, Kwong(SRK) equation 

1. Specific volume에 대한 삼차상태방정식을 풀
었을 때 가장 큰 근이 Vapor, 중간 근은 의미가 
없으며, 가장 작은 근이 Liquid를 의미함. 
2. 왜 그런지 책을 참조하여 그림으로 보여줄 것 
3. Ammonia에 대한 Tc, Pc 값을 보여줄 것 

Example) Ammonia:  
 ω = 0.253, Pc=112.80 (bar), Tc=405.7 (K) 
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9.2. Process of the Refrigerator 

9.2.2 COMPRESSION 
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2.2 Process of the Refrigerator  – Compression 

  Pressure(P)-Specific Volume(v) Diagram 

Process Temperature Pressure 

Compressor 12 Adiabatic  

compression ↑ ↑ 

Purpose, Assumption, Result 

P=10.17 bar 

P=1.34 bar 

v 

P 

① 

② 

Because of the adiabatic compression, the 
temperature of the refrigerant is increased 
form T1 to T2. 

Why is the temperature of the refrigerant  raised 
after the compressor? 

Assumption:  
 

 1. There is not sufficient time to transfer 
much heat from the refrigerant and 
the compressor is typically well 
insulated. “Adiabatic process” 

① 

③ ④ 

② 

1. P-v Diagram에서 T의 변화도 도시해줄 것 

Liquid 
Liquid 
and 

vapor 

Vapor 

: Isothermal process 

v 

P 

1

RT

at T=T

Pv 
2

RT

at T=T

Pv 

1 2T <T

 constant 1  

: Adiabatic compression 

ConstantPv 

* Adiabatic process: Process for which there is no heat transfer 
between system and it surroundings. 

Saturated liquid line Saturated vapor line 

Subcooled 
Liquid 
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P

v

1P

1v
2v

w

2P ConstantPv 

Enthalpy 
- Calculation 

Note: P-V Graph of the Adiabatic Process (1/3) 

• According to the first law for the closed system, 

u q w  

u w  

 1) In the adiabatic process,           . 

 2) In the first law, the sign of w acting 
toward the system is positive. 

0q 

1) If the state of the substance in the system is an ideal gas state,  

,ig ig ig

Vu u du C dT 
dw P dv 2) 

du dw 

ig

VC dT P dv  

1) Equation of state for ideal gas 
P v

P v R T T
R


    

v P
dT dP dv

R R
 

ig

V

v P
C dP dv P dv

R R

 
    

 

R(    : gas constant) 

u: specific internal energy 
q: heat transfer from the surrounding to 
the system 
w: work acting toward the system 
    : constant volume heat-capacity for 
ideal gas 
T: temperature 
P: pressure 
v: specific volume 

ig

VC
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Enthalpy 
- Calculation 

Note: P-V Graph of the Adiabatic Process (2/3) 

ig

V

v P
C dP dv P dv

R R

 
       
 

ig ig

V V

v P
C dP P dv C dv

R R
       

1
ig

ig V
V

Cv
C dP P dv

R R

 
       

 

1
ig ig

V VC C
v dP P dv

R R

   
        

   

1
ig ig

V VC CdP dv

R P R v

   
       

   

1
ig

V

dP R dv

P C v

 
    

 

1
ig

V

dP R dv

P C v

 
    

 
 

2 2

1 1

ln 1 ln
ig

V

P vR

P C v

 
   

 

1

2 2

1 1

ig
V

R

CP v

P v

 
  
 
  

  
 

If the      is the constant, 
ig

VC

1
ig

V

dP R dv

P C v

 
    

 
 

1. Terminology 모두 적기 
2. Vv로 수정할 것 

u: specific internal energy 
q: heat transfer from the surrounding to 
the system 
w: work acting toward the system 
    : constant volume heat-capacity for 
ideal gas 
T: temperature 
P: pressure 
v: specific volume 
R: gas constant 

ig

VC
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Enthalpy 
- Calculation 

Note: P-V Graph of the Adiabatic Process (3/3) 

1

2 2

1 1

ig
V

R

CP v

P v

 
  
 
  

  
 

1

2 1

1 2

ig
V

R

CP v

P v

 
 
 
  

  
 

1 1

2 2 1 1 constant
ig ig
V V

R R

C C
P v P v

   
    
   
      

P

v

1P

1v
2v

2P

=Constant

P v R T  

Cf) P-V Graph of the Isothermal Process 

(constant) 11
ig

V

R

C
 

 
 

 

Increase of the temperature 
(Adiabatic compression) 

Decrease of the temperature 
(Adiabatic expansion) 

1

Constant
ig
V

R

C
Pv

 
 

 
  

1

Constant
ig
V

R

C
Pv

 
 

 
  

ConstantPv 
(Isothermal process) 

① 

④ 

③ 

② ②’ 

P=10.9 
bar 

P=2 bar 

Saturate
d vapor 
line 

Critical 
state 

① 

④ ③ 

② 

u: specific internal energy 
q: heat transfer from the surrounding to 
the system 
w: work acting toward the system 
    : constant volume heat-capacity for 
ideal gas 
T: temperature 
P: pressure 
v: specific volume 
R: gas constant 

ig

VC
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Note: Specific Enthalpy(h)-(1/2) 

   h Internal energy of the flow Flow work

u P v

 

  

1. Definition: 

u: specific internal energy 
P: pressure 
v: specific volume 

Saturated liquid line 

Saturated vapor line 

Critical state 

P=10.17 bar 

P=1.34 bar 

h 

P 

P=Pc 
(Critical pressure) 

T=-20 °C T=40 °C T=Tc(Critical temperature) 

Liquid and Vapor 

Liquid 

Vapor 

Gas 

Supercritical fluid 

2. Pressure(P)-Specific Enthalpy(h) diagram 

* Vapor: Vapor can be condensed either by 
compression at constant temperature or by 
cooling at constant pressure. 
 

* Gas: The vapor phase of a substance is 
customarily called a gas when it is above the 
critical temperature. Gas cannot be condensed 
by compression at constant temperature. 
 

* Supercritical fluid: A single phase at and above 
the critical temperature and pressure 
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Note: Specific Enthalpy(h)-(2/2) 

3. Calculation of the specific enthalpy(h) for a pure substance 

IG Rh h h 

  2 3 4 5IG IGh h T a b T c T d T e T f T           
where 
    a, b, c, d, e and f: constants characteristic of the particular substance 
    T: temperature 

hig: Ideal gas value of the enthalpy 
hR: Residual enthalpy(correction of the ideal gas state values to the real gas values) 

 
 

1
, , ( 1) lnR R

da
T a

ZdT
h h P v T RT Z

b Z

 

   

 
          

   

bP

RT
 

c

c

RT
b

P
 

  2 2/ ,c c

c

T T R T
a

P

 


     3 2 21 0Z Z q Z q                         

Equation  

of state α(Tr, ω) σ ε Ω ψ 

SRK 1 0 0.08664 0.42748   
2

0.52( ; ) 1 (0.480 1.574 0.176 ) 1 /r CT T T        
 

a
q

bRT


where 
P: pressure 
v: specific volume  
Pc: critical pressure of the substance 
Tc: critical temperature of the substance 
Z: compressible factor 

The compressible factor(Z) is calculated by solving the following cubic equation of state reformulated for (Z). 

아래말 추가: 
Enthalpy의 정의는 u+PV이지만,  
U를 P, V, T로 계산하기어려움(식이 없음) 
Enthalpy를 P, v, T로 계산하기 위하여 정의, 실험 
및 equation of state를 사용하여 아래 식 유도 

( )

( )( )

v v a T
Z

v b R T v b v b 
  

     

 Many tables of thermodynamics properties does not give values for internal energy. 
To allow calculation of enthalpy from the pressure, specific volume and temperature, 
the following equation is derived by using the definition(h=u+Pv), equation of state 
and experiment. 

h u P v  
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- Mathematical Model of the Refrigerator - Calculation of Specific Enthalpy(h) 

• Calculation of the specific enthalpy(h) for a pure substance 

IG Rh h h 

  2 3 4 5IG IGh h T a b T c T d T e T f T           

where 
    a, b, c, d, e and f: constants characteristic of the particular substance 
    hig[J/g],  T: temperature[K] 

hIG: Ideal gas value of the specific enthalpy 
hR: Residual specific enthalpy(correction of the ideal gas state values to the real gas values) 

 
 

( )
( )

1
, , ( 1) lnR R

da T
T a T

ZdT
h h P v T RT Z

b Z

 

   

 
          

   

bP

RT
 

c

c

RT
b

P
  

  2 2,r c

c

T R T
a T

P

 


     3 2 21 0Z Z q Z q                         

α(Tr, ω) σ ε Ω ψ 

1 0 0.08664 0.42748   
2

0.52( ; ) 1 (0.480 1.574 0.176 ) 1r rT T        
 

a
q

bRT


where 

P[Pa] 
v[m3] 

T[K] 

The compressible factor(Z) is calculated by solving the following cubic equation of state reformulated for (Z). 

아래말 추가: 
Enthalpy의 정의는 u+PV이지만,  
U를 P, V, T로 계산하기어려움(식이 없음) 
Enthalpy를 P, v, T로 계산하기 위하여 정의, 실험 
및 equation of state를 사용하여 아래 식 유도 

( )

( )( )

v v a T
Z

v b R T v b v b 
  

     

 Many tables of thermodynamics properties does not give values for internal energy. To allow 
calculation of enthalpy from the pressure, specific volume and temperature, the following 
equation is derived by using the definition(h=u+Pv), equation of state and experiment. 

h u P v  

1. 출처 적을 것 
2. Where에서 SRK가 For example임을 적을 것 
3. SRK 방정식이 무엇인지 적을 것 
4. Tc, Pc, R값 적기 
5. da/dT값을 적기(예제참고) – 어떻게 계산하는건가? 
 RK 방정식을 사용할 수 있을 경우 쉽게 계산할 수 있음 Ammonia가 

RK 방정식으로 할 수 있는지 Check 
6. Ammonia에 대해서 값 모두 보여줄 것 

r

c

T
T

T


Reference: Smith, J.M., Introduction to Chemical Engineering Thermodynamics, 7th edition, McGraw-Hill, 2005, pp.199-253 

1) The values of parameters a, σ, ε, Ω, Ψ are depending on the type of the cubic equation of state. 
For example, the value of the parameters for the Soave-Redlich-Kwong(SRK) equation of state 
are given in the following table. 

2) The values of ω, critical pressure(Pc), 
and temperature(Tc) are depending on the 
substance.  

R: Gas constant (=8.314 J/(mol*K) 

   = 8.314m3Pa(mol*K)) 

Example) Ammonia:  
     a = -1.8514, b = 1.9937, c = -5.3266x10-4 

     d = 2.0615x10-6, e = -1.3386x10-9, 

     f = 3.0533x10-13 

Example) Ammonia:  
 ω = 0.253, Pc=112.80 (bar), Tc=405.7 (K) 

3) Since the unit of hIG is J/g and hR is J/mol, hR is devided by molar mass(M, g/mol). 

* 1 bar = 100kPa 

Example) Ammonia 

MAmmonia = 17.031 (g/mol) 

[ / ]
[ / ]

[ / ]

R
R h J mol

h J g
M g mol


   

 6, 10
2

a T e a T eda
e

dT e


   

  
 

4) Central difference approximation 
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2.2 Process of the Refrigerator  – Compression 

  Pressure(P)-Specific Enthalpy(h) Diagram 

Total energy of the Total energy of the 
Total entering energy

refrigerant entering refrigerant leaving
 as Work in the compressor

 the compressor  the compressor

   
    

     
 

      

   1 1 1 1 2 2 2 2h P ,v ,T w h P ,v ,T 

h 

:Isentropic curve 

Saturated 

liquid line 

Saturated vapor line 

P=10.17 bar 

P=1.34 bar 

P 
T=-20 °C T=40 °C 

Critical state 

S=1.80 

S=1.85 

S=1.90 

S=1.95 

S=2.00 

S=2.05 

① 

② 

w 2 1h h w 1h

① 

③ ④ 

② 

h : specific enthalpy 

u : internal energy=u(T,P) 

P : pressure 

T : temperature 

   h Internal energy of the flow Flow work

u P v

 

  

- Enthalpy 

Temperature Pressure 
Work or heat 

transfer 
Enthalpy Entropy 

↑ ↑ +W ↑ 0 

Assumption:  
1. Adiabatic process 
2. The process of the compressor is “reversible”. 
 Since this process is “Adiabatic and reversible”, 

the quality of energy “entropy“ is not changed 
 “Isentropic process”. 

참고: 압력 일정, 온도 증가  엔트로피 증가(Curve가 오른쪽으로 갈 수록 엔트로피 증가) 

Purpose, Assumption, Result 

Liquid 
Liquid 
and 

vapor 
Vapor 

According to the first law of thermodynamics (The total quantity of energy is constant) 
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Note: Specific Entropy(s)-(1/2) 

dq
ds

T


1. Definition: The quality of energy 

q: specific heat transfer 
T: Temperature 

2. Temperature(T)-Specific Entropy(s) diagram 

Entropy can be viewed as a measure of molecular 
disorder, or molecular randomness. 
As a system becomes more disordered, the positions of 

the molecules become less predictable and the entropy 

increases. 
P=10.17 bar 

P=1.34 bar 

Saturated 
vapor line 

Critical state 

s 

T 

Saturated liquid 
line 

P=Pc 
(Critical pressure) 

T=-20 °C 

T=40 °C 

T=Tc 
(Critical temperature) 

Liquid 

Supercritical fluid 

Liquid and Vapor 

Gas 

Vapor 

T=47.7 °C 

On the T-S diagram, the area under the process curve 
represents the heat transfer of the process. 

On the T-S diagram, the area under the process curve 
represents the heat transfer for internally reversible 
process. 

영문화 

영문화 

 The second law of the thermodynamics : Actual processes occur in 
the direction of decreasing quality of energy, “Entropy”. 
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Note: Specific Entropy(s)-(2/2) 

 
0

,

0

, ln

ig
T P jig ig

T

C dT P
s s P T R

R T P
  

T: temperature, R: gas constant, P: pressure, v: specific volume  

sig: Ideal gas value of the entropy 
sR: Residual entropy(correction of the ideal gas state values to the real gas values) 

 
 

1
, , ln( ) lnR R

da

ZdT
s s P v T R Z

b Z

 


   

 
          

   

bP

RT
 

c

c

RT
b

P
 

  2 2/ ,c c

c

T T R T
a

P

 


( )

( )( )

v v a T
Z

v b R T v b v b 
  

     

Equation  

of state α(Tr, ω) σ ε Ω ψ 

SRK 1 0 0.08664 0.42748   
2

0.52( ; ) 1 (0.480 1.574 0.176 ) 1 /r CT T T        
 

a
q

bRT


where 

Pc: critical pressure of the substance 
Tc: critical temperature of the substance 
Z: compressible factor 

2 2( )ig

PC T
A B T C T D T

R

      

where 

: heat capacity of the particular substance(A, B, C, and D are 
constants characteristic of the particular substance) 

아래말 추가: 
Entropy 정의는 ds=dQ/T임. 
dQ를 P, v, T로 계산하기 위하여 정의, 실험 및 
equation of state를 사용하여 아래 Entropy계산 
식 유도  

     3 2 21 0Z Z q Z q                         

3. Calculation of the specific entropy(s) for a pure substance 

IG Rs s s 

To allow calculation of entropy from the pressure, specific volume and temperature, 
the following equation is derived by using the definition(ds=dq/T), equation of state 
and experiment. 

dq
ds

T

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Mathematical Model of the Refrigerator - Calculation of Specific Entropy(s) 

  2 3 43 4 5
ln 2

2 3 4

IGS g b T c T d T e T f T              

sig: Ideal gas value of the entropy 
sR: Residual entropy(correction of the ideal gas state values to the real gas values) 

 
 0

1
, , ln( ) ln lnR R

a

P ZT
s s P v T R Z R

P b Z

 


   

 
             

    

where 

Pc: critical pressure of the substance 
Tc: critical temperature of the substance 
Z: compressible factor 

아래말 추가: 
Entropy 정의는 ds=dq/T임. 
dq를 P, v, T로 계산하기 위하여 정의, 실험 및 
equation of state를 사용하여 아래 Entropy계산 
식 유도  

• Calculation of the specific entropy(s) for a pure substance 

IG Rs s s 

To allow calculation of entropy from the pressure, specific volume and temperature, the following 
equation is derived by using the definition(ds=dq/T), equation of state and experiment. 

dq
ds

T


Reference: Smith, J.M., Introduction to Chemical Engineering Thermodynamics, 7th edition, McGraw-Hill, 2005, pp.199-253 

1. 출처 적을 것 
2. Where에서 SRK가 For example임을 적을 것 
3. SRK 방정식이 무엇인지 적을 것 
4. Tc, Pc, R값 적기 
5. da/dT값을 적기(예제참고) – 어떻게 계산하는건가? 
 RK 방정식을 사용할 수 있을 경우 쉽게 계산할 수 있음 Ammonia가 

RK 방정식으로 할 수 있는지 Check 

bP

RT
 

c

c

RT
b

P
 

  2 2,
( )

r c

c

T R T
a T

P

 


α(Tr, ω) σ ε Ω ψ 

1 0 0.08664 0.42748   
2

0.52( ; ) 1 (0.480 1.574 0.176 ) 1r rT T        
 

( )

( )( )

v v a T
Z

v b R T v b v b 
  

     
r

c

T
T

T


1) The values of parameters a, σ, ε, Ω, Ψ are depending on the type of the cubic equation of state. 
For example, the value of the parameters for the Soave-Redlich-Kwong(SRK) equation of state 
are given in the following table. 

1. 출처 적을 것 
2. Where에서 SRK가 For example임을 적을 것 
3. SRK 방정식이 무엇인지 적을 것 
4. Tc, Pc, R값 적기 
5. da/dT값을 적기(예제참고) – 어떻게 계산하는건가? 
 RK 방정식을 사용할 수 있을 경우 쉽게 계산할 수 있음 Ammonia가 

RK 방정식으로 할 수 있는지 Check 
6. Ammonia에 대해서 값 모두 보여줄 것 

* 1 bar = 100kPa 

P[Pa] 
v[m3] 

T[K] 

   
 6, 10

2

a T e a T eda
e

dT e


   

  
 

4) Central difference approximation 

2) The values of ω, critical pressure(Pc), 
and temperature(Tc) are depending on the 
substance.  

Example) Ammonia:  
 ω = 0.253, Pc=112.80 (bar), Tc=405.7 (K) 

where 
    a, b, c, d, e and f: coefficients of the ideal gas Enthalpy equation 
     sig[J/(g∙K)],  T: temperature[K] 

     g : Entropy coefficient (i.e. the Entropy of the ideal gas at T=0 K) = 1.00 

Example) Ammonia:  
     a = -1.8514, b = 1.9937, c = -5.3266x10-4 

     d = 2.0615x10-6, e = -1.3386x10-9, 

     f = 3.0533x10-13 

3) Since the unit of sIG is J/(g∙K) and hR is J/(mol∙K), hR is devided by molar mass(M, g/mol). 

Example) Ammonia 

MAmmonia = 17.031 (g/mol) 
[J / (mol K)]

[J / (g K)]
[ / ]

R
R s

s
M g mol


 
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2.2 Process of the Refrigerator  – Compression 

  Temperature(T)-Specific Entropy(s) Diagram 

According to the assumption 
Specific entropy of the Specific entropy of the 

refrigerant entering refrigerant leaving

 the compressor  the compressor

   
   


   
      

   1 1 1 1 2 2 2 2s P ,v ,T s P ,v ,T

① 

③ ④ 

② 

- Entropy 
Temperature Pressure 

Work or heat 

transfer 
Enthalpy Entropy 

↑ ↑ +W ↑ 0 

① 

P=10.17 bar 

P=1.34 bar 

Saturated 
vapor line 

Critical state 

s 

T 

Saturated 
liquid line 

T=-20 °C 

T=47.7 °C 

Assumption:  
1. Adiabatic process 
2. The process of the compressor is “reversible”. 
 Since, this process is “Adiabatic and reversible”, 

the quality of energy “entropy“ is not changed 
 “Isentropic process”. 

: The quality of energy 

 
 

0
0

ln , ,

IG R

T
P R

T

s s s

C T P
dT s P v T

T P

 

  

2 2( )ig

PC T
A B T C T D T

R

      

 ig

pC T : heat capacity at constant pressure 

R: gas constant(=8.314 Jmol-1K-1) 

T: temperature 

SR(P,T): residual entropy 

Purpose, Assumption, Result 

Liquid Liquid 
and 

vapor 

Vapor 
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<Inlet> 
Refrigerant 

1. Design variables(Operating Conditions): P1, T1, v1, P2, T2, v2, w  

• Compressor : brings the vapor refrigerant to a high pressure, 
which raises its temperature as well 

3. Equality constraints 
 

   1) The first law of the thermodynamics(Energy conservation)  
 
 
 
 
 
 
 
 
 

1 1 1, ,P T v 2 2 2, ,P T v

w

   1 1 1 1 2 2 2 2, , , ,h P v T w h P v T 

2.2 Process of the Refrigerator  – Compression 

  Mathematical Model of the Compressor (1/2) 

Compressor 

Sea Water Cooler 

Valve 

① 

② ③ 

④ 

Heat Exchanger 
Natural Gas(NG) Liquefied Natural Gas(LNG) 

Energy of the 

refrigerant at 

the inlet 

Energy of the 

refrigerant at 

the outlet 

<Outlet> 
Refrigerant 

T: temperature 

P: pressure 

v: specific volume 

h: specific enthalpy 
Work input to 

the compressor 

per mass 

2. Assumption:  
 

   1) There is not sufficient time to transfer much heat from the refrigerant*. “Adiabatic process” 
 

   2) The process of the compressor is “reversible”. 
 

   Since, this process is “Adiabatic and reversible”, the quality of energy “entropy“ is not changed. 
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<Inlet> 
Refrigerant 

수업자료를 위해 Reference 쪽에 Equality constraint 식을 넣어둘 것[반영함] 

• Compressor : brings the vapor refrigerant to a high pressure, 
which raises its temperature as well 

1 1 1, ,P T v 2 2 2, ,P T v

w

 

  
22 2

2

2 2 2

a TRT v b
v b

P P v b v b 


  

 

If we give the              , we can determine the other design variables. 
1 1, ,P T w

2.2 Process of the Refrigerator  – Compression 

  Mathematical Model of the Compressor (2/2) 

Compressor 

Sea Water Cooler 

Valve 

① 

② ③ 

④ 

Heat Exchanger 
Natural Gas(NG) Liquefied Natural Gas(LNG) 

<Outlet> 
Refrigerant 

 

  
11 1

1

1 1 1

a TRT v b
v b

P P v b v b 


  

 

T: temperature 

P: pressure 

v: specific volume 

s: specific entropy 

 
  2 2

r C

C

T R T
a T

P




C

C

RT
b

P
 

0.42748 for SRK equation 

R: gas constant (=8.314 Jmol-1K-1) 

Pc: critical pressure of the refrigerant 

Tc: critical temperature of the refrigerant 

0.08664

0

1

for SRK equation

for SRK equation

for SRK equation





 





3. Equality constraints 
 

   2) The second law of the thermodynamics 
      (For the adiabatic and reversible process, the quality of energy(entropy) is not changed.) 
 
 
 
 
  
 

 
 
 

   3) Equations of state(Soave, Redlich, Kwong(SRK) equation) 

   1 1 1 1 2 2 2 2s P ,v ,T s P ,v ,T

Quality of energy 

of the refrigerant 

at inlet 

Quality of energy 

of the refrigerant 

at outlet 

왜 SRK를 사용하였는가? 

Equation of state 
 : Any equation that relates the 

pressure(P), temperature(T) and 

specific volume(V) of a substance. 

 
Example) Equation of state for an ideal gas 

 

 Pv RT
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9.2. Process of the Refrigerator 

9.2.3 CONDENSATION 
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2.3 Process of the Refrigerator - Condensation 

  Pressure(P)-Specific Volume(v) Diagram 

Process Temperature Pressure 

Condenser 23 Isobaric 

heat reinjection 
↓ 0 

Purpose, Assumption, Result 

P 

P=10.17 bar 

P=1.34 bar 
① 

② ③ 

v 

1. Isobaric Process의 이유 적어줄 것 
1) 등온공정으로 하였을 때 가장 이상적인 Cycle임 
2) 그러나 실제로 등온공정을 구현하기는 힘듬 
3) Liquid and Vapor 구간에서 등압공정일 경우 등온공정을 구현할 수 있으며,  
등압공정은 실제로 구현할 수 있음. 
 등온공정을 등압공정으로 대체함.(냉동공학 p.129, Cengel, et al., Thermodynamics an Engineering Approach, 7th edition, 2011, p.552) 

Assumption:  
      There is no pressure drop of the refrigerant 

through the condenser. “Isobaric process” 
Liquid 

Liquid 
and 

vapor 

Vapor 

1. Carnot cycle is the most efficient and ideal refrigeration cycle and condenses the refrigerant 
isothermally(Isothermal process). 

2. However, the isothermal heat transfer from the refrigerant in a single phase is not easy to 
accomplish in practice. 

3. Since maintaining a constant pressure in the condenser means maintain ng a constant  
temperature when the refrigerant is in a two-phase(liquid and vapor), the isothermal process is 
replaced by the isobaric process in the condenser 

Why do we assume the isobaric process in the condenser? 

① 

③ ④ 

② 
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2.3 Process of the Refrigerator - Condensation 

  Pressure(P)-Specific Enthalpy(h) Diagram 

According to the first law of thermodynamics 
Total energy of the Total energy of the 

Total leaving energy
refrigerant entering refrigerant leaving

 as Heat in the condenser
 the condenser  the condenser

   
    

     
 

      

   2 2 2 2 3 3 3 3Hh P ,v ,T q h P ,v ,T 

h : specific enthalpy 

u : internal energy=u(T,P) 

P : pressure 

T : temperature 

   h Internal energy of the flow Flow work

u P v

 

  

- Enthalpy 

- The first law of the thermodynamics: 
The total quantity of energy is constant. 

Temperature Pressure 
Work or heat 

transfer 
Enthalpy Entropy 

↓ 0 -QH ↓ ↓ 

Assumption:  
      There is no pressure drop of the refrigerant 

through the condenser. “Isobaric process” 

Purpose, Assumption, Result 

① 

③ ② 

Saturated 

liquid line 

Saturated vapor line 

P=10.17 bar 

P=1.34 bar 

h 

P 
T=-20 °C T=40 °C 

Critical state 

④ 

Hq 2h3 2 Hh h q 

Liquid 
Liquid 
and 

vapor 
Vapor 

① 

③ ④ 

② 
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2.3 Process of the Refrigerator - Condensation 

  Temperature(T)-Specific Entropy(s) Diagram (1/2) 

Temperature Pressure 
Work or heat 

transfer 
Enthalpy Entropy 

↓ 0 -QH ↓ ↓ 

Purpose, Assumption, Result 

Assumption:  
      There is no pressure drop of the refrigerant 

through the condenser. “Isobaric process” ③ 

① 

② 
P=10.17 bar 

P=1.34 bar 

Saturated vapor 
line 

Critical state 

②’ 

s 

T 

Saturated 
liquid line 

T=-20 °C 

T=40 °C 

T=47.7 °C 

④ 

2 → 2’ Decrease of the temperature of the refrigerant: 

2 → 2’ Decrease of the entropy of the refrigerant: 
Entropy can be viewed as a measure of molecular disorder, or molecular randomness. 
The molecular disorder of the substance is decreased when the temperature of that is decreased. 
Therefore, since the temperature of the refrigerant is decreased, the entropy of that is decreased. 

Because the heat of refrigerant is taken off to the atmosphere.  

① 

③ ④ 

② 

- Entropy 

: The quality of energy 
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2.3 Process of the Refrigerator - Condensation 

  Temperature(T)-Specific Entropy(s) Diagram (2/2) 

Temperature Pressure 
Work or heat 

transfer 
Enthalpy Entropy 

↓ 0 -QH ↓ ↓ 

- Entropy 

: The quality of energy 

Purpose, Assumption, Result 

Assumption:  
      There is no pressure drop of the refrigerant 

through the condenser. “Isobaric process” ③ 

① 

② 
P=10.17 bar 

P=1.34 bar 

Saturated vapor 
line 

Critical state 

②’ 

s 

T 

Saturated 
liquid line 

T=-20 °C 

T=40 °C 

T=47.7 °C 

④ 

Liquid 
vapor 

2 ’ → 3 Constant temperature of the refrigerant: 

2 ’ → 3 Decrease of the entropy of the refrigerant: 
Entropy can be viewed as a measure of molecular disorder, or molecular randomness. 
The molecular of the substance in the vapor phase is more disordered than that in liquid phase. 
Therefore, since the liquid part of the refrigerant increases, the entropy of that is decreased. 

The temperature remains constant during the entire phase-change process if the pressure is held 
constant. 

P-v-T surface v-T Diagram 

Liquid 

Liquid 
and 

vapor 

Vapor 

① 

③ ④ 

② 
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<Inlet> 
Refrigerant 

1. Design variables(Operating Conditions): P2, T2, v2, P3, T3, v3 

<Outlet> 
Refrigerant 

수업자료를 위해 Reference 쪽에 Equality constraint 식을 넣어둘 것[반영함] 

• Sea Water(SW) Cooler : takes off the heat from the hot vapor 
refrigerant to the sea water 

3. Equality constraints 
 

   1) The first law of the thermodynamics(Energy conservation)  
 
 
 
 
 
 
 

  2) Isobaric process 
 
 
 
 

  3) Equations of state(Soave, Redlich, Kwong(SRK) equation) 

2 2 2, ,P T v 3 3 3, ,P T v

2 3P P

   2 2 2 2 3 3 3 3, , , ,Hh P v T q h P v T 

2.3 Process of the Refrigerator  – Condensation 

  Mathematical Model of the Sea Water Cooler 

Hq
Compressor 

Sea Water Cooler 

Valve 

① 

② ③ 

④ 

Heat Exchanger 
Natural Gas(NG) Liquefied Natural Gas(LNG) 

 

  
33 3

3

3 3 3

a TRT v b
v b

P P v b v b 


  

 

2. Assumption:  
 -  There is no pressure drop of the refrigerant through the sea water cooler. “Isobaric process” 

qH: Specific heat transfer from the 

refrigerant to sea water(Given) 

Energy of the 

refrigerant at the inlet 

Energy of the refrigerant 

at the outlet 

T: temperature 

P: pressure 

v: specific volume 

h: specific enthalpy 

 
  2 2

r C

C

T R T
a T

P




C

C

RT
b

P
 

0.42748 for SRK equation 

R: gas constant (=8.314 Jmol-1K-1) 

Pc: critical pressure of the refrigerant 

Tc: critical temperature of the refrigerant 

0.08664

0

1

for SRK equation

for SRK equation

for SRK equation





 




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9.2. Process of the Refrigerator 

9.2.4 EXPANSION 
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2.4 Process of the Refrigerator - Expansion 

  Pressure(P)-Specific Volume(v) Diagram 

Process Temperature Pressure 

Expansion 

valve 

34 Adiabatic 

expansion ↓ ↓ 

Purpose, Assumption, Result 

v 

① 

③ ④ 

② 

P 

P=10.17 bar 

P=1.34 bar 
④ ① 

② ③ 

Assumption:  
1. There is not sufficient time to transfer much heat from 

the refrigerant. “Adiabatic process” 

: Adiabatic expansion 

: Isothermal process 

v 

P 

ConstantPv 

1

RT

at T=T

Pv 
2

RT

at T=T

Pv 

1 2T <T
Because of the adiabatic expansion, the 
temperature of the refrigerant is decreased 
from T2 to T1. 

Why is the temperature of the refrigerant  
decreased after the expansion valve? 

Liquid 
Liquid 
and 

vapor 

Vapor 
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2.4 Process of the Refrigerator - Expansion 

  Pressure(P)-Specific Enthalpy(h) Diagram 

According to the first law of thermodynamics 

Total energy of the Total energy of the 

refrigerant entering refrigerant leaving

 the valve  the valve

   
   


   
      

   3 3 3 3 4 4 4 4h P ,v ,T h P ,v ,T

h : specific enthalpy 

u : internal energy=u(T,P) 

P : pressure 

T : temperature 

   h Internal energy of the flow Flow work

u P v

 

  

- Enthalpy 

- The first law of the thermodynamics: 
The total quantity of energy is constant. 

① 

③ ② 

Saturated 

liquid line 

Saturated vapor line 

P=10.17 bar 

P=1.34 bar 

h 

P 
T=-20 °C T=40 °C 

Critical state 

④ 

Assumption:  
1. There is not sufficient time to transfer much heat from 

the refrigerant. “Adiabatic process” 

3 4h h

Temperature Pressure 
Work or heat 

transfer 
Enthalpy Entropy 

↓ ↓ 0 0 ↑ 

Purpose, Assumption, Result 

① 

③ ④ 

② 

Liquid 
Liquid 
and 

vapor 
Vapor 
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2.4 Process of the Refrigerator - Expansion 

  Temperature(T)-Specific Entropy(s) Diagram 

Temperature Pressure 
Work or heat 

transfer 
Enthalpy Entropy 

↓ ↓ 0 0 ↑ 

Purpose, Assumption, Result 

③ 

① 

② 
P=10.17 bar 

P=1.34 bar 

Saturated vapor 
line 

Critical state 

②’ 

s 

T 

Saturated 
liquid line 

T=-20 °C 

T=40 °C 

T=47.7 °C 

④ Assumption:  
1. There is not sufficient time to transfer much heat from the refrigerant. 

“Adiabatic process” 

① 

③ ④ 

② 

3 → 4 온도 감소: 벨브가 압력을 낮춤>끓는점 낮아짐>기화 
  >자기열흡수>온도 감소 

3 → 4 엔트로피 증가: 액체가 기체로 되면 엔트로피 증가 
(이 영향이 더 큼) 

온도 하강 엔트로피 감소 

영문화 중 

3 → 4 Decrease of the temperature of the refrigerant: 

3 → 4 Increase of the entropy of the refrigerant: 
Entropy can be viewed as a measure of molecular disorder, or molecular randomness. 
The molecular disorder of the substance is decreased when the temperature of that is decreased. 
The molecular of the substance in the vapor phase is more disordered than that in liquid phase. 
Since the increase of the entropy caused by the phase-change is larger than the decrease of that 
caused by the decrease of the temperature, the entropy of the refrigerant is increased. 

When the pressure of the refrigerant is decreased, the boiling temperature of that is also decreased. Since 
the boiling temperature is decreased, a part of the liquid refrigerant is evaporated by absorbing the heat 
from itself. Therefore, the temperature of the refrigerant is decreased. 

Liquid Liquid 
and 

vapor 

Vapor 

- Entropy 

: The quality of energy 

Natural Phenomena 
By restricting the flow of the refrigerant, the pressure 

of the refrigerant is decreased. “Irreversible process” 
       Increase the specific entropy of the refrigerant 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

448 

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee  

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee  

<Inlet> 
Refrigerant 

1. Design variables(Operating Conditions): P3, T3, v3, P4, T4, v4 

<Outlet> 
Refrigerant 

수업자료를 위해 Reference 쪽에 Equality constraint 식을 넣어둘 것[반영함] 

• Valve : decreases the pressure of the liquid refrigerant, which decreases its 
temperature as well 

3. Equality constraints 
 

   1) The first law of the thermodynamics(Energy conservation)  
 
 
 
 
 
 
 

   2) Equations of state(Soave, Redlich, Kwong(SRK) equation) 

3 3 3, ,P T v 4 4 4, ,P T v

2.4 Process of the Refrigerator - Expansion 

  Mathematical Model of the Valve 

Compressor 

Sea Water Cooler 

Valve 

① 

② ③ 

④ 

Heat Exchanger 
Natural Gas(NG) Liquefied Natural Gas(LNG) 

2. Assumption:  
    1) There is not sufficient time to transfer much heat from the refrigerant. 

“Adiabatic process” 
    2) By restricting the flow of the refrigerant, the pressure of the refrigerant 

is decreased. “Irreversible process” 

 

  
44 4

4

4 4 4

a TRT v b
v b

P P v b v b 


  

 

   3 3 3 3 4 4 4 4, , , ,h P v T h P v T
Energy of the 

refrigerant at the inlet 

Energy of the refrigerant 

at the outlet 

T: temperature 

P: pressure 

v: specific volume 

h: specific enthalpy 

 
  2 2

r C

C

T R T
a T

P




C

C

RT
b

P
 

0.42748 for SRK equation 

R: gas constant (=8.314 Jmol-1K-1) 

Pc: critical pressure of the refrigerant 

Tc: critical temperature of the refrigerant 

0.08664

0

1

for SRK equation

for SRK equation

for SRK equation





 




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9.2. Process of the Refrigerator 

9.2.5 EVAPORATION 
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2.5 Process of the Refrigerator - Evaporation 

  Pressure(P)-Specific Volume(v) Diagram 

Purpose, Assumption, Result 

v 

① 

③ ④ 

② 

P 

P=10.17 bar 

P=1.34 bar 
④ ① 

② ③ 

Assumption:  
 

      There is no pressure drop of the refrigerant 
through the evaporator. “Isobaric process” 

Process Temperature Pressure 

Evaporator 41 Isobaric 

heat absorption 
↑ 0 

Liquid 
Liquid 
and 

vapor 

Vapor 

1. Carnot cycle is the most efficient and ideal refrigeration cycle and condenses the refrigerant 
isothermally(Isothermal process). 

2. However, the isothermal heat transfer from the refrigerant in a single phase is not easy to 
accomplish in practice. 

3. Since maintaining a constant pressure in the condenser fixes the temperature when the 
refrigerant is in a two-phase(liquid and vapor), the isothermal process is replaced by the 
isobaric process in the condenser 

Why do we assume the isobaric process in the condenser? 
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2.5 Process of the Refrigerator - Evaporation 

  Pressure(P)-Specific Enthalpy(h) Diagram 

According to the first law of thermodynamics 
Total energy of the Total energy of the 

Total leaving energy
refrigerant entering refrigerant leaving

 as Heat in the evaporator
 the evaporator  the evaporator

   
    

     
 

      

   4 4 4 4 1 1 1 1Lh P ,v ,T q h P ,v ,T 

h : specific enthalpy 

u : internal energy=u(T,P) 

P : pressure 

T : temperature 

   h Internal energy of the flow Flow work

u P v

 

  

- Enthalpy 

- The first law of the thermodynamics: 
The total quantity of energy is constant. 

Temperature Pressure 
Work or heat 

transfer 
Enthalpy Entropy 

↑ 0 +QL ↑ ↑ 

Purpose, Assumption, Result 

① 

③ ② 

Saturated 

liquid line 

Saturated vapor line 

P=10.17 bar 

P=1.34 bar 

h 

P 
T=-20 °C T=40 °C 

Critical state 

④ 

Lq 1 4 Lh h q 4h

① 

③ ④ 

② 

Assumption:  
 

      There is no pressure drop of the refrigerant 
through the evaporator. “Isobaric process” Liquid 

Liquid 
and 

vapor 
Vapor 
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2.5 Process of the Refrigerator - Evaporation 

  Temperature(T)-Specific Entropy(s) Diagram 

Temperature Pressure 
Work or heat 

transfer 
Enthalpy Entropy 

↑ 0 +QL ↑ ↑ 

Purpose, Assumption, Result 

Assumption:  
      There is no pressure drop of the refrigerant 

through the condenser. “Isobaric process” ③ 

① 

② 
P=10.17 bar 

P=1.34 bar 

Saturated vapor 
line 

Critical state 

②’ 

s 

T 

Saturated 
liquid line 

T=-20 °C 

T=40 °C 

T=47.7 °C 

④ 

4 > 1 온도 유지: 상변화 구간이기 때문에(액체 > 기체) 

4 > 1 엔트로피 증가: 액체가 기체로 되면 엔트로피 증가 

1. 영문화 
2. Residual Entropy 비교 

① 

③ ④ 

② 

- Entropy 

: The quality of energy 

Liquid 
vapor 

4 → 1 Constant temperature of the refrigerant: 

4 → 1 Increase of the entropy of the refrigerant: 
Entropy can be viewed as a measure of molecular disorder, or molecular randomness. 
The molecular of the substance in the vapor phase is more disordered than that in liquid phase. 
Therefore, since the vapor part of the refrigerant increases, the entropy of that is also increased. 

The temperature remains constant during the entire phase-change process if the pressure is held 
constant. 

Liquid Liquid 
and 

vapor 

Vapor 
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<Inlet> 
Refrigerant 

1. Design variables(Operating Conditions): P1, T1, v1, P4, T4, v4 

<Outlet> 
Refrigerant 

수업자료를 위해 Reference 쪽에 Equality constraint 식을 넣어둘 것[반영함] 

• Heat Exchanger :  takes off the heat from the natural gas to cool 
liquid and vapor refrigerant 

3. Equality constraints 
 

   1) The first law of the thermodynamics(Energy conservation)  
 
 
 
 
 
 
 
 

   2) Isobaric process 
 
 
 

4 4 4, ,P T v 4 4 4, ,P T v

4 1P P

엔탈피 식과 엔트로피 식을 자세
히 풀어서 적어줄 것! 

P-h Diagram, T-S diagram 

Or Moiller Chart 배치할지 고려할 것 

 여기에 작게 만들고, 링크를 걸어 큰 

Diagram을 보여주는 것을 만들 것! 

2.5 Process of the Refrigerator - Evaporation 

  Mathematical Model of the Heat Exchanger (1/2) 

Compressor 

Sea Water Cooler 

Valve 

① 

② ③ 

④ 

Heat Exchanger 
Natural Gas(NG) 

TNG=26.85℃, PNG=65 bar,  

mNG=42.91kg/h 

Liquefied Natural Gas(LNG) 

TLNG=-161 ℃, PLNG=65 bar 

mLNG=42.91kg/h 

T1= 23.0 ℃, P1=4 bar 

Vapor 

T2=110.2℃, P2=24 bar 

Vapor 

T3=-160.8 ℃, P3=24 bar 

Liquid 

T4=-164.0 ℃, P4=4 bar 

Liquid and Vapor 

Natural Gas(NG) 

TNG=26.85℃, PNG=65 bar, 

Liquefied Natural Gas(LNG) 

TLNG=-160.15 ℃, PLNG=65 bar 

LqHeat 

qL: Heat transfer for the liquefaction 

of the natural gas(Given) 

Compressor 

Sea Water Cooler 

Valve 

① 

② ③ 

④ 

Heat Exchanger 
Natural Gas(NG) Liquefied Natural Gas(LNG) 

2. Assumption:  
 -  There is no pressure drop of the refrigerant through the heat exchanger. 

“Isobaric process” 

   4 4 4 4 1 1 1 1, , , ,Lh P v T q h P v T 
Energy of the 

refrigerant at the inlet 

Energy of the refrigerant 

at the outlet 

T: temperature 

P: pressure 

v: specific volume 

h: specific enthalpy 
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<Inlet> 
Refrigerant 

1. Design variables(Operating Conditions): P1, T1, v1, P4, T4, v4,  

<Outlet> 
Refrigerant 

수업자료를 위해 Reference 쪽에 Equality constraint 식을 넣어둘 것[반영함] 

• Heat Exchanger :  takes off the heat from the natural gas to cool 
liquid and vapor refrigerant 

3. Equality constraints 
 

4 4 4, ,P T v 4 4 4, ,P T v

4 1P P

엔탈피 식과 엔트로피 식을 자세
히 풀어서 적어줄 것! 

P-h Diagram, T-S diagram 

Or Moiller Chart 배치할지 고려할 것 

 여기에 작게 만들고, 링크를 걸어 큰 

Diagram을 보여주는 것을 만들 것! 

2.5 Process of the Refrigerator - Evaporation 

  Mathematical Model of the Heat Exchanger (2/2) 

Compressor 

Sea Water Cooler 

Valve 

① 

② ③ 

④ 

Heat Exchanger 
Natural Gas(NG) 

TNG=26.85℃, PNG=65 bar,  

mNG=42.91kg/h 

Liquefied Natural Gas(LNG) 

TLNG=-161 ℃, PLNG=65 bar 

mLNG=42.91kg/h 

T1= 23.0 ℃, P1=4 bar 

Vapor 

T2=110.2℃, P2=24 bar 

Vapor 

T3=-160.8 ℃, P3=24 bar 

Liquid 

T4=-164.0 ℃, P4=4 bar 

Liquid and Vapor 

Natural Gas(NG) 

TNG=26.85℃, PNG=65 bar, 

Liquefied Natural Gas(LNG) 

TLNG=-160.15 ℃, PLNG=65 bar 

LqHeat 

Compressor 

Sea Water Cooler 

Valve 

① 

② ③ 

④ 

Heat Exchanger 
Natural Gas(NG) Liquefied Natural Gas(LNG) 

NGm

L NG LQ m q 

refm

: Specific heat transfer for the 

liquefaction of the natural 

gas(Given) 

: Mass flow rate of the natural 

gas(Given, usually 3.6 MTPA) 
NGm

: Mass flow rate of the refrigerant refm

Lq

 To produce the        MTPA(Million ton per annual) LNG, the refrigerant has to take off 
the heat QL from NG. 
 

1) The first law of the thermodynamics(Energy conservation)  

2) Isobaric process 
 

T: temperature 

P: pressure 

v: specific volume 

h: specific enthalpy 

Energy of the 

refrigerant at the inlet 

Energy of the refrigerant 

at the outlet 
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2.5 Thermodynamics in the Liquefaction Cycle 

  Introduction to the Cooling System for Refrigerator (2/2) 

Process Temperature Pressure Work or heat transfer Enthalpy Entropy 

Compressor 12 Adiabatic  

compression ↑ ↑ +W ↑ 0 

Condenser 23 Isobaric 

heat reinjection ↓ 0 -QH ↓ ↓ 

Expansion valve 34 Adiabatic 

expansion ↓ ↓ 0 0 ↑ 

Evaporator 41 Isobaric 

heat absorption ↑ 0 +QL ↑ ↑ 

Purpose, Assumption, Result 

• Refrigerator 

 Refrigerant(the working substance in the refrigerator) 

- Boiling point near room temperature when at 
high pressure 

 Refrigerant 
-Boiling point below 0 ° C 
when at low pressure 
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9.2. Process of the Refrigerator 

9.2.6 OPERATING CONDITION 
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① 

③ ④ 

② 

2.6 Efficiency of a Refrigerator(CP: coefficient of performance) 

• Refrigerator 

 What is the efficiency of a refrigerator(CP: coefficient of performance)? 

To main the temperature(-18 °C) 
 in the refrigerator 

Inside of the 
Refrigerator Lq

Outside of the 
Refrigerator(25 °C) 

 To cool the refrigerant  

Hq

W

What we want

What we pay for

L

CP

Q

W





Because the natural tendency of heat is to flow a hot region to a cold one, 
energy must be provided to a refrigerator to reverse the flow, and this 
energy adds to the heat exhausted by the refrigerator 

[추가]T-s그래프를 사용하여 분석하는 것을 보여줄 것 
- (* 곡선의 아래면적은 전달된 열의 양을 의미함) 
- (dS=dQ/T) 
[추가] Expander설치와 Valve설치 시 효율을 비교하는 자료 만들
기[이해했음] 
- 냉장고 효율 면에서 Expander 사용시 냉장고 효율이 좋아짐

(Reference: Cengel, 2판 (한글본), p. 461)[이해했음]  설명하
는 자료 만들 것(* 곡선의 아래면적은 전달된 열의 양을 의미함) 

- (dS=dQ/T) 
- Expander대신에 Valve를 사용하는 이유는 34’을 통해 

Expander에서 생산하는 일이 매우 적어, 시스템에 장치를 설치
하는 비용에 대한 가치가 없고, 설치하기 복잡하기 때문에
(Reference. Sonntag, 한글판 p.420/ Cengel, 2판 (한글본), p. 
461 참고), 또한, 팽창 과정 시 액체와 증기의 혼합물이 될 경우 
Expander에 손상을 줄 수 있기 때문에 용이하지 못하
다.(Reference. Sonntag, 한글판 p.420/ Cengel, 2판 (한글본), 
p. 420 참고) 

Why?에 해당함. 

 To increase the efficiency of a refrigerator, when QL is given, we have to determine the 
operating conditions such as pressure, temperature, specific volume and flow rate for 
decreasing the work provided to the compressor. 
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2.6 Effect of the Operating Condition to the Refrigerator 
 – Position of the Point ① (Superheating) 

①-1) ④ 

③ ②-2) 

Saturated liquid line 

Saturated vapor line 

Critical state 

P=10.17  

P=1.34  

h(Enthalpy) 

P 
[bar] 

P=Pc 
(Critical  

pressure) 

T=-20 °C T=40 °C T=Tc(Critical temperature) 

Liquid and Vapor 

Liquid 

Vapor 

Gas 

Supercritical fluid 

②-1) ②-3) 

①-2) ①-3) 

①-1): Liquid and Vapor  Bad 

• State of the refrigerant entering the 
compressor 

LQ

LQ

LQ

①-3), ①-4): Vapor state 

Therefore, we have to determine the 
proper temperature of the refrigerant 
entering the compressor. 

①-4) 

Convection heat transfer coefficient(h) 

Newton’s law of cooling: 

 s sQ hA T T 

Q: heat transfer, 
 

Ts: temperature of the surface of 
the object 
 

T∞: temperature of the fluid 
sufficiently far from the surface 
 

h: convection heat transfer 
coefficient, It is an experimentally 
determined parameter whose value 
depends on all the variables 
influencing convection such as the 
surface geometry, the nature of 
fluid motion, the properties of the 
fluid, and the bulk fluid velocity. 

LQ

②-4) 

QL: Heat absorbed by the refrigerant  
    from the inside of the refrigerator 
    (What we want)  
W: Work provided to the compressor 
    (What we pay) 
CP(Coefficient of Performance) 

LQ

W


 To increase the efficiency of a refrigerator, when QL is given, we have to determine the 
operating conditions such as pressure, temperature, specific volume and flow rate for 
decreasing the work provided to the compressor. 

1. Since QL of ①-1) is smaller than that 
of ①-2), CP is decreased comparing 
with ①-2). 

2. Since refrigeration compressors are 
designed as vapor pumps, if any 
amount of liquid is allowed to enter 
the compressor, serious mechanical 
damage to the compressor may result. 

①-3): Vapor state 
 QL(냉동능력)이 가장 큼1) 

순수 Vapor state에서는 열전달 계수
가 감소하여, 온도를 낮추기 위해 큰 
Size의 증발기 필요1) 

1. For the superheated cycles  ①-3) and 
①-4), a greater quantity of heat must 
be dissipated at the condenser than 
for the cycle ①-2).  Increase of the 
size of the condenser  

2. The work provided to the 
compressor for superheated cycle is 
slightly greater than that for the 
cycle ①-2). 

3. For the cycle ①-4), since the increase 
in QL is greater than the increase in 
W, the CP is higher than that of the 
cycle ①-2).  Good 

4. For the cycle ①-3), since the increase 
in QL is smaller than the increase in 
W, the CP is lower than that of the 
cycle ①-2).  Bad 
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2.6 Effect of the Operating Condition to the Refrigerator 
 – Position of the Point ③ (Subcooling) 

② 

Saturated liquid line 

Saturated vapor line 

Critical state 

P=10.17  

P=1.34  

h(Enthalpy) 

P 
[bar] 

P=Pc 
(Critical  

pressure) 

T=-20 °C T=40 °C T=Tc(Critical temperature) 

Liquid and Vapor 

Vapor ① 

LQ

LQ

LQ

Reference: 
1) 최상곤, 홍성은, 보고싶은 냉동공학, 건기원, 2008, pp.150-151 
2) Cengel, Y.A., Introduction to Thermodynamics and Heat Transfer), 
2nd, McGraw-Hill, 2008, pp.382-383 
 

③-2) ③-1) ③-3) ③-4) 

④-2) ④-1) ④-4) ④-3) 

LQ

③-3): Vapor state 
 QL(냉동능력)이 가장 큼1) 

 T=40 °C 보다 더 낮은 온도로 낮출 
수 있는 Condenser 혹은 Condenser
외 추가 장치 필요 

•  실제 냉장고 경우 추가 설비 비용 대 늘
어나는 냉동능력을 고려하여, ③-2) 보다 
약 5도 정도 낮게 설정함(③-4))  

     최적화 관련! 

영문화 중 • State of the refrigerant entering the 
valve 

③-1): Liquid and Vapor  Bad 
1. Since QL of ①-1) is smaller than that 

of ①-2), CP is decreased comparing 
with ①-2). 

③ -3), ③ -4): Liquid state 

1. For the subcooled cycles ③-3) and ③ 
-4), the increase of QL is 
accomplished without increasing the 
energy input to the compressor. 

      Increase of CP Good 
 
2. However, to subcool the refrigerant 

in condenser, the additional 
equipment is needed to cool the 
refrigerant.  Bad 
 

QL: Heat absorbed by the refrigerant  
    from the inside of the refrigerator 
    (What we want)  
W: Work provided to the compressor 
    (What we pay) 
CP(Coefficient of Performance) 

LQ

W


Therefore, we have to determine the 
proper temperature of the refrigerant 
entering the valve considering the QL 
and cost of the additional equipment 
caused by the subcooling. 
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2. Process of the Refrigerator 

2.7 MATHEMATICAL MODEL OF THE SINGLE 
LIQUEFACTION CYCLE 
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2.7 Mathematical Model of the Single Liquefaction Cycle (1/2) 

1. Valve와 Expander의 차이점을 Reference로 한장정도 만들어 뒤에 추가할 것[질문함, 슬라이드 노트에 우선 적어둠] 

-위의 Mixed Refrigerant 구성성분을 모두 적기 
-(위에는 뺴고, Diagram에 모두 적기) 
-LNG온도 모두 다 통일 할 것 
-One Cycle(필요없음) 
-어떻게 구성되어있고, 구성품들이 어떤 역할? 
-각각의 Euipqment가 무엇을 하는지 적어줄 것 
-Mixed Refrigerant 어떻게 
-Natural Gas가 26도, 60bar로 올라오는 것인지 적을 것!(이게 Well에서
부터 이렇게 올라온 것이닞 혹은 중간에 온도와 압력이 변한 값인지?)  
-Heat Exchanger 끝에 End Flash를 그려줘서 1bar로 떨어짐을 보여줄 것 
-NG의 압력 온도가 General 한 온도와 압력임을 언급해줄 것 
-Concept of the Liquefaction Process 삭제할 것 

-처음에 할 때는 주어졌다고해서, 이해가 되기 쉽도록 작성하고, 그다음에 
Optimization Problem으로 만들 것(One cycle에 대해) – 냉장고 예제 혹은 
SMR cycle 
-그 다음에 2단도 동일한 방식으로 한다. 
•Refrigerant = R-134a, 간단한 설명 적기(화학식 기호라도!) 
•가정을 할 수 있는 이유를 적을 것! 
•Enthalpy and Entropy 값도 적을 지 생각해 볼 것 
•PV Diagram으로 을 여기에 배치할지 생각해 볼 것! 

1. 제목이 맞는지 검토 
2. SMR cycle에 대해 Mathematical Model에 대해 보여주고 
3. DMR cycle에 대해 SMR과 비교하여 달라진 점만 표시하여 
Mathematical Model 보여줄 것 
4. 아래 Operating Condition 적어 줄 것 

1. Refrigeration Cycle을 갖고와서 곧바로 설명을 할 것 
2. Mathematical Model for one cycle에 대해서 설명 
“입출력 온도, 압력, 부피는 장비의 특성에 따라 연관관계가 결정된다 Constraint. 

• Single Cycle for the LNG Liquefaction Process 

Compressor 

Sea Water(SW) Cooler 

Valve 

① 

② ③ 

④ 

Heat Exchanger 

Natural Gas(NG) 

TNG=26.85℃, PNG=65 bar,  

Liquefied Natural Gas(LNG) 

TLNG=-161 ℃, PLNG=65 bar 

T1= 23.0 ℃, P1=4 bar 

Vapor 

T2=110.2℃, P2=24 bar 

Vapor 

T3=-160.8 ℃, P3=24 bar 

Liquid 

T4=-164.0 ℃, P4=4 bar 

Liquid and Vapor 

1. Design Variables(Operating Condition, 14): Pi, Ti, vi, w,        (i=1,2,3,4)  

2. Equality Constraint(11) 
- Compressor(4) 
- Sea Water Cooler(3) 
- Valve(2) 
- Heat Exchanger(2) 

 Number of the design variables is larger than the number of the 
equality constraints.  Indeterminate Equation! 

3. Objective Function: Minimize the compressor power Min( )refm w

 Optimization Problem! 

The first law of the thermodynamics (Conservation of energy, Enthalpy) 

The second law of the thermodynamics(Actual processes occur in the direction of decreasing quality of energy, Entropy) 

Equation of state(Example: Soave, Redlich, Kwong(SRK) equation) 

refm

: Mass flow rate of the refrigerant refm

T: temperature 

P: pressure 

v: specific volume 
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2.7 Mathematical Model of the Single Liquefaction Cycle (2/2) 

설계변수와 제약조건을 모두 써서 보여줄 것 

1. Design Variables(Operating Condition, 14): Pi, Ti, vi, w,        (i=1,2,3,4)  refm

2. Equality Constraint(11) 

   1 1 1 1 2 2 2 2, , , ,h P v T w h P v T 

1) Compressor(4) 

   1 1 1 1 2 2 2 2, , , ,s P v T s P v T

 

  
22 2

2

2 2 2

a TRT v b
v b

P P v b v b 


  

 

 

  
11 1

1

1 1 1

a TRT v b
v b

P P v b v b 


  

 

Compressor 

Sea Water Cooler 

Valve 

① 

② ③ 

④ 

Heat Exchanger 
Natural Gas(NG) Liquefied Natural Gas(LNG) 

   2 2 2 2 3 3 3 3, , , ,Hh P v T q h P v T 

2 3P P

 

  
33 3

3

3 3 3

a TRT v b
v b

P P v b v b 


  

 

   3 3 3 3 4 4 4 4, , , ,h P v T h P v T

 

  
44 4

4

4 4 4

a TRT v b
v b

P P v b v b 


  

 

   4 4 4 4 1 1 1 1, , , ,ref NG L refm h P v T m q m h P v T    

4 1P P

2) Sea Water Cooler(3) 

3) Valve(2) 

4) Heat Exchanger(2) 

[The first law of the thermodynamics] 

[The first law of the thermodynamics] 

[The first law of the thermodynamics] 

[The first law of the thermodynamics] 

[The second law of the thermodynamics] 

[Isobaric process] 

[Isobaric process] 

[Equation of state] 

[Equation of state] 

[Equation of state] 

[Equation of state] 

3. Objective function(f) 

reff m w 

T: temperature, h: specific enthalpy, s: specific entropy,         

P: pressure 

v: specific volume 

w: work provided to the compressor per mass 

qH: Specific heat transfer from the refrigerant to sea water(Given) 

qL: Heat transfer for the liquefaction of the natural gas(Given) 

      : Mass flow rate of the natural gas(Given, usually 3.6 MTPA) 

      : Mass flow rate of the refrigerant 
NGm

refm

 
  2 2

r C

C

T R T
a T

P




C

C

RT
b

P
 

R: gas constant (=8.314 Jmol-1K-1) 

Pc: critical pressure of the refrigerant 

Tc: critical temperature of the refrigerant 

0.42748, 0.08664, 0 and 1 for SRK equation      
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9.3. CONCEPT OF OPTIMAL SYNTHESIS OF 
LIQUEFACTION CYCLE 
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What is “Optimal Synthesis(Design)” of Liquefaction Cycle of a LNG FPSO? 
- Synthesis: Combination of Equipment 

1. Keyword 중 “Optimal Synthesis”에 
대한 설명 
 

2. Baseline 이 있는게 있고, Multistage 
Compression Refrigeration, 2개 정
도로 구성을 변경하는 과정이 
synthesis 임 
 

3. Optimal 은 목적 함수(work을 최소화 
하는 것??)를 설정하고 최적 설계를 하
는 것 
 

4. 목적함수: 오직 work만 따짐, w/o 
considering layout, space, cost, 
maintenance 
 

5. 그리고 목적함수를 최소화 하기 위한 
mathematical 모델이 뭔가?? 기본적
으로 baseline에 대한 예를 소개하면 
다음과 같다 (다음 장에 넣을 것) 

• An example of Simplified Liquefaction Cycle 

Compressor 

Condenser 

Expansion 
Valve 

Evaporator 

T1= -17.0 ℃, P1=2.1 bar 

Vapor 

T2=117.1℃, P2=11.7 bar 

Vapor 

T3=30.1 ℃, P3=11.7 bar 

Liquid 

T4=-17.0 ℃, P4=2.1 bar 

Liquid and Vapor 

1) Compressor brings the vapor refrigerant to a high pressure, which raises its temperature as well. 
2) The hot vapor refrigerant passes through the condenser, an array of thin tubes that transfer heat from the refrigerant to the 

cooling medium.  As it cools, the vapor refrigerant becomes a liquid under high pressure. 

3) The liquid refrigerant goes into the expansion valve, from which it emerges at a lower pressure and temperature. While 

passing through the expansion valve, high-pressure liquid becomes low-pressure liquid and vapor. 

4) In the evaporator, the cool liquid refrigerant completely evaporates by absorbing heat from the warm refrigerant. While passing 
through the evaporator, the temperature remains constant at the constant pressure during the phase-change process. The low-
pressure liquid and vapor becomes low-pressure vapor. The refrigerant leaves the evaporator as saturated vapor and reenters the 
compressor.   

5) In the end flash system, the pressure of LNG is expanded to the atmospheric pressure (1,01 bar) to be stored in the LNG tank.  

“Adiabatic process: There is no heat transfer between system and it surroundings , 
because there is no sufficient time to transfer much heat. 

“Isentropic process: “Entropy“ does not change. “Adiabatic process” and “Reversible” 

“Isobaric process”: There is no pressure drop 

“Isentropic” 

“Isobaric” 

“Adiabatic” 

@ 

“Isobaric” 

냉장고 117도 온도 확인 
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• Multistage Compression Refrigeration:  
2) Phase separator separates a liquid-vapor mixture refrigerant into the vapor and liquid 
3) Common header mixes the saturated vapor from the phase separator and the superheated vapor from the 
compressor 1, and the cooled mixture enters the compressor 2. 

• Another combination of equipment of a simplified liquefaction cycle 

Evaporator 

Condenser 

Expansion 
Valve 

Compressor 

Compressor 2 

Compressor 1 

(1) Add one  
more  

compressor 

Common 
Header 

Condenser 
Phase 
Separator 

(2) Add phase separator (3) Add  
common 
header 

V 
T11: 44.4 °C 

P11: 5.0 bar 

V 

V 

T1: 40.3 °C 

P1: 5.0 bar 

T2: 112.8 °C 

P2: 11.7 bar 

(4) Add one  
more expansion valve 

Expansion Valve 

T5: 30.1 °C 

P5: 11.7 bar 

L 

T6: 4.3 °C 

P6: 5.0 bar 

L,V L 

T9: -17.0 °C 

P9: 2.1 bar 

V 

V 
T7: 4.3 °C 

P7: 5.0 bar 

T8: 4.3 °C 

P8: 5.0 bar 

L,V 
T10: -17.0 °C 

P10: 2.1 bar 
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[Thermodynamics] Pressure(P)-Specific Volume(v)-Temperature(T) Surface 

 - Pure Substance 

Reference: 

 Brown, T.L., LeMay, Jr,., H.E. and Bursten, B.E., Chemistry the central science, 10th 

edition, Prentice Hall, 2006. p. 458 

* Vapor: Vapor can be condensed either by compression 
at constant temperature or by cooling at constant 
pressure. The ‘condense’ means the change of the state of 
substance from vapor phase to liquid phase 
 

* Gas: The vapor phase of a substance is customarily 
called a gas when it is above the critical temperature. 
Gas cannot be condensed by compression at constant 
temperature, because the motional energies of the 

molecules are greater than the attractive forces that lead to 

the liquid state regardless of how much the substance is 

compressed to bring the molecules closer together1). 

• Vapor vs. Gas 

• Critical point: The point where the saturated liquid 
and saturated vapor lines meet.  

• Supercritical fluid:   

• Triple line:  The line where all three phases(Vapor, 
Liquid, and Solid) of a pure substances coexist 

The triple line marks the lowest pressure at which 
a liquid phase of a substance can exist. 

Tc: critical temperature 
Pc: critical pressure 

P 

v 

T 

1. 맨 위에 평평한 부분은 뭘까? 

2. Solid 옆의 길쭉한 부분은 뭘까? 

Gas 

1. Gas와 Supercritical fluid 부
분을 명확히 표시해줄 것 

2. Gas와 Supercritical fluid의 
특성을 설명할 것 

P=PC 

T=TC 

T=constant>TC 

T=constant<TC 

1. Confines, Solvent 설명 
2. Supercritical fluid 

extraction 예시를 순서에 맞
게 설명할 것 

-  A single phase at and above the critical 
temperature and pressure 

- Like a gas, it still expands to fill the confines1) of 
its container. And like liquids, supercritical fluids 
can behave as solvents2), dissolving a wide rage 
of substances. 

- Using supercritical fluid extraction, the 
components of mixture, which is composed of the 
dissoluble substance3) and non-dissoluble 
substance, can be separated. 

- For example, supercritical CO2 is now used to 
extract sesame4) oil from the sesame caffeine from 
coffee, and nicotine from tobacco. 

1) confine: place within the closed boundaries 

2) solvent: a liquid that can dissolve other substances. 

3) dissoluble substance: a substance which can be dissolved 

4) sesame: 참깨 

 - A single phase at and above the critical 
temperature and pressure 
 - Like a gas, it still expands to fill the confines of 
its container. And like liquids, supercritical fluids 
can behave as solvents, dissolving a wide rage of 
substances1). 
- Using supercritical fluid extraction, the 
components of mixture can be separated. For 
example, supercritical CO2 is now used to extract 
caffeine from coffee and nicotine from tobacco. 

-  Since the supercritical fluid can behave as 
solvents like liquids, it is used to extract the 
dissolved substance from the mixed 
components easily, which are composed of 
dissolved one and non dissolved one. Also, the 
supercritical fluid still expands to fill the 
confines of its container like a gas, it has 
better efficiency for dissolving the large 
amount of the substance than liquid. 

(120226)수정사항:  
1. 자료 순서 변경할 것 
- 현재 내용과 관련된 것을 냉장고 개략

적인 설명 후 제일 먼저 설명할 것 
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3. Thermodynamics in the Liquefaction Cycle 
- Process of the Refrigerator  – Evaporation 

  Pressure(P)-Specific Volume(v)-Temperature(T) Surface 

Constant 
pressure line 

Constant 
temperature 
line 

P 

v 

T 

[ P-v-T surface of a substance that contract on 
freezing(General case)] 

Saturated 
liquid line 

Saturated 
vapor line 

- ④①  : While passing through evaporator, low pressure liquid 
and vapor becomes low-pressure vapor by absorbing the heat 
from the refrigerated space at constant temperature in the two 
phase. 

Assumption:  
      There is no pressure drop of the refrigerant through the 

evaporator. “Isobaric process” 

v

P

P=10.17 bar

P=1.34 bar

Liquid and 
vapor

Superheated 
VaporCompressed 

Liquid

Saturated 
liquid line

Saturated 
vapor line

Critical state

③

④

T1=-20 °C

T2=47.7 °C

T3=40°C

②’

①

②

① 

② ②’ 

③ 

④ 

① 

② 
②’ 

③ 

④ 

Critical point 

The evaporator has the same 
concept of the condenser. 
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3. Thermodynamics in the Liquefaction Cycle 
- Process of the Refrigerator  – Evaporation 

  Pressure(P)-Specific Enthalpy(h) Diagram 

According to the first law of thermodynamics 
Energy of the Energy of the 

Energy transferred from the 
refrigerant entering refrigerant leaving

refrigerated space as Heat
 the evaporator  the evaporator

   
    

     
 

      

   4 4 4 4 1 1 1 1Lh P ,v ,T h P ,v Tq , 

Saturated 

liquid line 

Saturated vapor line 

P=10.17 bar 

P=1.34 bar 

h 

P 
T=-20 °C T=40 °C 

Critical point 

Lq 1 4 Lh h q 4h Assumption:  
 

      There is no pressure drop of the refrigerant through the 
evaporator. “Isobaric process” 

Liquid 
and 

vapor 

Compressed 
Liquid Superheated 

Vapor 

Work(w) Compressor 
Expansion  

Valve 

Condenser 

Evaporator 

Heat transfer from 
the refrigerated 

space(qL) 

① 

② ③ 

④ 

②’ 

4h 1h

The evaporator has the same 
concept of the condenser. 

① ④ 
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4. Determination of the Optimal Operating Conditions for the Refrigerator 

 - Mathematical Model of the Refrigerator – Evaporator (1/2) 

       4, 4 4, 4 4, 4 4, 4 1 1 1 11 _ , , _ , , , ,l l v v LM v f h P v T v f h P v T Q M h P v T         
Rate of heat transfer from the 

refrigerated space to the 

refrigerant(Given) 

h4,l : enthalpy at the saturated liquid 

h4,v : enthalpy at the saturated vapor 
4,lh

4,vh
4h

v_f        :       1 – 

v_f 

3. Equality constraints 
 

   2) The first law of the thermodynamics(Energy conservation)  
 
 
 
 
 
 
 
 
 
 
 

   4 4 4 4 1 1 1 1, , , ,LM h P v T Q M h P v T   

 The ratio of the mass of vapor to the total 
mass of the mixture of saturated liquid and 
saturated vapor is called “ vapor fraction”. 

<Inlet> 
Refrigerant 

<Outlet> 
Refrigerant 

4 4 4, ,P T v 1 1 1, ,P T v

Lq

[Given] 

20[ ]LQ kW

[Find] 

 Minimize m w

Operating Conditions [20]: 
 Pi, Ti, vi, Ts, vs, v4,l, v4,v, v_f, w, M, qL , qH (i=1,2,3,4) 

P: pressure [bar] 
T: temperature [K] 
v: specific volume [m3/kg] 
Ts: temperature of the refrigerant in the 
compressor at isentropic process [K] 
vs: specific volume of the refrigerant in the 
compressor at isentropic process [m3/kg] 
v_f: vapor fraction 
qH: specific heat transfer from the refrigerant 
to the atmosphere [kJ/kg] 
qL: specific heat transfer from the refrigerated 
space to the refrigerant [kJ/kg] 
 M: mass flow rate of the refrigerant [kg/s] 
   : heat transfer from the refrigerated space to 
the refrigerant [kW] 
 

: Design variables 

LQ

Refrigerant: Ammonia 

1. 자료작성순서: 
가정  에너지보존법칙  상태방정식 
2. Evaporator에 대한 Nomenclature로 수정
할 것 
3. Vapor fraction 기호를 책을 참조하여 수정
할 것 
4. Ammonia 경우 여기서 보통 Vapor 
fraction이 어느정도 되는지 적을 것 
5. Ammonia가 냉매로 사용됨을 언급할 것 
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3. Thermodynamics in the Liquefaction Cycle 

- Process of the Refrigerator  – Compression 

  Pressure(P)-Specific Enthalpy(h) Diagram (1/5) 

Work(w) Compressor Expansion  
Valve 

Condenser 

Evaporator 

Heat transfer from the refrigerated 
space(qL) 

Heat transfer to the 
atmosphere (qH) 

① 

② ③ 

④ 

②’ 

Saturated liquid line 

Saturated vapor line 

Critical state 

P=10.17 bar 

P=1.34 bar 

h 

P 

P=Pc) 

T=-20 °C T=40 °C T=Tc 

Liquid and Vapor 

Compressed 
Liquid 

Superheated 
Vapor 

Gas 

Supercritical fluid 

T=47.7°C T=67.5°C 

Example) Mollier Diagram of the Ammonia 

① 

• Natural Phenomena: To compress the refrigerant, the work(w) is provided to the refrigerant. And  
                              the energy of the refrigerant is increased by the work(w). 

w

(120226)수정사항:  
1. 자료 순서 변경할 것 
- 설명 시 Entropy(2법칙, pp. 41-

44)을 바로 다음에 먼저 설명하고 
p.39부터 설명할 것 

Total energy of the refrigerant Total entering energy Total energy of the refrigerant 

entering the compressor  as Work in the compressor leaving the compressor

     
      

     

1 2h w h 

•   According to the first law of thermodynamics(The total quantity of energy is constant) 

The enthalpy of the refrigerant is increased by the work(w).  

The compressor is a device in which work is 

done on the substance flowing through it in 

order to increase the pressure.  In 
compressor(①②), low-pressure vapor 
becomes high-pressure vapor and its 
temperature is raised as well. 

2 1h h w 1h

② 

④ 

1. Evaporator  Compressor  Condenser  
Expansion valve 순으로 자료 작성 
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3. Thermodynamics in the Liquefaction Cycle 
- Process of the Refrigerator– Condensation 

  Pressure(P)-Specific Enthalpy(h) Diagram 

According to the first law of thermodynamics 
Energy of the Energy of the 

Energy transferred 
refrigerant entering refrigerant leaving

to the atmosphere as Heat
 the condenser  the condenser

   
    

     
 

      

   2 2 2 2 3 3 3 3Hh P ,v ,T h P ,v Tq , 

Assumption:  
      There is no pressure drop of the refrigerant through the 

condenser. “Isobaric process” 

① 

③ ② 

Saturated 

liquid line 

Saturated vapor line 

P=10.17 bar 

P=1.34 bar 

h 

P 

T=-20 

 °C 

T=40  

°C 

Critical point 

④ 

Hq 2 3Hh q h 3h

Liquid 
and 

vapor 

Compressed 
Liquid Superheated 

Vapor 

Heat transfer from the refrigerated space(qL) 

Work(w) Compressor 
Expansion  

Valve 

Condenser 

Evaporator 

Heat transfer to the 
atmosphere(qH) 

① 

② ③ 

④ 

②’ 

2h3h

T=47.7 

 °C 

[120304 커멘트] : 
1. Entropy는 왜 줄어디는지에 대해 설명할 것 
- 상변화!! 
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3. Thermodynamics in the Liquefaction Cycle 

- Process of the Refrigerator  – Expansion 
  Pressure(P)-Specific Enthalpy(h) Diagram (1/3) 

Work(w) Compressor Expansion  
Valve 

Condenser 

Evaporator 

Heat transfer from the refrigerated 
space(qL) 

Heat transfer to the 
atmosphere (qH) 

① 

② ③ 

④ 

②’ 

Saturated liquid line 

Saturated vapor line 

Critical state 

P=10.17 bar 

P=1.34 bar 

h 

P 

P=Pc) 

T=-20 °C T=40 °C T=Tc 

Liquid and Vapor 

Compressed 
Liquid 

Superheated 
Vapor 

Gas 

Supercritical fluid 

T=47.7°C T=67.5°C 

① 

② ③ 

④ 

1. Natural Phenomena: 
  Expansion valves are any kind of flow-restricting devices that cause a significant pressure drop in the fluid.   

Therefore, there is no work done to decrease the pressure. 

2. Assumption: 
  There is not sufficient time to transfer much heat from the atmosphere to the refrigerant in the expansion 
valve, “Adiabatic process”. 

Therefore, the energy values at the inlet and outlet ”enthalpy” of the expansion valve are the same 
(③④). 
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What is “Optimal Synthesis(Design)” of a Liquefaction Cycle of a LNG FPSO? 
- Optimal Synthesis 

Saturated liquid line 

Saturated vapor line 

Critical state 

P=11.7 
bar 

P=2.1  
bar 

h 

P 

P=Pc 

T=Tc 

Liquid and Vapor 

Compressed 
Liquid 

Superheated 
Vapor 

Gas 

Supercritical fluid 

1Lq
1w

Combination #1: Simplified Liquefaction Cycle 

Evaporator 

Condenser 

Expansion 
Valve 

Compressor 

Combination #2: Multistage Compression Refrigeration 

Evaporator 

Condenser 

Expansion 
Valve 

Compressor 
2 

Compressor 
1 

Common 
Header 

Condenser Expansion 
Valve 

Phase 
Separator 

What we want

What we pay for

Lq
CP

w
 

 What is the efficiency of liquefaction cycle? 
(CP: coefficient of performance) 

“Black Line” 
Simplified 

Liquefaction 
Cycle 

“Blue Line” 
Multistage 

Compression 
Refrigeration 

① 

② ③ 

④ 

2w

3w

2Lq

1) CP of Simplified Liquefaction Cycle: 
1

1

1

Lq
CP

w


2) CP of Multistage Compression Refrigeration: 
2

2

2 3

Lq
CP

w w




1 2 1 2 3 L Lq q , w w w  
1 2

1 2

L Lq q

w w w



Combination #2 is 

more efficient!! 

• To increase the efficiency of a liquefaction cycle, when qL is given, we have to 
determine the operating conditions such as pressure, temperature, specific volume by 
minimizing the specific work[J/g] provided to the compressor, “objective function”. 
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Saturated liquid line 

Saturated vapor line 

Critical state 

P=11.7 
bar 

P=2.1  
bar 

h 

P 

P=Pc 

T=Tc 

Liquid and Vapor 

Compressed 
Liquid 

Superheated 
Vapor 

Gas 

Supercritical fluid 

1Lq
1w

Simplified Liquefaction Cycle 

Evaporator 

Condenser 

Expansion 
Valve 

Compressor 

Multistage Compression Refrigeration 

Evaporator 

Condenser 

Expansion 
Valve 

Compressor 
2 

Compressor 
1 

Common 
Header 

Condenser Expansion 
Valve 

Phase 
Separator 

“Black Line” 
Simplified 

Liquefaction 
Cycle 

“Blue Line” 
Multistage 

Compression 
Refrigeration 

① 

② ③ 

④ 

2w

3w

2Lq

• Given: The quantity of the specific heat 

transfer from the refrigerated space to the 
refrigerant(qL) in the evaporator. 

Constraint 

Various combination of equipments 
of liquefaction cycle 

• Find: Various combination of equipments that makes up the liquefaction cycle 

              minimizing the power provided to the compressors. 

1. Optimal synthesis of liquefaction cycles  Design variables 

Objective function Design 
variables 

Objective function 

• Find:  The operating conditions such as the pressure, temperature and specific volume  

              minimizing  the power provided to the compressors. 

2. To calculate the minimized power, we have to determine the optimal operating condition 
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1. What is the Liquefaction Cycle of the LNG FPSO? 

  Introduction to the Liquefaction Cycle 

Equipment used in the cycle 
  1) Compressor: brings the vapor refrigerant to a high pressure, which raises its temperature as well 

  2) Sea Water Cooler(a kind of condenser): transfer heat from the hot vapor refrigerant to the sea water 

  3) Valve: decreases the pressure of the liquid refrigerant, which decreases its temperature as well 

  4) Heat Exchanger(a kind of evaporator): absorbs heat from the natural gas to cool down the NG, while the 
refrigerant is vaporized 

Compressor 

Sea Water(SW) Cooler 

Valve 

① 

② ③ 

④ 

Evaporator 

• An example of Simplified LNG Liquefaction Cycle 

T1= -17.0 ℃, P1=2.1 bar 

Vapor 

T2=117.1℃, P2=11.7 bar 

Vapor 

T3=30.1 ℃, P3=11.7 bar 

Liquid 

T4=-17.0 ℃, P4=2.1 bar 

Liquid and Vapor 

1) The temperature and pressure of the natural gas and liquefied natural gas are the values of the general case. 
2) In the end flash system, the pressure of LNG expanded to the atmospheric pressure (1,01 bar) to be stored in the LNG tank. 

• Goal of the LNG Liquefaction Cycle 

To liquefy NG to LNG for decreasing the volume of the NG 

Work(w) Compressor Expansion  
Valve 

Cooler 
(Condenser) 

Evaporator 

Heat transfer from the refrigerated 
space(qL) 

Heat transfer to the 
atmosphere (qH) 

① 

② ③ 

④ 

Trefrigerated space=-12 °C 

Tambient=25 °C 

T3: 30.1°C 
P3: 11.7 bar 

T2: 117.1°C 
P2: 11.7bar 

T1: -17.0°C 
P1: 2.1bar 

T4: -17.0°C 
P4: 2.1 bar 
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Saturated liquid line 

Saturated vapor line 

Critical state 

P=11.7 
bar 

P=2.1  
bar 

h 

P 

P=Pc 

T=Tc 

Liquid and Vapor 

Compressed 
Liquid 

Superheated 
Vapor 

Gas 

Supercritical fluid 

2. Determination of the Optimal Operating Conditions for the Refrigerator 

 - Optimal Design of Liquefaction Cycles 
 for LNG FPSO 

① 

② ③ 

④ 

• Given: The quantity of the specific heat 

transfer from the refrigerated space to the 
refrigerant(qL) in the evaporator. 

Lq
Constraint 

Design variables 

Objective function 

w

① 

② ③ 

④ 

Lq w

P=?  
bar 

P = ?  
bar 

- qL: specific heat transfer from the refrigerated space 
to the refrigerant(Given) 

- w: work provided to the compressor(Minimizing) 

• Find:  The operating conditions such as the pressure, temperature and specific volume  

              minimizing  the work or power  provided to the compressor. 

1. Determination of the optimal operating condition 

• Find: The number of the combination of equipment that make up the liquefaction cycle 

              minimizing the work  provided to the compressor. 

2. Optimal synthesis on liquefaction cycles  Design variables 

Objective function 

Work(w) Compressor Expansion  
Valve 

Cooler 
(Condenser) 

Evaporator 

Heat transfer from the refrigerated 
space(qL) 

Heat transfer to the 
atmosphere (qH) 

① 

② ③ 

④ 

T3: 30.1°C 
P3: 11.7 bar 

T2: 117.1°C 
P2: 11.7bar 

T1: -17.0°C 
P1: 2.1bar 

T4: -17.0°C 
P4: 2.1 bar 

V L 

L,V V 

1. 숫자는 냉장고인데, 제목은 
Liquefaction cycle로 되어 있다?? 
LNG FPSO라고 타이틀을 붙이면 안 
될 것 같은데.. 

2. [남국]냉장고에 대한 condition은 5가
지 경우로 나눠서 했는데, 이게 LNG로 
적용했을 때도 같은가? 해 봤는가?? 

3. [남국]메일에 보낸 5가지 경우에서 5
번은 참고한 논문이 있는가??? 4,5번 
차이가 뭔가?? 

4. 논문 제목이 파워포인트 밑에 항상 나
올 것 

5. 논문 제목의 키워드를 먼저 설명할 것: 
“Optimal Synthesis”, “LNG 
Liquefaction cycle” 

6. 그림은 refrigerator인데 .. 
Liquefaction cycle은 아님. 

7. 순서가 optimal synthesis가 먼저 나
오고 그 담에 거기에 대한 optimal 
operating condition이 계산되어야 함 

8. 왼쪽 P-h diagram에서 baseline과 
baseline + ms-comp + refrig 가 들
어가야 함 

9. 결론적으로 optimal operating 
condition (P, V, T) 을 계산해서 여러 
가지 다른 구성끼리 비교해야 함 
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Mathematical Model of the Liquefaction Cycle : Calculation of Specific Enthalpy(h) 

• Physical Constraint based on Thermodynamics #1 

     3 2 21 0Z Z q Z q                         
a

q
bRT



The compressible factor(Z) is calculated by solving the following cubic equation of state reformulated for (Z). 

h u P v  

Reference: Smith, J.M., Introduction to Chemical Engineering Thermodynamics, 7th edition, McGraw-Hill, 2005, pp.199-253 

Calculation of the specific enthalpy(h) 

IG Rh h h 
hIG: Ideal gas value of the specific enthalpy 
hR: Residual specific enthalpy(correction of the ideal gas state values to the real gas values) 

Energy conservation 

[ / ]J g

 Many tables of thermodynamics properties does not give values for 
internal energy. To allow calculation of enthalpy from the pressure, 
specific volume and temperature, the following equation is derived 
by using the definition(h=u+Pv), equation of state and experiment. 
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Calculation of Specific Enthalpy(h) 

• Calculation of the specific enthalpy(h) for a pure substance 

IG Rh h h 

  2 3 4 5IG IGh h T a b T c T d T e T f T           

where 
    a, b, c, d, e and f: constants characteristic of the particular substance 
    hig[J/g],  T: temperature[K] 

hIG: Ideal gas value of the specific enthalpy 
hR: Residual specific enthalpy(correction of the ideal gas state values to the real gas values) 

 
 

( )
( )

1
, , ( 1) lnR R

da T
T a T

ZdT
h h P v T RT Z

b Z

 

   

 
          

   

bP

RT
 

c

c

RT
b

P
  

  2 2,r c

c

T R T
a T

P

 


     3 2 21 0Z Z q Z q                         

α(Tr, ω) σ ε Ω ψ 

1 0 0.08664 0.42748   
2

0.52( ; ) 1 (0.480 1.574 0.176 ) 1r rT T        
 

a
q

bRT


where 

P[Pa] 
v[m3] 

T[K] 

The compressible factor(Z) is calculated by solving the following cubic equation of state reformulated for (Z). 

아래말 추가: 
Enthalpy의 정의는 u+PV이지만,  
U를 P, V, T로 계산하기어려움(식이 없음) 
Enthalpy를 P, v, T로 계산하기 위하여 정의, 실험 
및 equation of state를 사용하여 아래 식 유도 

( )

( )( )

v v a T
Z

v b R T v b v b 
  

     

 Many tables of thermodynamics properties does not give values for internal energy. To allow 
calculation of enthalpy from the pressure, specific volume and temperature, the following 
equation is derived by using the definition(h=u+Pv), equation of state and experiment. 

h u P v  

1. 출처 적을 것 
2. Where에서 SRK가 For example임을 적을 것 
3. SRK 방정식이 무엇인지 적을 것 
4. Tc, Pc, R값 적기 
5. da/dT값을 적기(예제참고) – 어떻게 계산하는건가? 
 RK 방정식을 사용할 수 있을 경우 쉽게 계산할 수 있음 Ammonia가 

RK 방정식으로 할 수 있는지 Check 
6. Ammonia에 대해서 값 모두 보여줄 것 

r

c

T
T

T


Reference: Smith, J.M., Introduction to Chemical Engineering Thermodynamics, 7th edition, McGraw-Hill, 2005, pp.199-253 

1) The values of parameters a, σ, ε, Ω, Ψ are depending on the type of the cubic equation of state. 
For example, the value of the parameters for the Soave-Redlich-Kwong(SRK) equation of state 
are given in the following table. 

2) The values of ω, critical pressure(Pc), 
and temperature(Tc) are depending on the 
substance.  

R: Gas constant (=8.314 J/(mol*K) 

   = 8.314m3Pa(mol*K)) 

Example) Ammonia:  
     a = -1.8514, b = 1.9937, c = -5.3266x10-4 

     d = 2.0615x10-6, e = -1.3386x10-9, 

     f = 3.0533x10-13 

Example) Ammonia:  
 ω = 0.253, Pc=112.80 (bar), Tc=405.7 (K) 

3) Since the unit of hIG is J/g and hR is J/mol, hR is devided by molar mass(M, g/mol). 

* 1 bar = 100kPa 

Example) Ammonia 

MAmmonia = 17.031 (g/mol) 

[ / ]
[ / ]

[ / ]

R
R h J mol

h J g
M g mol


   

 6, 10
2

a T e a T eda
e

dT e


   

  
 

4) Central difference approximation 
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Mathematical Model of the Liquefaction Cycle : Equation of state 

• Physical Constraint based on Thermodynamics #2 

Equation of state 

1 1 1Pv RT
[Equation of state for an ideal gas] 

( )
( )

( )

a T
P v b RT

v v b

 
   

  

The equation of state for the liquids and vapors is 
constructed by considering experimental results based on 
the equation of state for an ideal gas. 

Example) Soave, Redlich, Kwong(SRK) equation 

s: specific entropy 

 
  2 2

r C

C

T R T
a T

P




C

C

RT
b

P
 

0.42748 for SRK equation 

R: gas constant (=8.314 Jmol-1K-1) 

Pc: critical pressure of the refrigerant 

Tc: critical temperature of the refrigerant 

0.08664

0

1

for SRK equation

for SRK equation

for SRK equation





 





Example) Ammonia:  
 ω = 0.253, Pc=112.80 (bar), Tc=405.7 (K) 

 

  

a TRT v b
v b

P P v b v b 


  

 
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 To improve the equation of state for the liquids and vapors, the equation of state for 
an ideal gas is modified by using the experiment and experience. 

*EoS: Equation of State 4) SRK EoS -> 5) PR EoS 
분자 간의 인력에 의한 압력의 감소량에서 부피 의존성인 
V(V+b)대신 V(V+b)+b(V-b)를 사용하면 실제 값에 보다 
접근함을 실험적으로 증명. 

(4) Soave-Redlich-Kwong EoS   (5) Peng-Robinson EoS 

① Modify the pressure reduction due to the attractive forces 
  : The pressure reduction depending on the molar volume(v) is 
modified by                                                 instead of v(v+b). ( (1 2) ) ( (1 2) )v b v b      

( )
( )

( (1 2) ) ( (1 2) )

a T
P v b RT

v b v b

 
   

       
(5) 

 (5) Peng-Robinson EoS(1976) 

2 20.45724 ( / ; )
( ) PR c c

c

T T R T
a T

P

   


2
2 1/2

( / ; )

1 (0.37464 1.54226 0.26992 ) (1 ( / )

PR c

c

T T

T T

 

 



        
0.07780 c

c

R T
b

P

 


RTPv (1) 

 (1) Ideal gas EoS* 
(1802) 

( )
( )

( )

a T
P v b RT

v v b

 
   

  
(3) 

1/2 2 20.42748 ( / ) 0.08664
( ) ,c c c

c c

T T R T R T
a T b

P P

    
 

 (3) Redlich-Kwong EoS(1949) 

( )
( )

( )

a T
P v b RT

v v b

 
   

  
(4) 

 (4) Soave-Redlich-Kwong EoS(1972) 

2
( )

a
P v b RT

v

 
   

 
(2) 

 (2) van der Waals EoS(1873) 

2 224 1
,

64 8

c c

c c

R T R T
a b

P P

 
   

0.08664 c

c

R T
b

P

 


2
2 1/2

( / ; )

1 (0.480 1.574 0.176 ) (1 ( / )

SRK c

c

T T

T T

 

 



        

2 20.42748 ( / ; )
( ) SRK c c

c

T T R T
a T

P

   


T: temperature[ K] 

P: pressure{Pa] 

v: molar volume[m3/mol] 

TC: critical temperature[K] 

PC: critical pressure{Pa] 

ω: acentric factor 

R: gas constant(=8.314[m3Pa/(mol∙K)] 

모두 Check!!!!(영문자료에서 모두 갖고올 것) 
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9.6 Thermodynamics in the Liquefaction Cycle 
 General Form of the Cubic Equations of State for Liquids and Vapors 

The van der Waals(vdW), Redlich-Kwong(RK), Soave-Redlich-Kwong(SRK)  and Peng-
Robinson(PR) equation of state are represented as the following cubic equations form. 

))((

)(

bvbv

Ta

bv

RT
P

 





,
)(

)(

22

c

cr

P

TRT
Ta




c

c

P

RT
b 

21 21

  25.02 1)176.0574.1480.0(1);( rrSPK TT  

  25.02 1)26992.054226.137464.0(1);( rrPR TT   /r cT T T

  RTbv
bvbv

Ta
P 












))((

)(



T: temperature[ K] 

P: pressure{Pa] 

v: molar volume[m3/mol] 

TC: critical temperature[K] 

PC: critical pressure{Pa] 

ω: acentric factor 

R: gas constant(=8.314[m3Pa/(mol∙K)] 
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Mathematical Model of the Liquefaction Cycle : Calculation of Specific Entropy(s) 
dq

ds
T



Reference: Smith, J.M., Introduction to Chemical Engineering Thermodynamics, 7th edition, McGraw-Hill, 2005, pp.199-253 

• Physical Constraint based on Thermodynamics #3 

Calculation of the specific entropy(s) 

sig: entropy for the ideal gas   
sR: Residual entropy(correction of the ideal gas values for the real gas) 

IG Rs s s 

To allow calculation of entropy from the pressure, specific volume 
and temperature, the following equation is derived by using the 
definition(ds=dq/T), equation of state and experiment. 

Criteria for quality of the energy 

[ / ( )]J K g
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Calculation of Specific Entropy(s) 
 
 

  2 3 43 4 5
ln 2

2 3 4

IGS g b T c T d T e T f T              

sig: Ideal gas value of the entropy 
sR: Residual entropy(correction of the ideal gas state values to the real gas values) 

 
 0

1
, , ln( ) ln lnR R

a

P ZT
s s P v T R Z R

P b Z

 


   

 
             

    

where 

Pc: critical pressure of the substance 
Tc: critical temperature of the substance 
Z: compressible factor 

아래말 추가: 
Entropy 정의는 ds=dq/T임. 
dq를 P, v, T로 계산하기 위하여 정의, 실험 및 
equation of state를 사용하여 아래 Entropy계산 
식 유도  

• Calculation of the specific entropy(s) for a pure substance 

IG Rs s s 

To allow calculation of entropy from the pressure, specific volume and temperature, the following 
equation is derived by using the definition(ds=dq/T), equation of state and experiment. 

dq
ds

T


Reference: Smith, J.M., Introduction to Chemical Engineering Thermodynamics, 7th edition, McGraw-Hill, 2005, pp.199-253 

bP

RT
 

c

c

RT
b

P
 

  2 2,
( )

r c

c

T R T
a T

P

 


α(Tr, ω) σ ε Ω ψ 

1 0 0.08664 0.42748   
2

0.52( ; ) 1 (0.480 1.574 0.176 ) 1r rT T        
 

( )

( )( )

v v a T
Z

v b R T v b v b 
  

     
r

c

T
T

T


1) The values of parameters a, σ, ε, Ω, Ψ are depending on the type of the cubic equation of state. 
For example, the value of the parameters for the Soave-Redlich-Kwong(SRK) equation of state 
are given in the following table. 

1. 출처 적을 것 
2. Where에서 SRK가 For example임을 적을 것 
3. SRK 방정식이 무엇인지 적을 것 
4. Tc, Pc, R값 적기 
5. da/dT값을 적기(예제참고) – 어떻게 계산하는건가? 
 RK 방정식을 사용할 수 있을 경우 쉽게 계산할 수 있음 Ammonia가 

RK 방정식으로 할 수 있는지 Check 
6. Ammonia에 대해서 값 모두 보여줄 것 

* 1 bar = 100kPa 

P[Pa] 
v[m3] 

T[K] 

   
 6, 10

2

a T e a T eda
e

dT e


   

  
 

4) Central difference approximation 

2) The values of ω, critical pressure(Pc), 
and temperature(Tc) are depending on the 
substance.  

Example) Ammonia:  
 ω = 0.253, Pc=112.80 (bar), Tc=405.7 (K) 

where 
    a, b, c, d, e and f: coefficients of the ideal gas Enthalpy equation 
     sig[J/(g∙K)],  T: temperature[K] 

     g : Entropy coefficient (i.e. the Entropy of the ideal gas at T=0 K) = 1.00 

Example) Ammonia:  
     a = -1.8514, b = 1.9937, c = -5.3266x10-4 

     d = 2.0615x10-6, e = -1.3386x10-9, 

     f = 3.0533x10-13 

3) Since the unit of sIG is J/(g∙K) and hR is J/(mol∙K), hR is devided by molar mass(M, g/mol). 

Example) Ammonia 

MAmmonia = 17.031 (g/mol) 
[J / (mol K)]

[J / (g K)]
[ / ]

R
R s

s
M g mol


 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

484 

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee  

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee  

Mathematical Model of the Liquefaction Cycle 

• Physical Constraint based on Thermodynamics #4 

Physical assumptions for the liquefaction process  

“Isobaric process” 
-  There is no pressure drop 
 

“Adiabatic process” 
- There is no heat transfer between system and it surroundings , 

because there is no sufficient time to transfer much heat.
 

 
 
 
 
 
 

 
 

“Isentropic process” 
- “Entropy“ does not change  
- “Adiabatic process” and “Reversible” 
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Mathematical Model of the Refrigerator - Calculation of Specific Enthalpy(h) 

• Physical Constraint based on Thermodynamics #1 

     3 2 21 0Z Z q Z q                         
a

q
bRT



The compressible factor(Z) is calculated by solving the following cubic equation of state reformulated for (Z). 

 Many tables of thermodynamics properties does not give values for 
internal energy. To allow calculation of enthalpy from the pressure, 
specific volume and temperature, the following equation is derived 
by using the definition(h=u+Pv), equation of state and experiment. 

h u P v  

Reference: Smith, J.M., Introduction to Chemical Engineering Thermodynamics, 7th edition, McGraw-Hill, 2005, pp.199-253 

Calculation of the specific enthalpy(h) 

IG Rh h h 
hIG: Ideal gas value of the specific enthalpy 
hR: Residual specific enthalpy(correction of the ideal gas state values to the real gas values) 

Energy conservation 

[ / ]J g
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Mathematical Model of the Refrigerator – Equations of state 

• Physical Constraint based on Thermodynamics #2 

Equation of state 

1 1 1Pv RT
[Equation of state for an ideal gas] 

( )
( )

( )

a T
P v b RT

v v b

 
   

  

the equation of state for the liquids and vapors is 
constructed considering experimental modification based 
on the equation of state for an ideal gas 

Example) Soave, Redlich, Kwong(SRK) equation 

s: specific entropy 

 
  2 2

r C

C

T R T
a T

P




C

C

RT
b

P
 

0.42748 for SRK equation 

R: gas constant (=8.314 Jmol-1K-1) 

Pc: critical pressure of the refrigerant 

Tc: critical temperature of the refrigerant 

0.08664

0

1

for SRK equation

for SRK equation

for SRK equation





 





Example) Ammonia:  
 ω = 0.253, Pc=112.80 (bar), Tc=405.7 (K) 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

487 

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee  

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee  

Mathematical Model of the Refrigerator - Calculation of Specific Entropy(s) 
dq

ds
T



Reference: Smith, J.M., Introduction to Chemical Engineering Thermodynamics, 7th edition, McGraw-Hill, 2005, pp.199-253 

• Physical Constraint based on Thermodynamics #3 

Calculation of the specific entropy(s) 

sig: entropy for the ideal gas   
sR: Residual entropy(correction of the ideal gas values for the real gas) 

IG Rs s s 

To allow calculation of entropy from the pressure, specific volume 
and temperature, the following equation is derived by using the 
definition(ds=dq/T), equation of state and experiment. 

Criteria for quality of the energy 

[ / ( )]J K g
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2. Determination of the Optimal Operating Conditions for the Refrigerator 

 - Mathematical Model of the Refrigerator 

2) Constraint: 

1. Compressor 

   1 1 1 1 2 2 2 2, , , ,h P v T w h P v T 

   1 1 1 1 2 2, , , ,S Ss P v T s P v T

 

  
22 2

2

2 2 2

a TRT v b
v b

P P v b v b 


  

 

 

  
11 1

1

1 1 1

a TRT v b
v b

P P v b v b 


  

 

[The first law of the thermodynamics] 

[The second law of the thermodynamics] 

[Equation of state] 

[Equation of state] 

   2 2 2 2 3 3 3 3, , , ,Hh P v T q h P v T 

2 3P P

 

  
33 3

3

3 3 3

a TRT v b
v b

P P v b v b 


  

 

[The first law of the thermodynamics] 

[Isobaric process] 

[Equation of state] 

 

  
22 2

2

2 2 2

a TRT v b
v b

P P v b v b 


  

  [Equation of state] 

1) Design Variables: 1 1 1 2 2 2, , , , , , ,SP v T P v T T w

2) Constraint: 

2. Condenser 
1) Design Variables: 2 2 2 3 3 3, , , , , , HP v T P v T q

3. Expansion Valve 

2) Constraint: 

4. Evaporator 

1) Design Variables: 4 4 4 1 1 1 4, 4,, , , , , , , , _ , ,l v LP v T P v T v v v f m q

 

     
3 3 3 3

4, 4 4, 4 4, 4 4, 4

, ,

1 _ , , _ , ,l l v v

h P v T

v f h P v T v f h P v T    

 4 4, 4,1 _ _l vv v f v v f v    

[The first law of the thermodynamics] 

 

  
33 3

3

3 3 3

a TRT v b
v b

P P v b v b 


  

  [Equation of state] 

2) Constraint: 

1) Design Variables: 
3 3 3 4 4 4 4, 4,, , , , , , , , _l vP v T P v T v v v f

4 273.15

4 10

B
A

T C
P


 



 

  
4,44

4,

4 4, 4,

l

l

l l

v ba TRT
v b

P P v b v b 


  

 

 

  
4,44

4,

4 4, 4,

v

v

v v

v ba TRT
v b

P P v b v b 


  

 

[Saturated pressure and temperature] 

[Equation of state] 

[Equation of state] 

     

 

4, 4 4, 4 4, 4 4, 4

1 1 1 1

1 _ , , _ , ,

, ,

l l v v Lm v f h P v T m v f h P v T m q

m h P v T

       

 

4 1P P

[The first law of the thermodynamics] 

[Isobaric process] 

 

  
11 1

1

1 1 1

a TRT v b
v b

P P v b v b 


  

 
[Equation of state] 

 4 4, 4,1 _ _l vv v f v v f v    

 

  
4,44

4,

4 4, 4,

l

l

l l

v ba TRT
v b

P P v b v b 


  

 

 

  
4,44

4,

4 4, 4,

v

v

v v

v ba TRT
v b

P P v b v b 


  

 

[Equation of state] 

[Equation of state] 

   

   
2 2 2 2 1 1 1 1

2 1 1 1 1

, , , ,

, , , ,S S S

h P v T h P v T

h P v T h P v T






[Efficiency of the compressor] 

3 273.15

3 10

B
A

T C
P


 



1 273.15

1 10

B
A

T C
P


 



[Saturated pressure and temperature] 

[Saturated pressure and 
temperature] 

3 minambT T T 
[Outlet temperature of the condenser] 

20[ / ]Lm q kJ s 

[Given] 

T: temperature, P: pressure 

h: specific enthalpy[J/g] 

s: specific entropy [J/(K*g)] 

v: specific volume [m^3/g] 

w: Power provided to the compressor per mass [J/g] 

𝒒𝑯 : specific Heat transfer from the refrigerant to the atmosphere[J/g] 

𝒒𝐿: specific heat transfer from the refrigerated space to the refrigerant[J/g] 

단위 표기함 
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4. Determination of the Optimal Operating Conditions for the Refrigerator 

 - Summary of Mathematical Model of  
 This research for Refrigerator 

1. Design Variables(Operating Conditions, 21): Pi, Ti, vi, Ts, vS, v4,l, v4,v, v_f, w, 𝒎 , qH, qL (i=1,2,3,4) 

2. Equality constraints(19) 

1) Compressor(6) 

2) Condenser(4) 

4) Evaporator (4) 

[The first law of the thermodynamics] 

[The first law of the thermodynamics] 

[The second law of the thermodynamics] 

[Isobaric process] 

[Equation of state] 

[Equation of state] 

   1 1 1 1 2 2 2 2, , , ,m h P v T m w mh P v T   

   

   
2 1 1 1 1

2 2 2 2 1 1 1 1

, , , ,

, , , ,

S S Sh P v T h P v T

h P v T h P v T







   1 1 1 1 2 2, , , ,S Ss P v T s P v T

 

  
11 1

1

1 1 1 1

a TRT v b
v b

P P v b v b 


  

 

 

  
22 2

2

2 2 2 2

a TRT v b
v b

P P v b v b 


  

 

   2 2 2 2 3 3 3 3, , , ,Hh P v T q h P v T 

2 3P P

 

  
33 3

3

3 3 3 3

a TRT v b
v b

P P v b v b 


  

 

3 273.153

5
10

10

B
A

T CP 
 



3) Expansion valve(5) 

     

 

4, 4 4, 4 4, 4 4, 4

1 1 1 1

1 _ , , _ , ,

, ,

l l v v Lm v f h P v T m v f h P v T m q

m h P v T

       

 

4 1P P

1 273.151

5
10

10

B
A

T CP 
 



[The first law of the thermodynamics] 

[Isobaric process] 

[Saturated pressure and temperature] 

[Saturated pressure and temperature] 

[Heat transfer in the evaporator] 

T: temperature, h: specific enthalpy, s: specific entropy,         

P: pressure 

v: specific volume 

𝑊 : Power provided to the compressor per mass 

𝒒 𝑯 : Specific heat transfer from the refrigerant to the atmosphere 

𝒒 𝐿: Specific heat transfer from the refrigerated space to the refrigerant(Given) 

U: Heat transfer coefficient of the evaporator 

A: Area of the evaporator 

where 
     Tamb: ambient temperature 
     𝛥𝑇𝒎𝒊𝒏: minimum value of the difference between the ambient temperature and outlet temperature  

3 minambT T T 
[Outlet temperature of the condenser] 

3. Inequality constraint(1) 

 

  
4,44

4,

4 4 4, 4,

v

v

v v

v ba TRT
v b

P P v b v b 


  

 

 

  
4,44

4,

4 4 4, 4,

l

l

l l

v ba TRT
v b

P P v b v b 


  

 

4 273.154

5
10

10

B
A

T CP 
 



 

     
3 3 3 3

4, 4 4, 4 4, 4 4, 4

, ,

1 _ , , _ , ,l l v v

h P v T

v f h P v T v f h P v T    

[Saturated pressure and temperature] 

[The first law of the 
thermodynamics] 

 4 4, 4,1 _ _l vv v f v v f v    

 

  2 2

SS S
S

S S

a TRT v b
v b

P P v b v b 


  

 

4. Objective function(f) 

f m w 

Since the number of equality constraints is less than the 
number of design variables, these equations form 
indeterminate systems. 

We need a certain criteria to determine the proper solution. 
By introducing the criteria(objective function), this problem 
can be formulated as an optimization problem. 

Minimize the power provided to the compressor. 

20[ / ]Lm q kJ s 
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[Thermodynamics] Mole (Mol) 

12C
-Carbon 

-Mass number(number of proton + 

number of neutron) is 12. 

proton  

neutron 

nucleus of an atom 

49

0/

35

5 

Mass of 6.02x1023 atoms of Carbon   = 12.01 g 
 
Mass of 6.02x1023 atoms of Methane = 16.09 g 

Why 6.02x1023 atoms? 

• In everyday life, we use counting units like 
dozen and tray to deal with large 
quantities. 

<A dozen of pencils> <A tray of eggs> 

<A mole of atoms> 

1 mole of atoms or molecules = 6.02x1023 

Avogadro’s number 

• A mole is the amount of matter that contains as many objects 
such as atoms or molecules as the number of atoms in exactly 
12 g of C(carbon), “Avogadro’s number”. 

• Amedeo Avogadro 
    (Italian sientist,1776-1856) 

• The mass in grams per mole 
of a substance is called the 
molar mass. 

` 
1 mole 

1 mole 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

491 

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee  

Computer Aided Ship Design, I-9 Determination of Optimal Operating Conditions for the Liquefaction Cycle of the LNG FPSO, Fall 2011, Kyu Yeul Lee  

[Thermodynamics] Molar Mass, Molar Volume, Density and Specific 
Volume  

• Molar mass(M): The mass in 
grams per mole of a substance 

Name 
Molar mass 

[g/mol] 

Carbon(C) 12.01 

Hydrogen(H) 1.008 

Iron(Fe) 55.85 

Water(H20) 18.02 

Methane(CH4) 16.04 

Reference: 1)김봉래, 김득호, High Top 화학 II, 두산동아,, 2009, p. 98 

1. Molar volume 설명을 통해 
Fe와 H2O간의 Density 차이 
설명할 것 

(120311)세미나 커멘트 사항 
1) Molar volume 얘기할 것 
-왜 사용하는 건지? 상대적인 값 개념 (vs 절대
적인 값) 
2) Fe의 Molar volume도 찾기 
3) Density는 어떻게 될까요? Molar 
volume/Molar mass이다. 
예시 
4) 이의 역수는 Specific volume이다.(따로 큰 
항목으로 Molar volume과 대비되게 할 것) 
5) Molar volume 단위 Check 

3[ / ]m kmol

• Molar volume(    ): The volume per mole of a substance v

Example) Density of the water at 1 atm and 0 °C ? 
- Molar mass of the water = 18.02 g/mol 

- Molar volume of the water at 1 atm and 0 °C = 1.8x10-5  m3/mol1) 

5 3

6 3

3

18.02

1.8 10

1.001 10 [ / ]

1.001 [ / ]

g mol

mol m

g m

ton m




 
    

 



3[ / ]kg m

• Density(ρ) Molar mass
=

Molar volume

• Specific volume(    )  
                               
                               :The volume per unit mass of a substance 

3[ / ]m kg

v
1 Volume

=
Mass



• Specific~: “~ per unit mass” 
    Molar~: “~ per mole” 
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• Assumption of the values of the free variables [2 = 21 - 19] 

   : 1

2

2.115[ ]

11.698[ ]

P bar

P bar





4. Determination of the Optimal Operating Conditions for the Refrigerator 

 - Verification of the Mathematical Model of This research for Refrigerator (3) 

2. Equality constraints [19] 

1. Design Variables(Operating Conditions, 21) 
  :  Pi, Ti, vi, Ts, vS, v4,l, v4,v, v_f, w, 𝑚  , qL, qH (i=1,2,3,4) 

1) Compressor (6) 
2) Condenser (4) 
3) Expansion valve (5) 
4) Evaporator (4) 

 System of nonlinear equations 

• Design variables [19] 

• Equality constraints [19] 

 Use of Newton-Raphson method 

 Indeterminate systems 

  
Result obtained 

 by this paper 

P1[bar] 2.115 

T1[K] 256.152 

v1[m
3/mol] 0.0098128 

P2[bar] 11.717 

T2[K] 390.278 

v2[m
3/mol] 0.0026551 

P3[bar] 11.717 

T3[K] 303.273 

v3[m
3/mol] 0.0000365 

P4[bar] 2.114 

T4[K] 256.151 

v4[m
3/mol] 0.0017003 

v_f 0.1705 

v4v[m3/mol] 0.0098130 

v4l[m3/mol] 0.0000327 

Ts[K] 384.793 

vs[m
3/mol] 0.0026119 

  𝑚  [g/s] 17.6 

w[J/g] 265.698 

qL[J/g] 1136.36 

qH[J/g] 1402.676 

Objective functio

n(W)[kW] 

4.676 
265.698x17.6/1000

=4.6768 

Molar mass of ammonia: 17.031 g/mol 
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2. Determination of the Optimal Operating Conditions for the Refrigerator 

 - Verification of the Mathematical Model of This research for Refrigerator (1) 

How can we verify the mathematical model of this research for refrigerator? 

1. Design variables(Operating conditions, 21) 

2. Equality Constraints(19) 

 indeterminate systems 

• Mathematical Model of this research 

 Mathematical model: 
  - Design variables(21) 
  - Equality constraints(19)   

<Input> 

Assume the 2 free 
variables  

<Output> 
The values of the 

other design 
variables 

 To verify the mathematical model this research, 
we assume the values of the two design 
variables, solve and compare the result with that 
of the Aspen HYSYS. 

  
Result obtained 

 by this paper 

P1[bar] 2.115 

T1[K] 256.152 

v1[m
3/mol] 0.0098128 

P2[bar] 11.717 

T2[K] 390.278 

v2[m
3/mol] 0.0026551 

P3[bar] 11.717 

T3[K] 303.273 

v3[m
3/mol] 0.0000365 

P4[bar] 2.114 

T4[K] 256.151 

v4[m
3/mol] 0.0017003 

v_f 0.1705 

v4v[m3/mol] 0.0098130 

v4l[m3/mol] 0.0000327 

Ts[K] 384.793 

vs[m
3/mol] 0.0026119 

   𝑚  [g/s] 17.6 

w[J/g] 265.698 

qL[J/g] 1136.36 

qH[J/g] 1402.676 

Objective function 

(W)[kW] 

4.676 
265.698x17.6/1000

=4.6768 

Molar mass of ammonia: 

17.031 g/mol 
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2. Determination of the Optimal Operating Conditions for the Refrigerator 

 - Verification of the Mathematical Model of This research for Refrigerator (2) 

How can we verify the mathematical model of this research for refrigerator? 

 Mathematical model: 
  - Design variables(21) 
  - Equality constraints(19)   

<Input> 

Assume the 2 free 
variables  

<Output> 
The values of the 

other design 
variables 

<Input> 

Assume the 2 free 
variables  

1) It is a kind of simulation program to 
solve the simultaneous equations by 
considering equality constraint related 
with thermodynamics and made by 
Aspentech. 

Aspen HYSYS1) 

There are equality constraints,  
but it is difficult to find the equality 

constraints(Black box). 

<Output> 
The values of the 

other design 
variables 

  
Aspen 

HYSYS 
Difference 

P1[bar] 2.115 0.000% 

T1[K] 256.133 0.008% 

v1[m
3/mol] 0.0098078 0.051% 

P2[bar] 11.717 0.000% 

T2[K] 390.059 0.056% 

v2[m
3/mol] 0.0026532 0.071% 

P3[bar] 11.717 0.000% 

T3[K] 303.202 0.023% 

v3[m
3/mol] 3.654E-05 0.099% 

P4[bar] 2.115 0.047% 

T4[K] 256.130 0.008% 

v4[m
3/mol] 0.0017274 1.591% 

v_f 0.1733642 1.680% 

v4v[m3/mol] 0.0098078 0.053% 

v4l[m3/mol] 3.273E-05 0.090% 

Ts[K] 384.793 0.114% 

vs[m
3/mol] 0.0026086 0.127% 

 𝑚  [g/s] 17.6543 0.308% 

w[J/g] 268.80043 1.168% 

qL[J/g] 1132.87 0.308% 

qH[J/g] 1401.6706 0.072% 

Objective 

function(W) 

[kW] 

268.80043 
x17.6/1000

=4.745 
1.573% 

 The mathematical model can be verified by comparing between the values of the other 
design variables obtained by mathematical model of this research and Aspen HYSYS. 

Comparison for verifying  
the mathematical model 

  
Result obtained 

 by this paper 

P1[bar] 2.115 

T1[K] 256.152 

v1[m
3/mol] 0.0098128 

P2[bar] 11.717 

T2[K] 390.278 

v2[m
3/mol] 0.0026551 

P3[bar] 11.717 

T3[K] 303.273 

v3[m
3/mol] 0.0000365 

P4[bar] 2.114 

T4[K] 256.151 

v4[m
3/mol] 0.0017003 

v_f 0.1705 

v4v[m3/mol] 0.0098130 

v4l[m3/mol] 0.0000327 

Ts[K] 384.793 

vs[m
3/mol] 0.0026119 

   𝑚  [g/s] 17.6 

w[J/g] 265.698 

qL[J/g] 1136.36 

qH[J/g] 1402.676 

Objective functio

n(W)[kW] 

265.698x17.6/1000

=4.6768 

  
Result obtained 

 by this paper 

P1[bar] 2.115 

T1[K] 256.152 

v1[m
3/mol] 0.0098128 

P2[bar] 11.717 

T2[K] 390.278 

v2[m
3/mol] 0.0026551 

P3[bar] 11.717 

T3[K] 303.273 

v3[m
3/mol] 0.0000365 

P4[bar] 2.114 

T4[K] 256.151 

v4[m
3/mol] 0.0017003 

v_f 0.1705 

v4v[m3/mol] 0.009813 

v4l[m3/mol] 0.0000327 

Ts[K] 384.793 

vs[m
3/mol] 0.0026119 

  𝑚 [kg/s] 0.0176 

w[J/g] 265.698 

qH[J/g] 1402.676 

Objective functio

n(W)[kW] 

4.672 

265.980 

4.745[ ]m w kW 

20[ / ]Lm q kJ s 
4.215Lq

CP
w

 
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2. Determination of the Optimal Operating Conditions for the Baseline Liquefaction Cycle 
 

1. Design Variables(Operating Conditions, 21) 
  :  Pi, Ti, vi, Ts, vS, v4,l, v4,v, v_f, w, M, qL, qH (i=1,2,3,4) 

2. Equality constraints [20] 
1) Compressor (6) 
2) Condenser (4) 
3) Expansion valve (5) 
4) Evaporator (5) 

4. Objective function: Minimize the compressors power 

3. Inequality constraints [1] 

• Free variables [1 = 21 - 20] 

 : 1P

• Inequality constraints [1] 

Procedure of finding optimum solution Optimization Problem 

• Design variables [20] 

• Equality constraints [20] 

 Determine the 20 variables   
    using Newton-Raphson method 

System of nonlinear equations 

② 

   Calculation of objective function 

   1st Step: Find the free variable P1, by minimizing the 
compressor power subject to the inequality constraint 
using sequential quadratic programming(SQP) method. . 

Minimize  W M w 

  [kg / s

: [

: ]

/ ]w work input to thecompressor per mass J kg

mass flow rate of refrigerantM

Minimize  W M w 

 4L CM q U A T T    

c.f) Heat transfer in the evaporator 

U
A

CT

: Heat transfer coefficients[W/m2K] 

: Room temperature[K] 

: Area of equipment temperature[m2] 

1. M -> small m dot 
 

2. Refrigerator -> Baseline 
Liquefaction cycle 

① 

2nd Step: 
determine the 20dependent 
variables  by solving the system of 
the nonlinear equations. 
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4. Determination of the Optimal Operating Conditions for the Refrigerator 

- Result of the Optimal Operating Conditions for the Refrigerator 

Problem1) 

Given:  

  Find: Operating condition  

where 

2 2

min

20[ / ], 1,000[ / ], 4.0 [ ],

12 , 95%, 25 , 5

L

C amb

m q kJ s U W m K A m

T C T C T C

   

        

Reference: 1) Jensen, J.B., 2008, Optimal Operation of Refrigeration Cycles, Ph.D. thesis, Norweglan University of Science and Technology.  

: Power provided to the compressor[ ]m w kW

  
Result obtained 

 by this paper 

P1[bar] 2.115 

T1[K] 256.152 

v1[m
3/mol] 0.0098128 

P2[bar] 11.717 

T2[K] 390.278 

v2[m
3/mol] 0.0026551 

P3[bar] 11.717 

T3[K] 303.273 

v3[m
3/mol] 0.0000365 

P4[bar] 2.114 

T4[K] 256.151 

v4[m
3/mol] 0.0017003 

v_f 0.1705 

v4v[m3/mol] 0.0098130 

v4l[m3/mol] 0.0000327 

Ts[K] 384.793 

vs[m
3/mol] 0.0026119 

 𝑚  [g/s] 17.6 

w[J/g] 265.698 

qL[J/g] 1136.36 

qH[J/g] 1402.676 

Objective function(W)[kW] 265.698x17.6/1000=4.6768 

Optimization result: 

Minimize  W m w 

Work(w) Compressor Expansion  
Valve 

Cooler 
(Condenser) 

Evaporator 

Heat transfer from the refrigerated 
space(qL) 

Heat transfer to the 
atmosphere (qH) 

① 

② ③ 

④ 

Trefrigerated space=-12 °C 

Tambient=25 °C 

T3: 30.1°C 
P3: 11.7 bar 

T2: 117.1°C 
P2: 11.7bar 

T1: -17.0°C 
P1: 2.1bar 

T4: -17.0°C 
P4: 2.1 bar 

°C = K – 273.15 

V: vapor 
L: Liquid 
L,V: Liquid and Vapor 
      (Two phase) 

Cooler 
(Condenser) 

Compressor 1 Expansion 
Valve 1 

2 

4 

Evaporator 

1 

T1: -17.0 °C 

P1: 2.1bar 

V 

V 

L,V 

T2: 117.1 °C 

P2: 11.7 bar 

3 L 

T3: 30.1 °C 

P3: 11.7 bar 

T4: -17.0 °C 

P4: 2.1 bar 

NG LNG 

Molar mass of ammonia: 17.031 g/mol 
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9.4. VARIOUS COMBINATION OF EQUIPMENT FOR 
THE LIQUEFACTION CYCLE 
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3. 1 Single Cycle with Regeneration (1) 

Evaporator 

V: vapor 
L: Liquid 
L,V: Liquid and Vapor 
      (Two phase) 

1. 첫 장에는 Cycle을 크게 그려주고, 두번째 장에는 P-h 
diagram을 크게 그려줄 것(숫자도 크게) 

2. Reference 적기 
3. 냉동박스도 표시 
4. Animation으로 Heat exchanger가 없을 때는 1번과 7번을 

안보여주고, Heat exchanger가 추가되었을 때 보여줄 것 
5. Heat exchanger가 냉매 5번에 대해서는 Condenser, 냉매 

8a에 대해서는 Evaporator역할을 함을 언급할 것 
6. 그림을 그릴 때 57부분이 아래 8a1과 가깝도록 그릴 것 
7. 아래 Advantage를 수식(엔탈피)로 표현할 것 
8. 아래 Diagram에서 12가 좀 더 기울어 짐을 표시 
 Trade-off study가 필요함을 언급할 것(W도 표시) 

Cooler 
(Condenser) 

Compressor 1 Expansion 
Valve 1 

2 

8 

Evaporator 

Counter flow heat 
exchanger 

1 

T1: 11.8 °C 

P1: 2.1bar 

V 

V 

L,V 

T2: 124.0 °C 

P2: 11.7 bar 

5 L 

T5: 30.1 °C 

P5: 11.7 bar 

7 L 

T7: 28.0 °C 

P7: 11.7 bar 

T8: -17.0 °C 

P8: 2.1 bar 

8a 

T8a: -17.0 °C 

P8a: 2.1 bar 

V 

Subcooling 

Superheating 

↑Q 

[슬라이드설명] Regeneration의 개념에 대하여 설명 

• Regenerative cooling(Q): By inserting a 

counter-flow heat exchanger into the cycle, the 
high pressure liquid refrigerant after condenser is 
further cooled before expanding in the expansion 
valve. 

24페이지 

V: vapor
L: Liquid
L,V: Liquid and Vapor

(Two phase)

Cooler
(Condenser)

Compressor 1 Expansion
Valve 1

2

4

Evaporator

1

T1: -17.0 °C
P1: 2.1bar

V

V

L,V

T2: 117.1 °C
P2: 11.7 bar

3 L

T3: 30.1 °C
P3: 11.7 bar

T4: -17.0 °C
P4: 2.1 bar

NG LNG

Total work:  
4.800kW 

c.f) 
Total work of Single Cycle without 
“Regeneration”: 
4.745kW(p.24) 

[수정완료] 순수 냉장고 예제와 같은 값으로 시뮬레이션을 수행 
1. Cooling capacity는 같고, 
2. 냉매의 Flow rate가 감소하였으며, 
3. total work은 커졌음을 확인 
4. 즉 regeneration이 work에 대한 효율이 좋아지는 모듈은 아님 

냉장고 예제와 비교를 위하여 
Cooling capacity가 같도록 계산 

20[ / ]Lm q kJ s 

4.800[ ]m w kW 

4.215CP 

4.167Lq
CP

w
 

Molar mass of ammonia: 17.031 g/mol 

17.48[ / ],

1144.16[ / ],

274.60[ / ]

L

m g s

q J g

w J g






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3. Optimal Synthesis of the Liquefaction Cycle - Configuration strategies (1) 

  - Single Cycle with Regeneration (2) 

- Advantage:  
 

1) Since the refrigerant is subcooled before 
expanding, the cooling capacity(Qp) of the 
refrigerator is increased. 
 
2) Since the compressors are designed as 
vapor pumps, if any amount of liquid is 
allowed to enter the compressor, serious 
mechanical damage to the compressor may 
result. However, it is difficult to control the 
state of the refrigerant as the saturated 
vapor state. In this case, superheating the 
refrigerant prevents the liquid refrigerant 
from entering the compressor. 

V: vapor 
L: Liquid 
L and V: Liquid and Vapor(Two phase 

Saturated liquid 
line 

Saturated vapor 
line 

Critical state 

P=11.7  
bar 

P=2.1  
bar 

h 

P 

P=Pc 

T=Tc 

Liquid and 
Vapor 

Compressed 
Liquid 

Superheated 
Vapor 

Gas 

Supercritical fluid 

11.8°C 30.1°C 28°C -17°C 124°C 

1 8 

2 
5 7 

8a 

Subcooling Superheating 

1. 첫 장에는 Cycle을 크게 그려주고, 두번째 장에는 P-h 
diagram을 크게 그려줄 것(숫자도 크게) 

2. Reference 적기 
3. 냉동박스도 표시 
4. Animation으로 Heat exchanger가 없을 때는 1번과 7번을 

안보여주고, Heat exchanger가 추가되었을 때 보여줄 것 
5. Heat exchanger가 냉매 5번에 대해서는 Condenser, 냉매 

8a에 대해서는 Evaporator역할을 함을 언급할 것 
6. 그림을 그릴 때 57부분이 아래 8a1과 가깝도록 그릴 것 
7. 아래 Advantage를 수식(엔탈피)로 표현할 것 
8. 아래 Diagram에서 12가 좀 더 기울어 짐을 표시 
 Trade-off study가 필요함을 언급할 것(W도 표시) 

V: vapor
L: Liquid
L,V: Liquid and Vapor

(Two phase)

Cooler
(Condenser)

Compressor 1 Expansion
Valve 1

2

8

Evaporator

Counter flow heat 
exchanger

1

T1: 11.8 °C
P1: 2.1bar

V

V

L,V

T2: 124.0 °C
P2: 11.7 bar

5 L

T5: 30.1 °C
P5: 11.7 bar

7L

T7: 28.0 °C
P7: 11.7 bar

T8: -17.0 °C
P8: 2.1 bar

8a

T8a: -17.0 °C
P8a: 2.1 bar

V

Subcooling

Superheating

↑Q
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3. Optimal Synthesis of the Liquefaction Cycle - Configuration strategies (1) 

  - Single Cycle with Regeneration (3) Cooler 
(Condenser) 

Compressor 1 

Expansion 
Valve 1 

1 

2 5 

8 

Evaporator 

V: vapor 
L: Liquid 
L and V: Liquid and Vapor(Two phase) 

• Refrigerator 

 In case of the liquefaction cycle, the counter flow heat 
exchanger and evaporator can be combined and represented 
as a single evaporator. 

Coller 
(Condenser) 

Compressor 1 

Expansion 
Valve 1 

1 

2 5 7 

8 

Heat 
exchanger 

Cooler 
(Condenser) 

Compressor 1 Expansion 
Valve 1 

2 

8 

Evaporator 

Counter flow 
heat exchanger 

1 

5 7 

8a 

Subcooling 

Superheating 

↑Q 

남국수정3 
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3.2  Single Cycle with Multistage Compression with Intercooling (1) 

• Multistage Compression with Intercooling:  
The refrigerant is compressed in multistage and cooled 
down between each stage by passing through an 
intercooler 

1. 첫 장에는 Cycle을 크게 그려주고, 두번째 장에는 P-h 
diagram을 크게 그려줄 것(숫자도 크게) 

2. Reference 적기 
3. 냉동박스도 표시 
4. 뒷 Configuration과 비교할 것(Safety, Cost, 효율 등) 

 

1. 온도 출처, 처음 제안한 사람 

[수정완료] Multistage Compression with 
Intercooling이 없는 순수 냉장고 예제와 같은 
값으로 시뮬레이션 
1. Cooling capacity는 동일함 
2. total work는 작아졌음을 확인 

Compressor 2 Cooler 
(Condenser) 

Compressor 1 

Intercooler 1 

Expansion 
Valve 1 

V L,V T1: -17.0 °C 

P1: 2.1 bar 

V 

V L 

1 

2 

3 4 V 5 

6 

T2: 44.4 °C 

P2: 5.0 bar 

T3: 28 °C 

P3: 5.0 bar 

T4: 98.6 °C 

P4: 11.7 bar 

T5: 30.1 °C 

P5: 11.7 bar 

T6: -17.0 °C 

P6: 2.1 bar 

Evaporator 

Work generated 
by compressor 1: 
2.14W 

Work generated 
by compressor 2: 
2.48W 

Total work:  
4.622kW 

c.f) 
Total work of  
Single Cycle  
without “Multistage 
Compression with 
Intercooling”: 
4.745kW(p.24) 

남국수정4 

20[ / ]Lm q kJ s 

4.622[ ]m w kW 

4.327Lq
CP

w
 

4.215CP 

Molar mass of ammonia: 17.031 g/mol 

17.6[ / ],

1136.36[ / ],

262.61[ / ]

L

m g s

q J g

w J g






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3. Optimal Synthesis of the Liquefaction Cycle - Configuration strategies (2) 

  - Single Cycle with Multistage Compression with Intercooling (2) 

- Advantage:  
The compressor work to be 
provided can be is reduced. 

   
1 2 1

2 1 2 2

a

a

W h h

h h h h

 

   

Single stage compression 

   2 2 1 4 3W h h h h   

Two stage compression with 
intercooler 

1. 첫 장에는 Cycle을 크게 그려주고, 두번째 장에는 P-h 
diagram을 크게 그려줄 것(숫자도 크게) 

2. Reference 적기 
3. 냉동박스도 표시 
4. 뒷 Configuration과 비교할 것(Safety, Cost, 효율 등) 

 

1. 온도 출처, 처음 제안한 사람 Saturated liquid 
line 

Saturated vapor 
line 

Critical state 

P=11.7  
bar 

P=2.1  
bar 

h 

P 

P=Pc 

T=Tc 

Liquid and Vapor 

Compressed 
Liquid 

Superheated 
Vapor 

Gas 

Supercritical fluid 

 -17°C 30.1°C 28°C 

P=5.0  
bar 

1 6 

2 

5 
2a 

3 

: isentropic curve 

1 2W W

4 

98.6°C 

1h 3h 2h 2ah

4h

44.4°C 

Compressor 2 Cooler
(Condenser)

Compressor 1

Intercooler 1

Expansion
Valve 1

V L,VT1: -17.0 °C
P1: 2.1 bar

V

V L

1

2

3 4 V 5

6

T2: 44.4 °C
P2: 5.0 bar

T3: 28 °C
P3: 5.0 bar

T4: 98.6 °C
P4: 11.7 bar

T5: 30.1 °C
P5: 11.7 bar

T6: -17.0 °C
P6: 2.1 bar

Evaporator
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3.3  Single Cycle with Multistage Compression Refrigeration (1) 

Compressor 2 
Condenser 

Compressor 1 

Intercooler 1 

Expansion 
Valve 1 

: isentropic curve 

Condenser 

Phase 
Separator 

Compressor 2 

Compressor 1 

Common 
Header 1 

1 

2 

5 

7 

6 

10 

11 

Expansion 
Valve 1 

8 

V 

L 

T9: -17.0 °C 

P9: 2.1 bar 

V 

V 
V 

V 

T1: 40.3 °C 

P1: 5.0 bar 

T2: 112.8 °C 

P2: 11.7 bar 

T5: 30.1 °C 

P5: 11.7 bar 

T6: 4.3 °C 

P6: 5.0 bar 

L 

T7: 4.3 °C 

P7: 5.0 bar 

T8: 4.3 °C 

P8: 5.0 bar 

9 L,V 

T10: -17.0 °C 

P10: 2.1 bar 

T11: 44.4 °C 

P11: 5.0 bar 

1. Inner Loop Cycle이 한일이 Compressor 2에 대한 Cooler
역할임을 언급할 것 

2. Outer Loop Cycle에서 냉장고 안의 열을 흡수함을 적을 것 
3. Evaporator라고 기기명 붙일 것 
4. 첫 장에는 Cycle을 크게 그려주고, 두번째 장에는 P-h 

diagram을 크게 그려줄 것(숫자도 크게) 
5. Reference 적기 
6. 냉동박스도 표시 
7. 아래 Diagram에서 10번을 Saturated vapor line에 붙일 것 
8. 아래 Diagram에서 67,8로 갈 때 열역학적으로 Specific 

enthalpy이기 때문에 1 kg L and V와 1kg V로 설명하면서 
열과 같은 에너지를 냉매가 흡수한 것이 아님을 언급 

9. 아래 Diagram에서 -30도 표시할 것 
10. 앞장과 다른 점을 잘 설명할 것(앞장의 Sea water cooler가 

하던 Intercooler역할을 여기서는 Common header가 하고 
있음) 

11. Common header와 Phase separator가 1 Set임을 언급할 
것 

Intercooler의 역할을 common header
가 대신하고 있음. 

Compressor 2 Condenser 

Compressor 1 

Intercooler 1 

Expansion 
Valve 1 

Evaporator 

NG LNG 

Compressor 2 Condenser

Compressor 1

Intercooler 1

Expansion
Valve 1

Evaporator

NG LNG

Intercooler의 역할을 
common header가 대신하
고 있음. 

• Multistage Compression Refrigeration:  
1) Phase separator: separates a liquid-vapor mixture refrigerant into the vapor and liquid 
2) The saturated vapor(stream 7) is mixed with the superheated vapor from the 
compressor 1(stream 11), and the cooled mixture(stream 1) enters the compressor 2. 

Expansion 
Valve 1 

L,V 

Evaporator 

Nogal 박사논문과 다른 점이 multistage 
compression refrigeration을 포함하여 
synthesis를 했다는 점이고, 이 것이 포함
되어야만 DMR cycle을 조합해낼 수 있
음 

Work generated by compressor 1: 
1.92kW 

Work generated by compressor 2: 
2.58kW 

Total work:  
4.50kW 

c.f) 
Total work of Single Cycle  
without “Multistage Compression 
with Intercooling”: 4.745kW(p.24) 

남국수정4 

20[ / ]Lm q kJ s 

4.50[ ]m w kW  4.444Lq
CP

w
 

4.215CP 

Molar mass of ammonia: 17.031 g/mol 

15.8[ / ],

1265.82[ / ],

284.81[ / ]

L

m g s

q J g

w J g






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3. Optimal Synthesis of the Liquefaction Cycle  - Configuration strategies (3) 

  - Single Cycle with Multistage Compression Refrigeration (2) 

: isentropic curve 

1. Inner Loop Cycle이 한일이 Compressor 2에 대한 Cooler
역할임을 언급할 것 

2. Outer Loop Cycle에서 냉장고 안의 열을 흡수함을 적을 것 
3. Evaporator라고 기기명 붙일 것 
4. 첫 장에는 Cycle을 크게 그려주고, 두번째 장에는 P-h 

diagram을 크게 그려줄 것(숫자도 크게) 
5. Reference 적기 
6. 냉동박스도 표시 
7. 아래 Diagram에서 10번을 Saturated vapor line에 붙일 것 
8. 아래 Diagram에서 67,8로 갈 때 열역학적으로 Specific 

enthalpy이기 때문에 1 kg L and V와 1kg V로 설명하면서 
열과 같은 에너지를 냉매가 흡수한 것이 아님을 언급 

9. 아래 Diagram에서 -30도 표시할 것 
10. 앞장과 다른 점을 잘 설명할 것(앞장의 Sea water cooler가 

하던 Intercooler역할을 여기서는 Common header가 하고 
있음) 

11. Common header와 Phase separator가 1 Set임을 언급할 
것 

Saturated liquid 
line 

Saturated vapor 
line 

Critical state 

P=11.7  
bar 

P=2.1  
bar 

h 

P 

P=Pc 

T=Tc 

Liquid and Vapor 

Compressed 
Liquid 

Superheated 
Vapor 

Gas 

Supercritical fluid 

4.3°C 30.1°C 40.3°C 

P=5.0  
bar 

9 

8 6 7 

10 

5 2a 2 

1 
11 

112.8°C 

44.4°C 

- Advantage:  
The compressor work to be 
provided is reduced. 

   
1 2 10

11 10 2 11

a

a

W h h

h h h h

 

   

Single stage compression 

   2 11 10 2 1W h h h h   

Two stage compression with 
intercooler 

1 2W W

10h 1h

11h
2h 2ah

Condenser

Phase 
Separator

Compressor 2

Compressor 1

Common
Header 1

1

2

5

7

6

10

11

Expansion
Valve 1

8

V

L

T9: -17.0 °C
P9: 2.1 bar

V

V
V

V

T1: 40.3 °C
P1: 5.0 bar

T2: 112.8 °C
P2: 11.7 bar

T5: 30.1 °C
P5: 11.7 bar

T6: 4.3 °C
P6: 5.0 bar

L

T7: 4.3 °C
P7: 5.0 bar

T8: 4.3 °C
P8: 5.0 bar

9 L,V

T10: -17.0 °C
P10: 2.1 bar

T11: 44.4 °C
P11: 5.0 bar

Expansion
Valve 1

L,V

Evaporator
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3.4  Single Cycle with Regeneration and Multistage Refrigeration (1) 

1. 첫 장에는 Cycle을 크게 그려주고, 두번째 장에는 P-h 
diagram을 크게 그려줄 것(숫자도 크게) 

2. Reference 적기 
3. Nogal 박사 논문을 참조하여 온도, 압력 표시 
4. P-h diagram 작성 
5. T-h diagram에서 면적이 의미하는 바를 파악할 것 

Nogal, F.D., “Optimal Design and Integration of Refrigeration and Power Systems”, PhD thesis, Univ. of Manchester, p. 38. 

Heat 
exchanger 1 

Condenser 

Phase 
Separator 

Compressor 1 
Expansion 
Valve 1 

Expansion 
Valve 2 

Common 
Header 1 

Heat 
exchanger 2 

1 

2 

3 

4 

5 

6 

12 

7 8 

9 

10 

11 

L 

V 
L 

L 

L 

L,V 
V 

V 

V 

HYSYS를 이용하여 계산한 결과 

L,V 

L,V 

• Multistage Refrigeration: Repeated partial condensation 
and separation of the refrigerant 

T10: -185 °C 

P10: 3 bar 

T9: -160 °C 

P9: 60 bar 

T6: -50.7 °C 

P6: 3 bar 

T5: -30 °C 

P5: 60 bar 

T4: 25 °C 

P4: 60 bar 

L,V 
T3: 25 °C 

P3: 60 bar 

T11: -34 °C 

P11: 3 bar 

T12: -43 °C 

P12: 3 bar 

T7: 25 °C 

P7: 60 bar 

T8: -30 °C 

P8: 1.2 bar 

T2: 404 °C 

P2: 60 bar 

T1: 21 °C 

P1: 3 bar 

NG LNG 
T: 27 °C, P: 65 bar T: -30°C, P: 65 bar T: -160°C, P: 65 bar 

남국수정4 

19378.41[ / ],m g sMolar mass of nitrogen (N2): 28.013 g/mol 
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3. Optimal Synthesis of the Liquefaction Cycle - Configuration strategies (4) 

 - Single Cycle with Regeneration and Multistage Refrigeration (2) 

Condenser 

Compressor 
1 

Expansion 
Valve 1 

1 

2 5 7 

8 

NG LNG 

h(Enthalpy) 

T 

Process 
(NG stream) 

Refrigerant 
Heat exchanger 1 

27℃ 

-160℃ 
-185℃ 

NG 

LNG 

Nogal, F.D., “Optimal Design and Integration of Refrigeration and Power Systems”, PhD thesis, 
Univ. of Manchester, p. 37. 

- Advantage:  
Achieving better match between the temperature 
profiles of refrigerant and natural gas  
 The compressor work to be provided is reduced. 

h(Enthalpy) 

T 

Process 

Refrigerant 

Refrigerant 
Heat exchanger 1 

Heat exchanger 2 

27℃ 

-160℃ 
-185℃ 

NG 

LNG 

-43℃ 

-30℃ 

Heat 
exchanger 1

Condenser

Phase 
Separator

Compressor 1
Expansion
Valve 1

Expansion
Valve 2

Common
Header 1

Heat 
exchanger 2

1

2

3

4

5

6

12

7 8

9

10

11

L

V
L

L

L

L,V
V

V

V

L,V

L,V T10: -185 °C
P10: 3 bar

T9: -160 °C
P9: 60 bar

T6: -50.7 °C
P6: 3 bar

T5: -30 °C
P5: 60 bar

T4: 25 °C
P4: 60 bar

L,V
T3: 25 °C
P3: 60 bar

T11: -34 °C
P11: 3 bar

T12: -43 °C
P12: 3 bar

T7: 25 °C
P7: 60 bar

T8: -30 °C
P8: 1.2 bar

T2: 404 °C
P2: 60 bar

T1: 21 °C
P1: 3 bar

NG LNG
T: 27 °C, P: 65 bar T: -30°C, P: 65 bar T: -160°C, P: 65 bar

Singlestage Refrigeration (pure refrigerant) 

8 

10 

12 

Multistage Refrigeration (pure refrigerant) 
Better performance 

This is because large temperature differences would take place in the heat exchanger(s), moving 
the system away from thermodynamic reversibility, and hence, from thermodynamic efficiency. 
Instead, a multilevel pure refrigerant system is likely to me implemented, in an attempt to 
reduce the temperature differences in the system. 
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[Thermodynamics] Pressure(P)-Specific Volume(v) Diagram 

 - Pure Substance vs. Mixture 

• Pressure(P)-Specific Volume(v) Diagram of the Mixture 

T1=20.0 °C 

v 

P 

P=19.0  
      bar 

P=13.0 
bar 

Liquid and 
vapor 

Superheated  
Vapor 

Compressed 
Liquid 

Saturated liquid 
line 

Saturated 
vapor line 

Critical state 

T2=40.0 °C 

P=17.0  
      bar 

- Example: Mixture composed Ethane(C2H6, 22.02%), Propane(C3H8, 65.30%), and n-Butane(C3H10, 12.68%) 

v 

P 

P=10.17  
      bar 

P=1.34  
bar 

Liquid 
and 

vapor 

Superheated  
Vapor Compressed 

Liquid 

Saturated 
liquid line Saturated 

vapor line 

Critical state 

T1=-20 °C 

T2=40.0 °C 

• Pressure(P)-Specific Volume Diagram of the 
Pure Substance 

- Example: Ammonia 

 In the two phase region, the temperature is constant 
at the constant pressure.  In the two phase region of the mixture, the 

temperature is not constant at the constant pressure. 

(120226)수정사항:  
1. 자료 순서 변경할 것 
- 현재 내용과 관련된 것을 냉

장고 개략적인 설명 후 제일 
먼저 설명할 것 

2. 앞의 것과 동일하게 1)5)가
는 것 보여줄 것 

1)  2)  3)  4)  5)  

1)  2)  3)  4)  5)  
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Advantage of mixed refrigerant 

Condenser 

Compress
or 1 Expansion 

Valve 1 

1 

2 5 7 

8 

NG LNG 

h(Enthalpy) 

T 

Process 
(NG stream) 

Refrigerant 
Heat exchanger 1 

27℃ 

-160℃ 
-185℃ 

NG 

LNG 

Nogal, F.D., “Optimal Design and Integration of Refrigeration and Power Systems”, PhD thesis, 
Univ. of Manchester, p. 38. 

- Advantage:  
Achieving better match between the temperature 
profiles of refrigerant and natural gas  
 The compressor work to be provided is reduced. 

h(Enthalpy) 

T 

Refrigerant 

Heat exchanger 1 

27℃ 

-160℃ 

NG 

LNG 

Singlestage Refrigeration 
(pure refrigerant) 

8 

Better performance 

This is because large temperature differences would take place in the heat exchanger(s), moving 
the system away from thermodynamic reversibility, and hence, from thermodynamic efficiency. 
Instead, a multilevel pure refrigerant system is likely to me implemented, in an attempt to 
reduce the temperature differences in the system. 

Singlestage Refrigeration 
(mixed refrigerant) 
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Dual Cycle for Liquefaction Process 

• Purpose: Liquefying the natural gas by using two kind of refrigerants 

Precooling cycle 
Main 
cooling 
cycle 

Refrigerant 1 

NG 
26.85℃ 
65 bar 

LNG 
-160.15℃ 

65 bar 

Compressor 1 
Expansion 
Valve 1 

Sea Water(SW) 
Cooler 1 

Refrigerant 2 

Compressor 2 

Expansion 
Valve 2 

Sea Water(SW) 
Cooler 2 

Evaporator Heat exchanger 

1. Dual cycle 에 대하여 설명할 것 

아래 내용을 영문화 하여 작성 하였음 
현재 육상에서 사용되는 C3MR도 dual cycle이고,  LNG FPSO에 적용될 DMR도 dual cycle이기 때문에 본 
연구에서도 dual cycle을 대상으로 하여 generic model을 제안하였음 
mixed refrigerant를 사용 하였음. 

1. Since the currently used C3MR on land is dual cycle, and 
DMR on offshore(LNG FPSO) is also dual cycle, This research 
proposes generic model regarding dual cycle. 
 
2. This research used mixed refrigerant. 
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9.5. Proposed Generic Model of the Liquefaction Cycle of a  
LNG FPSO 
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Proposed Generic Model of the Liquefaction Cycle of a  LNG FPSO 
 :Dual Cycle with Regeneration + Multistage Compression with Intercooling + Multistage Compression Refrigeration + Multistage 
Refrigeration 

• The generic liquefaction model is limited to the 

dual cycle in order to implement the offshore 

application. 

• The maximum number of each main equipment 

is three per one cycle, taking into account 

offshore requirements such as the 

compactness. 

• Considering mechanical feasibility for the 

liquefaction cycles, the generic model of the 

liquefaction cycle can represent total 27 model 

cases of liquefaction cycle including the 

already developed liquefaction cycle such as 

propane precooled mixed refrigerant (C3MR) 

cycle and dual mixed refrigerant (DMR) cycle, 

etc. 

- Precooling 3 stage compression refrigeration  
- Main cooling 3 stage compression, 3 stage 
refrigeration 

Heat exchanger 1 

Compressor 1 Condenser 1 

Expansion 
Valve 1 

NG LNG 

Precooling 
(First Cycle) 

1.Precooling에는 Multistage Compression Refrigeration, Main cooling
에는 Multistage Compression with Intercooling이 사용됨을 언급(이유도 
적을 것). 2.앞의 것을 다시 설명하면서 애니메이션으로 조합순서를 보여줄 
것(패턴을 보여줄 것). 3. Liquid와 Vapor를 표시해서 보여줄 것 

Mixed Refrigerant 1 

Single stage compression refrigeration 
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Proposed Generic Model of the Liquefaction Cycle of a  LNG FPSO 
 :Dual Cycle with Regeneration + Multistage Compression with Intercooling + Multistage Compression Refrigeration + Multistage 
Refrigeration 

• The generic liquefaction model is limited to the 

dual cycle in order to implement the offshore 

application. 

• The maximum number of each main equipment 

is three per one cycle, taking into account 

offshore requirements such as the 

compactness. 

• Considering mechanical feasibility for the 

liquefaction cycles, the generic model of the 

liquefaction cycle can represent total 27 model 

cases of liquefaction cycle including the 

already developed liquefaction cycle such as 

propane precooled mixed refrigerant (C3MR) 

cycle and dual mixed refrigerant (DMR) cycle, 

etc. 

- Precooling 3 stage compression refrigeration  
- Main cooling 3 stage compression, 3 stage 
refrigeration 

Heat exchanger 1 

Compressor 1 Condenser 1 

Compressor 2 

Common 
Header 1 

Expansion 
Valve 1 

Expansion 
Valve  2 

NG LNG 

Heat exchanger 2 

Tee 1 

Precooling 
(First Cycle) 

Mixed Refrigerant 1 

2 stage compression refrigeration 

1.Precooling에는 Multistage Compression Refrigeration, Main cooling
에는 Multistage Compression with Intercooling이 사용됨을 언급(이유도 
적을 것). 2.앞의 것을 다시 설명하면서 애니메이션으로 조합순서를 보여줄 
것(패턴을 보여줄 것). 3. Liquid와 Vapor를 표시해서 보여줄 것 

1. Tee가 될 수도 있고 Phase separator가 될 수도 있음. 이는 operating 
condition을 결정할 때, 이미 어느 정도 냉매의 상을 예상하고 그게 
맞는 장비를 설치하는 것임 

2. 여기에서는 아직 냉매의 상을 예측한 단계는 아니므로 임의로 Tee를 
장착 하였음 

3. Vapor와 liquid의 정확한 표시는 operating condition이 결정되어야
만 적어 넣을 수 있음 

남국수정 
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Proposed Generic Model of the Liquefaction Cycle of a  LNG FPSO 
 :Dual Cycle with Regeneration + Multistage Compression with Intercooling + Multistage Compression Refrigeration + Multistage 
Refrigeration 

• The generic liquefaction model is limited to the 

dual cycle in order to implement the offshore 

application. 

• The maximum number of each main equipment 

is three per one cycle, taking into account 

offshore requirements such as the 

compactness. 

• Considering mechanical feasibility for the 

liquefaction cycles, the generic model of the 

liquefaction cycle can represent total 27 model 

cases of liquefaction cycle including the 

already developed liquefaction cycle such as 

propane precooled mixed refrigerant (C3MR) 

cycle and dual mixed refrigerant (DMR) cycle, 

etc. 

- Precooling 3 stage compression refrigeration  
- Main cooling 3 stage compression, 3 stage 
refrigeration 

Heat exchanger 1 

Compressor 1 Condenser 1 

Compressor 2 

Common 
Header 1 

Expansion 
Valve 1 

Expansion 
Valve  2 

NG LNG 

Heat exchanger 2 

Heat exchanger 3 

Expansion 
Valve 3 

Common 
Header 2 

Compressor 3 

Tee 2 Tee 1 

Precooling 
(First Cycle) 

Mixed Refrigerant 1 

3 stage compression refrigeration 

1.Precooling에는 Multistage Compression Refrigeration, Main cooling
에는 Multistage Compression with Intercooling이 사용됨을 언급(이유도 
적을 것). 2.앞의 것을 다시 설명하면서 애니메이션으로 조합순서를 보여줄 
것(패턴을 보여줄 것). 3. Liquid와 Vapor를 표시해서 보여줄 것 
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Proposed Generic Model of the Liquefaction Cycle of a  LNG FPSO 
 :Dual Cycle with Regeneration + Multistage Compression with Intercooling + Multistage Compression Refrigeration + Multistage 
Refrigeration 

• The generic liquefaction model is limited to the 

dual cycle in order to implement the offshore 

application. 

• The maximum number of each main equipment 

is three per one cycle, taking into account 

offshore requirements such as the 

compactness. 

• Considering mechanical feasibility for the 

liquefaction cycles, the generic model of the 

liquefaction cycle can represent total 27 model 

cases of liquefaction cycle including the 

already developed liquefaction cycle such as 

propane precooled mixed refrigerant (C3MR) 

cycle and dual mixed refrigerant (DMR) cycle, 

etc. 

- Precooling 3 stage compression refrigeration  
- Main cooling 3 stage compression, 3 stage 
refrigeration 
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NG LNG 
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Tee 2 Tee 1 

Precooling 
(First Cycle) 

Mixed Refrigerant 1 

Main cooling 
(Second Cycle) 

3 stage compression refrigeration 

Single stage compression Single stage refrigeration 

1.Precooling에는 Multistage Compression Refrigeration, Main cooling
에는 Multistage Compression with Intercooling이 사용됨을 언급(이유도 
적을 것). 2.앞의 것을 다시 설명하면서 애니메이션으로 조합순서를 보여줄 
것(패턴을 보여줄 것). 3. Liquid와 Vapor를 표시해서 보여줄 것 
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Proposed Generic Model of the Liquefaction Cycle of a  LNG FPSO 
 :Dual Cycle with Regeneration + Multistage Compression with Intercooling + Multistage Compression Refrigeration + Multistage 
Refrigeration 

• The generic liquefaction model is limited to the 

dual cycle in order to implement the offshore 

application. 

• The maximum number of each main equipment 

is three per one cycle, taking into account 

offshore requirements such as the 

compactness. 

• Considering mechanical feasibility for the 

liquefaction cycles, the generic model of the 

liquefaction cycle can represent total 27 model 

cases of liquefaction cycle including the 

already developed liquefaction cycle such as 

propane precooled mixed refrigerant (C3MR) 

cycle and dual mixed refrigerant (DMR) cycle, 

etc. 

- Precooling 3 stage compression refrigeration  
- Main cooling 3 stage compression, 3 stage 
refrigeration 

Heat exchanger 1 

Compressor 1 Condenser 1 

Compressor 2 
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Valve 1 
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Valve  2 
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Intercooler 1 
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Heat exchanger 3 
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Mixed Refrigerant 2 
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Header 2 

Compressor 3 

Tee 2 Tee 1 

Precooling 
(First Cycle) 

Mixed Refrigerant 1 

Main cooling 
(Second Cycle) 

3 stage compression refrigeration 

2 stage compression with intercooler Single stage refrigeration 

1.Precooling에는 Multistage Compression Refrigeration, Main cooling
에는 Multistage Compression with Intercooling이 사용됨을 언급(이유도 
적을 것). 2.앞의 것을 다시 설명하면서 애니메이션으로 조합순서를 보여줄 
것(패턴을 보여줄 것). 3. Liquid와 Vapor를 표시해서 보여줄 것 
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Proposed Generic Model of the Liquefaction Cycle of a  LNG FPSO 
 :Dual Cycle with Regeneration + Multistage Compression with Intercooling + Multistage Compression Refrigeration + Multistage 
Refrigeration 

• The generic liquefaction model is limited to the 

dual cycle in order to implement the offshore 

application. 

• The maximum number of each main equipment 

is three per one cycle, taking into account 

offshore requirements such as the 

compactness. 

• Considering mechanical feasibility for the 

liquefaction cycles, the generic model of the 

liquefaction cycle can represent total 27 model 

cases of liquefaction cycle including the 

already developed liquefaction cycle such as 

propane precooled mixed refrigerant (C3MR) 

cycle and dual mixed refrigerant (DMR) cycle, 

etc. 

- Precooling 3 stage compression refrigeration  
- Main cooling 3 stage compression, 3 stage 
refrigeration 

Heat exchanger 1 

Compressor 1 Condenser 1 

Compressor 2 

Common 
Header 1 

Expansion 
Valve 1 

Expansion 
Valve  2 

Compressor 4 Condenser 2 

Compressor 5 

Intercooler 1 

NG LNG 

Heat exchanger 2 

Heat exchanger 3 

Compressor 6 Intercooler 2 

Expansion 
Valve 3 

Mixed Refrigerant 2 

Heat exchanger 4 

Common 
Header 2 

Compressor 3 

Tee 2 Tee 1 

Precooling 
(First Cycle) 

Mixed Refrigerant 1 

Main cooling 
(Second Cycle) 

3 stage compression refrigeration 

3 stage compression with intercooler Single stage refrigeration 

1.Precooling에는 Multistage Compression Refrigeration, Main cooling
에는 Multistage Compression with Intercooling이 사용됨을 언급(이유도 
적을 것). 2.앞의 것을 다시 설명하면서 애니메이션으로 조합순서를 보여줄 
것(패턴을 보여줄 것). 3. Liquid와 Vapor를 표시해서 보여줄 것 
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Proposed Generic Model of the Liquefaction Cycle of a  LNG FPSO 
 :Dual Cycle with Regeneration + Multistage Compression with Intercooling + Multistage Compression Refrigeration + Multistage 
Refrigeration 

• The generic liquefaction model is limited to the 

dual cycle in order to implement the offshore 

application. 

• The maximum number of each main equipment 

is three per one cycle, taking into account 

offshore requirements such as the 

compactness. 

• Considering mechanical feasibility for the 

liquefaction cycles, the generic model of the 

liquefaction cycle can represent total 27 model 

cases of liquefaction cycle including the 

already developed liquefaction cycle such as 

propane precooled mixed refrigerant (C3MR) 

cycle and dual mixed refrigerant (DMR) cycle, 

etc. 

- Precooling 3 stage compression refrigeration  
- Main cooling 3 stage compression, 3 stage 
refrigeration 

Phase 
Separator 2 

Expansion 
Valve 5 

Heat exchanger 1 

Compressor 1 Condenser 1 

Compressor 2 

Common 
Header 1 

Expansion 
Valve 1 

Expansion 
Valve  2 

Compressor 4 Condenser 2 
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NG LNG 

Heat exchanger 2 
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Header 3 
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Mixed Refrigerant 2 
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Common 
Header 2 

Compressor 3 

Tee 2 Tee 1 

Precooling 
(First Cycle) 

Mixed Refrigerant 1 

Main cooling 
(Second Cycle) 

3 stage compression refrigeration 

2 stage refrigeration 3 stage compression with intercooler 

1.Precooling에는 Multistage Compression Refrigeration, Main cooling
에는 Multistage Compression with Intercooling이 사용됨을 언급(이유도 
적을 것). 2.앞의 것을 다시 설명하면서 애니메이션으로 조합순서를 보여줄 
것(패턴을 보여줄 것). 3. Liquid와 Vapor를 표시해서 보여줄 것 
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Proposed Generic Model of the Liquefaction Cycle of a  LNG FPSO 
 :Dual Cycle with Regeneration + Multistage Compression with Intercooling + Multistage Compression Refrigeration + Multistage 
Refrigeration 

• The generic liquefaction model is limited to the 

dual cycle in order to implement the offshore 

application. 

• The maximum number of each main equipment 

is three per one cycle, taking into account 

offshore requirements such as the 

compactness. 

• Considering mechanical feasibility for the 

liquefaction cycles, the generic model of the 

liquefaction cycle can represent total 27 model 

cases of liquefaction cycle including the 

already developed liquefaction cycle such as 

propane precooled mixed refrigerant (C3MR) 

cycle and dual mixed refrigerant (DMR) cycle, 

etc. 

- Precooling 3 stage compression refrigeration  
- Main cooling 3 stage compression, 3 stage 
refrigeration 
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Separator 2 

Expansion 
Valve 5 

Common 
Header 4 

Heat exchanger 1 

Compressor 1 Condenser 1 

Compressor 2 

Common 
Header 1 
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Valve 1 
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Valve  2 
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Expansion 
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(Second Cycle) 

Mixed Refrigerant 2 

Heat exchanger 4 Heat exchanger 5 Heat exchanger 6 

Common 
Header 2 

Compressor 3 

Tee 2 Tee 1 

Precooling 
(First Cycle) 

Mixed Refrigerant 1 

3 stage compression refrigeration 

3 stage compression with intercooler 3 stage refrigeration 

1.Precooling에는 Multistage Compression Refrigeration, Main cooling
에는 Multistage Compression with Intercooling이 사용됨을 언급(이유도 
적을 것). 2.앞의 것을 다시 설명하면서 애니메이션으로 조합순서를 보여줄 
것(패턴을 보여줄 것). 3. Liquid와 Vapor를 표시해서 보여줄 것 
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Mathematical Model of Generic Liquefaction Cycle (1) 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 

1. Design variables(Operating Conditions) [187] 
  :  

   

,2 ,19 ,21 ,2 ,4 ,6 ,2 ,19 ,21 ,2 ,4 ,6

1 2 3 4 5 6 1 2 10 15 , ,

, , 1 ,..., 21 ,1 ,..., 26 ,1 ,...,5 ,

, , , , , , , , , , , ,

, , , , , , , , , , _ , _ , 1,2,3 , 1,2,3,4

i i i p p m m NG NG

S p S p S p S m S m S m S p S p S p S m S m S m

pre main j pre k main

P T v i

T T T T T T v v v v v v

w w w w w w c c m m v f v f z j z k



 

2. Equality constraints [165] 

2.1 Equality constraints of precooling part [83] 
1) Compressor 1: [6] 

   1 1 1 1 , 1 2 2 2 2 ,, , , , , ,p p p p j pre p p p p j preh P T v z w h P T v z 

   1 1 1 1 , 2 2 ,2 ,2 ,, , , , , ,p p p p j pre p p S p S p j pres P T v z s P T v z

 2 2 2 2 ,, ,p p p p j prev v P T z

 1 1 1 1 ,, ,p p p p j prev v P T z

   
   

,2 2 ,2 ,2 , 1 1 1 1 ,

2 2 2 2 , 1 1 1 1 ,

, , , , , ,

, , , , , ,

S p p S p S p j pre p p p p j pre

p p p p j pre p p p p j pre

h P T v z h P T v z

h P T v z h P T v z







 ,2 ,2 2 ,2 ,, ,S p S p p S p j prev v P T z

2) Condenser 1: [3] 

   1 1 1 1 1 2 2 2 2, , , ,h P T v q h P T v 

2 3p pP P

3 3 3 3 ,( , , )p p p p j prev v T P z

The temperature of the outlet of the 
sea water cooler is usually given. 
T=310K 

3) Tee 1: [6] 
 

     
3 3 3 3 ,

1 4 4 4 4 , 1 8 8 8 8 ,

, , ,

, , , 1 , , ,

p p p p j pre

p p p p j pre p p p p j pre

h P T v z

c h P T v z c h P T v z    

3 4 3 8,p p p pP P P P 

4 8p pT T

   4 4 4 4 , 8 8 8 8 ,, , , , ,p p p p j pre p p p p j prev v T P z v v T P z 

4) Heat exchanger 1: [14] 

   

   

   

 

1 4 4 4 4 , 1 6 6 6 6 ,

1 8 8 8 8 ,

7 7 7 7 , ,

1 5 5 5 5 , 1 7 7 7

, , , , , ,

1 , , ,

, , , , , ,

, , , ,

pre p p p p j pre pre p p p p j pre

pre p p p p j pre

main m m m m k main NG NG NG NG NG l NG

pre p p p p j pre pre p p

c m h P T v z c m h P T v z

c m h P T v z

m h P T v z m h P T v z

c m h P T v z c m h P T

    

   

   

       

     

 

7 ,

1 9 9 9 9 , 8 8 8 8 ,

1 1 1 1 ,

, ,

1 , , , , , ,

, , ,

p p j pre

pre p p p p j pre main m m m m k main

NG NG NG NG NG l NG

v z

c m h P T v z m h P T v z

m h P T v z

     

 

4 5 6 7 8 9 7 8 1, , , ,p p p p p p m m NG NGP P P P P P P P P P    

5 9 5 8 5 1, ,p p p m p NGT T T T T T  

   

   

 

5 5 5 5 , 7 7 7 7 ,

9 9 9 9 , 8 8 8 8 ,

1 1 1 1 ,

, , , , , ,

, , , , , ,

, ,

p p p p j pre p p p p j pre

p p p p j pre m m m m k main

NG NG NG NG l NG

v v T P z v v T P z

v v T P z v v T P z

v v T P z

 

 



5) Expansion valve 1: [2] 

   5 5 5 5 , 6 6 6 6 ,, , , , , ,p p p p j pre p p p p j preh P T v z h P T v z

 6 6 6 6 ,, ,p p p p j prev v T P z

6) Tee 2: [6] 
   

   

     

1 9 9 9 9 ,

2 1 10 10 10 10 ,

2 1 14 14 14 14 ,

1 , , ,

1 , , ,

1 1 , , ,

p p p p j pre

p p p p j pre

p p p p j pre

c h P T v z

c c h P T v z

c c h P T v z

 

   

    

9 10 9 14,p p p pP P P P 

10 14p pT T

 

 
10 10 10 10 ,

14 14 14 14 ,

, , ,

, ,

p p p p j pre

p p p p j pre

v v T P z

v v T P z




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Mathematical Model of Generic Liquefaction Cycle (2) 

1. Design variables(Operating Conditions) [187] 
  :  

   

,2 ,19 ,21 ,2 ,4 ,6 ,2 ,19 ,21 ,2 ,4 ,6

1 2 3 4 5 6 1 2 10 15 , ,

, , 1 ,..., 21 ,1 ,..., 26 ,1 ,...,5 ,

, , , , , , , , , , , ,

, , , , , , , , , , _ , _ , 1,2,3 , 1,2,3,4

i i i p p m m NG NG

S p S p S p S m S m S m S p S p S p S m S m S m

pre main j pre k main

P T v i

T T T T T T v v v v v v

w w w w w w c c m m v f v f z j z k



 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 

2. Equality constraints [165] 

2.1 Equality constraints of precooling part [83] 

7) Heat exchanger 2: [14] 

10 11 12 13 14 15 8 9 1 2, , , ,p p p p p p m m NG NGP P P P P P P P P P    

11 15 11 9 11 2, ,p p p m p NGT T T T T T  

   

   

 

11 11 11 11 , 13 13 13 13 ,

15 15 15 15 , 9 9 9 9 ,

2 2 2 2 ,

, , , , , ,

, , , , , ,

, ,

p p p p j pre p p p p j pre

p p p p j pre m m m m k main

NG NG NG NG l NG

v v T P z v v T P z

v v T P z v v T P z

v v T P z

 

 



       

     

   

 

2 1 10 10 10 10 , 2 1 12 12 12 12 ,

2 1 14 14 14 14 ,

8 8 8 8 , 1 1 1 1 ,

2 1 11

1 , , , 1 , , ,

1 1 , , ,

, , , , , ,

1

pre p p p p j pre pre p p p p j pre

pre p p p p j pre

main m m m m k main NG NG NG NG NG l NG

pre

c c m h P T v z c c m h P T v z

c c m h P T v z

m h P T v z m h P T v z

c c m h

        

      

   

          

     

   

11 11 11 , 2 1 13 13 13 13 ,

2 1 15 15 15 15 ,

9 9 9 9 , 2 2 2 2 ,

, , , 1 , , ,

1 1 , , ,

, , , , , ,

p p p p j pre pre p p p p j pre

pre p p p p j pre

main m m m m k main NG NG NG NG NG l NG

P T v z c c m h P T v z

c c m h P T v z

m h P T v z m h P T v z

    

      

   

8) Expansion valve 2: [2] 

   11 11 11 11 , 12 12 12 12 ,, , , , , ,p p p p j pre p p p p j preh P T v z h P T v z

 12 12 12 12 ,, ,p p p p j prev v T P z

9) Heat exchanger 3: [11] 

15 16 17 18 9 10 2 3, , ,p p p p m m NG NGP P P P P P P P   

16 10 16 3,p m p NGT T T T 

   

   

16 16 16 16 , 18 18 18 18 ,

10 10 10 10 , 3 3 3 3 ,

, , , , , ,

, , , , ,

p p p p j pre p p p p j pre

m m m m k main NG NG NG NG l NG

v v T P z v v T P z

v v T P z v v T P z

 

 

     

     

   

     

   

2 1 15 15 15 15 ,

2 1 17 17 17 17 ,

9 9 9 9 , 2 2 2 2 ,

2 1 16 16 16 16 ,

2 1

1 1 , , ,

1 1 , , ,

, , , , , ,

1 1 , , ,

1 1

pre p p p p j pre

pre p p p p j pre

main m m m m k main NG NG NG NG NG l NG

pre p p p p j pre

pr

c c m h P T v z

c c m h P T v z

m h P T v z m h P T v z

c c m h P T v z

c c m

    

     

   

     

      

   

18 18 18 18 ,

10 10 10 10 , 3 3 3 3 ,

, , ,

, , , , , ,

e p p p p j pre

main m m m m k main NG NG NG NG NG l NG

h P T v z

m h P T v z m h P T v z



   

10) Expansion valve 3: [2] 

   16 16 16 16 , 17 17 17 17 ,, , , , , ,p p p p j pre p p p p j preh P T v z h P T v z

 17 17 17 17 ,, ,p p p p j prev v T P z
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Mathematical Model of Generic Liquefaction Cycle (3) 

1. Design variables(Operating Conditions) [187] 
  :  

   

,2 ,19 ,21 ,2 ,4 ,6 ,2 ,19 ,21 ,2 ,4 ,6

1 2 3 4 5 6 1 2 10 15 , ,

, , 1 ,..., 21 ,1 ,..., 26 ,1 ,...,5 ,

, , , , , , , , , , , ,

, , , , , , , , , , _ , _ , 1,2,3 , 1,2,3,4

i i i p p m m NG NG

S p S p S p S m S m S m S p S p S p S m S m S m

pre main j pre k main

P T v i

T T T T T T v v v v v v

w w w w w w c c m m v f v f z j z k



 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 

2. Equality constraints [165] 

2.1 Equality constraints of precooling part [83] 

11) Compressor 3: [5] 

     

     
2 1 18 18 18 18 , 3

2 1 19 19 19 19 ,

1 1 , , ,

1 1 , , ,

pre p p p p j pre

pre p p p p j pre

c c m h P T v z w

c c m h P T v z

     

     

   18 18 18 18 , 19 19 ,19 ,19 ,, , , , , ,p p p p j pre p p S p S p j pres P T v z s P T v z

 19 19 19 19 ,, ,p p p p j prev v P T z

   
   

,19 19 ,19 ,19 , 18 18 18 18 ,

19 19 19 19 , 18 18 18 18 ,

, , , , , ,

, , , , , ,

S p p S p S p j pre p p p p j pre

p p p p j pre p p p p j pre

h P T v z h P T v z

h P T v z h P T v z







 ,19 ,19 19 ,19 ,, ,S p S p p S p j prev v P T z

12) Common Header 2: [4]  

         

   
2 1 13 13 13 13 , 2 1 19 19 19 19 ,

1 20 20 20 20 ,

1 , , , 1 1 , , ,

1 , , ,

p p p p j pre p p p p j pre

p p p p j pre

c c h P T v z c c h P T v z

c h P T v z

       

  

13 19 13 20,p p p pP P P P 

13) Compressor 2: [5] 

   

   
1 20 20 20 20 , 2

1 21 21 21 21 ,

1 , , ,

1 , , ,

pre p p p p j pre

pre p p p p j pre

c m h P T v z w

c m h P T v z

   

   

   20 20 20 20 , 21 21 ,21 ,21 ,, , , , , ,p p p p j pre p p S p S p j pres P T v z s P T v z

 21 21 21 21 ,, ,p p p p j prev v P T z

   
   

,21 21 ,21 ,21 , 20 20 20 20 ,

21 21 21 21 , 20 20 20 20 ,

, , , , , ,

, , , , , ,

S p p S p S p j pre p p p p j pre

p p p p j pre p p p p j pre

h P T v z h P T v z

h P T v z h P T v z







 ,21 ,21 21 ,21 ,, ,S p S p p S p j prev v P T z

14) Common Header 1: [3]  

     

 
1 21 21 21 21 , 1 7 7 7 7 ,

1 1 1 1 ,

1 , , , , , ,

, , ,

p p p p j pre p p p p j pre

p p p p j pre

c h P T v z c h P T v z

h P T v z

   



7 21 7 1,p p p pP P P P 

 20 20 20 20 ,, ,p p p p j prev v P T z
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Mathematical Model of Generic Liquefaction Cycle (4) 

1. Design variables(Operating Conditions) [187] 
  :  

   

,2 ,19 ,21 ,2 ,4 ,6 ,2 ,19 ,21 ,2 ,4 ,6

1 2 3 4 5 6 1 2 10 15 , ,

, , 1 ,..., 21 ,1 ,..., 26 ,1 ,...,5 ,

, , , , , , , , , , , ,

, , , , , , , , , , _ , _ , 1,2,3 , 1,2,3,4

i i i p p m m NG NG

S p S p S p S m S m S m S p S p S p S m S m S m

pre main j pre k main

P T v i

T T T T T T v v v v v v

w w w w w w c c m m v f v f z j z k



 

2. Equality constraints [165] 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 

2.2 Equality constraints of main cooling part [80] 
1) Compressor 6: [6] 

   1 1 1 1 , 6 2 2 2 2 ,, , , , , ,m m m m k main m m m m k mainh P T v z w h P T v z 

   1 1 1 1 , 2 2 ,2 ,2 ,, , , , , ,m m m m k main m m S m S m k mains P T v z s P T v z

 2 2 2 2 ,, ,m m m m k mainv v P T z

 1 1 1 1 ,, ,m m m m k mainv v P T z

   
   

,2 2 ,2 ,2 , 1 1 1 1 ,

2 2 2 2 , 1 1 1 1 ,

, , , , , ,

, , , , , ,

S m m S m S m k main m m m m k main

m m m m k main m m m m k main

h P T v z h P T v z

h P T v z h P T v z







 ,2 ,2 2 ,2 ,, ,S m S m m S m k mainv v P T z

2) Intercooler 2: [3] 

   1 1 1 1 1 2 2 2 2, , , ,h P T v q h P T v 

2 3m mP P

3 3 3 3 ,( , , )m m m m k mainv v T P z

The temperature of the outlet of the 
sea water cooler is usually given. 
T=305K 

3) Compressor 5: [5] 

   3 3 3 3 , 5 4 4 4 4 ,, , , , , ,m m m m k main m m m m k mainh P T v z w h P T v z 

   3 3 3 3 , 4 4 ,4 ,4 ,, , , , , ,m m m m k main m m S m S m k mains P T v z s P T v z

 4 4 4 4 ,, ,m m m m k mainv v P T z

   
   

,4 4 ,4 ,4 , 3 3 3 3 ,

4 4 4 4 , 3 3 3 3 ,

, , , , , ,

, , , , , ,

S m m S m S m k main m m m m k main

m m m m k main m m m m k main

h P T v z h P T v z

h P T v z h P T v z







 ,4 ,4 4 ,4 ,, ,S m S m m S m k mainv v P T z

4) Intercooler 1: [3] 

   1 1 1 1 1 2 2 2 2, , , ,h P T v q h P T v 

4 5m mP P

5 5 5 5 ,( , , )m m m m k mainv v T P z

The temperature of the outlet of the 
sea water cooler is usually given. 
T=305K 

5) Compressor 4: [5] 

   5 5 5 5 , 4 6 6 6 6 ,, , , , , ,m m m m k main m m m m k mainh P T v z w h P T v z 

   5 5 5 5 , 6 6 ,6 ,6 ,, , , , , ,m m m m k main m m S m S m k mains P T v z s P T v z

 6 6 6 6 ,, ,m m m m k mainv v P T z

   
   

,6 6 ,6 ,6 , 5 5 5 5 ,

6 6 6 6 , 5 5 5 5 ,

, , , , , ,

, , , , , ,

S m m S m S m k main m m m m k main

m m m m k main m m m m k main

h P T v z h P T v z

h P T v z h P T v z







 ,6 ,6 6 ,6 ,, ,S m S m m S m k mainv v P T z

6) Condenser 2: [3] 

   1 1 1 1 1 2 2 2 2, , , ,h P T v q h P T v 

6 7m mP P

7 7 7 7 ,( , , )m m m m k mainv v T P z

The temperature of the outlet of the 
sea water cooler is usually given. 
T=305K 
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Mathematical Model of Generic Liquefaction Cycle (5) 

1. Design variables(Operating Conditions) [187] 
  :  

   

,2 ,19 ,21 ,2 ,4 ,6 ,2 ,19 ,21 ,2 ,4 ,6

1 2 3 4 5 6 1 2 10 15 , ,

, , 1 ,..., 21 ,1 ,..., 26 ,1 ,...,5 ,

, , , , , , , , , , , ,

, , , , , , , , , , _ , _ , 1,2,3 , 1,2,3,4

i i i p p m m NG NG

S p S p S p S m S m S m S p S p S p S m S m S m

pre main j pre k main

P T v i

T T T T T T v v v v v v

w w w w w w c c m m v f v f z j z k



 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 

2. Equality constraints [165] 

2.2 Equality constraints of main cooling part [80] 
7) Phase Separator 1: [7] 

 

 

    

10 10 10 10 ,

10 14 14 14 14 10 ,

10 11 11 11 11 10 ,

, , ,

_ , , , _

1 _ , , , 1 _

m m m m k main

m m m m k main

m m m m k main

h P T v z

v f h P T v v f z

v f h P T v v f z

  

    

10 11 10 14,m m m mP P P P 

10 11 11 14,m m m mT T T T 

    11 11 11 11 10 , 14 14 14 14 10 ,, , 1 _ , , , _m m m m k main m m m m k mainv v P T v f z v v P T v f z    

8) Heat exchanger 4: [10] 

11 12 14 15 26 1 3 4, , ,m m m m m m NG NGP P P P P P P P   

12 15 12 4,m m m NGT T T T 

    

 

12 12 12 12 10 , 15 15 15 15 10 ,

4 4 4 4 ,

, , 1 _ , , , _ ,

, ,

m m m m k main m m m m k main

NG NG NG NG l NG

v v T P v f z v v T P v f z

v v T P z

    



    

   

 

 

10 11 11 11 11 10 ,

10 14 14 14 14 10 , 26 26 26 26 ,

3 3 3 3 ,

10 12 12 12 12 1

1 _ , , , 1 _

_ , , , _ , , ,

, , ,

1 _ , , , 1 _

main m m m m k main

main m m m m k main main m m m m k main

NG NG NG NG NG l NG

main m m m m

v f m h P T v v f z

v f m h P T v v f z m h P T v z

m h P T v z

v f m h P T v v f

    

     

 

      

   

 

0 ,

10 15 15 15 15 10 , 1 1 1 1 ,

4 4 4 4 ,

_ , , , _ , , ,

, , ,

k main

main m m m m k main m m m m k main

NG NG NG NG NG l NG

z

v f m h P T v v f z h P T v z

m h P T v z



    

 

9) Phase Separator 2: [7] 
 

 

    

10 15 15 15 15 10 ,

15 10 19 19 19 19 15 10 ,

15 10 16 16 16 16 15 10 ,

_ , , , _

_ _ , , , _ _

1 _ _ , , , 1 _ _

m m m m k main

m m m m k main

m m m m k main

v f h P T v v f z

v f v f h P T v v f v f z

v f v f h P T v v f v f z

 

    

      

15 16 15 19,m m m mP P P P 

15 16 16 19,m m m mT T T T 

    16 16 16 16 15 10 , 19 19 19 19 15 10 ,, , 1 _ _ , , , _ _m m m m k main m m m m k mainv v P T v f v f z v v P T v f v f z      

10) Heat exchanger 5: [11] 

16 17 19 20 24 25 4 5, , ,m m m m m m NG NGP P P P P P P P   

17 20 17 5,m m m NGT T T T 

    

   

17 17 17 17 15 10 , 20 20 20 20 15 10 ,

25 25 25 25 10 , 5 5 5 5 ,

, , 1 _ _ , , , _ _ ,

, , _ , , ,

m m m m k main m m m m k main

m m m m k main NG NG NG NG l NG

v v P T v f v f z v v P T v f v f z

v v P T v f z v v T P z

      

  

    

 

   

15 10 16 16 16 16 15 10 ,

15 10 19 19 19 19 15 10 ,

10 24 24 24 24 10 , 4 4 4 4 ,

1 _ _ , , , 1 _ _

_ _ , , , _ _

_ , , , _ , , ,

1 _

main m m m m k main

main m m m m k main

main m m m m k main NG NG NG NG NG l NG

v f v f m h P T v v f v f z

v f v f m h P T v v f v f z

v f m h P T v v f z m h P T v z

v

      

     

     

     

 

   

15 10 17 17 17 17 15 10 ,

15 10 20 20 20 20 15 10 ,

10 25 25 25 25 10 , 5 5 5 5 ,

_ , , , 1 _ _

_ _ , , , _ _

_ , , , _ , , ,

main m m m m k main

main m m m m k main

main m m m m k main NG NG NG NG NG l NG

f v f m h P T v v f v f z

v f v f m h P T v v f v f z

v f m h P T v v f z m h P T v z

     

     

     
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Mathematical Model of Generic Liquefaction Cycle (6) 

1. Design variables(Operating Conditions) [187] 
  :  

   

,2 ,19 ,21 ,2 ,4 ,6 ,2 ,19 ,21 ,2 ,4 ,6

1 2 3 4 5 6 1 2 10 15 , ,

, , 1 ,..., 21 ,1 ,..., 26 ,1 ,...,5 ,

, , , , , , , , , , , ,

, , , , , , , , , , _ , _ , 1,2,3 , 1,2,3,4

i i i p p m m NG NG

S p S p S p S m S m S m S p S p S p S m S m S m

pre main j pre k main

P T v i

T T T T T T v v v v v v

w w w w w w c c m m v f v f z j z k



 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 

2. Equality constraints [165] 

2.2 Equality constraints of main cooling part [80] 
11) Heat exchanger 6: [6] 

20 21 22 23,m m m mP P P P 

21m LNGT T

 

 

21 21 21 21 15 10 ,

23 23 23 23 15 10 ,

, , _ _ ,

, , _ _

m m m m k main

m m m m k main

v v P T v f v f z

v v P T v f v f z

  

  

 

 

 

15 10 20 20 20 20 15 10 ,

15 10 22 22 22 22 15 10 ,

5 5 5 5 ,

15 10 21 21 21 21 15 10 ,

_ _ , , , _ _

_ _ , , , _ _

, , ,

_ _ , , , _ _

main m m m m k main

main m m m m k main

NG NG NG NG NG l NG

main m m m m k m

v f v f m h P T v v f v f z

v f v f m h P T v v f v f z

m h P T v z

v f v f m h P T v v f v f z

    

     

 

      

 

 

15 10 23 23 23 23 15 10 ,

,

_ _ , , , _ _

, , ,

ain

main m m m m k main

NG LNG LNG LNG LNG l NG

v f v f m h P T v v f v f z

m h P T v z

     

 

12) Expansion valve 4: [2] 
  

  

12 12 12 12 10 ,

13 13 13 13 10 ,

, , , 1 _

, , , 1 _

m m m m k main

m m m m k main

h P T v v f z

h P T v v f z

 

  

  13 13 13 13 10 ,, , 1 _m m m m k mainv v P T v f z  

14) Expansion valve 6: [2] 

   21 21 21 21 15 10 , 22 22 22 22 15 10 ,, , , _ _ , , , _ _m m m m k main m m m m k mainh P T v v f v f z h P T v v f v f z    

 22 22 22 22 15 10 ,, _ _m m m m k mainv v P T v f v f z  

15) Common Header 3: [4]  

      

 

10 13 13 13 13 10 , 10 25 25 25 25 10 ,

26 26 26 26 ,

1 _ , , , 1 _ _ , , , _

, , ,

m m m m k main m m m m k main

m m m m k main

v f h P T v v f z v f h P T v v f z

h P T v z

      



13 25 13 26,m m m mP P P P 

16) Common Header 4: [4]  
    

 

 

15 10 18 18 18 18 15 10 ,

15 10 23 23 23 23 15 10 ,

10 24 24 24 24 10 ,

1 _ _ , , , 1 _ _

_ _ , , , _ _

_ , , , _

m m m m k main

m m m m k main

m m m m k main

v f v f h P T v v f v f z

v f v f h P T v v f v f z

v f h P T v v f z

     

    

  

18 23 18 24,m m m mP P P P 

3 4

, ,

1 1

1, 1j pre k main

j k

z z
 

  

 26 26 26 26 ,, ,m m m m k mainv v P T z

 24 24 24 24 10 ,, , _ ,m m m m k mainv v T P v f z 

13) Expansion valve 5: [2] 
     17 17 17 17 15 10 , 18 18 18 18 15 10 ,, , , 1 _ _ , , , 1 _ _m m m m k main m m m m k mainh P T v v f v f z h P T v v f v f z      

  18 18 18 18 15 10 ,, , 1 _ _m m m m k mainv v P T v f v f z   
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Summary of the Mathematical Model of Generic Liquefaction Cycle  

1. Design variables(Operating Conditions) [187] 
  :  

   

,2 ,19 ,21 ,2 ,4 ,6 ,2 ,19 ,21 ,2 ,4 ,6

1 2 3 4 5 6 1 2 10 15 , ,

, , 1 ,..., 21 ,1 ,..., 26 ,1 ,...,5 ,

, , , , , , , , , , , ,

, , , , , , , , , , _ , _ , 1,2,3 , 1,2,3,4

i i i p p m m NG NG

S p S p S p S m S m S m S p S p S p S m S m S m

pre main j pre k main

P T v i

T T T T T T v v v v v v

w w w w w w c c m m v f v f z j z k



 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 

2. Equality constraints [165] 

2.1 Equality constraints of precooling part [83] 

2.2 Equality constraints of main cooling part [80] 

3. Objective Function: Minimize the compressors power 

1 2 3 4 5 6Minize  pre pre pre main main mainm w m w m w m w m w m w          

 indeterminate systems 

 Optimization Problem! 

4. Free variables [22 = 187 – 165] 
  : 

1 2 12 17 5 11 16 1 2 1, 2,

1 2 4 6 12 17 1, 2, 3,

, , , , , , , , , , , ,

, , , , , , , , ,

p p p p p p p pre pre pre

m m m m m m main main main main

P P P P T T T c c z z m

P P P P T T z z z m
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FEASIBLE LIQUEFACTION MODEL (CASE 9) 

FEASIBLE LIQUEFACTION MODEL (CASE 6) 

FEASIBLE LIQUEFACTION MODEL (CASE 3) 

FEASIBLE LIQUEFACTION MODEL (CASE 8) 

FEASIBLE LIQUEFACTION MODEL (CASE 5) 

FEASIBLE LIQUEFACTION MODEL (CASE 2) 

FEASIBLE LIQUEFACTION MODEL (CASE 7) 

FEASIBLE LIQUEFACTION MODEL (CASE 4) 

FEASIBLE LIQUEFACTION MODEL (CASE 1) 

Feasible Liquefaction Cycle from the Generic Model (Case 1 ~ Case 9) 남국수정3 
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FEASIBLE LIQUEFACTION MODEL (CASE 18) 

FEASIBLE LIQUEFACTION MODEL (CASE 15) 

FEASIBLE LIQUEFACTION MODEL (CASE 12) 

FEASIBLE LIQUEFACTION MODEL (CASE 17) 

FEASIBLE LIQUEFACTION MODEL (CASE 14) 

FEASIBLE LIQUEFACTION MODEL (CASE 11) 

FEASIBLE LIQUEFACTION MODEL (CASE 16) 

FEASIBLE LIQUEFACTION MODEL (CASE 13) 

FEASIBLE LIQUEFACTION MODEL (CASE 10) 

Feasible Liquefaction Cycle from the Generic Model (Case 10 ~ Case 18) 남국수정3 
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FEASIBLE LIQUEFACTION MODEL (CASE 27) 

FEASIBLE LIQUEFACTION MODEL (CASE 24) 

FEASIBLE LIQUEFACTION MODEL (CASE21) 

FEASIBLE LIQUEFACTION MODEL (CASE 26) 

FEASIBLE LIQUEFACTION MODEL (CASE 23) 

FEASIBLE LIQUEFACTION MODEL (CASE 20) 

FEASIBLE LIQUEFACTION MODEL (CASE 25) 

FEASIBLE LIQUEFACTION MODEL (CASE 22) 

FEASIBLE LIQUEFACTION MODEL (CASE 19) 

Feasible Liquefaction Cycle from the Generic Model (Case 19 ~ Case 27) 남국수정3 
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9.6. CALCULATION RESULT OF THE DUAL MIXED 
REFRIGERANT(DMR) CYCLE AND PROPOSED LIQUEFACTION 
CYCLE1) OF LNG FPSO 

17번 case가 DMR cycle에 해당하며, 이에 대하여 최적화를 수행함 

1) Proposed Liquefaction Cycle (CASE 23) 
- Precooling 3 stage compression refrigeration  
- Main cooling 2 stage compassion, 2 stage refrigeration 

FEASIBLE LIQUEFACTION MODEL (CASE 23) 
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Configuration of the Dual Mixed Refrigerant(DMR) Cycle 
 

[Figure] Configuration of the Dual Mixed Refrigerant Cycle 
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[Figure] Configuration of the Dual Mixed Refrigerant Cycle 
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FEASIBLE LIQUEFACTION MODEL (CASE 13) 

- Precooling 2 stage compression refrigeration  
- Main cooling 1 stage compression, 2 stage refrigeration 

- Tee: separates an inlet stream of refrigerant 
into the two outlet streams 

- Common Header : combines the two 
refrigerant streams separated by tee or phase 
separator 

-  Phase Separator : separates a liquid-vapor 
mixture refrigerant into the vapor and liquid 

남국수정3 
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Configuration of the Dual Mixed Refrigerant(DMR) Cycle (1) 
 

• Refrigerant:  
- Mixed refrigerant composed of Ethane(C2H6), 

Propane(C3H8), n-Butane(C4H10) for precooling 
 

- Mixed refrigerant composed of Nitrogen(N2), 
Methane(C1H4), Ethane(C2H6), Propane(C3H8) 
for main cooling 

• Purpose: Liquefying the natural gas by 

using two kind of mixed refrigerants 

[Figure] Configuration of the Dual Mixed Refrigerant Cycle 
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[Given]: 
       NG(27) T=26.85°C, P=65 bar,  

          LNG(31) T=-160.15°C, P=65 bar 
49.21 /NGm kg h

 44.0 10 MTPA 

• Problem Statement:  

The operating conditions such as the 
pressure, temperature and specific volume, 
mass flow rate and composition of the 
refrigerants minimizing the work provided to 
the compressor. 

[Find]: 

Reference: 1) Venkatarathnam, G., 2008, Cryogenic Mixed Refrigerant 
Processes, Springer, New York [Figure] Configuration of the Dual Mixed Refrigerant Cycle 
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남국수정4 

MTPA: Million Tonnes Per Annum 
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[Figure] Configuration of the Dual Mixed Refrigerant Cycle 
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Configuration of the Dual Mixed Refrigerant(DMR) Cycle (2) 
 

• Refrigerant:  
- Mixed refrigerant composed of Ethane(C2H6), 

Propane(C3H8), n-Butane(C4H10) for precooling 
 

- Mixed refrigerant composed of Nitrogen(N2), 
Methane(C1H4), Ethane(C2H6), Propane(C3H8) for main 
cooling 
 

• Purpose: Liquefying the natural gas by using two 
kind of mixed refrigerants 

[Figure] Configuration of the Dual Mixed Refrigerant Cycle 
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Reference: 1) Venkatarathnam, G., 2008, 
Cryogenic Mixed Refrigerant Processes, 
Springer, New York 

[St. 12  St. 1] 
  The compressor 1, usually driven by a steam turbine, brings the 
precooling mixed refrigerant(PMR) to a high pressure, which raises its 
temperature  as well. 

:stream number(St.) 

[St. 1  St. 2] 
 Then, the hot PMR is cooled by sea water and is fully condensed in the 
sea water(SW) cooler 1. 

[St. 2  St. 3, St. 14 St. 15, St. 2728] 
 The condensed PMR is subcooled in the heat exchanger 1. The heat 
exchanger 1 also provides the first precool of the main mixed 
refrigerant(MMR) and natural gas(NG) circuits. 

[St. 3  St. 4  St. 5] 
 At the outlet of the heat exchanger, part of the subcooled PMR is let 
down in pressure through the expansion valve 1. 

[St. 5  St. 6] 
 The resulting PMR flow of the expansion valve 1 returns to the heat 
exchanger 1 to be vaporized and heated, thus serving as cooling medium 
for the heat exchanger 1. 

Mixed refrigerant composed of Ethane(C2H6), Propane(C3H8), n-Butane(C4H10) for precooling 
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Configuration of the Dual Mixed Refrigerant(DMR) Cycle (3) 
 

• Refrigerant:  
- Mixed refrigerant composed of Ethane(C2H6), 

Propane(C3H8), n-Butane(C4H10) for precooling 
 

- Mixed refrigerant composed of Nitrogen(N2), 
Methane(C1H4), Ethane(C2H6), Propane(C3H8) for main 
cooling 
 

• Purpose: Liquefying the natural gas by using two 
kind of mixed refrigerants 

[Figure] Configuration of the Dual Mixed Refrigerant Cycle 
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Reference: 1) Venkatarathnam, G., 2008, 
Cryogenic Mixed Refrigerant Processes, 
Springer, New York 

[St. 3  St. 7] 
 The remaining subcooled PMR from the heat exchanger 1 is 
routed to the heat exchanger 2 for further precooling of the NG 
and MMR. 

:stream number(St.) 

[St. 7  St. 8  St. 9] 
 Following the same concept as in the heat exchanger 1, the PMR 
is subcooled in the heat exchanger 2 and is let down in pressure 
through the expansion valve 2 before returning in the heat 
exchanger 2. 

[St. 9  St. 10] 
 The resulting mixed flow of the expansion valve 2 returns to the 
heat exchanger 2 to be vaporized and heated, thus serving as 
cooling medium for the heat exchanger 2. 

[St. 10  St. 11] 
 The compressor 2 brings the PMR to a middle pressure, which 
raises its temperature as well. 

[St. 6 and St. 11  St. 12] 
 In the common header, the separated PMR streams are combined 
and the combined PMR returns to the compressor 1. 

Mixed refrigerant composed of Ethane(C2H6), Propane(C3H8), n-
Butane(C4H10) for precooling 
 

[Figure] Configuration of the Dual Mixed Refrigerant Cycle 
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[Figure] Configuration of the Dual Mixed Refrigerant Cycle 
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Configuration of the Dual Mixed Refrigerant(DMR) Cycle (4) 
 

• Refrigerant:  
- Mixed refrigerant composed of Ethane(C2H6), 

Propane(C3H8), n-Butane(C4H10) for precooling 
 

- Mixed refrigerant composed of Nitrogen(N2), 
Methane(C1H4), Ethane(C2H6), Propane(C3H8) for main 
cooling 
 

• Purpose: Liquefying the natural gas by using two 
kind of mixed refrigerants 

[Figure] Configuration of the Dual Mixed Refrigerant Cycle 
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Reference: 1) Venkatarathnam, G., 2008, 
Cryogenic Mixed Refrigerant Processes, 
Springer, New York 

[St. 26  St. 13] 
  The compressor 3 brings the main mixed refrigerant(MMR) 
to a high pressure, which raises its temperature as well. 

:stream number(St.) 

[St. 13  St. 14] 
 Then, the hot MMR is cooled by sea water through the sea 
water cooler 2. 

[St. 14  St. 15  St. 16] 
 The MMR is further cooled and partially condensed 
successively in the heat exchanger 1 and 2. 

[St. 16  St. 17 and St. 20] 
 The two phase MMR flow is separated in the vapor light 
MMR and liquid heavy MMR in the phase separator. 

[St. 20  St. 21  St. 22, St. 29  St. 30] 
 The light MMR is fully condensed in the heat exchanger 3 
and further subcooled in the heat exchanger 4. The NG is 
also condensed in the heat exchanger 3 

[St. 22  St. 23  St. 24, St. 30  St. 31] 
 The subcooled light MMR is then expanded through the 
expansion valve 4 and returns in the heat exchanger 4 
ensuring subcooling of the LNG. 

Mixed refrigerant composed of Nitrogen(N2), Methane(C1H4), Ethane(C2H6), 
Propane(C3H8) for main cooling 

그림을 명확히 구분되게 작성(특히 흰색으
로 가릴 때 점선 주의) 남국수정 
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[Figure] Configuration of the Dual Mixed Refrigerant Cycle 
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Configuration of the Dual Mixed Refrigerant(DMR) Cycle (5) 
 

• Refrigerant:  
- Mixed refrigerant composed of Ethane(C2H6), 

Propane(C3H8), n-Butane(C4H10) for precooling 
 

- Mixed refrigerant composed of Nitrogen(N2), 
Methane(C1H4), Ethane(C2H6), Propane(C3H8) for main 
cooling 
 

• Purpose: Liquefying the natural gas by using two 
kind of mixed refrigerants 

[Figure] Configuration of the Dual Mixed Refrigerant Cycle 
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Reference: 1) Venkatarathnam, G., 2008, 
Cryogenic Mixed Refrigerant Processes, 
Springer, New York 

:stream number(St.) 

[St. 17  St. 18  St. 19] 
 The heavy MMR is subcooled in the heat exchanger 3 and 
is let down in pressure through the expansion valve 3. 

[St. 19 and St. 24  St. 25  St. 26] 
 Then, the heavy MMR returns in the heat exchanger 3 for 
serving as cooling medium for the heat exchanger 3 mixed 
with the light MMR from the heat exchanger 4 in the 
common header 2 and returns to the compressor 3. 

Mixed refrigerant composed of Nitrogen(N2), Methane(C1H4), Ethane(C2H6), 
Propane(C3H8) for main cooling 
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<Inlet> 
Refrigerant 

1. Design variables(Operating Conditions) 
    : P3, T3, v3, P4, T4, v4, P7, T7, v7, c 

<Outlet 4> 
Refrigerant 

• Tee : separates an inlet stream of refrigerant into the two outlet streams 

3. Equality constraints 
 

   1) The first law of the thermodynamics(Energy conservation)  
 
 
 
 
 
 

   2) Isobaric process 
 
 
 
 

   3) Conditions for temperature of the outlet 

3 3 3, ,P T v

4 4 4, ,P T v

Mathematical Model for Tee 

2. Assumption:  
 -  There is no pressure drop of the refrigerant through the tee.  
   “Isobaric process” 
 - There is no heat transfer between the refrigerant and surroundings 
   “Adiabatic process” 

<Outlet 7> 
Refrigerant 7 7 7, ,P T v

T: temperature 

P: pressure 

v: specific volume 

h: specific enthalpy 

c: flow rate ratio between inlet and outlet 4 

[Figure 3] Configuration of the Dual Mixed Refrigerant 
Cycle 

SW Cooler 1 

SW Cooler 2 

Compressor 1 

Compressor 2 

Compressor 3 

Heat Exchanger 1 

Heat Exchanger 2 

Heat Exchanger 3 

Heat Exchanger 4 

Valve 1 

Valve 2 

Valve 

3 

Valve 4 

Natural Gas(NG) 

Liquid Natural Gas(LNG) 

Phase separator 

Common header 2 

Common header 1 

: Precooling part 

: Main cooling part 

Tee Tee 

4 7 

3 

 

   4) Equations of state(Soave, Redlich, Kwong(SRK) equation) 
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
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 [Given]: 
NG(27) T=26.85°C, P=65 bar,  

LNG(31) T=-160.15°C, P=65 bar 

𝒎 NG = 49.21 kg/h (=0.0004 MMTA) 

 [Find]: 
The operating conditions such as the 
pressure, temperature and specific volume, 
mass flow rate and composition of the 
refrigerants minimizing the work provided 
to the compressor. 
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1. Design variables(Operating Conditions) 
    : P16, T16, v16, P17, T17, v17, P20, T20, v20 , v_f 

• Phase Separator : separates a liquid-vapor mixture refrigerant into 
the vapor and liquid 

Mathematical Model for Phase Separator 

2. Assumption:  
 -  There is no pressure drop of the refrigerant through the phase separator. “Isobaric 

process” 
 - There is no heat transfer between the refrigerant and surroundings “Adiabatic process”. 

<Inlet> 
Refrigerant 

<Outlet> 
Refrigerant-vapor 

16 16 16, ,P T v

20 20 20, ,P T v

<Outlet> 
Refrigerant-liquid 17 17 17, ,P T v

3. Equality constraints 
 

   1) The first law of the thermodynamics(Energy conservation)  
 
 
 
 
 

   2) Isobaric process 
 
 

 

   3) Conditions for temperature of the outlet 
 
 
 
 

   4) Equations of state(Soave, Redlich, Kwong(SRK) equation) 

 
 
 
 

T: temperature 

P: pressure 

v: specific volume 

h: specific enthalpy 

v_f: vapor fraction at 16 stream 

1
6 

1
7 

2
0 

 [Given]: 
NG(27) T=26.85°C, P=65 bar,  

LNG(31) T=-160.15°C, P=65 bar 

𝒎 NG  = 49.21 kg/h (=0.0004 MMTA) 

 [Find]: 
The operating conditions such as the 
pressure, temperature and specific volume, 
mass flow rate and composition of the 
refrigerants minimizing the work provided 
to the compressor. 

v_f 

       16 16 16 16 20 20 20 20 17 17 17 17, , _ , , 1 _ , ,h P v T v f h P v T v f h P v T    

17 20T T
 

  
2020 20

20

20 20 20

a TRT v b
v b

P P v b v b 


  

 

 

  
1717 17

17

17 17 17

a TRT v b
v b

P P v b v b 


  

 

 

  
1616 16

16

16 16 16

a TRT v b
v b

P P v b v b 


  

 
16 17 16 20,P P P P 
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• Common Header : combines the two refrigerant streams separated by 
tee 

3. Equality constraints 
 

   1) The first law of the thermodynamics(Energy conservation)  
 
 
 
 
 
 

Mathematical Model for Common Header (1/2) 

2. Assumption:  
 -  To prevent a backflow in the common headers, the pressures  
     of the inlet streams are the same. 
 -  There is no pressure drop of the refrigerant through the common header.  
    “Isobaric process” 
 - There is no heat transfer between the refrigerant and surroundings, “Adiabatic process”. 

 

<Inlet 6> 
Refrigerant 

<Inlet 11> 
Refrigerant 

6 6 6, ,P T v

11 11 11, ,P T v

<Outlet> 
Refrigerant 12 12 12, ,P T v

1. Design variables(Operating Conditions) 
    : P6, T6, v6, P11, T11, v11, P12, T12, v12, c 

1
1 

6 

1
2 

T: temperature 

P: pressure 

v: specific volume 

h: specific enthalpy 

c: flow rate ratio between inlet and outlet 4 

 [Given]: 
NG(27) T=26.85°C, P=65 bar,  

LNG(31) T=-160.15°C, P=65 bar 

𝒎 NG  = 49.21 kg/h (=0.0004 MMTA) 

 [Find]: 
The operating conditions such as the 
pressure, temperature and specific volume, 
mass flow rate and composition of the 
refrigerants minimizing the work provided 
to the compressor. 

       6 6 6 6 11 11 11 11 12 12 12 12, , 1 , , , ,c h P v T c h P v T h P v T    
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Mathematical Model for Common Header (2/2) 

3. Equality constraints 
 

   2) Conditions for pressure of the inlet to prevent backflow 
 
 
 

 

       
   3) Isobaric process 
    
 
 

   4) Equations of state(Soave, Redlich, Kwong(SRK) equation) 

• Common Header 

<Inlet 6> 
Refrigerant 

<Inlet 11> 
Refrigerant 

6 6 6, ,P T v

11 11 11, ,P T v

<Outlet> 
Refrigerant 12 12 12, ,P T v

: combines the two refrigerant streams separated by 
tee 

T: temperature 

P: pressure 

v: specific volume 

 
  2 2

r C

C

T R T
a T

P




C

C

RT
b

P
 

0.42748 for SRK equation 

R: gas constant (=8.314 Jmol-1K-1) 

Pc: critical pressure of the refrigerant 

Tc: critical temperature of the refrigerant 

0.08664

0

1

for SRK equation

for SRK equation

for SRK equation





 





1
1 

6 

1
2 

 [Given]: 
NG(27) T=26.85°C, P=65 bar,  

LNG(31) T=-160.15°C, P=65 bar 

𝒎 NG  = 49.21 kg/h (=0.0004 MMTA) 

 [Find]: 
The operating conditions such as the 
pressure, temperature and specific volume, 
mass flow rate and composition of the 
refrigerants minimizing the work provided 
to the compressor. 

6 11P P

6 12P P

 

  
1212 12

12

12 12 12

a TRT v b
v b

P P v b v b 


  

 

 

  
66 6

6

6 6 6

a TRT v b
v b

P P v b v b 


  

 

 

  
1111 11

11

11 11 11

a TRT v b
v b

P P v b v b 


  

 
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1. Design variables(Operating Conditions) 
    : Pi, Ti, vi, 𝒎 pre , 𝒎 main , 𝒎 NG  (i =７，８，９，１０，１５，１６，２８，２９）  

• Heat Exchanger : devices where several moving fluid streams exchange 

heat without mixing 

Mathematical Model for Heat Exchanger (1/2) 

2. Assumption:  
 -  There is no pressure drop of the refrigerant through the heat exchanger. “Isobaric 

process” 

3. Equality constraints 
 

   1) The first law of the thermodynamics(Energy conservation)  
 
 
 
 

  
 
  2) Isobaric process 
 
 
 

  3) Conservation Condition of the Output Temperature 
 
 
 
 

10 10 10, , , preP T v m

7 7 7, , , preP T v m

15 15 15, , , mainP T v m

28 28 28, , , NGP T v m

9 9 9, ,P T v

8 8 8, ,P T v

16 16 16, ,P T v

29 29 29, ,P T v

Refrigerant for precooling 

Refrigerant for precooling 

Refrigerant for main cooling 

Natural gas 

7 9 15 28

8 10 16 29

pre pre main NG

pre pre main NG

m h m h m h m h

m h m h m h m h

        

         

7 8 9 10 15 16 28 29, , ,P P P P P P P P   

8 16 8 29,T T T T 

 [Given]: 
NG(27) T=26.85°C, P=65 bar,  

LNG(31) T=-160.15°C, P=65 bar 

𝒎 NG  = 49.21 kg/h (=0.0004 MMTA) 

 [Find]: 
The operating conditions such as the 
pressure, temperature and specific volume, 
mass flow rate and composition of the 
refrigerants minimizing the work provided 
to the compressor. 

Heat exchanger에서 냉각 되는 물질들(여기서는 붉은색 선)의 냉각된 결과 온도는 모두 같아야 함(T8=T16=T29) 
The temperature of cooled material by heat exchanger should be same. 
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• Heat Exchanger : devices where several moving fluid streams exchange 

heat without mixing 

Mathematical Model for Heat Exchanger (2/2) 

2. Assumption:  
 -  There is no pressure drop of the refrigerant through the heat exchanger. “Isobaric 

process” 

3. Equality constraints 
 

   ４) Equation of state for each stream 
 

10 10 10, , , preP T v m

7 7 7, , , preP T v m

15 15 15, , , mainP T v m

28 28 28, , , NGP T v m

9 9 9, ,P T v

8 8 8, ,P T v

16 16 16, ,P T v

29 29 29, ,P T v

Refrigerant for precooling 

Refrigerant for precooling 

Refrigerant for main cooling 

Natural gas 

4. Inequality constraints 
   - Minimum temperature difference in the heat exchanger 

 [Given]: 
NG(27) T=26.85°C, P=65 bar,  

LNG(31) T=-160.15°C, P=65 bar 

𝒎 NG = 49.21 kg/h (=0.0004 MMTA) 

 [Find]: 
The operating conditions such as the 
pressure, temperature and specific volume, 
mass flow rate and composition of the 
refrigerants minimizing the work provided 
to the compressor. 

7 10

8 9

3.0

3.0

T T

T T

 

 

1. Design variables(Operating Conditions) 
    : Pi, Ti, vi, 𝒎 pre , 𝒎 main , 𝒎 NG  (i =７，８，９，１０，１５，１６，２８，２９）  
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Mathematical Model of the DMR cycle 
 

1. Design variables(operating conditions) [107] 
   : 

2. Equality constraints [91] 

4. Objective function: Minimize the compressors power 

1 2 3Minize  pre pre mainm w m w m w    

 indeterminate systems 

 

   

,1 ,11 ,13 ,1 ,11 ,13 1 2 3

, ,

, , 1, ..., 26,28,29,30 ,

, , , , , , , , , ,

, , _ , 1,2,3 , 1,2,3,4

i i i

S S S S S S

pre main j pre k main

P T v i

T T T v v v w w w c

m m v f z j z k



 

1) Composition of the refrigerant [2] 
2) Precooling part [49] 
 - Compressor 1[6], Sea water cooler 1[3], 
   Heat exchanger 1 [11], Tee [6], Expansion Valve 1 [2],  
   Heat exchanger 2 [11], Expansion Valve 2 [2], Compressor2 [5], 
   Common header1 [3] 
 

3) Main cooling part [40] 
 - Compressor 3 [6], Sea water cooler 2 [3], 
   Phase separator [6], Heat exchanger 3 [10], Expansion Valve [2],  
   Heat exchanger 4 [6], Valve [2], Common header2 [4] 

Reference: 1) Venkatarathnam, G., 2008, 
Cryogenic Mixed Refrigerant Processes, 
Springer, New York 

 Optimization Problem! 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole 

fraction of the component j at the precooling part/ w: work input 

to the compressor per mass/ c: flow rate ratio between inlet and 

outlet 4 / Mpre: mass flow rate at the precooling part 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling part 

SW Cooler 1 

SW Cooler 2 

Compressor 1 

Compressor 2 

Compressor 3 

Heat Exchanger 1 

Heat Exchanger 2 

Heat Exchanger 3 

Heat Exchanger 4 

Valve 1 

Valve 2 

Valve 3 

Valve 4 Natural Gas(NG) 

Feed 

Liquefied Natural Gas(LNG) 
1 

27 14 2 
6 

28 15 3 

4 

5 

10 

11 

12 

25 

29 16 

8 9 

17 20 26 

18 

19 

23 22 31 

13 

7 21 

24 

30 

2w

1w

3w

Common 

Header 1 

Common 

Header 2 

Phase  

Separator 

Given: NG(27) T=26.85°C, P=65 bar,  

             LNG(31) T=-160.15°C, P=65 bar 

49.21 /NGm kg h
 0.0004 MMTA

Configuration of the Dual Mixed Refrigerant Cycle1) 

3. Inequality constraints [11] 
1) Minimum temperature approach in heat exchanger [8] 
2) Inlet condition of the compressor [3] 
 

 ━ Precooling mixed refrigerant(PMR) 

 ━ Main cooling mixed refrigerant(MMR) 
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Mathematical Model of the  Precooling part of the DMR cycle 
 

1. Design variables(Operating Conditions)[107] 
  :      ,1 ,11 ,13 ,1 ,11 ,13 1 2 3 , ,, , 1, ..., 26,28,29,30 , , , , , , , , , , , , , _ , 1,2,3 , 1,2,3,4i i i S S S S S S pre main j pre k mainP T v i T T T v v v w w w c m m v f z j z k  

2. Equality constraints[91] 

2.1 Equality constraints of Precooling part[49] 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 
1) Compressor 1: [6] 

   12 12 12 12 , 1 1 1 1 1 ,, , , , , ,j pre j preh P T v z w h P T v z 

   12 12 12 12 , 1 1 ,1 ,1 ,, , , , , ,j pre S S j pres P T v z s P T v z

1 1 1 1 ,( , , )j prev v T P z

2) Sea water cooler 1: [3] 

   1 1 1 1 1 2 2 2 2, , , ,h P T v q h P T v 

1 2P P

2 2 2 2 ,( , , )j prev v T P z

3) Heat exchanger 1: [11] 

       

     

2 2 2 2 , 5 5 5 5 , 14 14 14 14 , ,

3 3 3 3 , 6 6 6 6 , 15 15 15 15 , 28 28 2

, , , , , , , , , , , ,

, , , , , , , , , ,

pre j pre pre j pre main k main NG NG NG NG NG l NG

pre j pre pre j pre main k main NG

m h P T v z c m h P T v z m h P T v z m h P T v z

m h P T v z c m h P T v z m h P T v z m h P T

       

          8 28 ,, , l NGv z

2 3 5 6 14 15 28, , , NGP P P P P P P P   

       3 3 3 3 , 6 6 6 6 , 15 15 15 15 , 28 28 28 28 ,, , , , , , , , , , ,j pre j pre k main l NGv v T P z v v T P z v v T P z v v T P z   

4) Tee: [6] 

       3 3 3 3 , 4 4 4 4 , 7 7 7 7 ,, , , , , , 1 , , ,j pre j pre j preh P T v z c h P T v z c h P T v z    

3 4 3 7,P P P P 

5) Expansion Valve 1: [2]  

   4 4 4 4 5 5 5 5, , , ,h P T v h P T v

 5 5 5 5,v v T P

4 7T T

   4 4 4 4 , 7 7 7 7 ,, , , , ,j pre j prev v T P z v v T P z 

6) Heat exchanger 2: [11]  

           

       

7 7 7 7 , 9 9 9 9 , 15 15 15 15 , 28 28 28 28 ,

8 8 8 8 , 10 10 10 10 , 16 16 16 16 ,

1 , , , 1 , , , , , , , , ,

1 , , , 1 , , , , , ,

pre j pre pre j pre main k main NG l NG

pre j pre pre j pre main k mai

c m h P T v z c m h P T v z m h P T v z m h P T v z

c m h P T v z c m h P T v z m h P T v z

          

             29 29 29 29 ,, , ,n NG l NGm h P T v z 

7 8 9 10 15 16 28 29, , ,P P P P P P P P   

       8 8 8 8 , 10 10 10 10 , 16 16 16 16 , 29 29 29 29 ,, , , , , , , , , , ,j pre j pre k main l NGv v T P z v v T P z v v T P z v v T P z   

7) Expansion Valve 2: [2] 
   8 8 8 8 , 9 9 9 9 ,, , , , , ,j pre j preh P T v z h P T v z

 9 9 9 9 ,, , j prev v T P z

8) Compressor 2: [5] 

       10 10 10 10 , 2 11 11 11 ,1 , , , 1 , , ,j pre j prec h P T v z w c h P T v z     

   10 10 10 10 , 11 11 ,11 ,11 ,, , , , , ,j pre S S j pres P T v z s P T v z

11 11 11 11 ,( , , )j prev v T P z

9) Common header 1: [3]  
     

 
6 6 6 6 , 11 11 11 11 ,

12 12 12 12 ,

, , , 1 , , ,

, , ,

j pre j pre

j pre

c h P T v z c h P T v z

h P T v z

   


6 11 6 12,P P P P 

12 12 12 12 ,( , , )j prev v T P z

The temperature of the outlet of the 
sea water cooler is usually given. 
T=310K 

Composition of the refrigerant(z) 
Precooling: Ethane, Propane, n-Butane 
Main cooling: Nitrogen, Methane, Ethane, Propane 
Natural Gas: Methane(87.5%), Ethane(5.5%), Nitrogen(4.0%), 
Propane(2.1%), n-Butane(0.5%), i-Butane(0.3%), i-Pentane(0.1%) 

   
   

1 ,1 ,1 , 12 12 12 12 ,

1 1 1 1 , 12 12 12 12 ,

, , , , , ,

, , , , , ,

S S S j pre j pre

j pre j pre

h P T v z h P T v z

h P T v z h P T v z







,1 ,1 ,1 1 ,( , , )S S S j prev v T P z

3 15 3 28,T T T T 

8 16 8 29,T T T T 

   
   
11 ,11 ,11 , 10 10 10 10 ,

11 11 11 11 , 10 10 10 10 ,

, , , , , ,

, , , , , ,

S S S j pre j pre

j pre j pre

h P T v z h P T v z

h P T v z h P T v z







 ,11 ,11 11 ,11 ,, ,S S S j prev v P T z

3 4

, ,

1 1

1, 1j pre k main

j k

z z
 

  
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Mathematical Model of the  Main Cooling Part of the DMR cycle 

10) Compressor 3: [6] 
   26 26 26 26 , 3 13 13 13 ,, , , , , ,k main k mainh P T v z w h P T v z 

   26 26 26 26 , 13 13 ,13 ,13 ,, , , , , ,k main S S k mains P T v z s P T v z

26 26 26 26 ,( , , )k mainv v T P z

11) Sea water cooler 2: [3] 

   13 13 13 13 2 14 14 14 14, , , ,h P T v q h P T v 

13 14P P 14 14 14 14 ,( , , )k mainv v T P z

13) Heat exchanger 3: [10] 

      

   

   

20 20 20 20 , 17 17 17 17 ,

25 25 25 25 , 29 29 29 29 ,

21 21 21 21 , 18 18 18 18

_ , , , _ 1 _ , , , 1 _

, , , , , ,

_ , , , _ 1 _ , ,

main k main main k main

main k main NG l NG

main k main main

v f m h P T v v f z v f m h P T v v f z

m h P T v z m h P T v z

v f m h P T v v f z v f m h P T v

       

   

          

   

,

26 26 26 26 , 30 30 30 30 ,

1 _

, , , , , ,

k main

main k main NG l NG

v f z

m h P T v z m h P T v z



   

20 21 17 18 25 26 29 30, , ,P P P P P P P P   

      21 21 21 21 , 18 18 18 18 , 30 30 30 30 ,, , _ , , , 1 _ , , ,k main k main l NGv v T P v f z v v T P v f z v v T P z    

12) Phase separator: [7] 

        16 16 16 16 , 20 20 20 20 , 17 17 17 17 ,, , , _ , , , _ 1 _ , , , 1 _k main k main k mainh P T v z v f h P T v v f z v f h P T v v f z      

16 17 16 20,P P P P 

14) Expansion Valve 3: [2] 

   18 18 18 18 , 19 19 19 19 ,, , , (1 _ ) , , , (1 _ )k main k mainh P T v v f z h P T v v f z  

 19 19 19 19,v v T P

17 20T T

    17 17 17 17 , 20 20 20 20 ,, , 1 _ , , , _k main k mainv v T P v f z v v T P v f z   

15) Heat exchanger 4: [6] 

     

   

21 21 21 21 , 23 23 23 23 , 30 30 30 30 ,

22 22 22 22 , 24 24 24 24 ,

_ , , , _ _ , , , _ , , ,

_ , , , _ _ , , , _ , ,

main k main main k main NG l NG

main k main main k main NG LNG LNG LNG LN

v f m h P T v v f z v f m h P T v v f z m h P T v z

v f m h P T v v f z v f m h P T v v f z m h P T v

        

           ,,G l NGz

21 22 23 24, ,P P P P     22 22 22 22 , 24 24 24 24 ,, , _ , , , _k main k mainv v T P v f z v v T P v f z   

16) Expansion Valve 4: [2] 
   22 22 22 22 , 23 23 23 23 ,, , , _ , , , _k main k mainh P T v v f z h P T v v f z  

 23 23 23 23 ,, , _ k mainv v T P v f z 

17) Common header 2: [4]  
    

   

19 19 19 19 ,

24 24 24 24 , 25 25 25 25 ,

1 _ , , , 1 _

_ , , , _ , , ,

k main

k main k main

v f h P T v v f z

v f h P T v v f z h P T v z

  

   

19 24 19 25,P P P P  25 25 25 25 ,( , , )k mainv v T P z

2. Equality constraints[91] 

2.2 Equality constraints of Main cooling part[40] 

The temperature of the outlet of the 
sea water cooler is usually given. 
T=305K 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction 

of the component j at the precooling part/ w: work input to the 

compressor per mass/ c: flow rate ratio between inlet and outlet 4 / 

𝒎 pre: mass flow rate at the precooling part 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling part 

∗  𝑣_𝑓: vapor fraction at stream 16 

Composition of the refrigerant 
Precooling: Ethane, Propane, n-Butane 
Main cooling: Nitrogen, Methane, Ethane, Propane 
Natural Gas: Methane(87.5%), Ethane(5.5%), Nitrogen(4.0%), 
Propane(2.1%), n-Butane(0.5%), i-Butane(0.3%), i-Pentane(0.1%) 1. Design variables(Operating Conditions)[107] 

  : 

   
   

,13 13 ,13 ,13 , 26 26 26 26 ,

13 13 13 13 , 26 26 26 26 ,

, , , , , ,

, , , , , ,

S S S k main k main

k main k main

h P T v z h P T v z

h P T v z h P T v z







13 13 13 13 ,( , , )k mainv v T P z

,13 13 ,13 13 ,( , , )S S k mainv v T P z

22 31T T

21 30 21 18,T T T T 

16 17T T

     ,1 ,11 ,13 ,1 ,11 ,13 1 2 3 , ,, , 1, ..., 26,28,29,30 , , , , , , , , , , , , , _ , 1,2,3 , 1,2,3,4i i i S S S S S S pre main j pre k mainP T v i T T T v v v w w w c m m v f z j z k  
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Procedure of the Determination of the Optimal Operating Conditions 

1. Free variables [1 = 21 - 20] 

 : 𝑷𝟏 

2. Inequality constraints [1] 

Detailed sequence of finding optimum solution 

3. Objective function: 

Minimize 𝑾 = 𝒎 ⋅ 𝒘 

Optimization Problem 

1. Design Variables(Operating Conditions, 21) 

  :  Pi, Ti, vi, Ts, vS, v4,l, v4,v, v_f, w, 𝑚 , qL, qH (i=1,2,3,4) 

2. Equality constraints [20] 
1) Compressor (6) 

2) Condenser (4) 

3) Expansion valve (5) 

4) Evaporator (5) 

3. Inequality constraints [1] 

4. Objective function: Minimize the compressors power 

Minimize  W m w 

  [k

: [ / ]

: g / s]

w work input to thecompressor per mass J kg

mass flow rate of refrigerantm

 4L Cm q U A T T    

c.f) Heat transfer in the evaporator 

U
A

CT

: Heat transfer coefficients[W/m2K] 

: Room temperature[K] 

: Area of equipment temperature[m2] 

1) Find the free variable. 

Find the free variable P1, by minimizing the compressor 
power subject to the inequality constraint using 
sequential quadratic programming(SQP) method. 

2) Determine the dependent variables. 

Determine the 20 dependent variables by solving the 
system of the nonlinear equations. 

• Design variables [20] 

• Equality constraints [20] 

System of Nonlinear Equations 

 Determine the 20 variables by using 

Newton-Raphson method 

3) Calculate objective function 

Minimize 𝑾 = 𝒎 ⋅ 𝒘 
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4. Determination of the Optimal Operating Conditions for the Dual Mixed Refrigerant(DMR) Cycle of LNG FPSO 

 - Optimization Method 

1. Design variables(operating conditions) [107] 
   : 

4. Objective function: Minimize the compressors power 

1 2 3Minize  pre pre mainm w m w m w    

 

   

,1 ,11 ,13 ,1 ,11 ,13 1 2 3

, ,

, , 1, ..., 26,28,29,30 ,

, , , , , , , , , ,

, , _ , 1,2,3 , 1,2,3,4

i i i

S S S S S S

pre main j pre k main

P T v i

T T T v v v w w w c

m m v f z j z k



 

2. Equality constraints [91] 
1) Composition of the refrigerant [2] 
2) Precooling part [49] 
 

3) Main cooling part [40] 

3. Inequality constraints [11] 
1) Minimum temperature approach in heat exchanger [8] 
2) Inlet condition of the compressor [3] 
 

1 5 9 13 19 3 8 18

2, 3, 2, 1, 2,

, , , , , , , , , , ,

, , , ,

pre main

C pre C pre N main C main C main

P P P P P T T T c m m

z z z z z

• Free variables [16 = 107 - 91] 

 : 

• Inequality constraints [11] 

• Objective function 

1 2 3Minize  pre pre mainm w m w m w    

 Use of sequential quadratic 
programming(SQP) method 

Modified optimization problem 

• Design variables [91] 

• Equality constraints [91] 

 Use of Newton-Rapson method 

System of nonlinear equations 

Values of  
other design variables 

Values of 
 free variables 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole 

fraction of the component j at the precooling part/ w: work input to 

the compressor per mass/ c: flow rate ratio between inlet and outlet 

4 / Mpre: mass flow rate at the precooling part 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling part 
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Configuration of the developed Optimization Program of the Liquefaction Cycle for the 
LNG FPSO 

Optimization Kernel 

Equipment Modules 

Physical Assumptions Mathematical Models 

Energy 

Conservation 
(Specific Enthalpy) 

Equation of 

State (SRK) 

Equation of 

State (PR) 

Criteria for 

Quality of Energy 
(Specific Entropy) 

Adiabatic 

Process 

Isobaric 

Process 

Isentropic 

Process 

Reversible 

Process 

Compressor Expansion Valve Evaporator Heat Exchanger 

Condenser Tee Phase Separator Common Header 

Liquefaction Cycles 

                 Optimization Program of the Liquefaction Cycle for the LNG FPSO 

SQP1) 

1) SQP: Sequential Quadratic Programming 
2) SLP: Sequential Linear Programming 

SLP2) 

Penalty Function Method 
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4. Determination of the Optimal Operating Conditions for the Dual Mixed Refrigerant(DMR) Cycle of LNG FPSO 

 - Comparison between the Optimal Operating Conditions for the DMR Cycle 
Based on the Mathematical Model and the Past Relevant research 

Result obtained by this paper: 

Reference: 1) Venkatarathnam, G., 2008, Cryogenic Mixed Refrigerant Processes, Springer, New York 

P[bar], T[K], v[m3/mol], w[J/mol], m[mol/s], W[kW] 

 The is the result of the optimization for the DMR cycle. 

본 논문에서 13번 case의 최적화 결과 

P1[bar] 19.64 P11 8.19 P21 48.92 Ts1 346.97 

T1[K] 352.31 T11 313.47 T21 140.36 Ts11 306.24 

v1[m3/mol] 0.001208 v11 0.002846 v21 0.000043 Ts13 395.94 

P2 19.64 P12 8.19 P22 48.92 vs1 0.001467 

T2 310.00 T12 307.89 T22 113.00 vs11 0.003234 

v2 0.000092 v12 0.002774 v22 0.000039 vs13 0.000625 

P3 19.64 P13 48.92 P23 2.79 w1[J/mol] 2505.86 

T3 275.01 T13 422.24 T23 105.80 w2 1187.98 

v3 0.000081 v13 0.000669 v23 0.000360 w3 8746.96 

P4 19.64 P14 48.92 P24 2.79 c 0.584643 

T4 275.01 T14 305.00 T24 137.74 𝒎 pre[mol/s] 0.932866 

v4 0.000081 v14 0.000379 v24 0.003016 𝒎 main 
0.957021 

P5 8.19 P15 48.92 P25 2.79 zpre_Ethane 0.253895 

T5 272.01 T15 275.01 T25 137.41 zpre_Propane 0.63883 

v5 0.000142 v15 0.000242 v25 0.001016 zpre_n-Butane 0.107275 

P6 8.19 P16 48.92 P26 2.79 zmain_Nitrogen 0.069317 

T6 303.97 T16 239.64 T26 237.65 zmain_Methane 0.405874 

v6 0.002722 v16 0.000131 v26 0.006835 zmain_Ethane 0.2964 

P7 19.64 P17 48.92 P28 65.00 zmain_Propaane 0.228409 

T7 275.01 T17 239.64 T28 275.01 Objective  
Function(work) 

[kW] 
11.817 v7 0.000081 v17 0.000068 v28 0.000290 

P8 19.64 P18 48.92 P29 65.00 

T8 239.64 T18 140.36 T29 239.64 

v8 0.000074 v18 0.000050 v29 0.000209 

P9 2.86 P19 2.79 P30 65.00 

T9 236.58 T19 136.08 T30 140.36 

v9 0.000232 v19 0.000344 v30 0.000042 

P10 2.86 P20 48.92 

T10 265.92 T20 239.64 

v10 0.007301 v20 0.000311 
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Comparison of the calculation  result of this study and a relevant research 

   [%     [%     [%     [%  

P1[bar] 19.2  2.29% P11 7.6  7.76% P21 48.6  0.66% Ts1 354.4  1.98% 

T1[K] 360.2  2.09% T11 313.6  0.10% T21 144.7  3.00% Ts11 306.6  0.01% 

v1[m3/mol] 0.001291  6.42% v11 0.003089  7.88% v21 0.000045  3.40% Ts13 392.3  0.62% 

P2 19.2 2.29% P12 7.6 7.76% P22 48.6 0.66% vs1 0.001253  6.40% 

T2 310.0  0.00% T12 313.8  1.76% T22 113.0  0.00% vs11 0.002995  8.08% 

v2 0.000122  24.92% v12 0.003092  10.29% v22 0.000040  1.03% vs13 0.000613  0.24% 

P3 19.2 2.29% P13 48.6 0.66% P23 3.0  7.00% w1[J/mol] 2767.7  9.19% 

T3 273.1  0.70% T13 418.1  0.68% T23 106.9  1.08% w2 1103.9  7.83% 

v3 0.000087  6.32% v13 0.000669  0.11% v23 0.000304  18.52% w3 8441.3  3.15% 

P4 19.2 2.29% P14 48.6 0.66% P24 3.0  7.00% c 0.5980  2.24% 

T4 273.1 0.70% T14 305 0.00% T24 
141.78668

56 
2.76% 𝒎 pre[mol/s]  0.9130  2.18% 

v4 0.000087  6.32% v14 0.000389  2.49% v24 0.002911  3.67% 𝒎 main[mol/s]  1.0000  4.30% 

P5 7.6  7.76% P15 48.6  0.66% P25 3.0  7.00% zpre_Ethane  0.2482  2.32% 

T5 269.7  0.84% T15 273.1  0.70% T25 140.3  2.14% zpre_Propane  0.6416  0.43% 

v5 0.000159  10.74% v15 0.000248  2.54% v25 0.001090  6.73% zpre_n-Butane  0.1103  2.72% 

P6 7.6  7.76% P16 48.6  0.66% P26 3.0  7.00% zmain_Nitrogen  0.0700  0.98% 

T6 313.9  3.09% T16 240.0  0.15% T26 237.0  0.15% zmain_Methane  0.4180  2.90% 

v6 0.003093  12.02% v16 0.000141  7.04% v26 0.006363  7.50% zmain_Ethane  0.2990  0.87% 

P7 19.2  2.29% P17 48.6  0.66% P28 65.0  0.00% zmain_Propaane  0.2130  7.23% 

T7 273.0  0.74% T17 240.0  0.15% T28 273.1  0.70% 
Objective  

Function(work) 
[kW] 

11.976 1.57% v7 0.000087  6.32% v17 0.000071  4.25% v28 0.000286  1.34% 

P8 19.2  2.29% P18 48.6  0.66% P29 65.0  0.00% 

T8 240.0  0.15% T18 144.7  3.00% T29 240.0  0.15%       

v8 0.000079  5.82% v18 0.000053  4.59% v29 0.000210  0.45%       

P9 2.8  2.14% P19 3.0  7.00% P30 65.0  0.00%       

T9 236.5  0.03% T19 139.1  2.29% T30 144.7  3.00%       

v9 0.000258  10.17% v19 0.000368  6.51% v30 0.000044  2.99%       

P10 2.8  2.14% P20 48.6  0.66%             

T10 268.7  0.86% T20 240.0  0.15%             

v10 0.007537  3.18% v20 0.000312  0.47%             

[%]: Difference 
Result obtained by this study: 

Result obtained by Venkatarathnam1): 

Reference: 1) Venkatarathnam, G., 2008, Cryogenic Mixed Refrigerant Processes, Springer, New York 

P[bar], T[K], v[m3/mol], w[J/mol], m[mol/s], W[kW] 

 The result of the optimal operating condition of the DMR cycle obtained by this study saves 1.57 % of the total 
required power consumption compared with the relevant research. 

파란색 글씨들이 HYSYS에 입력한 free 
variables 임.  

수정 필요 

            

P1[bar] 19.6  P11 8.2  P21 48.9  Ts1 347.4  

T1[K] 352.7  T11 313.9  T21 140.4  Ts11 306.7  

v1[m3/mol] 0.001209  v11 0.002846  v21 0.000043  Ts13 394.8  

P2 19.6  P12 8.2  P22 48.9  vs1 0.001173  

T2 310.0  T12 308.3  T22 113.0  vs11 0.002753  

v2 0.000092  v12 0.002774  v22 0.000039  vs13 0.000612  

P3 19.6  P13 48.9  P23 2.8  w1[J/mol] 2513.4  

T3 275.0  T13 421.0  T23 105.7  W2 1190.3  

v3 0.000081  v13 0.000669  v23 0.000361  W3 8707.3  

P4 19.6  P14 48.9  P24 2.8  C 0.5846  

T4 275.0  T14 305.0  T24 137.9  𝒎 pre[mol/s]  0.9329  

v4 0.000081  v14 0.000379  v24 0.003018  𝒎 main[mol/s]  0.9570  

P5 8.2  P15 48.9  P25 2.8  zpre_Ethane  0.2539  

T5 272.0  T15 275.0  T25 137.3  zpre_Propane  0.6388  

v5 0.000142  v15 0.000242  v25 0.001017  zpre_n-Butane  0.1073  

P6 8.2  P16 48.9  P26 2.8  zmain_Nitrogen  0.0693  

T6 304.2  T16 239.6  T26 236.6  zmain_Methane  0.4059  

v6 0.002722  v16 0.000131  v26 0.006841  zmain_Ethane  0.2964  

P7 19.6  P17 48.9  P28 65.0  zmain_Propaane  0.2284  

T7 275.0  T17 239.6  T28 275.0  Objective  
Function(work) 

[kW] 
11.788  v7 0.000081  v17 0.000068  v28 0.000290  

P8 19.6  P18 48.9  P29 65.0  

T8 239.6  T18 140.4  T29 239.6      

v8 0.000075  v18 0.000050  v29 0.000209      

P9 2.9  P19 2.8  P30 65.0      

T9 236.6  T19 136.0  T30 140.4      

v9 0.000232  v19 0.000344  v30 0.000042      

P10 2.9  P20 48.9          

T10 266.4  T20 239.6          

v10 0.007297  v20 0.000311          

free variables free variables 

남국수정4 
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FEASIBLE LIQUEFACTION MODEL (CASE 23) 

Mixed Refrigerant 1 

NG 

First Cycle 

Second Cycle 

Mixed Refrigerant 2 

1P 
2P 3P 

4P 

8P 
9P 14P 15P 

16P 

17P 

18P 

19P 

20P 

21P 

5P 

6P 
7P 

10P 
11P 

12P 
13P 

3m 

4m 

5m 

6m 7m 
8m 9m 

10m 

1NG 2NG 
3NG LNG 

14m 

11m 

15m 

12m 

13m 

26m 

25m 

17m 

4NG 

Evaporator 1 

Evaporator 2 

Evaporator 3 

Evaporator 4 Evaporator 5 

18m 

Common 
Header 1 

Common 
Header 3 

Common 
Header 2 

Compressor 1 

Compressor 2 

Compressor 4 

Compressor 5 

Compressor 3 

Condenser 1 

Condenser 2 
Intercooler 1 

Expansion 
Valve 5 

Expansion 
Valve 1 

Expansion 
Valve  2 

Expansion 
Valve 4 

Expansion 
Valve 3 

Phase 
Separator 1 

Tee 2 Tee 1 

남국수정3 

CASE 23: Proposed Liquefaction Cycle 

- Precooling 3 stage compression 
refrigeration  

- Main cooling 2 stage compassion, 2 
stage refrigeration 
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Mathematical Model of the Proposed Liquefaction Cycle (Case 23) (1) 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 

1. Design variables(Operating Conditions) [153] 
  :  

   

,2 ,19 ,21 ,4 ,6 ,2 ,19 ,21 ,4 ,6

1 2 3 4 5 1 2 10 , ,

, , 1 ,..., 21 ,3 ,...,15 ,17 ,18 ,25 ,26 ,1 ,..., 4 ,

, , , , , , , , , ,

, , , , , , , , , _ , 1,2,3 , 1,2,3,4

i i i p p m m m m m m NG NG

S p S p S p S m S m S p S p S p S m S m

pre main j pre k main

P T v i

T T T T T v v v v v

w w w w w c c m m v f z j z k



 

2. Equality constraints [133] 

2.1 Equality constraints of precooling part [83] 
1) Compressor 1: [6] 

   1 1 1 1 , 1 2 2 2 2 ,, , , , , ,p p p p j pre p p p p j preh P T v z w h P T v z 

   1 1 1 1 , 2 2 ,2 ,2 ,, , , , , ,p p p p j pre p p S p S p j pres P T v z s P T v z

 2 2 2 2 ,, ,p p p p j prev v P T z

 1 1 1 1 ,, ,p p p p j prev v P T z

   
   

,2 2 ,2 ,2 , 1 1 1 1 ,

2 2 2 2 , 1 1 1 1 ,

, , , , , ,

, , , , , ,

S p p S p S p j pre p p p p j pre

p p p p j pre p p p p j pre

h P T v z h P T v z

h P T v z h P T v z







 ,2 ,2 2 ,2 ,, ,S p S p p S p j prev v P T z

2) Condenser 1: [3] 

   1 1 1 1 1 2 2 2 2, , , ,h P T v q h P T v 

2 3p pP P

3 3 3 3 ,( , , )p p p p j prev v T P z

The temperature of the outlet of the 
sea water cooler is usually given. 
T=310K 

3) Tee 1: [6] 
 

     
3 3 3 3 ,

1 4 4 4 4 , 1 8 8 8 8 ,

, , ,

, , , 1 , , ,

p p p p j pre

p p p p j pre p p p p j pre

h P T v z

c h P T v z c h P T v z    

3 4 3 8,p p p pP P P P 

4 8p pT T

   4 4 4 4 , 8 8 8 8 ,, , , , ,p p p p j pre p p p p j prev v T P z v v T P z 

4) Evaporator 1: [14] 

   

   

   

 

1 4 4 4 4 , 1 6 6 6 6 ,

1 8 8 8 8 ,

7 7 7 7 , ,

1 5 5 5 5 , 1 7 7 7

, , , , , ,

1 , , ,

, , , , , ,

, , , ,

pre p p p p j pre pre p p p p j pre

pre p p p p j pre

main m m m m k main NG NG NG NG NG l NG

pre p p p p j pre pre p p

c m h P T v z c m h P T v z

c m h P T v z

m h P T v z m h P T v z

c m h P T v z c m h P T

    

   

   

       

     

 

7 ,

1 9 9 9 9 , 8 8 8 8 ,

1 1 1 1 ,

, ,

1 , , , , , ,

, , ,

p p j pre

pre p p p p j pre main m m m m k main

NG NG NG NG NG l NG

v z

c m h P T v z m h P T v z

m h P T v z

     

 

4 5 6 7 8 9 7 8 1, , , ,p p p p p p m m NG NGP P P P P P P P P P    

5 9 5 8 5 1, ,p p p m p NGT T T T T T  

   

   

 

5 5 5 5 , 7 7 7 7 ,

9 9 9 9 , 8 8 8 8 ,

1 1 1 1 ,

, , , , , ,

, , , , , ,

, ,

p p p p j pre p p p p j pre

p p p p j pre m m m m k main

NG NG NG NG l NG

v v T P z v v T P z

v v T P z v v T P z

v v T P z

 

 



5) Expansion valve 1: [2] 

   5 5 5 5 , 6 6 6 6 ,, , , , , ,p p p p j pre p p p p j preh P T v z h P T v z

 6 6 6 6 ,, ,p p p p j prev v T P z

6) Tee 2: [6] 
   

   

     

1 9 9 9 9 ,

2 1 10 10 10 10 ,

2 1 14 14 14 14 ,

1 , , ,

1 , , ,

1 1 , , ,

p p p p j pre

p p p p j pre

p p p p j pre

c h P T v z

c c h P T v z

c c h P T v z

 

   

    

9 10 9 14,p p p pP P P P 

10 14p pT T

 

 
10 10 10 10 ,

14 14 14 14 ,

, , ,

, ,

p p p p j pre

p p p p j pre

v v T P z

v v T P z




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Mathematical Model of the Proposed Liquefaction Cycle (Case 23) (2) 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 

2. Equality constraints [133] 

2.1 Equality constraints of precooling part [83] 

1. Design variables(Operating Conditions) [153] 
  :  

   

,2 ,19 ,21 ,4 ,6 ,2 ,19 ,21 ,4 ,6

1 2 3 4 5 1 2 10 , ,

, , 1 ,..., 21 ,3 ,...,15 ,17 ,18 ,25 ,26 ,1 ,..., 4 ,

, , , , , , , , , ,

, , , , , , , , , _ , 1,2,3 , 1,2,3,4

i i i p p m m m m m m NG NG

S p S p S p S m S m S p S p S p S m S m

pre main j pre k main

P T v i

T T T T T v v v v v

w w w w w c c m m v f z j z k



 

7) Evaporator 2: [14] 

10 11 12 13 14 15 8 9 1 2, , , ,p p p p p p m m NG NGP P P P P P P P P P    

11 15 11 9 11 2, ,p p p m p NGT T T T T T  

   

   

 

11 11 11 11 , 13 13 13 13 ,

15 15 15 15 , 9 9 9 9 ,

2 2 2 2 ,

, , , , , ,

, , , , , ,

, ,

p p p p j pre p p p p j pre

p p p p j pre m m m m k main

NG NG NG NG l NG

v v T P z v v T P z

v v T P z v v T P z

v v T P z

 

 



       

     

   

 

2 1 10 10 10 10 , 2 1 12 12 12 12 ,

2 1 14 14 14 14 ,

8 8 8 8 , 1 1 1 1 ,

2 1 11

1 , , , 1 , , ,

1 1 , , ,

, , , , , ,

1

pre p p p p j pre pre p p p p j pre

pre p p p p j pre

main m m m m k main NG NG NG NG NG l NG

pre

c c m h P T v z c c m h P T v z

c c m h P T v z

m h P T v z m h P T v z

c c m h

        

      

   

          

     

   

11 11 11 , 2 1 13 13 13 13 ,

2 1 15 15 15 15 ,

9 9 9 9 , 2 2 2 2 ,

, , , 1 , , ,

1 1 , , ,

, , , , , ,

p p p p j pre pre p p p p j pre

pre p p p p j pre

main m m m m k main NG NG NG NG NG l NG

P T v z c c m h P T v z

c c m h P T v z

m h P T v z m h P T v z

    

      

   

8) Expansion valve 2: [2] 

   11 11 11 11 , 12 12 12 12 ,, , , , , ,p p p p j pre p p p p j preh P T v z h P T v z

 12 12 12 12 ,, ,p p p p j prev v T P z

9) Evaporator 3: [11] 

15 16 17 18 9 10 2 3, , ,p p p p m m NG NGP P P P P P P P   

16 10 16 3,p m p NGT T T T 

   

   

16 16 16 16 , 18 18 18 18 ,

10 10 10 10 , 3 3 3 3 ,

, , , , , ,

, , , , ,

p p p p j pre p p p p j pre

m m m m k main NG NG NG NG l NG

v v T P z v v T P z

v v T P z v v T P z

 

 

     

     

   

     

   

2 1 15 15 15 15 ,

2 1 17 17 17 17 ,

9 9 9 9 , 2 2 2 2 ,

2 1 16 16 16 16 ,

2 1

1 1 , , ,

1 1 , , ,

, , , , , ,

1 1 , , ,

1 1

pre p p p p j pre

pre p p p p j pre

main m m m m k main NG NG NG NG NG l NG

pre p p p p j pre

pr

c c m h P T v z

c c m h P T v z

m h P T v z m h P T v z

c c m h P T v z

c c m

    

     

   

     

      

   

18 18 18 18 ,

10 10 10 10 , 3 3 3 3 ,

, , ,

, , , , , ,

e p p p p j pre

main m m m m k main NG NG NG NG NG l NG

h P T v z

m h P T v z m h P T v z



   

10) Expansion valve 3: [2] 

   16 16 16 16 , 17 17 17 17 ,, , , , , ,p p p p j pre p p p p j preh P T v z h P T v z

 17 17 17 17 ,, ,p p p p j prev v T P z
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Mathematical Model of the Proposed Liquefaction Cycle (Case 23) (3) 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 

2. Equality constraints [133] 

2.1 Equality constraints of precooling part [83] 

1. Design variables(Operating Conditions) [153] 
  :  

   

,2 ,19 ,21 ,4 ,6 ,2 ,19 ,21 ,4 ,6

1 2 3 4 5 1 2 10 , ,

, , 1 ,..., 21 ,3 ,...,15 ,17 ,18 ,25 ,26 ,1 ,..., 4 ,

, , , , , , , , , ,

, , , , , , , , , _ , 1,2,3 , 1,2,3,4

i i i p p m m m m m m NG NG

S p S p S p S m S m S p S p S p S m S m

pre main j pre k main

P T v i

T T T T T v v v v v

w w w w w c c m m v f z j z k



 

11) Compressor 3: [5] 

     

     
2 1 18 18 18 18 , 3

2 1 19 19 19 19 ,

1 1 , , ,

1 1 , , ,

pre p p p p j pre

pre p p p p j pre

c c m h P T v z w

c c m h P T v z

     

     

   18 18 18 18 , 19 19 ,19 ,19 ,, , , , , ,p p p p j pre p p S p S p j pres P T v z s P T v z

 19 19 19 19 ,, ,p p p p j prev v P T z

   
   

,19 19 ,19 ,19 , 18 18 18 18 ,

19 19 19 19 , 18 18 18 18 ,

, , , , , ,

, , , , , ,

S p p S p S p j pre p p p p j pre

p p p p j pre p p p p j pre

h P T v z h P T v z

h P T v z h P T v z







 ,19 ,19 19 ,19 ,, ,S p S p p S p j prev v P T z

12) Common Header 2: [4]  

         

   
2 1 13 13 13 13 , 2 1 19 19 19 19 ,

1 20 20 20 20 ,

1 , , , 1 1 , , ,

1 , , ,

p p p p j pre p p p p j pre

p p p p j pre

c c h P T v z c c h P T v z

c h P T v z

       

  

13 19 13 20,p p p pP P P P 

13) Compressor 2: [5] 

   

   
1 20 20 20 20 , 2

1 21 21 21 21 ,

1 , , ,

1 , , ,

pre p p p p j pre

pre p p p p j pre

c m h P T v z w

c m h P T v z

   

   

   20 20 20 20 , 21 21 ,21 ,21 ,, , , , , ,p p p p j pre p p S p S p j pres P T v z s P T v z

 21 21 21 21 ,, ,p p p p j prev v P T z

   
   

,21 21 ,21 ,21 , 20 20 20 20 ,

21 21 21 21 , 20 20 20 20 ,

, , , , , ,

, , , , , ,

S p p S p S p j pre p p p p j pre

p p p p j pre p p p p j pre

h P T v z h P T v z

h P T v z h P T v z







 ,21 ,21 21 ,21 ,, ,S p S p p S p j prev v P T z

14) Common Header 1: [3]  

     

 
1 21 21 21 21 , 1 7 7 7 7 ,

1 1 1 1 ,

1 , , , , , ,

, , ,

p p p p j pre p p p p j pre

p p p p j pre

c h P T v z c h P T v z

h P T v z

   



7 21 7 1,p p p pP P P P 

 20 20 20 20 ,, ,p p p p j prev v P T z
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Mathematical Model of the Proposed Liquefaction Cycle (Case 23) (4) 

2. Equality constraints [133] 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 

1. Design variables(Operating Conditions) [153] 
  :  

   

,2 ,19 ,21 ,4 ,6 ,2 ,19 ,21 ,4 ,6

1 2 3 4 5 1 2 10 , ,

, , 1 ,..., 21 ,3 ,...,15 ,17 ,18 ,25 ,26 ,1 ,..., 4 ,

, , , , , , , , , ,

, , , , , , , , , _ , 1,2,3 , 1,2,3,4

i i i p p m m m m m m NG NG

S p S p S p S m S m S p S p S p S m S m

pre main j pre k main

P T v i

T T T T T v v v v v

w w w w w c c m m v f z j z k



 

2.2 Equality constraints of main cooling part [48] 
1) Compressor 4: [5] 

   5 5 5 5 , 4 6 6 6 6 ,, , , , , ,m m m m k main m m m m k mainh P T v z w h P T v z 

   5 5 5 5 , 6 6 ,6 ,6 ,, , , , , ,m m m m k main m m S m S m k mains P T v z s P T v z

 6 6 6 6 ,, ,m m m m k mainv v P T z

   
   

,6 6 ,6 ,6 , 5 5 5 5 ,

6 6 6 6 , 5 5 5 5 ,

, , , , , ,

, , , , , ,

S m m S m S m k main m m m m k main

m m m m k main m m m m k main

h P T v z h P T v z

h P T v z h P T v z







 ,6 ,6 6 ,6 ,, ,S m S m m S m k mainv v P T z

2) Condenser 2: [3] 

   1 1 1 1 1 2 2 2 2, , , ,h P T v q h P T v 

6 7m mP P

7 7 7 7 ,( , , )m m m m k mainv v T P z

The temperature of the outlet of the 
sea water cooler is usually given. 
T=305K 

3) Phase Separator 1: [7] 
 

 

    

10 10 10 10 ,

10 14 14 14 14 10 ,

10 11 11 11 11 10 ,

, , ,

_ , , , _

1 _ , , , 1 _

m m m m k main

m m m m k main

m m m m k main

h P T v z

v f h P T v v f z

v f h P T v v f z

  

    

10 11 10 14,m m m mP P P P 

10 11 11 14,m m m mT T T T 

    11 11 11 11 10 , 14 14 14 14 10 ,, , 1 _ , , , _m m m m k main m m m m k mainv v P T v f z v v P T v f z    

4) Evaporator 4: [10] 

11 12 14 15 26 3 3 4, , ,m m m m m m NG NGP P P P P P P P   

12 15 12 4,m m m NGT T T T 

    

 

12 12 12 12 10 , 15 15 15 15 10 ,

4 4 4 4 ,

, , 1 _ , , , _ ,

, ,

m m m m k main m m m m k main

NG NG NG NG l NG

v v T P v f z v v T P v f z

v v T P z

    



    

   

 

 

10 11 11 11 11 10 ,

10 14 14 14 14 10 , 26 26 26 26 ,

3 3 3 3 ,

10 12 12 12 12 1

1 _ , , , 1 _

_ , , , _ , , ,

, , ,

1 _ , , , 1 _

main m m m m k main

main m m m m k main main m m m m k main

NG NG NG NG NG l NG

main m m m m

v f m h P T v v f z

v f m h P T v v f z m h P T v z

m h P T v z

v f m h P T v v f

    

     

 

      

   

 

0 ,

10 15 15 15 15 10 , 3 3 3 3 ,

4 4 4 4 ,

_ , , , _ , , ,

, , ,

k main

main m m m m k main m m m m k main

NG NG NG NG NG l NG

z

v f m h P T v v f z h P T v z

m h P T v z



    

 
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2. Equality constraints [133] 

2.2 Equality constraints of main cooling part [48] 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 

Mathematical Model of the Proposed Liquefaction Cycle (Case 23) (5) 

1. Design variables(Operating Conditions) [153] 
  :  

   

,2 ,19 ,21 ,4 ,6 ,2 ,19 ,21 ,4 ,6

1 2 3 4 5 1 2 10 , ,

, , 1 ,..., 21 ,3 ,...,15 ,17 ,18 ,25 ,26 ,1 ,..., 4 ,

, , , , , , , , , ,

, , , , , , , , , _ , 1,2,3 , 1,2,3,4

i i i p p m m m m m m NG NG

S p S p S p S m S m S p S p S p S m S m

pre main j pre k main

P T v i

T T T T T v v v v v

w w w w w c c m m v f z j z k



 

3 4

, ,

1 1

1, 1j pre k main

j k

z z
 

  

6) Evaporator 5: [6] 

15 17 18 25,m m m mP P P P 

17m LNGT T

   17 17 17 17 10 , 25 25 25 25 10 ,, , _ , , , _m m m m k main m m m m k mainv v P T v f z v v P T v f z   

 

   

 

10 15 15 15 15 10 ,

10 18 18 18 18 10 , 4 4 4 4 ,

10 17 17 17 17 10 ,

10 25 25 25 25

_ , , , _

_ , , , _ , , ,

_ , , , _

_ , , ,

main m m m m k main

main m m m m k main NG NG NG NG NG l NG

main m m m m k main

main m m m m

v f m h P T v v f z

v f m h P T v v f z m h P T v z

v f m h P T v v f z

v f m h P T v

  

     

   

      10 , ,_ , , ,k main NG LNG LNG LNG LNG l NGv f z m h P T v z  

7) Common Header 3: [4]  
      

 

10 13 13 13 13 10 , 10 25 25 25 25 10 ,

26 26 26 26 ,

1 _ , , , 1 _ _ , , , _

, , ,

m m m m k main m m m m k main

m m m m k main

v f h P T v v f z v f h P T v v f z

h P T v z

      



13 25 13 26,m m m mP P P P 

 26 26 26 26 ,, ,m m m m k mainv v P T z

8) Expansion valve 5: [2] 
   17 17 17 17 10 , 18 18 18 18 10 ,, , , _ , , , _m m m m k main m m m m k mainh P T v v f z h P T v v f z  

 18 18 18 18 10 ,, , _m m m m k mainv v P T v f z 

5) Expansion valve 4: [2] 

     12 12 12 12 10 , 13 13 13 13 10 ,, , , 1 _ , , , 1 _m m m m k main m m m m k mainh P T v v f z h P T v v f z    

  13 13 13 13 10 ,, , 1 _m m m m k mainv v P T v f z  

 3 3 3 3 ,, ,m m m m k mainv v P T z

9) Compressor 5: [6] 

   3 3 3 3 , 5 4 4 4 4 ,, , , , , ,m m m m k main m m m m k mainh P T v z w h P T v z 

   3 3 3 3 , 4 4 ,4 ,4 ,, , , , , ,m m m m k main m m S m S m k mains P T v z s P T v z

 4 4 4 4 ,, ,m m m m k mainv v P T z

   
   

,4 4 ,4 ,4 , 3 3 3 3 ,

4 4 4 4 , 3 3 3 3 ,

, , , , , ,

, , , , , ,

S m m S m S m k main m m m m k main

m m m m k main m m m m k main

h P T v z h P T v z

h P T v z h P T v z







 ,4 ,4 4 ,4 ,, ,S m S m m S m k mainv v P T z

10) Intercooler 1: [3] 

   1 1 1 1 1 2 2 2 2, , , ,h P T v q h P T v 

4 5m mP P

5 5 5 5 ,( , , )m m m m k mainv v T P z

The temperature of the outlet of the 
sea water cooler is usually given. 
T=305K 
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Summary of the Mathematical Model of the Proposed Liquefaction Cycle (Case 23) 

2. Equality constraints [133] 

2.1 Equality constraints of precooling part [83] 

2.2 Equality constraints of main cooling part [48] 

T: Temperature / P: Pressure / v: Specific volume / zj,pre: mole fraction of 

the component j at the precooling part/ w: work input to the compressor 

per mass/ c: flow rate ratio between inlet and outlet 4 / mpre: mass flow rate 

at the precooling refrigerant 

*Subscript ’NG’: natural gas, Subscript ‘main’: main cooling refrigerant 

1. Design variables(Operating Conditions) [153] 
  :  

   

,2 ,19 ,21 ,4 ,6 ,2 ,19 ,21 ,4 ,6

1 2 3 4 5 1 2 10 , ,

, , 1 ,..., 21 ,3 ,...,15 ,17 ,18 ,25 ,26 ,1 ,..., 4 ,

, , , , , , , , , ,

, , , , , , , , , _ , 1,2,3 , 1,2,3,4

i i i p p m m m m m m NG NG

S p S p S p S m S m S p S p S p S m S m

pre main j pre k main

P T v i

T T T T T v v v v v

w w w w w c c m m v f z j z k



 

3. Objective Function: Minimize the compressors power 

1 2 3 4 5Minize  pre pre pre main mainm w m w m w m w m w        

 indeterminate systems 

 Optimization Problem! 

4. Free variables [20= 153 – 133] 
  : 

1 2 12 17 5 11 16 1 2 1, 2,

3 4 6 12 1, 2, 3,

, , , , , , , , , , , ,

, , , , , , ,

p p p p p p p pre pre pre

m m m m main main main main

P P P P T T T c c z z m

P P P T z z z m
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Comparison between the optimal result of the  
proposed Cycle and DMR Cycle 

Total required power consumption of   
the compressors2) : 11.976 kW 

[Configuration of the Dual Mixed Refrigerant Cycle1)] 

Reference: 1) Venkatarathnam, G., Cryogenic Mixed Refrigerant Processes, Springer, New York, 2008. 
               2) K. Y. Lee, J. H. Cha, J. C. Lee, M. I. Roh, and J. H. Hwang, Determination of the Optimal Operating Condition of Dual Mixed Refrigerant Cycle at the Pre-FEED stage of LNG FPSO Topside Liquefaction Process, ISOPE    

                         Conference, June 2011. 

Total required power consumption of   
the compressors and pumps : 11.359 kW 

[Result of the proposed iquefaction Cycle] 

 The result of the synthesis of the liquefaction cycle saves 5.2 % of the total required power consumption. 

- Precooling 3 stage compression refrigeration  
- Main cooling 2 stage compassion, 2 stage refrigeration 

- Precooling 2 stage compression refrigeration  
- Main cooling 1 stage compression, 2 stage refrigeration 

First Cycle 

Second Cycle 

Second Cycle 

•  After the optimal operating conditions for the two cycles are achieved, the 

power required by the compressors for the two cycles are compared. 

1) Given: NG T=26.85°C, P=65 bar,  

                  LNG T=-160.15°C, P=65 bar 

49.21 /NGm kg h  0.0004 MMTA

2) Refrigerant:  
- Mixed refrigerant 1 is composed of Ethane(C2H6), Propane(C3H8), n-Butane(C4H10) for 

precooling 
- Mixed refrigerant 2 is composed of Nitrogen(N2), Methane(C1H4), Ethane(C2H6), 

Propane(C3H8) for main cooling 

• Common condition 

“CASE 23” 
Proposed 
Liquefaction 
Cycle 

“CASE 13” 
DMR Cycle 

코스트, 컴팩트니스 등등 언급 

남국수정3 
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Naval Architecture & Ocean Engineering 

Chapter 0. Summary 
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Curves 

St. 19.75 

p0 p1 
p2 

p3 

p4 

p5 

p6 

p7 

p8 

p9 

p10 

p11 

p12 

p13 

p14 

Summary: 
Represent B-Spline Curve that is passing through given points 

Given: Find: 

- Point pi on the curve 

- Knot uj of the point on the curve 

- Tangent vectors t0, t1 of both ends 

- Cubic B-spline curve r(u) that is  

Passing through the  point pi on the curve 

and satisfying continuity condition C2 

- That is ,  find control points  di of B-spline: 

curve 

1

0

( )

( )

( ) ( )

( )

D

i

i

n

i

x u

u y u u

z u

N




 
 

 
 
  

dr

<Body Plan> 

Basis function 
Coefficient 

Linear 
Combination! 

To represent the Curve r(u), we have to find the coefficients, i.e.,  
the control points  di  
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Curves 

St. 19.75 

p0 p1 
p2 

p3 

p4 

p5 

p6 

p7 

p8 

p9 

p10 

p11 

p12 

p13 

p14 

Determine  
B-Spline control points(   ) 

1

0

tbb       
bb

t   

tbb         
bb

t   

3
,

)(3

3
,

)(3

6
1514

6

1415
1

2
01

2

01
0

















u-1 

u3 
u4 

u5 u
6 

u0 

u1 

Δ2 Δ3 Δ4 Δ
5 

u7 

u8 

u9 

Δ
6 

1p

2p

4p

u2 
 u10 

0d

1d

2d

3d
4d

5d

6d

7d

3p

0b

9b

15b

1b
14b

12b

6b

3b

0p 5p

1t

0t

: Given or Known values 

id

1

0

( )

( ) ( ) ( )

( )

D
n

i

i i

x u

u y u N u

z u





 
 

 
 
  

dr

<Body Plan> 

Given: Find: 

- Point pi on the curve 

- Knot uj of the point on the curve 

- Tangent vectors t0, t1 of both ends 

- Cubic B-spline curve r(u) that is  

Passing through the  point pi on the 

curve and satisfying continuity 

condition C2 

- That is ,  find control points  di of B-

spline: curve 
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Determine the control point di of B-spline 
curve by using tri-diagonal matrix solution 

7

6

5

4

3

2

1

0

66

444

333

222

111

22

5

1

4

3

2

1

0

0

10000000

33
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00000

000000
33
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d

d

d

d

d

d

d

d

 

p

t

p

p

p

p

t

p



















AXD 

D A X
Known Unknown Known 

DAX 1

1

0

( )

( ) ( ) ( )

( )

D
n

i

i i

x u

u y u N u

z u





 
 

 
 
  

dr

What is  ( )n

iN u

Given: Find: 

Point pi on the curve 

Knot uj of point on the curve 

Tangent vectors t0, t1 of Both ends 

Cubic B-spline curve r(u) whitch  

Passing through point pi on the curve 

and satisfying continuity condition C2 

(Control point of B-spline: di) 

Since Matrix A is Tri-diagonal matrix, Matrix A-1 is easy to obtain. 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

6 
 Computer Aided Ship Design, II-0. Summary, Fall 2011, Kyu Yeul Lee 

Basis function of B-spline curve 
: Cox-de Boor Recurrence Formula 
(B-spline function) 

 B-spline curve 

 

)()()( 1

1

1

11

1 uN
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uN
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uN n

i
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i
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i






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













 


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              else    0

  if    1
)(

10 ii

i

uuu
uN

3 3 3

0 1

3 3

0 1 2 32 3 4 4( ) ( ) ( ) ( ) ( ) N u N u N u N u N u    d d d d d

 Cox-de Boor Recurrence Formula (B-spline function) 

1

0

( )

( )

( ) ( )

( )

D

i

i

n

i

x u

u y u u

z u

N




 
 

 
 
  

dr

0d

1d

2d

3d

4d

u3  

= 1 

u4 

u5 

u6 

u7 

= 4 

u-1 

u0 

u1 

u2 

= 0 

)(ur

Given 

B-spline Control Point di 

Parameter u 

B-spline Basis Func. 

Find B-spline Curve r(u) 

)(uN n

i

What is ( )n

iN u

Basis function 
Coefficient 

Linear 
Combination! 

Example of Cubic B-spline curve 
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Naval Architecture & Ocean Engineering 

Chapter 1. Introduction 

1.1 Application of curves and surfaces to ship 
design  

1.2 Learning Objectives 
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1.1 Application of curves and surfaces to 
ship design 
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 The basic requirements of a ship 

1) Ship should float and be stable in sea water 

          Weight of the ship is equal to the buoyancy* in static equilibrium 

2) Ship should transport cargoes 

           The inner space should be large enough for the cargoes 

               

3) Ship should move fast to the destination  

    and be possible to control 

          shape : should be made to keep low resistance (ex. streamlined 
shape) 

           propulsion engine : diesel engine, helical propeller 

     Steering engine : Steering gear, Rudder 

4) Ship should be strong enough in all her life 

           steel plate (about 10~30mm) 

          and stiffeners welded structure 

 Basic Requirements of a ship  

10 ton 

10 ton 

=
 

Wood Ship stability 

Hull form design, 

Ship hydrodynamic, 

Propeller design, Ship 

maneuverability and 

control 

Ship structural mechanics 

/Structural design & analysis 

Ship compartment layout  

* Archimedes's Principle : the buoyancy of the floating body  is equal to the weigh of 

displaced fluid of the immersed portion of the volume of  the ship  

1.025 ton/m3 

about 0.5 ton/m3 

Density of steel 

= 7.85 ton/m3 
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EzCompart 

& 

EzStructure 

IntelliShip 

system 

AVEVA-M 

(TRIBON 

System) 

Ship Design Stage and used Ship CAD System 

Initial design Detailed design Production design 

Detailed model 

of a whole hull structure 

Initial model of a whole hull structure Detailed model of a whole hull structure 

The CAD model can be generated 

in the initial design stage. 

The CAD model is generated 

in the detailed design stage. 

Production model of a building block unit 

The CAD model is  generated  

in the production design stage 

Block division drawing 

Block division drawing 

Block division drawing 

Generation of the production 

material information 

Production model of 

a building block unit 

Production 

drawing 

* TRIBON system: CAD system (the exclusive use of shipbuilding), Product of TRIBON Solution Inc. in Sweden 

* IntelliShip: M-CAD systme(the exclusive use of shipbuilding), Intergraph Inc., Samsung Heavy Industries, Odense shipyard in denmark, Hitachi shipyard in Japan Cooperative development 
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Hull form design 

Stage of Basic design of a ship 

The model ship 

experiment 

CFD 

Resistance 

experiment 

result 

Ship compartment design Ship structure design 

Ship calculation result Stuctural analysis 

 result 

Intact /Damage  

Ship calculation Finite Element Method 

Computational 

 data type 

Shape data 

 

Computational 

 data type 

 

Shape data 

Computational 

 data type 

Shape data 

Lines G/A 

M/S 
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 Modeling Stage of Ship Basic Design 

Conceptual 

design 

Hull form 

modeling 

Ship 

compartment 

modeling 

Basic ship structure modeling 

Determination of 

main particulars 

Input 

basis hull form 

Variation of 

hull form 

Fairing of hull form 

Define 

Ship compartment  

선박 계산 수행 

선박 구획 모델을 

초기 선체 구조 모
델로 변환  

종방향 선체 구조 

시스템 모델링  

횡방향 선체 구조 

시스템 모델링  

  종방향 판 모델링 

  종방향 보강재 

 모델링 

  종방향 부재의 상세 

 모델링 
  횡방향 판 모델링 

  횡방향 보강재 

 모델링 

  횡방향 부재의 상세 

 모델링 * 종방향 선체 구조 시스템: 외판 시스템, 갑판 시스템, 거더 시스템, 스트링거 시스템, 종격벽 시스템 등 

* 횡방향 선체 구조 시스템: 횡격벽 시스템, 웨브 프레임 시스템 

Completion of 

hull form model 

구획 모델 완성 
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Ship Shape(‘Hull Form’) Design 

Section curve design 

Basis ship data 

Fairness 

Resistance 

experiment 

result 유한요소해석 

  Analysis Result 

CFD 

Hull form surface 

Hull form design Structure Design 

Curve network 

Dimensional variation 

Ship Structure 

 Design 

Generate 

Frame line 

The model ship 

experiment 
 Shape data 
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Needs of the hull surface modeling 

 Important production information such as joint length, painting area, 
weight and CG of the building blocks can be estimated in the initial 
design stage 

 

-  Estimation of the cost, duration of the ship building  
- Zig information for fixed round block 
 

Stiffners prevent deformation 
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 Intersection between  

   surfaces and plane 

 Validation of the fairness 

 Find : smooth hullform surfaces 

Detailed design 

/ Production design 

Quality Requirement of hull form surface 

 Requirements  

 In the form of Bicubic B-spline surface patches 

 Max. distance error between given curve network 

and generated surface < tolerance* 

 Smoothness: exact or close to G1** 

*     Acceptable tolerance in shipbuilding industry is about 3~5 mm 

**   G1 means geometric continuity or tangent plane continuity, IntelliShip requires exact G1 hullform surfaces 

5000~1000 mm 

Within 3~5 mm 

  Irregular topology 

 In the form of non-uniform  

   B-spline curves 

 Given : curve network 

 Initial hull 

form design 

Automatic 

generation 

of hull form 

surface 
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Hull Surface modeling by single patch approach  
and piecewise patch approach 

Method Single patch approach 곡면 조각을 이용하는 방법 

Advantage 

• Easy to represent the hull surface 

• Mathematically, 2nd derivatives are  continuous at 

all  points on the surfaces(C2) 

• 복잡한 자유곡면 형상을 표현하는 데 적합함 
 

• Knuckle curve 형상을 정확하게 표현가능 

Dis- 

advantage 

• A single patch approach cannot exactly represent a 

complex shape in the bow and stern parts  and also 

knuckle curve. 

• 부드러운 선박형상 곡면생성을 위해서 복잡한 접평면 연속 

조건식을 만족시켜야 함 

 

• 4각형이 아닌 영역을 처리하기 위해서는 특별한 방법이 필요 

 Single patch approach  Piecewise patch approach 
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 Demonstration 
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1.2 Learning Objectives 
1) Modeling of curve passing through  given points 

2) Modeling of surface passing through given points 
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Straight 

line section 

Straight 

line section 

Arc section 

St. 19.75 St. 15 

p0 p1 
p2 

p3 

p4 

p5 

p6 

p7 

p8 

p9 

p10 

p11 

p12 

p13 

p14 

p1 p2 

p3 

p4 

Curve section 

 Major curves for Hull Form representation – Section lines 

 
 Ship’s length is  devided in 20 sections called 

"stations", so section lines are usually called as 
"station lines" 

St. 19.75 

St. 1 
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 Major curves for Hull Form representation 
 – Generation of Waterlines(1) 

St.15 St.19 St.19.75 

Waterlines are generated by intersecting 

 the hull surface with horizontal plane  

at constant height, e.g., z=a  

z = a  

Intersection points at z = a 

 for generation of the waterline 

Z 

Y 
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Interpolate all Intersection points at z = a by using a NURB curve  

  Generation of waterline at z=a 

Intersection points at z =a 

section line(station) 

Repeat the above steps at different height  

Generate Waterline 
 

St.15 St.19 St.19.75 

z = a  

Z 

Y 

 Major curves for Hull Form representation 
 – Generation of Waterlines(2) 
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 Major curves for Hull Form representation 
 – Generation of Waterlines(3) 

- Chap1. Object of Study 
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Program implementation of generation of ship hull surface by using 
single B-spline surface patch 

- Chap4. Term Project 
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 Modeling of a yacht surface (1) 

•Example of a yacht surface generated by the Student during the lecture of “Planning Procedure of 

Naval Architecture and Ocean Engineering, second semester, 2005, Department of Naval 

Architecture and Ocean Engineering, SNU 

Determine the vertexes of tetragonal patch 
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Modeling of a yacht surface (1) 

  Modeling result of a yacht surface passing through the given data points that are 

located irregularly in  the longitudinal direction  
 

Hull surface data are not 

enough provided  

6x14 points 

- Chap4. Term Project 
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 Modeling of a yacht surface (2) 

Modeling result of a yacht surface passing through the given data points 

that are located nearly at same distance in  the longitudinal direction  

11x11 points 
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Modeling of the hull surface with a bulbous bow by 
using only one B-spline surface patch(1)  

BOW 
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Modeling of the hull surface with a bulbous bow by 
using only one B-spline surface patch(2)  

  

Distortion  

Reduced by 

providing dense 

hull surface data 
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Naval Architecture & Ocean Engineering 

Chapter 2. Bezier Curves 

2.1 Parametric Function/Curves 

2.2 Bezier Curves 

2.3 Degree Elevation / Reduction of Bezier 
Curves 

2.4 de Casteljau algorithm 

2.5 Bezier Curve Interpolation / Approximation 
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2.1 Parametric Function/Curves 
1) Explicit function / Implicit function / Parametric function 

2) Characteristics of parametric function 

3) Expression of general function by using parametric 
function 
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1) Explicit / Implicit / Parametric function 

 Explicit function 

 If the function is expressed by y=f(x), it is called 'Explicit 

function‘ 

 'y' can be obtained easily if x is give. 

 Implicit function 

 For multi variable function, e.g., two variables x ,y , the 

implicit function is expressed by f(x,y)=0 

 It is easy to check that the given point is inside or outside, 

left or right of the curve 

 Implicit function is not always possible to transform to the 

explicit form. 

 Parametric function 

 For multi variable function, e.g., two variables x ,y, the 

function can be expressed by x=f(t), y=g(t) using parameter  

't‘. We call it 'parametric function' 

 Every explicit function is possible to transform to a 

parametric form. 

22) xryex    

0) 222  ryxex   

trtytrtxex sin)(,cos)()      

x 

y 

t 

(rcost , rsint) 

x 

y 

r 

   

    0

000)

222

222





rrr

rex

       

  

22) xryex    
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2) Characteristics of parametric function(1) 

 General Function 
 y value of more than two can be obtained for an x 

value (multi-value function) 

 

 

 It icould be difficult to 

     express derivatives 

 

 Parametric function 
 a parameter value has only one result 

 

 

 It is easy to express derivatives 
Calculate dy/dx dividing each elements: dy/dt, dx/dt   

 

x 

y1 

y2 

222 ryx 

222 ryx 
22 xry 

trtytrtx sin)(,cos)( 

x 

y 

t 

(r cos t , r sin t) 

tr
dt

dy
tr

dt

dx
cos,sin     

x 

y 

x 

y 

r 

r 
rxdx

dy

,
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 Characteristics of parametric function(2) 

 Explicit function of y=f(x) 

 It is difficult to express as  

 explicit function* again after  

 original explicit function is modified 

 through rotation, move, etc 

 

 implicit function of f(x,y)=0 

 Points on the curve can not be calculated in order  

 Dimensional extension is difficult 

 

 Parametric function of x = f(t), y = g(t) 

 Points on the curve can be easily calculated in order by varying the parameters  

 Dimensional extension is easy. 

 The reason why parametric function is commonly used for CAD systems 

*dimensional extension 
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 Characteristics of parametric function(3) 

 A curve is defined by the parametric functions as follows: 

 

 

 

 

 If the curve is rotated with angle of 90, 

    geometry(‘topology’) is not changed, 

    only its position vector are changed.  











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



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
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



 
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
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3) Expression of general function 
        by using parametric function(1) 

1242 23  xxxyGiven:  

y

1y

x
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Expression of general function 
        by using parametric function(2) 

1242 23  xxxy


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• From this parametric 

function with coefficient 2, -4, 

2, 1, it is not at all obvious 

what the function might look 

like. 

• Alternatively, we can 

express  the function in 

another way as follows: 
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Expression of general function 
        by using parametric function(3) 

txtxttxttxt  3
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x

Linear 

Precision n

i
xb iix 0

Coefficient of constant: 

Coefficient of t : 
 

Coefficient of t2 : 

Coefficient of t3 : 

Gerald E. Farin, The Essentials of CAGD, 2000, p. 29. 

• Linear precision: If the control points b1 and b2 are evenly spaced on the straight line between b0 and b3, 

the cubic Bezier curve is the linear interpolant between b0 and b3. 
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 Expression of general function 
        by using parametric function(4) 
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 
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Coefficient of t3 : 
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 Expression of general function 
        by using parametric function(5) 


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 Expression of general function 
        by using parametric function(6) 

• If the parameter 't' is time, then r(t) can be regarded  as the moving trajectory of a 

rigid body  

• In explicit or implicit function, it is only possible to express the moving trajectory 

of a rigid body, whereas the parametric function can express the detail of the 

position r(t) in particular time 't' as well as the moving trajectory of a rigid body 
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4) “Blending"  the points in space and parametric 
functions 

 

Curves can be represented  by "blending"  the points in space and parametric 
functions 

If these points are moved, then the shape of the curve is changed.  

So, these points are called “control points” 
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2.2 Bezier Curves 
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1) Definition of cubic “Bezier” curves 

 Cubic Bezier curve is defined by 

 

  

 

 
 

 

 

 

 

   where,          : Bezier control points (bix, biy) or (bix, biy , biz) 

                        : cubic Bernstein polynomial  
                     or Bernstein basis function 

                           : Bezier curve parameter 
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2) Characteristics of  Bezier Curves (1) 
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Direction of 

tangent vector 
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Direction of 

tangent vector 

at end point 

Convex Hull 

 Bezier curves are represented in a convex hull which is composed of the outer 

control points 1) 

 

 The Direction of tangent vector at the start and end points can be obtained 

from the first two control points and the last two control points 

Bezier control point is 

a kind of lighthouse 
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1) Convex Hull Property: For all t, the curve r(t) is in the convex hull of the control polygon. 
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 Characteristics of  Bezier Curves (2)  

loop 

cusp 
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If the control  points are moved, then shape of the curve is changed.  



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

46 
 Computer Aided Ship Design, II-2. Bezier Curves, Fall 2011, Kyu Yeul Lee 

 3) Higher order Bezier Curves  

5th-degree Bezier curve 6th-degree Bezier curve 

7th-degree Bezier curve 7th-degree Bezier curve 
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 4) Derivatives of Cubic Bezier Curves (1) 

 First derivatives: Tangent vector of the curve 

                        : “Velocity of body at time = t” 

 

  

 

 

 

 

         

  where,                          : forward differences  
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 1st Derivatives of Cubic Bezier Curves(2) 

   The derivative of the cubic curve is quadratic  curve. 

 

 

 

  where,           : quadratic Bernstein basis function. 

 

 

 Most important tangent vectors at the curve is  
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 Higher order Bezier Curves (1) 

 

 A Bezier Curve of degree n can be defined by;   
 

 

 

  where,               : Bernstein Polynomial Function. 

 

 

 

 

 

 

 

 

 

 For cubic case, the Bezier curve is: 
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 Higher order Bezier Curves (2) 
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 Derivatives of Higher Order Bezier Curves (1) 

 For Cubic Case (n = 3), 
 

    
 

  For degree = n, 
  

 
 
where                  : forward difference.  

 
 Bezier Curve  differentiated by more than one by parameter ‘t’. 

 
 

  For the kth times derivative: 
   
   

].[3)( 2

22

2

11

2

00 BBBt bbbr 

]..........[)( 1

11

1

11

1

00





  n

nn

nn BBBnt bbbr

iii
bbb 

1

)].()......()([
)!(

!)(
1100 tBtBtB

kn

n

dt

td kn

knkn

kknkknk

k

k




 


 bbb
r



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

52 
 Computer Aided Ship Design, II-2. Bezier Curves, Fall 2011, Kyu Yeul Lee 

 Derivatives of Higher Order Bezier Curves (2) 

 where,      :forward operator. 

  we can get   

where,  
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 5) Matrix form of Bezier curves(1) 

 Cubic Bezier Curve 
 

  

  

 

 

 

 applying the dot product to above equation; 
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  Matrix form of Bezier curves(2) 

 The Matrix form of Bezier Curve is 
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  Matrix form of Bezier curves(3) 

 The Matrix form of Monomial Curve is 

Transformation  to the Bezier form: 
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6) Programming for Bezier Curve class 
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1) Bezier Curve is defined by  

• Degree 

• Control Point 

Member Variables of Bezier Curve Class 

int n: degree of Bezier Curve 

Vector* m_ControlPoint: Control Point 

int m_nControlPoint: the number of Control Point 

3) Bezier Curve construction 
•Construct the curve divided by line segment 

•After divide a parameter t(0~1) into n equal parts, 

find the points on the curve at the each point to 

be divided. 

•Visualize  the curve by connecting points with 

straight lines  

2) Calculation of Bernstein Polynomial 
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 Sample code for Bezier Curve class(1) 

numberifndef __BezierCurve_h__ 

numberdefine __BezierCurve_h__ 
  

numberinclude “vector.h” 
  

class BezierCurve { 

public: 

    int n;  // degree of Bezier Curve 

    Vector* m_ControlPoint;   int m_nControlPoint; 

    BezierCurve(); 

    ~BezierCurve(); 
  

    void SetDegree(int degree); 

    void SetControlPoint(Vector* pControlPoint, int nControlPoint); 

    Vector CalcPoint(double t);  

    double B (int i, double t);  // Bernstein Polynomial 

}; 

numberendif 

Member Variables 

int n: degree of Bezier Curve 

Vector* m_ControlPoint: Control Point 

int m_nControlPoint: the number of Control Point 
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 Sample code for Bezier Curve class(2) 

BezierCurve::BezierCurve () { 

   m_ControlPoint = 0;  n= 0; 

   m_nControlPoint = 0; 

} 

BezierCurve::~BezierCurve () { 

   if(m_ControlPoint) delete[] m_ControlPoint; 

} 

void BezierCurve::SetControlPoint(Vector* pControlPoint, int nControlPoint) { 

   SetDegree( nControlPoint-1 ); 

   if(m_ControlPoint) delete[] m_ControlPoint; 

   m_ControlPoint = new Vector[nControlPoint]; 

   for(int i=0; i < nControlPoint; i++) { 

      m_ControlPoint[i] = pControlPoint[i]; 

   } 

} 

void BezierCurve::SetDegree(int degree){ 

   n = degree; 

} 
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 Sample code for Bezier Curve class(3) 

Vector BezierCurve:: CalcPoint(double t) { 

     Vector PointOnCurve(0,0,0); 

     if ( t < 0.0 || t > 1.0 ) { 

         return PointOnCurve; 

     } 

     for(int i = 0; i < m_nControlPoint; i++){ 

         PointOnCurve = PointOnCurve + m_ControlPoint[i] * B(i,t);  

     } 

     return PointOnCurve; 

} 

 

double BezierCurve:: B (int i, double t) { 

    double result = 0; 

    // Calculate ith Berstein Polynomial at parameter t 

    result = comb(n, i) * pow(t, i) * pow(1.0 – t, n-i); 

    return result; 

} 
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2.3 Degree Elevation / Reduction of Bezier 
Curves 
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1) Degree Elevation (1) 

Objective  

 To connect curves with different degree, we have to 

change the degree of the curves to be same.   

Ex)    3rd-degree Bezier curve + 4th-degree Bezier curve 

      4th-degree Bezier curve + 4th-degree Bezier curve   
 

 Free curve design by using more control points 
( Number of Bezier control point = degree+1 ) 
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 Degree Elevation (2) 

2nd-degree Bézier curve->3rd-degree Bézier curve 
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Thus the original 2nd-degree Bézier curve may also be written  
as a 3rd-degree Bézier curve with new control points 

: New control point 
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 Degree Elevation (3) 
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 Degree Elevation (4) 

 Degree elevation of a degree n Bézier curve 
with control point         to n+1 degree nbb ,...,0
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 Degree Elevation (5) 
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 Degree Elevation (6) 
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 Repeated Degree Elevation 

Repeated degree elevation  
: a sequence of polygons approaching the curve 
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2) Degree Reduction 
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2.4 de Casteljau algorithm 
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1) de Casteljau algorithm & Bezier curves (1) 
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 de Casteljau algorithm & Bezier curves (2) 
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 Example of de Casteljau algorithm (3) 
- de Casteljau algorithm at t = 0.4 
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 Example of de Casteljau algorithm (1) 
- de Casteljau algorithm at t = 0.7 
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 Example of de Casteljau algorithm (2) 
- de Casteljau algorithm at t = 0.7 
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 Example of de Casteljau algorithm (3) 
- de Casteljau algorithm at t = 0.7 
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 Example of de Casteljau algorithm (4) 
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2) Sample code of de Casteljau algorithm (1) 

numberifndef __BezierCurve_h__ 

numberdefine __BezierCurve_h__ 
  

numberinclude “vector.h” 
  

class BezierCurve { 

public: 

    int m_nDegree; 

    Vector* m_ControlPoint;   int m_nControlPoint; 

    BezierCurve(); 

    ~BezierCurve(); 
  

    void SetDegree(int nDegree); 

    void SetControlPoint(Vector* pControlPoint, int nControlPoint); 

    Vector CalcPoint(double t);  

    Vector deCasteljau(double t);  // CalcPoint by de Casteljau algorithm 

    double B (int i, double t);   

}; 

numberendif 
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 Sample code of de Casteljau algorithm (2) 

Vector BezierCurve:: deCasteljau (double t) { 

     Vector* TmpControlPoint = new Vector [m_nControlPoint]; 

     for(int i = 0; i < m_nControlPoints; i++) TmpControlPoint[i] = m_ControlPoint[i]; 

 

     for(i = 1; i < m_nControlPoint; i++){ 

         for(int j = 0; j < m_nDegree – i; j++){ 

              TmpControlPoint[j] = (1-t)*TmpControlPoint[j]  + t*TmpControlPoint[j+1]; 

              //         bj
i                                                     bj

i-1                                                bj+1
i-1  

         } 

     } 

     Vector result = TmpControlPoint[0];  // b0
3 

     delete[] TmpControlPoint; 

    return result; 

} 
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3) Comparison between the de Casteljau algorithm & 
Bezier curves  

 de Casteljau algorithm: “Constructive Approach” 

      Input:       (Bezier control points) 

      Processor: Sequentially n-times ‘linear interpolation’ 

      Output : Point on the nth-degree Bezier curve 

                    
 Bezier curve : “Bernstein Function evaluation Approach”  

      Input:       (Bezier control points) 

      Processor: Curve  by "blending" the control  

                     points(bi) and Bernstein Basis functions 

        

 

ib

ib
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4)  Parameter Transformation 

 The affine map for the interval of              

 

 Change the interval of [a, b] to the interval of [0, 1] 

 

                               and   

 

 

     global parameter,      local parameter 

 the process of changing interval is called parameter 
transformation. 
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5)  Linear Interpolation  on [ a, b ] 
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6) Interval of the parameter u is given by [u0, u2]. For given four control points, 
construct the point on the curve at u=u1 by using de Casteljau Algorithm 
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Identical with 3rd  degree Bezier curves!!!  
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2.5  Bezier Curve Interpolation / 
Approximation 
1)  Introduction to Curve Interpolation 
2)  Cubic Bezier curve Interpolation 
3)  Bezier curve Interpolation beyond Cubics 
4)  Bezier curve Approximation 
5)  Finding the right parameters 
6)  Sample code of Bezier curve Interpolation 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

87 
 Computer Aided Ship Design, II-2. Bezier Curves, Fall 2011, Kyu Yeul Lee  Computer Aided Ship Design, II-2. Bezier Curves, Fall 2011, Kyu Yeul Lee 

Points on the Cubic Bezier Curve at Parameter t 

0

3

0

2

0

1

0

0

3

0 bbbbb
3223 7.0)7.01(7.03)7.01(7.03)7.01()7.0( 

0

3

0

2

0

1

0

0

3

0 bbbbb
3223 4.0)4.01(4.03)4.01(4.03)4.01()4.0( 

0

0

0

3

0

2

0

1

0

0

3

0 bbbbbb  3223 0.0)0.01(0.03)0.01(0.03)0.01()0.0(

00

3

0

2

0

1

0

0

3

0 bbbbbb 3

3223 0.1)0.11(0.13)0.11(0.13)0.11()0.0( 

Given 
0

3

0

2

0

1

0

0 ,,, bbbb

Find 

Points on the Bezier curve  

   at t = 0.0, 0.4, 0.7, 1.0  4.03

0b
 7.03

0b

 0.13

0b 0.03

0b

0

0b
0

3b

0

2b

0

1b

0 1 0.7 0.4 

0p

1p
2p

3p



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

88 
 Computer Aided Ship Design, II-2. Bezier Curves, Fall 2011, Kyu Yeul Lee  Computer Aided Ship Design, II-2. Bezier Curves, Fall 2011, Kyu Yeul Lee 

1) Curve Interpolation (1) 

 If we are given fitting points Pi  

and we wish to pass a curve 
through them, called “curve 
interpolation”. 

    

 

 We may choose 

among many kinds 

of curves; If we  

use a cubic Bezier 

curve as an 

interpolation curve.  

    “cubic Bezier 

curve interpolation” 
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 Set of parameter using chord length   
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 Every point on a Bezier curve 

has a parameter value t; in order 

to solve interpolation problem, 

we have to assign a parameter 

value ti to every point Pi .    
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 2)  Cubic  Bezier curve interpolation (1) 

 The cubic Bezier curve of the form: 

 

 

 

 All interpolation conditions are: 
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  Cubic  Bezier curve interpolation (2) 

 To find the solution of these four equations for four unknowns, 
we can write in matrix form: 

 

 

 

 

 

 

 

 

 To abbreviate the above form as:  

 The solution is: 

 Although it looks like the solution to one linear system but it is 
the two or three systems depending on the dimensionality of 
the     . 
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  Cubic  Bezier curve interpolation (3) 

 Cubic Bezier interpolation. 
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 3) Bezier curve interpolation beyond Cubics (1) 

 Polynomial interpolation can also works for more than four data 
points.  
 

 Given:   points                and  
             corresponding parameter values 
 

 If we choose a Bezier curve of degree n for interpolation, 
we have “m+1 vector equations” for “n+1 unknown vectors”.  

 

 n > m : underdetermined system,   
           We need additional conditions to solve the interpolation 
problem 
 

 n = m : determinate linear system    “Interpolation problem” 
 

 n < m : overdetermined system        “Approximation problem” 
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 Bezier curve interpolation beyond Cubics (2) 

 Given:   points                and  

             corresponding parameter values 
 

 If we use a Bezier curve of degree n (=m),  

we have a linear system: 
 

      is an                           matrix with elements; 

 

 

 It can be solved with any linear solver. 

 Polynomial interpolation does not provide satisfied result for 

higher degrees. Figure in the next slide should be convincing 

enough.  
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 Bezier curve interpolation beyond Cubics (3) 

Top: Data from a circle;  Bottom: one point is slightly modified. 

 The processes of a small change in data can lead large change in the 

interpolating curve is called ill-conditioned. 

 Different polynomial forms will give the identical result. 

Before After 

slightly move to the left 
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 4)  Bezier curve approximation (1) 

 One is given more data points than should be interpolated  

by a polynomial curve (i.e. number of data points more than 

degree of  curve) 
 

       We can solve the problem  

      by interpolating with a higher degree Bezier curve,  

      but higher degree interpolation becomes ill-conditioned. 
 

 In such cases, an approximating curve will be needed,  

which does not pass through the data points exactly;  

rather it passes near them. 

 the best technique to find such curves 

‘least squares approximation’. 
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   Bezier curve approximation (2) 

 Given:   points                and  

             corresponding parameter values 

 

We wish to find a polynomial curve r(t) of a given degree n 

(< m) such that 

 

 
 

 Polynomial curve is of the Bezier form: 
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   Bezier curve approximation (3) 

We would like the following to hold: 
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   Bezier curve approximation (4) 

Multiply both sides by : 

 

 

     where                   is a square and symmetric matrix,  

                             which is always invertible. 
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TT   Normal equation 

 The curve B minimizes the sum of the  

 

 

       note that any modification of the ti would result  

                  in an entirely different solution. 
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    Bezier curve approximation (5) 

Least square approximation to a wing.  
A quintic Bezier curve with chord length 
 parameters assigned to the data. 
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 5) chord length parameter 

 In both interpolation & approximation curve, 
in practice, the  parameter value  ti  are not normally given, 
and have to be made up.  

 

 There are two types to be made up: 
 

    (1) Uniform sets of parameters; 

 If there are  ( m + 1 ) points  pi ,  
 then set ti = i/l. 

 

    (2) chord length parameters; 

 if the distance between two points is  
relatively large, then their parameter  
values should also be fairly different. 
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 If desired (it makes no difference to the interpolation or 
approximation result), the parameters may be normalized by 
scaling the parameters to live between zero and one: 

 

 

 

 

 In general, chord length parameterization method is superior 
to the uniform method, because it takes into account the 
geometry of the data. 
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 6)  Sample code of Interpolation/Approximation (1) 

 

numberinclude “vector.h” 
  

class BezierCurve { 

public: 

    int m_nDegree; 

    Vector* m_ControlPoint;   int m_nControlPoint; 

    …… 
  

    void SetDegree(int nDegree); 

    void SetControlPoint(Vector* pControlPoint, int nControlPoint); 

    Vector CalcPoint(double t);  

    double B (int i, double t);   

    int Approximation(int nDegree, int nType, Vector* FittingPoint, int nPoint); 

    int Interpolation(int nType, Vector* FittingPoint, int nPoint); 

    void Parameterization(int nType, Vector* FittingPoint, int nPoint, double* t); 

}; 
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  Sample code of Interpolation/Approximation (2) 

void BezierCurve:: Parameterization (int nType, Vector* FittingPoint, int nPoint, double* t){ 

     // assume t is allocated out of function 

     if( nType == 1) {   // Uniform Set 

         for (int i = 0; i < nPoint; i++)  

                                t[i] = 1./(nPoint-1); 

     } else if ( nType == 2) { // Chord length 

         t[0] = 0.; 

         for (int i=0; i < nPoint-1; i++) 

              t[i+1] = t[i] + (FittingPoint[i+1] – FittingPoint[i]).Magnitude(); 

         double t0 = t[0], tm = t[nPoint-1]; 

         for (int i=0; i < nPoint; i++) 

              t[i] = (t[i] -  t0)/(tm – t0);      // Normalize 

     } 

} 
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   Sample code of Interpolation/Approximation (3) 

int BezierCurve:: Approximation(int nDegree, int nType, Vector* FittingPoint, int nPoint){ 

    m_nDegree = nDegree; 

    m_nControlPoint = m_nDegree+1; 

    if(m_ControlPoint) = delete[] m_ControlPoint; 

    m_ControlPoint = new Vector[m_nControlPoint]; 

     

    double* t = new double[nPoint]; 

    Parameterization(nType, FittingPoint, nPoint, t);  

 

    // Solve normal equation 

    …. 

   delete[] t; 

} 
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  Sample code of Interpolation/Approximation (4) 

int BezierCurve:: Interpolation(int nType, Vector* FittingPoint, int nPoint){ 

    … 

 

    double** M = new double*[nNumOfPoint]; 

    for (i=0; i<nNumOfPoint; i++) M[i] = new double[nNumOfPoint]; 

     

    for (i=0; i<nNumOfPoint; i++)    { 

        for (j=0; j<nNumOfPoint; j++)    { 

            M[i][j] = B(j, t[i]); 

        } 

    } 

 

    // Solve MB = P 

    GaussElimination(nNumOfPoint, M, p_x, b_x); 

    GaussElimination(nNumOfPoint, M, p_y, b_y); 

    GaussElimination(nNumOfPoint, M, p_z, b_z);  

    …. 

 

} 
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Naval Architecture & Ocean Engineering 

Chapter 3. B[asis]-spline Curves 

3.1 Introduction to B-spline Curves 

3.2 B-spline Basis Function 

3.3 C1 and C2 Continuity Condition 

3.4 B-spline Curve Interpolation 

3.5 de Boor Algorithm 
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3.1 Introduction to B-spline Curves 
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 1) ‘Smooth’ connection of separate curve segments 
at knots : Spline curve 

• Curve is "smoothly" connected with curve segments : spline curve 

• Curve segments are tied by knots : knot  

Knot = {…, 0, 1, 4, 7, …} 

curve segment 

u=0 

u=1 

curve segment 

u=1 
u=4 

curve segment 

u=4 

u=7 
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 Point on the Bezier curve-> connected two Bezier curves  
at the ‘knot’  
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In contrast with dividing into two 

Bezier curves, we can imagine as if two 

Bezier curves r0(t) and  r1(t) were 

connected at u=u1.  Here, u1 is called  

'knot', that means  the knot  ties the 

curves .  

At u=u1 , the curves obviously satisfy  

C0, C1, C2 continuity conditions   at 

least, because the curve r(u) was  

originally one curve. 
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 Point on the Bezier curve-> connected two Bezier curves  
at the ‘knot’  
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In contrast with dividing into two 

Bezier curves, we can imagine as if two 

Bezier curves r0(t) and  r1(t) were 

connected at u=u1.  Here, u1 is called  

'knot', that means  the knot  ties the 

curves .  

At u=u1 , the curves obviously satisfy  

C0, C1, C2 continuity conditions   at 

least, because the curve r(u) was  

originally one curve. 
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 2) Definition of B-spline curves  
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Ex)  Cubic B-spline Curve 

Given: b0, b1, b2, b3, t 

Find: points on the curve at parameter t 

Ex)  Cubic Bezier Curve 
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Given: d0, d1, d2, d3, u 

Find: points on the curve at parameter u 

Bernstein Polynomial Function B-spline Basis Function 

(Cox-de Boor Recursive Formula) 

What happens if one more control point is included? 

𝒕𝟎 = 𝟎 𝒕𝟏 = 𝟏 
𝒕 

𝒖𝟎 𝒖𝟏 
𝒖 

Single curve segment Single curve segment 
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 Property of Bezier curves and B-spline curves in  
increasing(changing) the number of the control points  

0b

1b 2b

3b

4b

Bezier Curve of 4th degree 

Find: points on the curve at parameter t 

Given: b0, b1, b2, b3, b4, t 
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For the Bezier curve, if the number of 

the control points increases, the 

degree of the Bezier curve will also 

increase. 

0d

1d 2d
4d

3d

Cubic B-spline Curve 
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Given: d0, d1, d2, d3, d4, u 

Find: points on the curve at parameter u 

For the B-spline curve, if the number of 

the control points increases,  

the degree of the curve does not change 

but  additional one  Bezier curve of 3rd 

degree is  generated.  

𝒕𝟎 = 𝟎 𝒕𝟏 = 𝟏 
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Single curve segment 

𝒖𝟎 𝒖𝟐 
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Curve segment #1 
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Properties of Bezier curves and B-spline curves  
with same control points 

Bezier Curve of 4th degree 

Find: points on the curve at parameter t 

Given: b0, b1, b2, b3, b4, t 
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Cubic B-spline Curve 
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Given: d0, d1, d2, d3, d4, u 

Find: points on the curve at parameter u 
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 3) Geometric meanings of B-spline curve  

 Ex) ‘Cubic’ B-spline curve is composed of  several  ‘cubic’ Bezier 
curves, which are connected with the C2 continuity condition 
(condition of  continuous 2nd derivative)  
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C1 continuity condition 

1

0
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C2 continuity condition 
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 n: degree 

 S: number of Bezier curve 
segments 

 number of knot = (S-1) + 
2(n+1) 

 number of control points 
    = (n+1) + (S-1) 
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 Degree :3 

 number of Bezier curve 
segments :5 

 number of knot = (5-1) + 
2(3+1) 

 number of control points 
    = 4 + (5-1)  

01 u 17 u
3u

1u
0u

2u
9u
8u

10u

4u 5u 6u

2d

0d

1d

4d
3d

5d

6d

7d

)()()()(

)()()()()(

3

77

3

66

3

55

3

44

3

33

3

22

3

11

3

00

uNuNuNuN

uNuNuNuNu

dddd

 ddddr





Given 

B-spline Control Point di 

Parameter u 

B-spline Basis Func. 

Find B-spline Curve r(u) 

)(uN n

i

Example of cubic  B-spline curve with eight control points  



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

121 
 Computer Aided Ship Design, II-3. B[asis]-spline Curves, Fall 2011, Kyu Yeul Lee 

3.2 B-spline Basis Function 
        (Cox-de Boor recurrence formula) 
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1)  Cox-de Boor Recurrence Formula 
(B-spline function) (1) 

 Example: Cubic B-spline curve 
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 Cubic B-spline curves 
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Computer Implementation of B-spline Curve 
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3.4  Programming for B-spline Curve class 
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1) Definition of B-spline Curve 

• Degree 

• Control Point 

Member Variables of B-spline Curve Class 

int n: degree of B-spline Curve 

Vector* m_ControlPoint: Control Point 

int m_nControlPoint: the number of Control Point 

3) B-spline curve construction 
•Divide the parameter u(umin~umax) into n equal 

parts 

•Find the points on the curve at the each divided 

parameter 

•Represent curve by connecting points with 

straight lines  

2) Calculation of B-spline Basis Function  
    (Cox-de Boor Recurrence Formula) 

Cubic B-spline 예시 
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  Sample code of Cubic B-spline Curve (1) 

  

#include "vector.h“ 
  

class CubicBsplineCurve { 

public: 

    Vector* m_ControlPoint;   int m_nControlPoint; 

    double* m_Knot; int m_nKnot; 

    int m_nDegree; 
 

    CubicBsplineCurve(); 

    ~CubicBsplineCurve(); 
  

    void SetControlPoint(Vector* pControlPoint, int nControlPoint); 

    void SetKnot(double* pKnot, int nKnot); 

    Vector CalcPoint(double u);  

    double N(int d, int i, double u);  // B-spline basis function 

}; 

Member Variables of B-spline Curve Class 

int m_nDegree : degree of B-spline Curve 

Vector* m_ControlPoint: Control Point 

int m_nControlPoint: the number of Control Point 
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  Sample code of Cubic B-spline Curve (2) 

CubicBsplineCurve::CubicBsplineCurve () { 

   m_ControlPoint = 0;        m_Knot = 0; 

   m_nControlPoint = 0;       m_nKnot = 0;       int m_nDegree =3; 

} 

CubicBsplineCurve::~CubicBsplineCurve () { 

   if(m_ControlPoint)  delete[] m_ControlPoint; 

   if(m_Knot)  delete[] m_Knot; 

} 

void CubicBsplineCurve::SetControlPoint(Vector* pControlPoint, int nControlPoint) { 

   m_ControlPoint = new Vector[nControlPoint]; 

   for(int i=0; i < nControlPoint; i++) { 

      m_ControlPoint[i] = pControlPoint[i]; 

   } 

} 

void CubicBsplineCurve::SetKnot(double* pKnot, int nKnot){ 

   m_Knot = new double[nKnot];  

   for(int i=0; i < nKnot; i++) { 

     m_Knot[i] = pKnot[i]; 

   }  

} 
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  Sample code of Cubic B-spline Curve (3) 

Vector CubicBsplineCurve::CalcPoint(double u) 

{ 

     Vector PointOnCurve(0,0,0); 

     if ( t < m_Knot[0] || t > m_Knot[m_nKnot-1] ) { 

           return PointOnCurve; 

     } 

     for(int i = 0; i < m_nControlPoint; i++){ 

           PointOnCurve  =  PointOnCurve  +  m_ControlPoint[i] * N(m_nDegree, i, u);  

     } 

     return PointOnCurve; 

} 

 

 
Calculate points on the curve at parameter u 
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  Sample code of Cubic B-spline Curve (4) 

double CubicBsplineCurve:: N(int d, int i, double u) { 

     // Find Span k 

     // U i-1 <= U < U i   k = i 

 

     if( d == 0 ) { 

           // return 0 or 1; 

     } else { 

           // return Cox de-Boor recurrence formula 

     } 

} 
 

Calculation of  B-spline Basis Function 
    (Cox-de Boor Recurrence Formula) 
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3.3 C1 and C2 Continuity Condition 
1)  1st Derivatives of Cubic Bezier Curves  
             at Junction point 
2)  C1 continuity condition of composite curves  
3)  2nd Derivatives of Cubic Bezier Curves 
4)  C2 continuity condition of composite curves 
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1) 1st Derivatives of Cubic Bezier Curves at Junction point 
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2)  C1 continuity condition of composite curves  
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r(u = u1)= r0(t = 1) = r1(t = 0) .     C1 condition must satisfy on connecting point  
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Suppose the parameter u is time, then, 1st derivative is velocity of the point which passing through the curve. 
If 1st derivative of the curve is continuous on the connecting point b3, , then the velocity  must be continuous. 
Accordingly, if the time interval is changed from △0 to △1. the distance must be changed proportionally , because the  
velocity is continuous on the connecting point. 
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  3) 2nd Derivatives of Cubic Bezier Curves 
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4)  C2 continuity condition of composite curves 
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3.4 B-spline Curve Interpolation 
1)  Determine the number of curve segments & knots values 
2)  Problem definition of B-spline curve interpolation 
3)  Determine Bezier end control points  by end tangent vectors 
4)  Determine Bezier control points satisfying C1 continuity condition 
5)  Determine B-spline control points  satisfying C2 continuity condition 
6)  Calculate B-spline control points by using tri-diagonal matrix solution 
7)  Bessel end condition 
8)  Sample code of cubic B-spline curve interpolation 
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Example of B-spline Interpolation 
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1) Determine the number of Bezier curve segments & knot values 

 Given: fitting points Pi  and corresponding parameter ti  

 

1. Determine the number of Bezier curve segment to be 
(number of fitting point -1) 
 
2. We can determine knots to be same as the parameters ti 

 

3. How can we determine the B-spline control points ?   

4P
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1P

00 t

3.01 t
85.04 t

2P

5.02 t

3P

7.03 t
5P

0.15 t 3: degree 

 5: number of Bezier curve 

segments 

 number of control points 

    = 4 + (5-1) = 8 

01 u 17 u3.03 u

1u
0u

2u
9u
8u

10u

5.04 u 7.05 u 85.06 u

Given: 

Find: 
B-spline control point  

di 

 

- Points pi on the curve 
 

- Knots uj  of the given 

points on the curve 
 

- Tangent vectors t0, t1 at 

both ends 

Cubic B-spline curve r(u) 

 passing through 

 the points pi on the curve 

and satisfying C2 continuity 

Condition: 
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2)  Problem Statement of cubic B-spline curve interpolation 

 3: degree 

 5: number of Bezier curve 
segments 

 number of knot = (5-1) + 
2(3+1) 

 number of control points 
    = 4 + (5-1) = (3+1) + (5-1) 
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u5 u6 

Δ3 Δ4 Δ5 
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u 

Assumption of basis function:  

Each curve segment is 3rd –degree Bezier curve 

Constraints :  

satisfying C0, C1 ,C2  continuity conditions at knots 

Given: 

Find: 
B-spline control point  

di 

 

- Points pi on the curve 
 

- Knots uj  of the given 

points on the curve 
 

- Tangent vectors t0, t1 at 

both ends 

Cubic B-spline curve r(u) 

 passing through 

 the points pi on the curve 

and satisfying C2 continuity 

Condition: 
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3) Determine Bezier end 
control points by using end tangent vectors 
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4)  Determine Bezier control points  
    satisfying  C0, C1 continuity conditions 
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5)  Determine B-spline control points  
     satisfying  C2 continuity condition  
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6) Calculate B-spline control points(di)  
     by using Tri-diagonal matrix solution 
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Because Matrix A is tri-diagonal matrix, inverse matrix A-1 is easy to obtain. 
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A tridiagonal matrix has nonzero elements only in the main diagonal, the first 

diagonal below the main diagonal, and the first diagonal above the main 

diagonal.  Tri + Diagonal 

Tridiagonal matrix 
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yUx 
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② 

③ 

  ? 
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  ! 

 ! ? 

Determine x  for known  A and d 

A is decomposed into 

multiplication of L and U 

Substitute y for Ux 

A is decomposed into multiplication of L and U ① 

Solve the equation Ly = d for y ② 

Solve the equation Ux = y for x, which is  the solution of the equation of  Ax=d  ③ 

Diagonal 
elements 
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7) Bessel End Condition  

 If the tangent vectors ts, te at both end points are not given, 

(1) Construct  2nd-degree curve(quadratic curve) from three consecutive points at 

both ends of the curve.   

(2) And assume that the tangent vectors at each end point are the same with the 

value of the first derivatives of the constructed quadratic curves at each end point. 
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Determination of ts, te using  Lagrange polynomial 
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Determination of ts, te using  Lagrange polynomial 
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8)  Sample code of Cubic B-spline Curve (1) 

numberifndef __CubicBspline_h__ 

numberdefine __CubicBspline_h__ 
  

numberinclude "vector.h“ 
  

class CubicBsplineCurve { 

public: 

    Vector* m_ControlPoint;   int m_nControlPoint; 

    double* m_Knot; int m_nKnot;  int m_nDegree; 
 

    ……… 
  

    void SetControlPoint(Vector* pControlPoint, int nControlPoint); 

    void SetKnot(double* pKnot, int nKnot); 

    Vector CalcPoint(double u);     

    double N(int d, int i, double u);     

    void Interpolate(Vector *pFittingPoint, int nFittingPoint); 

    void Parameterization(int nType, Vector* FittingPoint, int nPoint, double* t); 

}; 

numberendif 
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 Sample code of Cubic B-spline Curve (2) 

void CubicBsplineCurve::Interpolate(Vector *pFittingPoint, int nFittingPoint) 

{ 

   // Generate Knot 

      if(m_Knot) delete[] m_Knot; 

      m_nKnot = (m_nFittingPoint - 2) + 2*(3+1); 

      m_Knot = new double [m_nKnot];  

      // Use Chord length or Centripetal method 

      …… 

 

//----------------------------------------      

// Generate Matrix : (L+1) * (L+1) 

    int L = m_nFittingPoint + 1; // (L+1)*(L+1) size Matrix 

 

   // Fill rhs 

      Vector* rhs = new Vector[L+1]; 

      for(i = 1; i <= L-1 ; i++) rhs[i] = pFittingPoint[i-1]; 

   

   // Bessel End condition 

      rhs[0] = rhs[1]; rhs[L] = rhs[L-1]; 

      rhs[1] = StartTangentByBesselEndCondition;   rhs[L-1] = EndTangentByBesselEndCondition; 
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 Sample code of Cubic B-spline Curve (3) 

void CubicBsplineCurve::Interpolate(Vector *pFittingPoint, int nFittingPoint) 

{ 

   // Generate Knot 

      if(m_Knot) delete[] m_Knot; 

      m_nKnot = (m_nFittingPoint - 2) + 2*(3+1); 

      m_Knot = new double [m_nKnot];  

      // Use Chord length or Centripetal method 

      …… 

 

//----------------------------------------      

// Generate Matrix : (L+1) * (L+1) 

    int L = m_nFittingPoint + 1; // (L+1)*(L+1) size Matrix 

 

   // Fill rhs 

      Vector* rhs = new Vector[L+1]; 

      for(i = 1; i <= L-1 ; i++) rhs[i] = pFittingPoint[i-1]; 

   

   // Bessel End condition 

      rhs[0] = rhs[1]; rhs[L] = rhs[L-1]; 

      rhs[1] = StartTangentByBesselEndCondition;   rhs[L-1] = EndTangentByBesselEndCondition; 
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 Sample code of Cubic B-spline Curve (4) 

      double* alpha = new double[L+1]; 

      double* beta = new double[L+1]; 

      double* gamma = new double[L+1]; 

      double* up = new double[L+1]; 

      double* low = new double[L+1]; 

      if(m_ControlPoint) delete[] m_ControlPoint; 

      m_nControlPoint = L+1; 

      m_ControlPoint = new Vector[m_nControlPoint]; 

   // Fill alpha, beta, gamma 

      …… 

   // Solve LU system 

      l_u_system(alpha, beta, gamma, L, up, low); 

      solve_system(up, low, gamma, L, rhs, m_ControlPoint);   

 

//------------------------------- 

// Release memory 

   delete[] rhs;    delete[] alpha;   delete[] beta;   delete[] gamma;   delete[] up;   delete[] low; 

} 

Calculate inverse matrix by using LU decomposition 
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3.5 de Boor Algorithm 
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 1) de Boor Algorithm  
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 The ratio of the linear interpolation used in the de Casteljau algorithm is constant. 

 In contrast, the ratio of the linear interpolation used in the de Boor algorithm is 

not constant, since the intervals of the parameters of the Bezier curve segments, 

which B-spline curve is composed of, are different from each other. 
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2) Relationship between de Boor algorithm &  
             B-spline curves 
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 de Boor Algorithm : “Constructive Approach” 

 

      Input: di (de Boor Points) 

      Processor: Sequentially n-times ‘linear interpolation’ at di by section  

      Output : Point on nth-degree curve  
                Expressed ‘B-spline function’ 

                                     (Cox-de Boor recurrence formula) 
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3) Geometrical Meaning of the de Boor Algorithm(1)  
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 Linear Interpolation 비율이 t:(1-t)로 일정했던 de Casteljau algorithm에 

비하여 de Boor algorithm에서는 Linear Interpolation 비율이 변한다 

 이는 B-spline curve 를 구성하는 Bezier curve segment의 매개변수 간격이 

서로 다르기 때문이다 
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Geometrical Meaning of the de Boor Algorithm(2)  
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Geometrical Meaning of the de Boor Algorithm(3)  
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Geometrical Meaning of the de Boor Algorithm(3)  
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4) Relationship between  
   de Boor algorithm & B-spline curves 
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 de Boor 알고리즘 : “Constructive Approach” 

 

      Input: di (de Boor Points) 

      Processor: 구간별로 di를 n번 순차적 ‘linear interpolation’ 

      Output :  n차 곡선상의 점   
                 ‘B-spline function’(Cox-de Boor recurrence formula) 
                    형태로 표현 됨 
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 de Boor 알고리즘 : “Constructive Approach” 

        Input: di (de Boor Points) 

        Processor: 구간별로 di를 n번 순차적 ‘linear interpolation’ 

        Output :  n차 곡선상의 점   
                  ‘B-spline function’(Cox-de Boor recurrence formula)  
                     형태로 표현 됨 

  

 B-spline 곡선식: “B-spline function evaluation  Approach”  

        Input: di (de Boor Points) 

        Processor: 공간 상의 점 di와  B-spline function을 “blending”하여  

                      함수 값을 계산하면 곡선상의 점을 구할 수 있음  

        Output: B-spline function과 di의 혼합 함수 형태로 표현 
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Relationship between de Boor algorithm &  
            B-spline curves   

 de Boor Algorithm : “Constructive Approach” 

        Input: di (de Boor Points) 

        Processor: Sequentially n-times ‘linear interpolation’ at di by section 

        Output : Point on nth-degree curve   
                   Expressed  ‘B-spline function’ 

      (Cox-de Boor recurrence formula)  

  

 B-spline curve equation: “B-spline function evaluation  Approach”  

        Input: di (de Boor Points) 

        Processor: Can be represented points on curve to "blending"  

                       points(di) in space and B-spline function 

        Output: Expressed mixture function of Bernstein basis function   

                   (polynomial) and di 
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de Boor Algorithm & 
Cox-de Boor Algorithm  
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Bezier Curve and B-Spline Curve 

항목 Bezier Curve B-Spline Curve 

Make 

Curve 

Given 

Bezier Control Point bi 

Parameter t 

Bernstein Polynomial Func. 

B-Spline Control Point di 

Parameter u 

B-Spline Basis Func.  

Find 
Bezier Curve r(t) B-Spline Curve r(u) 

- 

Bernstein Polynomial Function B-Spline Basis Function 

(Cox-de boor Recursive Formula) 

Constructive 

Approach 

de Casteljau Algorithm de Boor Algorithm 

Inter- 

polation 

Given Points on Curve: p1, p2, … , pn Points on Curve: p1, p2, … , pn 

Find Bezier Control Point bi B-Spline Control Point di 
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Supplementary slide:  
1) Determine the number of Bezier curve segments & knot values 

 Given: fitting points Pi  and corresponding parameter ti 

             where,                    and  

 
 First, determine number of Bezier curve segment and 

    its knots 

mi ,...,1,0 ,1,00  mtt    

4P

0P

1P

00 t

3.01 t
85.04 t

2P

5.02 t

3P

7.03 t
5P

0.15 t

 3: degree 

 2: number of Bezier curve 

segments 

 number of control points 

    = 4 + (2-1) = 5 

Given: 

Find: 

- Points pi on the curve 
 

- Knots uj  of the given 

points on the curve 
 

- Tangent vectors t0, t1 at 

both ends 

Cubic B-spline curve r(u) 

 passing through 

 the points pi on the curve 

and satisfying C2 continuity 

Condition: 

(Control point of B-spline: di) 
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 Given: fitting points Pi  and corresponding parameter ti 

             where,                    and  

 
 First, determine number of Bezier curve segment and its knots 

mi ,...,1,0 ,1,00  mtt    

4P

0P

1P

00 t

3.01 t
85.04 t

2P

5.02 t

3P

7.03 t
5P

0.15 t

 3: degree 

 3: number of Bezier curve 

segments 

 number of control points 

    = 4 + (3-1) = 6 

 How do we determine Knots? 

(= start / end points of each 

    cubic Bezier curve) 
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Naval Architecture & Ocean Engineering 

Chapter 4. Surfaces 

4.1 Parametric Surfaces 

4.2 Bezier Surfaces 

4.3 B-spline Surfaces 

4.4 B-spline Surface Interpolation 
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4.1 Parametric Surfaces 
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4.1 Parametric Surfaces  

Surface 

Explicit 

function 

Implicit 

function 

Para-

meter 

222 yxdz 

2222 dzyx 







sin

cossin

coscos

dz

dy

dx







)),(),,(),,((  zyxrr

Sphere can be represented  by three 
parameters ( , , )d  
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4.2 Bezier Surfaces 
1) Generation of Bezier surfaces by de Casteljau algorithm 
  - Bilinear Bezier Surface  Patch 
  - Biquadratic Bezier Surface  Patch 
  - BiCubic Bezier Surface Patch 
2) Generation of Bezier surfaces by tensor product approach 
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1)  Bilinear Bezier Surface Patch 
- Given: 2x2 Bezier control points 
- Find: Points on the bilinear Bezier Surface Patch 
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u
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u
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v
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u

P 

u)1( u 10b 11bu
q 

v)1( v ),( vur 
u

P u
q

v

)1( v),( vur 
u)1( u 10b

11b

)1( u u00b 01b)1( v

v
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


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

11
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





 

u

u)1(
 vv)1( ),( vur 

u

u1

Method : Applying  ‘de Casteljau algorithm’  to the u- and v-directions 
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2)  Biquadratic Bezier Surface Patch 
- Given: 3x3 Bezier control points 
- Find: Points on the biquadratic Bezier Surface Patch 
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Method : Applying ‘de Casteljau algorithm’  to the  u- and  v-directions 
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3)  Bicubic Bezier Surface Patch 
- Given: 4x4 Bezier control points 
- Find: Points on the bicubic Bezier Surface Patch 

u
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u u1
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  
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3)  Bicubic Bezier Surface Patch 
- Given: 4x4 Bezier control points 
- Find: Points on the bicubic Bezier Surface Patch 
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4.2 Bezier Surfaces 
1) Generation of Bezier surfaces by de Casteljau algorithm 
2) Generation of Bezier surfaces by tensor product approach 
  - Tensor product approach 
  - Tensor product biquadratic Bezier surface  
  - Tensor product bicubic Bezier surface  
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 1) Tensor product approach (1) 

Assume that  

material of rubber template 

is very flexible 

Wooden Templates 

End moving curve 

Directional curve 

Moving curve 

 makes a surface 

Start moving curve 
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 1)  Tensor product approach* (2) 

u 

v 

Curve r(u) is sweeping in the v-direction 

u 

v 

Curve r(v) is sweeping in the u-direction 

 -Moving curve is order n Bezier curve 

  - Trajectories of the Bezier control points of 

the moving curve, i.e., directional curve is also 

order m Bezier curve 

  The surface generated by sweeping the 

moving curve is called “ Tensor product Bezier 

Surface Patch” 

* Farin, CAGD, 5th Ed., 2002, Ch14.3, Tensor Product Approach 

moving curve 

directional curve 

directional curve 

moving curve 
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Tensor Bezier Surface 

points control Move
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)(1 vb

2)  Tensor product biquadratic Bezier surface (1) 
- Given: Control Points of biquadratic Bezier Surface 
- Find: Points on the biquadratic Bezier Surface 

 Given 3x3 Points bij, 

 

 Generate start/end moving 
curves and directional curves 
in quadratic Bezier form 
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2)  Tensor product biquadratic Bezier surface (2) 
- Given: Control Points of biquadratic Bezier Surface 
- Find: Points on the biquadratic Bezier Surface 

 Given 3x3 Points bij, 
 

 Moving curve can be 
represented in the following 
form: 
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3)  Tensor product bicubic Bezier surface (1) 
- Given: Control Points of bicubic Bezier Surface 
- Find: Points on the bicubic Bezier Surface 

 Given 4x4 Points bij, 
 

 Generate start/end moving 
curves and directional curves 
in cubic Bezier form 
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3)  Tensor product bicubic Bezier surface (2) 
- Given: Control Points of bicubic Bezier Surface 
- Find: Points on the bicubic Bezier Surface 

 Given 4x4 Points bij, 
 

 Moving curve can be 
represented in the following 
form: 
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4.3 B-spline Surfaces 
Generation of B-spline surfaces by tensor product approach 

 - Tensor product bicubic B-spline surface 

 - Programming Guide for Tensor product  bicubic B-spline 
surface 
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1)  Tensor product bicubic B-spline surface (1) 
- Given: Control Points of bicubic B-spline surface 
- Find: Points on the bicubic B-spline surface 

 Given 5x5 Control Points dij,  
u-knots, v-knots,  
u-degree(=3), v-degree(=3), 
 

 Generate start/end moving 
curves and directional curves in 
cubic B-spline form: 

 

10d

40d

00d
20d

30d

00 u 15 u4.04 u

2u
1u

3u
7u
6u

8u

u

14d

44d

04d

24d

34d

00 v

2v
1v

3v

15 v

7v
6v

8v

4v

03d

02d

01d

)(0 vd

11d

12d

)(1 vd

23d

22d

21d

)(2 vd

33d

32d

31d

)(3 vd

43d

42d

41d )(4 vd

           3 3 3 3 3

00 0 01 1 02 2 03 3 04 40 N v N v N v N v N vv     d d dd d d

           3 3 3 3 3

10 0 11 1 12 2 13 3 14 41 N v N v N v N v N vv     d d dd d d

           3 3 3 3 3

20 0 21 1 22 2 23 3 24 42 N v N v N v N v N vv     d d dd d d

           3 3 3 3 3

30 0 31 1 32 2 33 3 34 43 N v N v N v N v N vv     d d dd d d

           3 3 3 3 3

40 0 41 1 42 2 43 3 44 44 N v N v N v N v N vv     d d dd d d

 
 
 
 
 

 
 
 
 
 

3

00 01 02 03 04 0

3

10 11 12 13 14 1

3

20 21 22 23 24 2

3

30 31 32 33 34 3

3

40 41 42 43 44

0

2

4 4

1

3

N v

N v

N v

N v

N v

v

v

v

v

v

    
    
    
    
    
    
        

d

d

d

d d d d d

d d d d d

d

d

d

d d d d

d d d d d

d d d d d



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

212 
 Computer Aided Ship Design, II-4. Surfaces, Fall 2011, Kyu Yeul Lee  Computer Aided Ship Design, II-4. Surfaces, Fall 2011, Kyu Yeul Lee 

1)  Tensor-product bicubic B-spline surface (1) 
- Given: Control Points of bicubic B-spline surface 
- Find: Points on the bicubic B-spline surface 

 Given 5x5 Control Points dij,  
u-knots, v-knots,  
u-degree(=3), v-degree(=3), 
 

 Moving curve can be 
represented in the following 
form: 
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2) Programming Guide for   
    Tensor product bicubic B-spline surface(1)  
- Member Variables of Class 

class CBsplineSurface 

{ 

public: 

 // member variables 

 int m_nDegree; 

 

 double* m_pKnot_U; 

 int m_nNumOfKnot_U; 

 

 double* m_pKnot_V; 

 int m_nNumOfKnot_V; 

  

 

 Vector** m_pCP; 

 int m_nNumOfCP_U; 

 int m_nNumOfCP_V; 

 

 // member functions 

 … 

}; 

 Degree 

 Number and Value of Knot in u -direction 

 Number and Value of Knot in u -direction 

 

 Number of Control Points in  u- and  v-directions 

10d

40d

00d
20d

30d

00 u 15 u4.04 u

2u
1u

3u
7u
6u

8u

u

14d

44d

04d

24d

34d

00 v

2v
1v

3v

15 v

7v
6v

8v

4v

03d

02d

01d

)(0 vd

)(1 vd
)(2 vd

)(3 vd

43d

42d

41d

)(4 vd

),( vur

(n=3) 

(9) 

(9) 

(u :5, v :5) 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

214 
 Computer Aided Ship Design, II-4. Surfaces, Fall 2011, Kyu Yeul Lee 

2) Programming Guide for   
    Tensor product bicubic B-spline surface(2) 
 - Member Functions of Class 

class CBsplineSurface 

{ 

public: 

 // member variables 

 … 

 

 // member functions 

 … 

 

 void SetKnot(double* pKnot_U, int nNumOfKnot_U, double* pKnot_V, int 

nNumOfKnot_V); 

 

 double N(int n, int i, double u, int uv); 

 

 Vector GetPoint(double u, double v); 

}; 

 Define  the Knots 
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2) Programming Guide for   
    Tensor product bicubic B-spline surface(3) 
 - Member Functions of Class 

class CBsplineSurface 

{ 

public: 

 // member variables 

 … 

 

 // member functions 

 … 

 

 void SetKnot(double* pKnot_U, int nNumOfKnot_U, double* pKnot_V, int 

nNumOfKnot_V); 

 

 double N(int n, int i, double u, int uv); 

 

 Vector GetPoint(double u, double v); 

}; 

 Calculate the B-spline Basis Function  
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2) Programming Guide for   
    Tensor product bicubic B-spline surface(4) 
- Member Functions of Class 

class CBsplineSurface 

{ 

public: 

 // member variables 

 … 

 

 // member functions 

 … 

 

 void SetKnot(double* pKnot_U, int nNumOfKnot_U, double* pKnot_V, int 

nNumOfKnot_V); 

 

 double N(int n, int i, double u, int uv); 

 

 Vector GetPoint(double u, double v); 

}; 

Calculate the points on the Surface  

    for given  Parameter u, v 
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2) Programming Guide for   
    Tensor product bicubic B-spline surface(5) 
- Member Function Example ‘GetPoint’ 

Vector CBsplineSurface::GetPoint(double u, double v) 
{ 
  // return value 
  Vector r_u_v(0.0, 0.0, 0.0); 
  
  // get curve 
  for (int i=0; i<m_nNumOfCP_U; i++) 
  { 
    Vector r_v(0.0, 0.0, 0.0); 
 
    for (int j=0; j<m_nNumOfCP_V; j++) 
    { 
      r_v = r_v + m_pCP[i][j] * N(m_nDegree, j, v, ID_V); 
    } 
 
    r_u_v = r_u_v + N(m_nDegree, i, u, ID_U) * r_v; 
  } 
 
  return r_u_v; 
}  
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Calculate the points on the Surface  for given  Parameter u, v 
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4.4 B-spline Surface Interpolation 
1) Bicubic B-spline surface interpolation  

2) Determination of knot values  

3) Sample code of bicubic B-spline Surface Interpolation 
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1)  Bicubic B-spline Surface Interpolation (1) 
- Given: 9 points on the surface and Tangent vectors at four corners in u- and v- directions 
- Find: Control Points of bicubic B-spline Surface 
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Intermediate control points (Ci,j) are 

determined by the points on the surface (Pi,j)  

and tangent vectors at ends (ti,j)  
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1)  Bicubic B-spline Surface Interpolation (2) 
- Given: 9 points on the surface and Tangent vectors at four corners in u- and v- directions 
- Find: Control Points of bicubic B-spline Surface 
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Tangent vectors at ends (ti,j) are determined by using  

the Bessel end conditions 

Bessel end condition: 
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B-spline surface control points (di,j)  are determined  

by the intermediate control points (Ci,j) and  

tangent vectors at ends (ti,j)  

 

1) Bicubic B-spline Surface Interpolation (3) 
- Given: 9 points on the surface and Tangent vectors at four corners in u- and v- directions 
- Find: Control Points of bicubic B-spline Surface 
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2) Determination of knot values (1) 
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1.  Determine the knots in u-direction 
 Calculate the distances between the points (Pi,j)  
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2) Determination of knot values (2) 
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1.  Determine the knots in u-direction: 
 Calculate the distances between the points (Pi,j)  

 Sum up the distances at each point. These 

accumulated distances are knots value in u-

direction. 
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2) Determination of knot values (3) 
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1.  Determine the knots in u-direction: 
 Calculate the distances between the points (Pi,j)  

 Sum up the distances at each point. This 

accumulated distances are knots value in u-

direction. 

 Normalize the knot values at each point by 

dividing with the knot value at end point. 
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2) Determination of knot values (4) 
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1.   Determine the knots in u-direction: 
 Determine  reference  knot values in u-direction 

by calculating average knot values  for each v-

direction 
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2) Determination of knot values (5) 
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1. Determine the knots in u-direction 
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p12 
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2) Determination of knot values (6) 
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3. In the same manner, determine the knots 

in v-direction  
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Calculate chord length with given 

points on the curves 

 

2) Determination of knot values (7) 
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It means the space of the knots 

should be same. 

To generate a ‘smooth’ surface, 

positions of the points on the 

surface should be ‘regular’   
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Knot space can be regarded as the elapsed time to travel the points. 

 
2) Determination of knot values (8) 
- Effect of the Knot space on the quality of the B-spline surfaces 
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If the knot spaces are irregular , the  surface  will be strong distorted 
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2) Determination of knot values (9) 
- Effect of the Knot space on the quality of the B-spline surfaces 
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3)  Sample code of bicubic B-spline Surface Interpolation (1) 

void BicubicBsplineSurface::Interpolate(Vector **pFittingPoint, int nU, int nV) { 

   // Generate u-Knot 

      if(m_UKnot) delete[] m_UKnot; 

      m_nUKnot = (m_nU - 2) + 2*(3+1); 

      m_UKnot = new double [m_nUKnot];  
 

      // Initial u-Knot 

      double** tmpUKnots; 

      tmpUKnots = new double*[nV]; 

      for(int j = 0; j < nV; j++){ 

          tmpUKnots[j] = new double[nU]; 

          for(int i = 0; i < nU; i++){ 

                tmpUKnot[j][i] = …;   // chord length or centripetal 

          } 

      } 

      // generate average u-Knot 

     for(int i = 0; i < nU; i++){ 

          m_UKnot[i] = 0; 

          for(int j=0; j<nV; j++) {        m_UKnot[i] += tmpUKnot[j][i];       } 

          m_UKnot[i] = m_UKnot[i] / nV; 

    } 

 Calculate the knot values  

 corresponding to the chord length 

 Recalculate the knot values  

with average knot value 
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3) Sample code of bicubic B-spline Surface Interpolation (2) 

     // Interpolate u-directional B-spline curve 

      CubicBsplineCurve* u_curve = new CubicBsplineCurve[nV]; 

      for(int j = 0; j < nV; j++){ 

          u_curve[j].SetKnot( m_UKnot ); 

          u_curve[j].Interpolate(  pFittingPoint[j], nU ); 

      } 

 

      // Generate  Fitting Points in the  v-direction 

      int nvFittingPoint = u_curve[0].m_nControlPoint; 

      Vector** vFittingPoint = new Vector [ nvFittingPoint ]; 

      for(int j=0; j < nvFittingPoint; j++){ 

          vFittingPoint[j] = new Vector[ nV ]; 

          for( int i = 0; i < nV; i++){ 

                vFittingPoint[j][i] = u_curve[i].m_ControlPoint[j]; 

          } 

      } 

      …………………….. 
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3) Sample code of bicubic B-spline Surface Interpolation (3) 

     // Interpolate B-spline curves in the u-direction 

      CubicBsplineCurve* u_curve = new CubicBsplineCurve[nV]; 

      for(int j = 0; j < nV; j++){ 

          u_curve[j].SetKnot( m_UKnot ); 

          u_curve[j].Interpolate(  pFittingPoint[j], nU ); 

      } 

 

      // Generate v-directional Fitting Point 

      int nvFittingPoint = u_curve[0].m_nControlPoint; 

      Vector** vFittingPoint = new Vector [ nvFittingPoint ]; 

      for(int j=0; j < nvFittingPoint; j++){ 

          vFittingPoint[j] = new Vector[ nV ]; 

          for( int i = 0; i < nV; i++){ 

                vFittingPoint[j][i] = u_curve[i].m_ControlPoint[j]; 

          } 

      } 

      …………………….. 
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1. Beam Theory 

1.1 Normal Stress and Strain, Shear Stress 
and Strain, and Torsion  
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Applying beam theory on a ship 
z

x

w

( )V x

( )M x

AR BR

( )y x

y

x

w

BRAR

idealize 

( )M x

x

( )V x

x

 f x

x

L

x

y
 f x

AP FP 

AP FP 

James M. Gere, Mechanics of Materials 6th Edition, Thomson, Chap.4, p.292 
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Ship Structural Design 

 Ship Structural Design  

what is designer’s major interest? 

 Safety :  
Won’t  ‘IT’ fail under the 
load?     

a ship 
a stiffener 
a plate 

global 

local 

a ship 

L

x

y
 f x

( )f x

x

y

reactF

( )V x
( )M x

( )y x

Differential equations of the defection curve 

4

4

( )
( )

d y x
EI f x

dx
 

what  is our interest? 

: ( )

: ( )

: ( )

Shear Force V x

Bending Moment M x

Deflection y x

: ( )Load f x

cause 

( )
( )

dV x
f x

dx
 

( )
, ( )
dM x

V x
dx



2

2

( )
, ( )

d y x
EI M x

dx


‘relations’ of load, S.F., 
B.M., and deflection 

 Safety :  
Won’t it fail under the 
load?     

 Geometry  : 
How much it would be 
bent under the load?     

, act

y i

M M
where

I y Z
  

Stress should meet : 

σact : Actual Stress 

σt : Allowable 

Stress 

act l 

( )Sf x

.,
S W

act

mid

M M
σ

Z


lact  .

: load  in still water 

    

0
( ) ( )

x

S SV x f x dx 

( )SV x

( )SM x

0
( ) ( )

x

S SM x V x dx 

Hydrostatics Hydrodynamics 

.F K

diffraction
added mass

mass inertiadamping

: still water shear force 

: still water bending  

  moment 

,    MS = Still water bending moment 

     MW = Vertical wave bending moment 

 

what kinds of load  f  cause hull girder moment? 

weight

buoyancy

fS(x) : load in still water 

          = weight + buoyancy 

    
( )Wf x : load in wave 

    

0
( ) ( )

x

W WV x f x dx 

( )WV x

( )WM x

0
( ) ( )

x

W WM x V x dx 

: wave shear force 

: vertical wave  

bending moment 

fW(x) : load in wave 
 = added mass + diffraction  

   + damping + Froude-Krylov + mass inertia  

( ) ( ) ( )S Wf x f x f x 

( ) ( ) ( )S WV x V x V x 

( ) ( ) ( )S WM x M x M x 
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Ship Structural Design 

 Ship Structural Design  

what is designer’s major interest? 

a ship 
a stiffener 
a plate 

z

x

L

x

y

 f x

global 

local 

a ship 

how we can meet the 
rule? 

.

, .

, mid s w
act

mid ship N A i

M M M
σ

Z I y


 

..LB

..AN

DeckUpper


<Midship section> 

iy

)(, yy
iy

, . .

, :vertical wavebending moment

, : still water bending moment

, : moment of inertia from N.A. of Midship section

w

s

ship N A

M

M

I

Hydrostatics, Hydrodynamics 

‘Midship Design’ is to 
arrange the structural 
members and fix the 
thickness of them to 
secure enough section 
modulus to the rule. 
 

L

x

y
 f x

( )f x

x

y

reactF

( )V x
( )M x

( )y x

Differential equations of the defection curve 

4

4

( )
( )

d y x
EI f x

dx
 

what  is our interest? 

: ( )

: ( )

: ( )

Shear Force V x

Bending Moment M x

Deflection y x

: ( )Load f x

cause 

( )
( )

dV x
f x

dx
 

( )
, ( )
dM x

V x
dx



2

2

( )
, ( )

d y x
EI M x

dx


‘relations’ of load, S.F., 
B.M., and deflection 

 Safety :  
Won’t it fail under the 
load?     

 Geometry  : 
How much it would be 
bent under the load?     

, act

y i

M M
where

I y Z
  

act allow 

Stress should meet : 

Actual stress on midship section should 

be less than allowable stress   

.act allow 

Allowable stress by Rule : (for example) 
2

1, 175 [ / ]allow f N mm 

 Safety :  
Won’t  ‘IT’ fail under the 
load?     



•Computer Aided Ship Design, III-1. Beam Theory, Fall 2011, Kyu Yeul Lee  
SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

6 

1. Normal Stress and Strain 
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Restoring Force of a Spring; Hooke’s Law 
x : displacement of the spring length 
k : spring constant 
F : spring force (restoring force) 

Relaxed 

state 

F k

x

Relaxed 

state 
F k

x

x : positive → F : negative x : negative → F : positive 

: Hooke’s Law  

•Restoring force of a spring 

Elastic : if a body suffers a deformation when a stretching force or 
compressing force is applied to the body and returns to its original 
shape when the force is removed, the body is said to be elastic. 

Restoring force : the force with which a body resists deformation. 

F x F kx 

Hooke’s Law : the magnitude of the restoring force is directly 
proportional to the deformation.  

F F
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An example of Spring 

F

L

k

1

2


sF

sF

1

2
sF F 

s FF 

F 

L 

1

The number of springs
 

One spring : 

F

2L

k

2

sF

F

Equilibrium 

state 

sF k

L

Two springs : 

L : spring length in a relaxed state 
 : displacement of the spring length 
k : spring constant 
F : external force 

sF : spring force (restoring force) 
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 Hooke’ Law 
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Normal Stress 

AP  
A

P


An example of axially loaded member : aircraft tow bar 

Free-body diagram of the bar 

Axial force PP

P Stress 

Sectional area 


A

Normal Stress : force per unit area 

, or  

P

A L



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Normal Strain 

Elongation of the bar 

PP

L 

Strain : elongation per unit length 

L


 

P

A L



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Hooke’s Law 

1

A
 

P 

L  PL

A
 

P
E

A L




P Stress 

Sectional area 


A

PP

L 

P

A L




L


 

P

A
 

E 

Relation between the normal stress and the strain 

“Hooke’s law” 
(constitutive relation) 

E : young’s modulus 

 : normal stress 

 : strain 
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An example of bar 

1

2
sF F 

s FF One rod : 

sF F

L 

Two rods : 

F

L 1

2


sF

sF

F

L 1

2


sF

A : sectional area of the rod 

Sectional area A

Sectional area A

Sectional area 2A

P
E

A L




P

A L




Stress 

Young’s modulus 

Strain 

P 

L 

F

F

F E 

E : young’s modulus 

 : normal stress 

 : strain 

1

A
 

PL

A
 

“Hooke’s law”: 
 

(constitutive relation) 
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Relation between normal stress and strain 

Stress-Strain diagram for a typical structural steel in tension 




The slope is 
called the 
modulus of 
elasticity, 
(often called 
Young’s 
modulus) 

9 2

200 ,

200 10 /

GPa or

N m

E

Ex.) mild steel 

Relation between the normal stress and the strain 

E  “Hooke’s law” 
(constitutive relation) 
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Relation between normal stress and strain 

Stress-Strain diagram for a typical structural steel in tension 

Relation between the normal stress and the strain 

E  “Hooke’s law” 
(constitutive relation) 

Sectional area A

Sectional area A

F F

A A



Decrease Increase 

( : )C E ( : )C E

Gere책에서 c에서 e로 가는 것과 e’
로 가는 것 참고 

If the actual cross-sectional area at the narrow part of the neck is used to calculated 
the stress, the true stress-strain curve (the dashed line CE‘) is obtained. The total 
load the bar can carry does indeed diminish after the ultimate stress is reached (the 
line DE), but this reduction is due to the decrease in area of the bar and not to a loss 
in strength of the material itself. 
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Shear Stress and Strain of the Block 
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Shear (1)  

Shear :  (noun) the deformation which changes the shape of 

the body from rectangular parallelepiped to a rhomboidal 

parallelepiped 

F
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Shear (2) 

For example, if one side of the body is held fixed, and the, force(F) 

pushes tangentially along the other side, then the deformation is a 

shear. 

F : Axial force 

A : Sectional area 

H : Height of the block 

△x : Displacement of the edge of 
the block 

F

A
x

h
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Shear Stress in the block 

F : Axial force 

A : Sectional area 

H : Height of the block 

△x : Displacement of the edge of the block 

For example, the shear stress is( ) as follows ; 

F

A
 

A shear Stress( ) : shear force(V,  equal to force F) per unit area 

F

A
x

h
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Shear Strain of the block 

F : Axial force 

A : Sectional area 

H : Height of the block 

△x : Displacement of the edge of the block 

For example, the shear strain() is as follows ; 

x

h





Shear strain () : A change in shape, or a measure of the distortion,  
                  of the element 

(measured in degrees or radians) 

F

A
x

h
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Relation between the shear stress and strain in the block 

F : Axial force 

A : Sectional area 

H : Height of the block 

△x : displacement of the edge of the block 

Relation between the shear stress() and strain () 

F Relation between the shear 
strain() and the force(F) 

1

A
 Relation between the shear 

strain() and sectional area(A) 

x

h



Shear strain 

F

A
 

F

A
  G 

Shear modulus of elasticity 

 

F

A
x

h
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Shear Stress and Strain 
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Shear Stress 

V A 
V

A
 

An example of axially loaded member : A bolt passing through holes  
                                                       in the bar and I-beam 

Free-body diagram of the bolt 

A shear stress() : shear force(V ) per unit area 

, or  

F

Axial force 

V
m n

V : Shear force 
A : Area 

<Top view> 

<Detail view of the bolt> <Free-body diagram  
of the bolt> 

<Top view> 

<Shear stress()  
  acting on the bolt> 

A

B

① 

② 

C *shear it : (verb) cut through it.  
In this case, the bar and I-
beam tend to shear the bolts. 

A
m n

m
n

F

F
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Shear Strain 

A change in the shape of the element 

Shear strain() : A change in shape, or a measure of the distortion,  
                  of the element 



(a) Element of material (b) Element of material subjected 
to shear stresses and strains 

(measured in degrees or radians) 
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Relation between the shear stress and strain 

G 

Cf.)  E

Hooke’s law in shear 

G : Shear modulus of elasticity 

 : Shear stress 

 : Shear strain 

9 2

75 ,

75 10 /

GPa or

N m

Ex.) Shear modulus of elasticity(G) of mild steel 
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Poisson’s Ratio(v) –(1) 

When a prismatic bar is loaded in tension, the axial strain() is 

accompanied by lateral contraction(' ). 

(b) the bar after loading P 

Poisson's ratio :  The ratio of axial strain() to lateral strain(') 

lateral strain

axial strain
v







   v   

L

L

BB

axial strain( )
L L

L


 


lateral strain( )
B B

B


 
 

(a) the bar before loading 

여기 왜 –가 붙는지 설명 

The minus sign is inserted in the equation to compensate for the fact that the lateral and axial strains normally 

have opposite signs. For instance, the axial strain in a bar in tension is positive and the lateral strain is negative 

(because the width of the bar decreases).  
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Poisson’s Ratio(v) –(2) 

The range of the Poisson’s ratio(v) 

Most materials : 0.25 ~ 0.35 

Theoretical limit : 0 ~ 0.5 

lateral strain

axial strain
v






   

(b) the bar after loading P 

L

L

BB

(a) the bar before loading 
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Relation between the  modulus of elasticity in tension(E) 
and shear(G) 

2(1 )

E
G

v




Relation between the  modulus of elasticity in tension(E) and shear(G) 

G : Shear modulus of elasticity 

v : Poisson’s ratio 

E : Modulus of elasticity 

The range of the shear modulus of elasticity(G) which is relative to  

    the modulus of elasticity(E) 

The range of the Poisson’s ratio(v) : 0 ~ 0.5 

0v 

0.5v 

2

E
G 

3

E
G  3 2

E E
G 
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Shear Stress and Strain in Torsion 
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Shear Stress in torsion 

Deformation of a circular bar in pure torsion 

Torque TT

Free-body diagram of the bar 

r



O O

Shear  
stress 

T

A
T dA 

dA



Shear force acting on the area       :     dA dA

Resultant moment about a longitudinal axis through point     is equal to the torque : 



Sectional area A

O



•Computer Aided Ship Design, III-1. Beam Theory, Fall 2011, Kyu Yeul Lee  
SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

31 
•Computer Aided Ship Design, III-1. Beam Theory, Fall 2011, Kyu Yeul Lee  

Shear Strain in torsion 

Deformation of a circular bar in pure torsion 

Torque TT
dx

'aa d

ba dx

 



d

dx


 

r

dx

ab
O

'a



Shear strain 

'
tan

aa

ba
  

1Assume, 

dx



d

r
O
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Relation between the torque and the angle of twist  

Shear strain 
d

dx


 

dA
Shear force acting on area  dA

O

Shear  
stress 

dA





Sectional area A

Hooke’s law in shear deformation 

G 

d
dA G dA

dx


 

2 2

A A A

d d
T dA G dA G dA

dx dx

 
      

Resultant moment about a longitudinal axis through the point     is equal to the torque: 

d
T GJ

dx




Relation between the torque and the angle of twist  

2

A
J dA Polar moment of inertia 

O
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1. Beam Theory 

1.2 Deflections of Beams 
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Derivation of Deflection Curve of Beam 



•Computer Aided Ship Design, III-1. Beam Theory, Fall 2011, Kyu Yeul Lee  
SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

35 
•Computer Aided Ship Design, III-1. Beam Theory, Fall 2011, Kyu Yeul Lee  

Overview of Derivation Procedure 
Derivation of Deflection Curve of Beam 

Elongation 

Strain 

Stress 

Geometry of Deformation 

Bending Moment 

Geometrical  
Linearization 

Hooke’s Law 

Relation between the 
deformation and the 
bending moment 

Shear Force 

Distributed Load 
Relation between the deformation 
and the distributed load 
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Geometry of Deformation 

y

x

( )f x

Beam의 problem definition을 작성해야 함 

1yf 2yf

2M1M

1) The concentrated forces fy1 and fy2 
are exerted on the ends of the bar. 

3) distributed force f(x) is applied to 
the element 

2) The moment M1 and M2 are 
exerted on the ends of the bar. 

l

This figure is expressed in very exaggerated 
way to recognize the deformation of a beam! 

M
V V

M

An infinitesimal element will be introduced 
for derivation deflection curve of a beam. 
Here, the bending moment M and the 
shear force V are stress resultants, and the 
positive directions of the stress resultants 
are shown in left figure. 

Derivation of Deflection Curve of Beam 
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Geometry of Deformation 
Derivation of Deflection Curve of Beam 

-before deformation 

Geometry of a beam 

y

x

-after deformation 

The x axis is a line along the neutral surface of the undeformed beam. Of course, when the beam deflects, the neutral 
surface moves with the beam, but the x axis remains fixed in position.  

* neutral surface : Longitudinal lines on the lower part of the beam are elongated, whereas those on the upper part are shortened. Thus the lower part  of 
the beam is in tension and the upper part is in compression. Somewhere between the top and bottom of the beam is a surface in which longitudinal lines 
do not change in length. This surface is called neutral surface 

neutral 
surface  

This figure is expressed in very exaggerated 
way to recognize the deformation of a beam! 

( )f x

( )f x y
( )f x

x
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Geometry of Deformation 
Derivation of Deflection Curve of Beam 

Geometry of a beam 

dsd  

1 d

ds





 

:   , :radius of curvature curvature 

bending moment 

-after deformation 

neutral 
surface  

( )f x

neutral 
surface  

y ( )f x

x

MM


ds

d
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Geometry of Deformation 
Derivation of Deflection Curve of Beam 

neutral 
surface  

neutral 
surface  

dM y dF

xdM y dA

Bending  
Moment 

-after deformation 

neutral  
axis 

y

x

x

x

y

y

x

dA

dA

xy

dA

dA

y

a

b

c

d

y

y

a

b

c

d

ab

c d
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Geometry of Deformation 
Derivation of Deflection Curve of Beam 

MM

1 d

ds





 

The differential equation for the 
deflection curve of a beam is 
supposed to be expressed based 
on the Cartesian coordinate 
system. 

How can we express the geometry with       and        
instead of        and  

dydx
dds



ds

d
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Geometry of Deformation : Linearization 
•Derivation of Deflection Curve of Beam 

1

2

0

3

2

0

( ) 1

(0) 1

1 1
(0) (1 )

2 2

1 1
(0) (1 )

4 4

z

z

f z z

f

f z

f z









 



   

     

( ) 1 1f z z   

ds dx 

•IF WE ASSUME, 

2

1
dy

ds dx
dx

 
    

 

•Taylor series  
Expansion 

2 4
1 1 1

1
2 2 4

dy dy
ds dx

dx dx

     
         

      

ds dx

ds

d

dy

dx

1

222 dydxds 

1, if

•이 부분을 옆에 주욱 이
어서 할 것  

•Taylor series expansion 

2

,
dy

let z
dx

 
  
 

2

, 1 1
dy

then z
dx

 
   
 

( ) 1f z z  •, since 21 1 1
( ) 1

2 2 4
f z z z

 
     

 

2

1
dy

ds dx
dx

 
    

 
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Geometry of Deformation : Linearization 
Derivation of Deflection Curve of Beam 

1IF WE ASSUME, 
3 52

tan
3 15

 
    

 tan 

dy

dx
 
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Elongation 
Derivation of Deflection Curve of Beam 

neutral 
surface  ds

ds

- at the neutral surface 

No elongation 

length of AB : 

ds dx

length of A’B’ : 

( )ds y d   

( )dx y d

dx d yd

dx dx yd

dx
dx dx y

 

  





  

  

  

  

d ds dx

dx
d

 




 

 

ds dx

 'ds dx 

'B

Bds dx

ds dx 

d

A

A

y



dx

d
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Strain 
Derivation of Deflection Curve of Beam 

neutral 
surface  ds

ds

dx
dx dx y


  

dx
dx dx y

dx dx y

dx





   

 
 

Definition of strain 

x

y



  

y

'B

Bds dx

ds dx 

d

A

A



dx

d



•Computer Aided Ship Design, III-1. Beam Theory, Fall 2011, Kyu Yeul Lee  
SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

45 
•Computer Aided Ship Design, III-1. Beam Theory, Fall 2011, Kyu Yeul Lee  

Stress 
Derivation of Deflection Curve of Beam 

x

y



 

x xE 

x

y
E


  

Hooke’s Law 
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Bending Moment 
Derivation of Deflection Curve of Beam 

x

y
E


 

neutral 
surface  

neutral axis 

<section AA’ > 

dA

y

y

x

A

A

xdM y dA

Bending moment about the neutral 
axis due to the normal stress acting 
on an infinitesimal area   

M

x

y
2

1

dA

상면

하면

x 

x 

dA

Considering the sign convention, 
we need to add ‘minus sign’ for the 
bending moment. (Ref: To see this 
in detail, refer to the lecture on 
“sign convention”) 

<Section view> <Elevation view> 

xdM y dA  

y


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Bending Moment 
Derivation of Deflection Curve of Beam 

, x

y
E


 

neutral 
surface  

neutral axis 

<section AA’ > 

dA

y

y

x

A

A

xdM ydA 

The total Bending moment about the 
neutral axis due to the normal stress acting 
on the sectional area   

A
M dM 

2

( )

x
A

A

A

M y dA

y
y E dA

E
y dA







 

  









2,
A

E
M I I y dA


   

A
<Section view> 

y


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Relation between the deformation and the bending moment 

Derivation of Deflection Curve of Beam 

neutral 
surface  

neutral axis 

<section AA’ > 

dA

y

y

x

A

A

E
M I




A

1M

EI 


M

EI
or 

2

A
I y dA 

1 d

ds





 

By performing linearization of the deformed geometry 

 for small deflection 

2

2

tan( ) ( )

( )

d

ds

d d dy

ds ds dx

d dy d y

dx dx dx








 

 

2

2

M d y

EI dx
 

y

<Section view> 


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Relation between bending moment and shear force 
Derivation of Deflection Curve of a Beam 

M

dx

V

dxxf )(

M dM

V dV

Let us consider the distributed load acting on a beam 

2

1
( ) ( ) ( ) 0

2

1
( ) ( ) 0

2

M M dM V dV dx dx f x dx

dM Vdx dV dx dx f x

       

     

From the moment equilibrium about 
z-axis through the point     , 
we obtain : 

( )
dM

V x
dx

 

neglecting the high order terms 

x

y

( )f x

x

y

Ref: To see the direction of the shear forces and bending 
moments in the Fig. in detail, refer to the lecture on  “sign 
convention” 
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Relation between shear force and distributed load 
Derivation of Deflection Curve of Beam 

M

dx

V

dxxf )(

M dM

V dV

From the force equilibrium, 
we obtain 

( ) ( ) 0V V dV f x dx   

( )
dV

f x
dx

  

x

y

( )f x

x

y
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Relation between the deformation and the distributed load 

Derivation of Deflection Curve of Beam 

2

2

M d y

EI dx


( )
dV

f x
dx

 

( )
dM

V x
dx



2

2

d y
EI M

dx


2

2

d y M

dx EI


3

3

d y
EI V

dx


4

4
( )

d y
EI f x

dx
 

Differentiation with respect to x 

Differentiation with respect to x 

“Deflection Curve of a Beam” 
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What if the distributed load is not applied? 

M

dx

V

dxxf )(

M dM

V dV

2

1
( ) ( ) ( ) 0

2

1
( ) ( ) 0

2

M M dM V dV dx dx f x dx

dM Vdx dV dx dx f x

       

     

1) From the moment equilibrium about 
z-axis through the point     , 
we obtain : 

neglecting the high order terms, and  

x

y

( )f x

x

y

0)( xf

)(xV
dx

dM


2) From the force equilibrium, we obtain 

( ) ( ) 0V V dV f x dx   

0dV

Since 0)( xf

dxxVdM )(

If the distributed load is not applied to the beam, the shear force V is 
constant, but the bending moment M is not. 
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Derivation of Deflection Curve of Beam by applying opposite 

sign convention for shear force 
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Relation between bending moment and shear force 
Derivation of Deflection Curve of a Beam by applying opposite sign convention for shear force 

M

dx

V

dxxf )(

M dM

V dV

Let us consider the distributed load acting on a beam 

From the moment equilibrium about 
z-axis through the point     , 
we obtain : 

neglecting the high order terms 

x

y

( )f x

x

y

Ref: To see the direction of the shear forces and bending 
moments in the Fig. in detail, refer to the lecture on  “sign 
convention” 

1
( ) ( ) ( ) 0

2
M M dM V dV dx dx f x dx       

21
( ) ( ) 0

2
dM V dx dV dx dx f x      

( )
dM

V x
dx

  

…Continued from page 53 
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Relation between shear force and distributed load 
Derivation of Deflection Curve of a Beam by applying opposite sign convention for shear force 

M

dx

V

dxxf )(

M dM

V dV

From the force equilibrium, 
we obtain 

x

y

( )f x

x

y
( )

dV
f x

dx
 

( ) ( ) 0V V dV f x dx     
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Relation between the deformation and the distributed load 

Derivation of Deflection Curve of a Beam by applying opposite sign convention for shear force 

2

2

M d y

EI dx
2

2

d y
EI M

dx


2

2

d y M

dx EI


Differentiation with respect to x 

Differentiation with respect to x 

“Deflection Curve of a Beam” 

( )
dM

V x
dx

 

( )
dV

f x
dx



3

3

d y
EI V

dx
 

4

4
( )

d y
EI f x

dx
 
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Comparison of Derivation of Deflection Curve of a Beam by applying 
different sign convention for shear force 

M

dx

V

dxxf )(

M dM

V dV

x

y

( )f x

x

yM

dx

V

dxxf )(

M dM

V dV

x

y

2

2

d y
EI M

dx


3

3

d y
EI V

dx
 

4

4
( )

d y
EI f x

dx
 

2

2

d y
EI M

dx


3

3

d y
EI V

dx


4

4
( )

d y
EI f x

dx
 

Sign 
conventions 
for shear 
forces 

Bending 
moment 

Shear force 

Deflection 
Curve of a 
Beam 

Same 

Same 

Not same 
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Derivation of Deflection Curve of Beam with Vector Notation 
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Deflection of Beam with Vector Notation 

x ε i

① strain at     in x-direction :  

ds
neutral 
surface  

* neutral surface : Longitudinal lines on the lower part of the beam are 
elongated, whereas those on the upper part are shortened. Thus the 
lower part  of the beam is in tension and the upper part is in 
compression. Somewhere between the top and bottom of the beam is a 
surface in which longitudinal lines do not change in length. This surface 
is called neutral surface 

-after deformation 

neutral 
surface  

y
( )f x

x

ds

xσ

y



dx

d

x

y

( )y d d d y
y

ds ds

    




  
    

, : initial length

, :elongated length

ds

y d

d ds  
1d

ds








ds



,x x  σ i ε i , , y θ k y j E 

y



•Computer Aided Ship Design, III-1. Beam Theory, Fall 2011, Kyu Yeul Lee  
SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

60 
•Computer Aided Ship Design, III-1. Beam Theory, Fall 2011, Kyu Yeul Lee  

Deflection of Beam with Vector Notation 

,x

y
E where  


    σ i i

( )x xd dA dA dA   F σ i i③ force acting on       in x-direction   :   

④ moment about z-axis : 

2

( ) ( )
y y

d d y E dA E dA
 

     M y F j i k

② stress at     in x-direction  : 

x

y
E


   σ i i

y
d E dA


  F i

neutral 
surface  ds

ds

x

y

xσ

y



dx

d
d ds  

1d

ds








ds



,x x  σ i ε i , , y θ k y j E 

y

dA
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Deflection of Beam with Vector Notation 



ds


d ds  

1d

ds






,x x  σ i ε i

④ moment about z-axis : 
2

( ) ( )
y y

d d y E dA E dA
 

     M y F j i k

, , y θ k y j E 

2

A A

y
d E dA


   M M k

 A
dAyI 2Define then, ,

EI EI
M

 
 M k

EI


M k

d
EI

ds


M k

neutral 
surface  



dx

d

ds

ds

x

y

xσ

y
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Deflection of Beam with Vector Notation 



ds


d ds  

1d

ds






,x x  σ i ε i , , y θ k y j E 

⑤ assume   
dx

dy
dxds   tan,

2

2

d d y

ds dx




2

2

d d dy d dy d y

ds ds dx dx dx dx

    
     

   

EI


M k

2

2
,

d y
M EI

dx


2

2

d y
EI

dx
M k

d
EI

ds


M k

④ moment about z-axis : 

neutral 
surface  



dx

d

ds

ds

x

y

xσ

y
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Deflection of Beam with Vector Notation 

,x x  σ i ε i , , y θ k y j E 

x

y

( )f x

⑥ relationships between loads, shear forces, and bending moments 

1 2,
V

V V dx
x

 
    

 
V j V j

•force equilibrium 
1 2 ( ) 0y x dx    F V V f

   1
1 1

1
1 1

( ) 0

( ) 0

V
V V dx f x dx

x

V
V V dx f x dx

x

  
        

  

 
     

 

j j j

j ( )
dV

f x
dx

  

1d

ds





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Deflection of Beam with Vector Notation 

,x x  σ i ε i , , y θ k y j E 

x

y

( )f x

⑥ relationships between loads, shear forces, and bending moments 

( )
dM

V x
dx

 

•moment equilibrium  1 2 2

1
( ) 0

2
z d d x dx       M M M x V x f

   
1

( ) 0
2

M V
M M dx dx V dx dx f x dx

x x

       
                 

       
k k i j i j

1 2 1 2, , ,
V M

V V dx M M dx
x x

    
          

    
V j V j M k M k

1d

ds





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Deflection of Beam with Vector Notation x

y

( )f x

•force equilibrium ( )
dV

f x
dx

 

( )
dM

V x
dx

•moment equilibrium 

2

2

d y M

dx EI


3

3

1 1
( )

d y dM
V x

dx EI dx EI
   

4

4

1 1
( )

d y dV
f x

dx EI dx EI
    

4

4
( )

d y
EI f x

dx
  

,x x  σ i ε i , , y θ k y j E 

⑥ relationships between loads, shear forces, and bending moments 

1 2 1 2, , ,
V M

V V dx M M dx
x x

    
          

    
V j V j M k M k

1d

ds





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Deflection of Beam with Vector Notation 



ds


d ds  

1d

ds






① strain at     in x-direction :  

x ε i

,x x  σ i ε i

④ moment about z-axis : 

2

( ) ( )
y y

d d y E dA E dA
 

     M y F j i k

y

, , y θ k y j

( )y d d d
y

ds ds

    


   
 

E 

② stress at     in x-direction  : y x

y
E


 σ i i

③ force acting on       in x-direction   :   dA
y

d E dA


F i

2

A A

y
d E dA


    M M k

⑤ assume   
dx

dy
dxds   tan,

2

2

d d y

ds dx




2

2

d d dy d dy d y

ds ds dx dx dx dx

    
     

   

 A
dAyI 2Define then, ,

EI EI
M

 
   M k EI


 M k

, : initiallength, :elongatedlengthd y d 

2

2
,

d y
M EI

dx
 

2

2

d y
EI

dx
 M k

d
EI

ds


 M k

what happen  
if we take the direction of 
y axis reversed? 

ds

ds

x

y

xσ

neutral 
surface  



dx

d

ds

ds

x

xσ

y
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Deflection of Beam with Vector Notation 

1d

ds






,x x  σ i ε i , , y θ k y j E 

⑥ relationships between loads, shear forces, and bending moments 

1 2 1 2, , ,
V M

V V dx M M dx
x x

    
          

    
V j V j M k M k

•force equilibrium ( )
dV

f x
dx

  ( )
dM

V x
dx

•moment equilibrium 

2

2

d y M

dx EI
 

3

3

1 1
( )

d y dM
V x

dx EI dx EI
     

4

4

1 1
( )

d y dV
f x

dx EI dx EI
    

4

4
( )

d y
EI f x

dx
 

what happen  
if we take the direction of 
y axis reversed? 

y

Sign must be opposite !!! 

모두 부호가 반대임 

ds

ds

x

y

xσ

neutral
surface 



dx

d

ds

ds

x

xσ

y

•force equilibrium 
1 2 ( ) 0y x dx    F V V f

   1
1 1

1
1 1

( ) 0

( ) 0

V
V V dx f x dx

x

V
V V dx f x dx

x

  
        

  

 
     

 

j j j

j ( )
dV

f x
dx

  
( )

dM
V x

dx
 

•moment equilibrium  1 2 2

1
( ) 0

2
z d d x dx       M M M x V x f

   
1

( ) 0
2

M V
M M dx dx V dx dx f x dx

x x

       
                 

       
k k i j i j
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Deflection of Beam with Vector Notation 

( )
dV

f x
dx

  , ( )
dM

V x
dx



2

2

d y
M EI

dx
 

4

4
( )

d y
EI f x

dx
 

y

1d

ds






2

2

d y
M EI

dx


4

4
( )

d y
EI f x

dx
  

1d

ds






1d

ds





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Reference) Linearization of tanθ in the different coordinate 
system 

x

y

z



z
x

y



tan
dy

dx
  

dx

dx

dy

dy tan
dy

dx
  

The positive direction is opposite not only for the y-coordinate,  
but also for the angle θ. Therefore, the results of the linearization of tanθ is 
same in the different coordinate system 
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1. Beam Theory 

1.3 Sign Convention 
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Sign Convections 

References : Gere J.M., Mechanics of Materials, 6th edition, Thomson, 2006 

Sign Convention for Normal Stress Sec. 1.2 p4 

Deformation Sign Convention and Static Sign Convention Sec. 4.3, p270~p271 

Curvature Sign Convention  Sec. 5.3, p303 

Differential Equation of the Deflection Curve Sec. 9.2, p594~p599 
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Sign Conventions* 

*Gere J.M., Mechanics of Materials, 6th edition, Thomson, 2006, pp270-271 

Static sign conventions 

When writing equations of equilibrium 

 we use static sign conventions,  

in which forces are positive or negative  

 according to their directions along the coordinates axes.   

They depend upon the coordinates system 
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-When writing equations of equilibrium, forces are 
positive or negative according to their direction along 
the coordinate axes 

*Gere J.M., Mechanics of Materials, 6th edition, Thomson, 2006, Sec.4.3 p271 

Static Sign Conventions for Equation of Equilibrium* 

y

A B

m

n

x
P

 Static Sign Convention 

Free-body diagram of the left part Force equilibrium 

Example) 

0p V  

Moment equilibrium about z-axis 
through the point A 

0M x V   

x

P

A

V

M

y

x m

n
x



•Computer Aided Ship Design, III-1. Beam Theory, Fall 2011, Kyu Yeul Lee  
SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

74 
•Computer Aided Ship Design, III-1. Beam Theory, Fall 2011, Kyu Yeul Lee  

-The sign convention for curvature depends upon 
the orientation of the coordinate axes* 
-Curvature is positive when the angle of rotation 
increase as moving along the beam in the positive 
x-direction 

*Gere J.M., Mechanics of Materials, 6th edition, Thomson, 2006, Sec.5.3 p303 

Sign Conventions for Curvature 

Positive Curvature 

x

y

Negative Curvature 

x

y

1 d d

ds dx

 



  

 Static Sign Convention 



d

ds

dx
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Deformation Sign Conventions* 

*Gere J.M., Mechanics of Materials, 6th edition, Thomson, 2006, pp270-271 

Deformation sign conventions 

Sign conventions for stress resultants are called  

deformation sign conventions. 

The algebraic sign of a stress resultant  
is determined by how it deforms the material  
on which it acts rather than by its direction in space. 
 
They are independent of the coordinates system 
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Static sign conventions and Deformation sign conventions  

The shear force V, which is a positive shear force according to the 

deformation  sign convention, is given a negative sign in the equation of 

equilibrium because it acts downward to the y-axis. 

Static Sign Conventions 

Deformation Sign Conventions 

V

V V

V

M M M M

M M

V

V
M

V

M

V

Positive Shear, Moment Negative Shear, Moment

the upper part

the lower part

the upper part

the lower partM

V

Positive

Shear, Moment

Negative

Shear, Moment

V
M

y

P

A

V

M

A B

m

n

x
P

Free-body diagram of the left part 

y

x

Example) 

m

n

x

x

y

x

y

x

The shear force V, is given a positive sign in the equation of 

equilibrium if the y-axis is opposite  

y

x

y

x
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Example of Static Sign Convention for Reaction forces 

x

y

P

Example) 

A B

2

L

4

L

4

L

0M

Given : force      and        moment 
 
Find : reaction forces at point    and 

P
0M

A B
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Example of Static Sign Convention 
for Reaction forces 

x

y

P

Example) 

A B

2

L

4

L

4

L

0M

AR BR

Free-body diagram 

P

x

y

A B0M

2

L

4

L

4

L

Given : force      and        moment 
Find : the reaction forces at point    and 

P 0M
A B

Moment Equilibrium about z-axis through the point B 

3

4

L
P  0M AR L+ - - 0

03

4
A

MP
R

L
  

z at BM 

Moment Equilibrium about z-axis through the point A 

4

L
P  0M BR L- z at AM  - + 0 0

4
B

MP
R

L
  

Static Sign Conventions 

M

V

Positive

Shear, Moment

Negative

Shear, Moment

V
M

y

x

y

x

z
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Example of Static Sign Convention for  
opposite directing reaction forces 

What will happen if the directions of the 
reaction forces are assumed to be 
opposite? 

0

0

4

3

4

B

A

MP
R

L

MP
R

L

 

 

x

y

P

Example) 

A B

2

L

4

L

4

L

0M

P

x

y

A B0M

AR BR

P

x

y

A B0M

AR BR

Free-body diagram 
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Example of Static Sign Convention for  
opposite directing reaction forces 

P

x

y

A B0M

AR BR

Free-body diagram 

Moment Equilibrium about z-axis through the point A 

4

L
P  0M BR L - z at AM  - - 0

0

4
B

MP
R

L

 
    

 

Moment Equilibrium about z-axis through the point B 

3

4

L
P  0M AR L + - + 0

03

4
A

MP
R

L

 
    

 
z at BM 

y

x

z
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Example of Static Sign Convention for  
opposite directing reaction forces 

x

y

P

Example) 

A B

2

L

4

L

4

L

0M

What will happen if the direction 
are assumed to be opposite? 

P

x

y

A B0M

AR BR

0

4
B

MP
R

L

 
    

 

03

4
A

MP
R

L

 
    

  B BR R  

A AR R  

0

0

4

3

4

B

A

MP
R

L

MP
R

L

 

 

P

x

y

A B0M

AR BR
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Example of Static Sign Convention for  
opposite directing reaction forces 

What will happen if the direction are 
assumed to be opposite? 

P

x

y

A B0M

AR BR

P

x

y

A B0M

AR BR

7[ ], 3[ ]A BR N R N    

7[ ], 3[ ]A BR N R N for instance,  ① 
A A

B B

R R

R R

  

  

② 

P

x

y

A B0M

7[ ]N 3[ ]N

③ it means 

P

x

y

A B0M

7[ ]N 3[ ]N

④ it means 

the same!! 

x

y

P

Example) 

A B

2

L

4

L

4

L

0M

C
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Example of Static Sign Convention 
for Shear force and bending moment  

x

y

P

Example) 

A B

2

L

4

L

4

L

0M

Given : force      and        moment 
 
Find : shear force and bending moment at a point between     and 

P
0M

C

C B
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Example of Static Sign Convention 
 for Shear force and bending moment  
Free-body diagram 

How can we assume the directions of the shear force and the bending 
moment? 

Let us assume that the material would deform in the direction of the figure 
below (case1) 

P

x

y

A 0M

AR

V M

P

x

y

A 0M

AR

V
M

x

y

P

Example) 

A B

2

L

4

L

4

L

0M

C

Given : force      and        moment 
Find : shear force and bending moment 
         at a point between     and 

P
0M

C B

x
4

L
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Example of Static Sign Convention for Shear force and 
bending moment  

P

x

y

A 0M

AR

V
M

Moment Equilibrium about z-axis through the point A 

4

L
P  0M V x- z at AM  - + 0

0
4

PL
M M V x    

M+ 

Force Equilibrium 

P V- yF  + 0 AV P R  AR+ 

03

4
A

MP
R

L
 

y

x

z

4

L

x
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Example of Static Sign Convention 
for opposite directing shear forces and bending moments  

Free-body diagram 

P

x

y

A 0M

AR

V M

P

x

y

A 0M

AR

V
M

x

y

P

Example) 

A B

2

L

4

L

4

L

0M

C

Given : force      and        moment 
Find : shear force and bending moment 
         at a point between     and 

P
0M

C B

0
4

PL
M M V x   

AV P R 

P

x

y

A 0M

AR x

V  M 

What will happen if we assume that the material 
would deform in the opposite direction of case1 ? 

case1 

case2 

x
4

L
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Static Sign Convention for  
opposite directing shear forces and bending moments  

P

x

y

A 0M

AR x

V  M 

Moment Equilibrium about z-axis through the point A 

4

L
P  0M V x - z at AM  - - 0

0
4

PL
M M V x      

M - 

Force Equilibrium 

P V - yF  - 0 AV R P  
AR+ 

Static Sign Conventions 

M

V

Positive

Shear, Moment

Negative

Shear, Moment

V
M

y

x

y

x

z
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Static Sign Convention for  
opposite directing shear forces and bending moments  

P

x

y

A 0M

AR x

V  M 

What will happen if we assume that the material 
would deform in the opposite direction of case1 ? P

x

y

A 0M

AR

V
M

( )A AV R P P R     

0
4

PL
M M V x   

AV P R 

0
4

PL
M M V x     

V V

M M

  

  

0

0

( )
4

( )
4

A

A

PL
M M P R x

PL
M R P x

      

 
      

 

 0
4

A

PL
M M R P x    

case1 

case2 
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Static Sign Convention for  
opposite directing shear forces and bending moments  

the same!! 

P

x

y

A 0M

AR

V
M

for instance,  ① 3[ ], 25.5[ ]V N M Nm 

② 

V V

M M

  

  

3[ ], 25.5[ ]V N M Nm    

P

x

y

A 0M

AR x

V  M 

③ it means 

P

x

y

A 0M

AR x

3[ ]N

25.5[ ]Nm

④ it means 
P

x

y

A 0M

AR x

3[ ]N

25.5[ ]Nm

What will happen if we assume that the material would deform in the opposite 
direction of case1 ? 

case2 
case1 



•Computer Aided Ship Design, III-1. Beam Theory, Fall 2011, Kyu Yeul Lee  
SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

90 
•Computer Aided Ship Design, III-1. Beam Theory, Fall 2011, Kyu Yeul Lee  

Given : force      and        moment 
 
 
Find : 1) reaction forces at point    and 
         2) shear force and bending moment at a point between     and 

Example of Static Sign Convention  
with Vector notation 

x

y

P

Example) 

A B

2

L

4

L

4

L

0M

Let us use the vector notation for the example 

P
0M

A B

C

C B

x

y

z

ij

k
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Find reaction forces at point  A  and  B 
with Vector notation 

x

y

P

Example) 

A B

2

L

4

L

4

L

0M

Given values in the vector notation 

10 , 10P   P j

015 , 15M   0M k

C

x

y

z

ij

k

30 , 30L L i

x

y

A B

O

30 0 30

, : position vector

AB

AB OB OA

OB OA



    

L

i i i

c.f) 
A B

O
AB OB OA 
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Find reaction forces at point  A  and  B 
with Vector notation 

Moment Equilibrium about z-axis through the point A 

4
B    0

L
P M L Rz at AM

4
B

L
P M L R    0i j k i j

0
4

B

L
P M L R     0k k k 0

4
B

L
P M L R

 
     

 
0 k

it means,  3B BR R j j

30
( 10) ( 15) 30 0

4
BR

 
       

 
kfor instance, 

30
30 10 15

4
BR   

10 15 5 1
3[ ]

4 30 2 2
BR N    

x

y

P

Example) 

A B

2

L

4

L

4

L

0M

C

x

y

P

Example) 

A B0M

C

graphically, 3[ ]N
BR
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Find reaction forces at point  A  and  B 
with Vector notation 

Moment Equilibrium about z-axis through the point B 
3

4
A    0

L
P M L Rz at BM

3

4
A

L
P M L R    0i j k i j

3
0

4
A

L
P M L R     0k k k

3
0

4
A

L
P M L R

 
     

 
0 k

it means,  7A AR R j j

C x

y

P

Example) 

A B

2

L

4

L

4

L

0M

C

30 , 30L   L i

x

y

A B

O

0 30 30

, : position vector

BA

BA OA OB

OA OB



     

L

i i i

Caution, 

3 ( 30)
( 10) ( 15) ( 30) 0

4
AR

 
       

 


 k

7[ ]AR N 

for instance, 

3 ( 30)
30 ( 10) ( 15)

4
AR

 
     

x

y

P

Example) 

A B0M

C

graphically, 3[ ]N7[ ]N
AR

c.f) 
A B

O BA OA OB 

3 3

4 4

0 30 30

3 3 ( 30)

4 4

BA

BA OA OB

BA



     

 


L

i i i
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Find shear force at x with Vector notation 

x

y

A

AR

x

V
10P N

Force Equilibrium 

yF
A  R P V 0AR P V   j j j

( ) 0AR P V  j

for instance, (7 ( 10) ) 0V   j

3[ ]V N

it means,  3V V j j

7A AR R j j

x

y

P

Example) 

A B

2

L

4

L

4

L

0M

C

x

y

A

AR

x

10[ ]P N

3[ ]Ngraphically, 

V

10 , 10P   P j
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Find bending moment about z-axis  
through the point x  with Vector notation 

7A AR R j j

x

y

P

Example) 

A B

2

L

4

L

4

L

0M

C

x

y

A

AR

x

10[ ]P N

M

Moment Equilibrium about z-axis through the point A 

0
4

     
L

P M x V Mz at AM

0 0
4

L
P M x V M      k k k k

0
4

L
P M x V     i j k i j M

0 0
4

L
P M x V M

 
      

 
k

for instance, at 
30 3

( 10) ( 15) (30) (3) 0
4 4

M
 

        
 

k
3

, 3,
4

xx L R  25.5[ ]M Nm

it means,  25.5M M k k

x

y

A

AR

x

10[ ]P N

25.5[ ]Nm
graphically, 

M
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Static Sign Convention for Shear force and bending moment  

Exercise: Do it yourself and explain why. 

case1 

V

M

V

M

case2 

x

y

A
0 15[ ]M Nm

x

10[ ]P N

AR

4

L

4

L

There were no differences between the case1 and the case2 for the 
solution of the problem. 

M

V

M

case3 case4 

V

Do you think we will have (the) same solutions if we assume the directions of the 
shear forces and the bending moments as the case3 and case4? 
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Static sign conventions and Deformation sign conventions 

M

We have (the) same solutions for all the cases. It means we can assume 
arbitrary directions for the shear forces and the bending moments to solve 
this problem. 

case2 case1 

V

M

V

M

V

M

case3 case4 

x

y

A
0 15[ ]M Nm

x

V
10[ ]P N

AR

4

L

4

L

What is the difference between the two problems? 

Can we assume any arbitrary directions for the shear forces and the 
bending moments for the problem below? 

x

y

( )f x

1M
dx

1V

dxxf )(

2M

2V

Free-body diagram 
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Deformation Sign Conventions* 

*Gere J.M., Mechanics of Materials, 6th edition, Thomson, 2006, pp270-271 

Deformation sign conventions 

The algebraic sign of a stress resultant  
is determined by  how it deforms the material  
on which it acts rather than  
by its direction in space. 
 
They are independent of the coordinates system 
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Directions of shear forces and bending moments 
for the free body diagram of a beam element 

x

y

( )f x

the directions of two unknowns should be defined  ‘a reference’ is required 

‘a reference’ is required  in which the directions of shear forces and bending 
moments  can be explained the bending in accordance with the physical 
phenomenon (or to make the equation ‘solvable’) 

Can we assume any arbitrary directions for the shear forces and the 
bending moments for the free body diagram of a beam element as below? 

1M
dx

1V

dxxf )(

2M

2V

Free-body diagram 
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Directions of shear forces and bending moments 
for the free body diagram of a beam element 

x

y

( )f x

The deformation sign convention is adopted 
for ‘the reference.’ 

,V M

f

Let us introduce the following directions 
as ‘the  reference directions’   

For this bending,  

Why these directions of the shear forces and bending moments  are able to 
explain the bending in accordance with the physical phenomenon? (in other 
words, are the directions reasonable for describing the bending?) 

1M
dx

1V

dxxf )(

2M

2V

Free-body diagram 
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Deformation sign conventions* for distributed load 

,V M

( )f x

,V dV M dM Are the directions reasonable? 

1) Distributed Load ( )f x

x

y

( )f x

Gravitational force 

Since, all the structures on earth are subject to the downward 
gravitational force, it is very natural to consider the direction of 
the distributed load as vertically downward. 

* Sign conventions for stress resultants are called deformation sign conventions  

 because they are based upon how the material is deformed. 

 The sign of deformation convention depends upon how it deforms the material, not upon its direction in space. 

By contrast, when writing equations of equilibrium we use static sign conventions,  

in which forces are positive or negative according to their directions along the coordinates axes.    
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Deformation sign conventions for shear forces 

2) Shear force    : direction  V

Are the directions reasonable? 
bending,  

Tangential shear force on the 
sectional surface of the left 
part of the element, which is 
acting downward, is defined 

as positive 

V

x

y

( )f x

Free-body diagram of the left part 

f

reaction 

V

f

Free-body diagram of the right part 

cut 

in the same manner,  If we consider the free-body 

diagram in accordance with the 

Newton’s third law, the directions of 

the shear forces are reasonable. 

,V M

( )f x

, dV dV M M 
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Magnitudes of shear forces  

 

  V

bending,  

x

y

( )f x
cut 

While the magnitude of the shear forces are same for the surface at a 

point in accordance with the Newton’s third law, it is, however,  

reasonable to assume the shear forces are different at different 

positions. 

,V M

( )f x

, dV dV M M 

V V dV

dx
It shows that the length of 

element, dx, converges to zero. 
It shows that the internal shear 

forces are cancelled out.  
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Deformation sign conventions for bending moments  

 

3) Bending moment       : direction  M

Are the direction reasonable? 
bending,  

If we consider the deflected geometry of a structure subjected to the 

gravitational force, the direction of bending moments are reasonable 

,V M

( )f x

, dV dV M M 

x

y

( )f x

Gravitational force 

 Bending moment       : magnitude  M

By analogy with the magnitudes of the shear forces, it is reasonable to 

assume the bending moments are different at different positions.  
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Deformation sign conventions for bending moments  
 

x

y

( )f x

,V M

f

For this bending,  

The directions are reasonable for describing the 
bending due to the distributed load. 

We define these directions as ‘positive’ for the 
‘positive’ bending 

Deformation Sign Conventions 

1M
dx

1V

dxxf )(

2M

2V
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Deformation Sign Conventions for Normal Stress* 

*Gere J.M., Mechanics of Materials, 6th edition, Thomson, 2006, Sec.1.2 p4 





positive 

negative 

When a sign convention for normal stresses is required, 
it is customary to define tensile stress as positive and  
compressive stresses as negative 
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-The algebraic sign of a stress resultant is determined by 
how it deforms the material on which it acts rather than 
by its direction in space 

*Gere J.M., Mechanics of Materials, 6th edition, Thomson, 2006, Sec.4.3 p271 

*Gere J.M., Mechanics of Materials, 6th edition, Thomson, 2006, Sec.9.2 p598 (figure9-4) 

Summary : Deformation Sign Conventions for Shear Forces, Bending 
Moments and Distributed Loads* 

V

a positive shear force  
acts clockwise 
against the material 

V

a negative shear force  
acts counterclockwise 
against the material 

M

a positive bending 
compresses the upper part  
of the beam 

the upper part 

the lower part 

M

a negative bending 
compresses the lower part  
of the beam 

the upper part 

the lower part 

Positive  
-Shear,  
-Bending 
Moment, 
-Intensity of 
distributed load 

,V M

f

,V M

f
Negative  
-Shear,  
-Bending 
Moment, 
-Intensity of 
distributed load 

f

f
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Deformation sign conventions for distributed load, 
shear forces, and bending moments  
In accordance with the deformation 
sign conventions, we assume directions 
of the distributed load, the shear 
forces, and the bending moments are 
positive to obtain the relations of them. 

,V M

f

‘Positive’ 

x

y

( )f x

1M

1V

dxxf )(

2M

2V

1M
dx

1V

dxxf )(

2M

2V
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1M
dx

1V

dxxf )(

2M

2V

Relations of Distributed Load, Shear Forces, and 
Bending Moments  
We obtain the relations of the distributed load, shear forces, and the 
bending moments by using the equations of equilibrium. 

Force equilibrium 

( ) ( ) 0V V dV f x dx   

( )
dV

f x
dx

  

2

1
( ) ( ) ( ) 0

2

1
( ) ( ) 0

2

M M dM V dV dx dx f x dx

dM Vdx dV dx dx f x

       

     

x

y

Moment equilibrium about z-axis through the point  

( )
dM

V x
dx

 

neglecting the second order or high terms 
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Relations of Distributed Force, Shear Forces, and Bending Moments 
 with Vector notation  

1 1 2 2

1 1 2 2

, ,

,

V V

M M

 

 

V j V j

M k M k

( ) : given in vector

e.g., ( ) ( )

x

x f x

f

f j

1 2 1 2, , , :unknownV V M M

1 1consider , atV V M M  

   2 2then, ,V V dV M M dM    

   1 2 1 2, , ,V V dV M M dM       V j V j M k M k

1M
dx

1V

dxxf )(

2M

2V

x

y
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Relations of Distributed Force, Shear Forces, and Bending Moments 
 with Vector notation  

Force equilibrium 

1 2 ( ) 0y x   F V V f

      

 

( ) 0

( ) 0

V V dV f x

V V dV f x dx

dx     

   

j j j

j

( )
dV

f x
dx

  

1M
dx

1V

dxxf )(

2M

2V

x

y

 

 

1 2

1 2

( ) ( )

, ,

,

x f x

V V dV

M M

dx

dM



   

   

f j

V j V j

M k M k
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Relations of Distributed Force, Shear Forces, and Bending Moments 
 with Vector notation  

( )
dM

V x
dx

 

21
( )( ) 0

2
M M dM Vdx dV dx f x dx

 
        
 

k

 1 2 2

1

2
( 0)z d d x      M fM M x V x

        
1

( ) 0
2

M M dM dx V dV dx f dxx
 

           
 

k k i j i j

  0dM Vdx k

Moment equilibrium about z-axis  
through the point  

neglecting the second order or higher terms 

1M
dx

1V

dxxf )(

2M

2V

x

y

 

 

1 2

1 2

( ) ( )

, ,

,

x f x

V V dV

M M

dx

dM



   

   

f j

V j V j

M k M k
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Sign Conventions and  
Differential Equation of Deflection Curve of Beam 

( )
dV

f x
dx

 

( )
dM

V x
dx



2

2

d y
M EI

dx
Recall, 

2

2

d y M

dx EI


3

3

1 1
( )

d y dM
V x

dx EI dx EI
   

4

4

1 1
( )

d y dV
f x

dx EI dx EI
    

This equation is derived with the positive shear 
forces and the positive bending moments in 
deformation sign conventions 

4

4
( )

d y
EI f x

dx
 

the equation is derived with the positives 
directions of the distributed load, the shear forces, 
and the bending moments. 

Differential equation of deflection curve of a beam 

M
dx

V

dxxf )(

M dM

V dV

x

y
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45/65

Bending Moment
Derivation of Deflection Curve of Beam

x

y
E


 

neutral
surface 

neutral axis

<section AA’ >

dA

y

y

x

A

A

xdM y dA

Bending moment about the neutral 
axis due to the normal stress acting 
on a infinitesimal area  

M

x

y
2

1

dA

상면

하면

x

x

dA

Considering the sign convention, 
we need to add ‘minus sign’ for the 
bending moment. (We will see this 
in the next lecture in detail)

<Section view><Elevation view>

xdM y dA  

y



deformation (ref : Gere) B.M. 
Κ 

=1/ρ 
y ε σ check 

dM= 

yσdA 
dM relation btw V, M, f(x)  

+ + 

+ - comp. 

- 

+ tension - 

Sign Conventions and Differential Equation of Deflection Curve 
of Beam  

y

x

A
M dM 

M

x

y
2

1

dA

상면

하면

y

or

y









convention 

Derived 

E   y dA dM 

ydA

modified 

4

4
( )

d y
EI f x

dx
 

 ( ) 0V f x dx V dV   

( )
dV

f x
dx

  

 
1

( ) ( ) 0
2

M f x dx dx M dM V dV dx       

)(xV
dx

dM


not match! 

2

( )

A

A

A

M y dA

E
y y dA

E
M y dA







 

  









2

2

M d y

EI dx


Distributed load, shear force, bending moment, curvature, bending : positive  

Recall, p.47  

modified 

2

( ) ( )x

x

d d

y dA

y dA

y y
y E dA E dA





 

 

 

 

 
    

 

M y F

j i

k

k k

Recall, p.47  

M

V

dxxf )(

M dM

V dV

x

y
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deformation (ref : Gere) B.M. 
Κ 

=1/ρ 
y ε σ check 

dM= 

yσdA 
dM relation btw V, M, f(x)  

+ + 

+ - comp. 

- 

+ tension - 

Sign Conventions and Differential Equation of 
Deflection Curve of Beam - Comparison 

y

x

A
M dM 

M

x

y
2

1

dA

상면

하면

y

or

y









convention 

Derived 

E   y dA dM 

ydA

modified 

not match! 

- - 
+ + tension 

+ 

- comp. - 

y

or

y









ydA 2

( )

A

A

A

M y dA

E
y y dA

E
M y dA







 

  









2

2

M d y

EI dx


modified 

4

4
( )

d y
EI f x

dx
 

 ( ) 0V f x dx V dV    

( )
dV

f x
dx

  

 
1

( ) ( ) 0
2

M f x dx dx M dM V dV dx      

)(xV
dx

dM


not match! 

y

x

2

( )

A

A

A

M y dA

E
y y dA

E
M y dA







 

  









2

2

M d y

EI dx


Distributed load, shear force, bending moment, curvature, bending : positive  

Distributed load, shear force, bending moment, curvature, bending : negative  

4

4
( )

d y
EI f x

dx
 

 ( ) 0V f x dx V dV   

( )
dV

f x
dx

  

 
1

( ) ( ) 0
2

M f x dx dx M dM V dV dx       

)(xV
dx

dM


M

V

dxxf )(

M dM

V dV

x

y

dxxf )(

x

y

M

V

M dM

V dVx

y
2

1

dA

상면

하면

M
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Comparison : Gere1) and 임상전2) 
convention 

Derived 

E   y dA dM 
1) Gere J.M., Mechanics of Materials, 6th edition, Thomson, 2006 

2) 임상전 편저, 재료역학, 2002년 ,문운당 ( Timoshenko S., Young D.H., Elements of strength of materials, 5th edition, Van Nostrand, 1968 

+ - 
- - comp. 

+ 

+ tension + 

y

or

y





ydA

match 

y

x

2

2

d y M

dx EI
 

ref : 임상전 

All sign conventions  used in ‘임상전 ‘are same as those of ‘Gere’ except the opposite direction of y-axis. 

≠ 

B.M. 
Κ 

=1/ρ 
y ε σ check 

dM= 

yσdA 
dM relation btw V, M, f(x)  

A
M dM 

modify considering the curvature 

2

2

d y M

dx EI
 

deformation (ref : Gere) B.M. 
Κ 

=1/ρ 
y ε σ check 

dM= 

yσdA 
dM relation btw V, M, f(x)  

+ + 

+ - comp. 

- 

+ tension - 

y

x

A
M dM 

M

x

y
2

1

dA

상면

하면

y

or

y









ydA

modified 

not match! 

2

( )

A

A

A

M y dA

E
y y dA

E
M y dA







 

  









2

2

M d y

EI dx


4

4
( )

d y
EI f x

dx
 

 ( ) 0V f x dx V dV   

( )
dV

f x
dx

  

 
1

( ) ( ) 0
2

M f x dx dx M dM V dV dx       

)(xV
dx

dM


M

V

dxxf )(

M dM

V dV

x

y

4

4
( )

d y
EI f x

dx
 

 ( ) 0V f x dx V dV    

( )
dV

f x
dx

  

 
1

( ) ( ) 0
2

M M dM V dV dx f x dx dx      

)(xV
dx

dM


M
dx

V

dxxf )(

M dM

V dV

x

y
M

x

y

2

1

dA

상면

하면
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Comparison of Solutions : Gere1) and 임상전2) 

‘Gere’ 

4

4

( )d y x
EI w

dx
 

y ( )f x w

x

2

( )
2 2

wLx wx
M x  

( )
2

wL
V x wx 

3 2 3( ) ( 2 )
24

wx
y x L Lx x

EI
   

y

( )f x w

x

4

4

( )d y x
EI w

dx


2

( )
2 2

wLx wx
M x   

3 2 3( ) ( 2 )
24

wx
y x L Lx x

EI
  

y

x

,V M

( )f x

,V dV M dM 

2

wL

0

2

wL


2

8

wL

45

384

wL

EI


2

8

wL


45

384

wL

EI

y

x

,V M

( )f x

,V dV M dM 

Positive Bending Moment 
Positive Curvature 

Positive Bending Moment 
Negative Curvature 

Since ‘Negative Curvature’ is used for 
the ‘Positive Bending Moment’ 

3 2 3

2

2

( ) ( 6 4 )
24

( ) ( 12 12 )
24

( )
2

w
y x L Lx x

EI

w
y x Lx x

EI

w
Lx x

EI

   

   

  

2

wL

0

2

wL


2

8

wL

correction 

match 

match 

Both of the solutions can explain the physical phenomenon  correctly as long as they are interpreted by the used sign conventions. 

1) Gere J.M., Mechanics of Materials, 6th edition, Thomson, 2006 
2) 임상전 편저, 재료역학, 2002년 ,문운당 ( Timoshenko S., Young D.H., Elements of strength of materials, 5th edition, Van Nostrand, 1968 

‘임상전’ 
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1. Beam Theory 

1.4 Examples of Deflection Curve of Beam 
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Example of Deflection Curve of Beam  
– Simply supported beam 

( )f x wy

x

4

4
( )

d y
EI f x

dx
 

Integrate four times 

Boundary Condition 

 

 

 

 

0 0

0

0 0

0

y

y L

EIy

EIy L





 

 

4

4

( )d y x
EI w

dx
 

2

2

(0)

0

EIy c

c

 



③   4

4

0

0

y c

c





①

3
4 3 3 2 3( ) ( 2 )

24 12 24 24

w wL wL wx
y x x x x L Lx x

EI EI EI EI
       

①No displacement at x=0 

④No bending moment x=L 

②No displacement at x=L 

③No bending moment x=0 

4 4

3

4 4

3

( )
24 12

0
24 12

L w wL
y L c L

EI EI

L w wL
c L

EI EI

   

   

②

2 0c 
4 0c 

1
2

wL
c

EI
 

3

3
24

wL
c

EI
  

 
2

wL
V x EIy wx  

 
2

2 2

wLx wx
M x EIy  

2

1

2

1

( )
2

0
2

wL
EIy L c L

EI
wL

c L
EI

   

  

④

4 3 2

1 2 3 4

1 1
( )

24 6 2

w
y x x c x c x c x c

EI
     

3 2

1 2 3

1
( )

6 2

w
y x x c x c x c

EI
     

2

1 2( )
2

w
y x x c x c

EI
    

1( )
w

y x x c
EI

   

by the boundary condition (E≠0, I≠0) 

distributed load ( )f x w
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Example of Deflection Curve of Beam  
– Simply supported beam 

( )f x wy

x

4

4
( )

d y
EI f x

dx
  distributed load ( )f x w

( )
2

wL
V x wx 

2

wL

0

2

wL


x
/ 2L L

2

( )
2 2

wLx wx
M x  

2

8

wL

0 x/ 2L L

3 2 3( ) ( 2 )
24

wx
y x L Lx x

EI
   

45

384

wL

EI


0 x/ 2L L

Bending moment Shear force Deflection 

3 2 3( ) ( 2 )
24

wx
y x L Lx x

EI
   

 
2

wL
V x wx 

 
2

2 2

wLx wx
M x  
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Example of Deflection Curve of Beam 
 – fixed-end beam 

Integrate four times 

Boundary Condition 

 

 

 

 

0 0

0

0 0

0

y

y L

y

y L





 

 

4

4

( )d y x
EI w

dx
 

4 3 2

1 2

4 3 2

1 2

1 1 1
( )

24 6 2

1 1 1
0

24 6 2

y L wL c L c L
EI

wL c L c L
EI

   

   

②

4

4

(0)

0

y c

c





①   3

3

0

0

y c

c

 



③

3 2

1 2

3 2

1 2

1 1
( )

6 2

1 1
0

6 2

y L L c L c L
EI

L c L c L
EI

    

   

④
2

2 ,
12

wL
c

EI
 

1
2

wL
c

EI


22 2 2
4 3 2( ) 1

24 12 24 24

w wL wL wL x x
y x x x x

EI EI EI EI L

 
       

 

①No displacement at x=0 

④No slope at x=0 

②No displacement at x=L 

③No slope at x=0 

4 0c  3 0c 

 
2 2

2

6 6
1

12

wL x x
M x EIy

L L

 
     

 

 
2

1
2

wL x
V x EIy

L

 
    

 

( )f x w

x

y

by the boundary condition (E≠0, I≠0) 

4 3 2

1 2 3 4

1 1
( )

24 6 2

w
y x x c x c x c x c

EI
     

3 2

1 2 3

1
( )

6 2

w
y x x c x c x c

EI
     

2

1 2( )
2

w
y x x c x c

EI
    

1( )
w

y x x c
EI

   

4

4
( )

d y
EI f x

dx
  distributed load ( )f x w
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Example of Deflection Curve of Beam  
by Negative Deformation Sign Conventions 

4

4

( )d y x
EI w

dx
  0)0( y (0) 0y 0)( Ly ( ) 0y L 

After integrate four times, 
2 3 4

1 2 3 4( )
24

w
y x c c x c x c x x

EI
    

2

3 4( ) 2 6
2

w
y x c c x x

EI
   

( )f x w

y

x

2 30
2 4

2 3

3 3

3

24

( )
12 24

12 24

24

w
c c L L

EI

w w
L L L

EI EI

w w
L L

EI EI

w
L

EI

  

  

  

 

1, (0)y c 1 0c 0)0( y

3, (0) 2y c  3 0c (0) 0y 

3 4

2 4, ( )
24

w
y L c L c L L

EI
   3 4

2 4 0
24

w
c L c L L

EI
   0)( Ly

2

4, ( ) 6
2

w
y x c L L

EI
   4

12

w
c L

EI
 ( ) 0y L 

 

3 3 4

3 2 3

( )
24 12 24

2
24

w w w
y x L x Lx x

EI EI EI

wx
L Lx x

EI

   

   
2

( )
2 2

wLx wx
M x  

( )
2

wL
V x wx 

3 2 3( ) ( 2 )
24

wx
y x L Lx x

EI
   

3

2
24

w
c L

EI
 

for example , 
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1. Beam Theory 

1.5 Sign Conventions and  

Differential Equation of  

Deflection Curve of Beam 

 – Interpretation of Shear Forces and 
Bending Moments 
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Sign Conventions and Differential Equation of Deflection 
Curve of Beam – Interpretation of Shear Forces 

( )
2

wL
V x wx 

2

wL

0

2

wL


x
/ 2L L

The values of the function V(x) at x are the values of the 
shear force acting on the cross section of the beam 

,V M

f

Value :  

wL

2

wL

2

wL
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Sign Conventions and Differential Equation of Deflection 
Curve of Beam – Interpretation of Shear Forces 

0at x 

wL

2

wL
2

wL

2

wL 2

wL

2

wL

0
x

/ 2L L

wL

2

wL

2

wL

,V M

f

,V M

f

This shear force  
acts downward. 

And the shear force  
acting downward is 
positive for right side 
of the element 

This shear force  
acts upward. 

And the shear force 
acting upward is 
positive for the left 
side of the element 

The free-body diagram 
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Sign Conventions and Differential Equation of Deflection 
Curve of Beam – Interpretation of Shear Forces 

4

L
at x 

2

wL

The free-body diagram 

2

wL

4

wL

0
x

/ 2L L

wL

2

wL

2

wL

,V M

f

,V M

f

This shear force  
acts downward. 

And the shear force  
acting downward is 
positive for right side 
of the element 

This shear force  
acts upward. 

And the shear force 
acting upward is 
positive for the left 
side of the element 

4

L 4

L

4

wL

3

4

wL

4

wL

4

wL
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Sign Conventions and Differential Equation of Deflection 
Curve of Beam – Interpretation of Shear Forces 

2

L
at x 

2

wL

The free-body diagram 

2

wL

0
x

/ 2L L

wL

2

wL

2

wL

The shear force is zero 

2

L

2

wL

2

wL
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Sign Conventions and Differential Equation of Deflection 
Curve of Beam – Interpretation of Shear Forces 

3

4

L
at x 

2

wL

The free-body diagram 

2

wL

4

wL


0 x
/ 2L L

wL

2

wL

2

wL

,V M

f

,V M

f

This shear force  
acts upward. 

And the shear force  
acting upward is 
negative for right 
side of the element 

This shear force  
acts downward. 

And the shear force 
acting downward is 
negative for the 
left side of the 
element 

3

4

L

3

4

L

4

wL3

4

wL

4

wL

4

wL
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Sign Conventions and Differential Equation of Deflection 
Curve of Beam – Interpretation of Shear Forces 

at x L

2

wL

The free-body diagram 

2

wL

2

wL


0 x
/ 2L L

wL

2

wL

2

wL

,V M

f

,V M

f

This shear force  
acts upward. 

And the shear force  
acting upward is 
negative for right 
side of the element 

This shear force  
acts downward. 

And the shear force 
acting downward is 
negative for the 
left side of the 
element 

l

wL

2

wL

2

wL
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Sign Conventions and Differential Equation of Deflection 
Curve of Beam – Interpretation of Bending Moments 

Why is the bending moment maximum at         ? 

2

( )
2 2

wLx wx
M x  

2

8

wL

0 x/ 2L L

2

L
x 

2

2

( )
(12 6 )

24

d y x wx
x L

dy EI
  

3 2 3( ) ( 2 )
24

wx
y x L Lx x

EI
   

2

2

( ) ( )M x d y x

EI dx
since, 

The bending moment is maximum at the point at which 
the curvature is maximum. 0 1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

) 10, 1
24

w
ex L

EI
  Maximum 

curvature 

2

2

( )d y x

dx
curvature 

x
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Sign Conventions for Stress Analysis 
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Equations of Motions 

d
m

dt


V
F

Newton’s second law 

Body Surface F F F

Classification of the resultant force 

surface force 

mass 
acceleration 

body force 

Derivation of Equations of Motions 

Body Surface

d
m

dt
 

V
F F Sign convention 

for stress analysis 
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Element of Material 

d
m

dt

V

mass of the element 
acceleration  of the element 

body force of the element 

surface force of the element 

Derivation of Equations of Motions 

Element 

Body Surface F F
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Surface Forces : Normal Stress and Shearing Stress 

Normal Stress 

Shearing Stress 

Shearing Stress 

Element 




Normal stress  : one normal direction 

Shearing stress   : two tangential direction 

Orientation of the surface 

Direction of the force 

xx

yx

x
x

x


 





x

y

z

x

yx

zx

Notation 
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Sign Convention for Normal Stress 

Normal Stress Sign Convention* 
A normal stress is defined as positive if it is a tensile stress, i.e., 
if it is directed away from the surface upon which it acts 

*Wang.C.T , Applied Elasticity ,  McGRAW-HILL, 1953, p2 
*Kundu P.K., Cohen I.M., Fulid Mechanics, Fourth Edition, Academic Press, p31 

Element 

xy

z
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Sign Convention for Normal Stress 

*Wang.C.T , Applied Elasticity ,  McGRAW-HILL, 1953, p2 
*Kundu P.K., Cohen I.M., Fulid Mechanics, Fourth Edition, Academic Press, p31 

Element 

x

y

z

A shearing stresses are positive if they are in the positive directions of the 
other two coordinates axes on any surface where the tensile stress is in 
the positive direction of the coordinate axis. 

If the tensile stress is opposite to the positive axis, the positive directions of the 
shearing stresses are also opposite to the positive axes. 

Shearing Stress Sign Convention* 

xy

z
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Stress Components 
No. of Stress Components at a Point 

dy

dz

dx

x

y

z

At a point 

element 

x

y

z

x

xy

xz

yx
y

yz

zx
zy

z

yx 

y 

yz 

x 

xy 

xz 
zx 

zy 

z 

18 stress components at a point 
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Stress Components 
No. of Stress Components at a Point 

Element 

x

y

z

P

P

right part 

P

left part 

Free-body  
diagram 

Action Reaction 

At a point 

x x
P

x
x
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Stress Components 
No. of Stress Components at a Point 

At a point 

x x
P

c.f) shear force 

, ,x x xy xy xz xz         
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Stress Components 
No. of Stress Components at a Point 

dy

dz

dx

x

y

z

At a point 

element 
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z
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xy

xz
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yz

zx
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, ,x x xy xy xz xz         

in same way 
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Stress Components 
No. of Stress Components at a Point 

dy

dz

dx

x

y

z

At a point 

element 

x

y

z

x

xy

xz

yx
y

yz

zx
zy

z

yx 

y 

yz 

x 

xy 

xz 
zx 

zy 

z 

18 stress components at a point 

9 independent stress components 
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Stress Components 

Through a point in a body we can construct three orthogonal coordinate 

planes on which we have  9 independent stress components 

x
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z
x
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yz

xz

z
xy

No. of Independent Stress Components at a Point 
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At a point 
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in other figure 
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Stress Components 

Through a point in a body we can construct three orthogonal coordinate 

planes on which we have 9 independent stress components 

x

y

z
x

yx

zx

y

zy

yz

xz

z
x

y

z
xy

Are all the 9 stress components independent at a point? 

Let us consider the moment equations for an element 
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Moment Equations for Element 
- Stresses on the Surface of an Element 
 

Stresses on the Surface of an Element 

x

1

2
x

x 

How we can describe the stresses on the surface of 

an element, if the stresses at the center of the 

element are known? 
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Linearization 
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Moment Equations Force stresses 
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Stresses on the Surface of an Element 
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Stresses on the Surface of an Element 
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Moment Equations Force stresses 
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Stresses on the Surface of an Element 

Stress components associated with the moment about    axis      x

y
z

Moment Equations Force stresses 
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Moment Equations for Element 
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Moment Equations for Element  with Vector Notation 
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Moment Equations for Element : Vector Notation 
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 ,xz zx yz zy    in the same way, 

Moment Equations for Element 

Rotational equilibrium of the element* 
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*Kundu,P.K., Fluid Mechanics, Academic Press, 2008, pp.88-93 
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Stress Components at a point 

Through a point in a body we can construct three orthogonal coordinate 

planes on which we have 9 independent stress components 
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Are all the 9 stress components independent at a point? 

Let us consider the moment equations for an element 

, ,xy yx xz zx yz zy       

, ,, , ,x y z xy xz yz     

Six independent stress components 
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Stress Analysis  
- Net surface in the x-direction  
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d
m

dt
 

V
F F

Stress components associated with the forces in the x-direction 
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Stress Analysis  
- Net surface  on the element in the x-direction  
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

Net surface force acting on the element in 

the x-direction : 

1 1

2 2

x x
x xx x y z

x x
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 
   
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   
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   

stress area force 
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Stress Analysis with Vector Notation Body Surface

d
m

dt
 

V
F F

Stress components acting on the element in the x-direction 
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Stress Analysis 

Net surface force acting 

on the element in the x- 

direction : 

stress area force 
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y
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z
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Stress Analysis 

Net surface force acting on the element in the x,y, and z direction 

for unit volume 

,

yxx zx
Surface xF

x y z

  
  

  

,

xy y zy
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x y z
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  

  

,

yzxz z
Surface zF

x y z

  
  

  

Body Surface

d
m

dt
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V
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Equations of Motions 

Body Surface

d
m

dt
 

V
F F

surface force of the element 

body force of the element 

acceleration  of the element 
mass of the element 

,

,

,

yxx zx
Surface x

xy y zy

Surface y

yzxz z
Surface z

F
x y z

F
x y z

F
x y z

 

  

 

 
  

  

  
  

  

 
  

  

per unit volume 
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Surface Force Body Surface

d
m

dt
 

V
F F
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x y z
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Fluid Mechanics Elasticity 
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Body Force, Surface Force Body Surface

d
m

dt
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Fluid Mechanics Elasticity 
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Acceleration Body Surface

d
m

dt
 

V
F F
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Fluid Mechanics Elasticity 
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Mass , Acceleration Body Surface

d
m

dt
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V
F F
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Fluid Mechanics Elasticity 
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Equations of Motions Body Surface

d
m

dt
 

V
F F
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x

u u u u
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t x y z x y z

 
 
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2

2
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Y
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Z
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
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Fluid Mechanics Elasticity 

2 2 2

2 2 2
0

d u d v d w

dt dt dt
  Static Equilibrium : Cauchy Equation 
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Equations of Motions 

*Betounes D., Partial Differential Equations for Computational Science, Springer, 1998, p343 

Body Surface

d
m

dt
  

V
F F F

Equations of 

Motion 

Fluid Equations of 
Motion 
Navier Stokes Equations 

Formulation of Elasticity 
Problems (Static) in 
displacement components  

Linear Elastic Equations of Motion*   
(also called the Navier Equations : 
principal Equations for the motion)  

2
2

2
0 ( )

u
X G G u

x



    



( ) : displacementu u x

: velocity vector

( ( , , ; ), ( , , ; ), ( , , ; ))u x y z t v x y z t w x y z t

V

V

  2

3
x

u u u u P
u v w g u

t x y z x x


  
      

         
      

2 2
2

2 2
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u u
F u

t x
    
 

    
 

( , ) : displacementu u x t

Total 
Derivative of 
Velocity Vector 

2

N s
: viscosity ,

m


 
 
 

du dv dw

dx dy dz
    V

Newtonian fluid 

velocity profile 
y

( )u y

dudt

dy
d

, xy

du du dv

dy dy dx
  

 
   

 

, : Lame Elastic constant 

2
,

(1 )(1 2 )

E N

m




 

 
     

ν : Poisson’s Ratio 
G : Shear Modulus 
E : Young’s Modulus 

2
,

N
G

m


 
  

 

xy xy

v u

x y
  
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   

  
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
 


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

cause motion
d

m
dt

 
V

F

without motion internal change  strain   F

dynamics   

statics  

Dynamics and Statics 
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2. Grillage Analysis for 
Midship Structure 
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Application 

Bar 

Beam 

Shaft 

Summary 

Element Behavior 

Tension 

Bending 

Torsion 

Midship Cargo Hold 

2

2

( )
0

d u x
EA

dx


4

4

( )
0

d y x
EI

dx


Structure 

•Superposition of Stiffness Matrix 
•Coordinates Transformation 

Truss 

Frame 

Grillage 
2

2

( )
0

d x
GJ

dx




Beam Theory : Sign Convention, Deflection of Beam 

Elasticity : Displacement, Strain, Stress, Force Equilibrium, Compatibility, Constitutive Equation 

:A Sectional Area :

:

E

I

Young’s Modulus 

Moment of Inertia 

:G Shear Modulus 

:J Polar Moment of Inertia :l Length 

Differential 
Equation 

Mx F , 0where x

Weighted 
Residual 

1

2

1 1 (0)

1 1 ( )

u PEA

u P ll

     
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1

3
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2

6 3 6 3 (0)

3 2 3 (0)2

6 3 6 3 ( )

3 3 2 ( )

y

y

dl l V

l l l l mEI
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
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    

     
       
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2 3
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ˆ( )y x b b x b x b x   

1

2
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TGJ

T ll





     
    

    

0 1
ˆ( )x c c x  

Kd F

Finite Element 
Method 

•Discretization 
•Approximation 

Grillage Modeling 

•Equivalent Force & Moment 
•3D 2D 

•Boundary condition 

Engineering  
Concept ! 

Solution 

•programming 
•visulaization 

:u

Vertical Displacement 

:G Shear Modulus 

: Angle of Twist :w

Axial Displacement 

2

20

ˆ( )
0

L

l

d u x
W EA dx

dx

 
 

 


4

40

ˆ( )
0

L

l

d y x
W EI dx

dx

 
 

 


2

20

ˆ( )
0

L

l

d x
W GJ dx

dx

 
  

 


그림에 f1, f2를 표시 

P P 

m(0) m(l) 

V(l) V(0) 

T T

L 표시할 것 

l 

l 

l 
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2.1. ELEMENT : BAR 

- DERIVATION OF THE STIFFNESS MATRIX BY 
APPLYING DIRECT EQUILIBRIUM APPROACH 

Direct method를 logan 용어로 수정 
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Element : Bar (1 element , 2 nodes) 
- Direct equilibrium approach 

ukf 

u

k

f : External force 

: Stiffness coefficient 

: Displacement 

 Hooke’s Law 

u 

f=ku 

k 

f1 f2 

k 
Node 1 Node 2 

u1 
u2 
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f2 

k Node1 
Node 2 

u1=0 

u2 

Element : Bar (1 element , 2 nodes) 
- Direct equilibrium approach  

f1 f2 

k 
Node 1 Node 2 

u1 u2 

f1 

k 
Node 1 

Node 2 

u1 
u2=0 

① Case #1: the node 1 is fixed (u1=0) ② Case #2: the node 2 is fixed (u2=0) 































2

1

2

1

u

u

kk

kk

f

f

③ Actual Case: the nodes are not fixed  

Matrix 

Form ]][[][ uKf 

Stiffness Matrix 

(1)

1 2f ku  (1)

2 2f ku (2)

1 1f ku (2)

2 1f ku 

 1

)2(

1

)1(

1 fff )( 21 uuk 1ku 2ku

 2

)2(

2

)1(

2 fff )( 12 uuk 1ku 2ku

Case No. 

Node No. 

fi : External force 

여기서는 f 가 
internal force임. 
박재영, 운문당, 구
조해석 꼭 어려워야
하나 참고할 것 
세네트 글 참고 

(1)

1f
(2)

2f
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Element : Bar (1 element , 2 nodes) 
- Direct equilibrium approach  































2

1

2

1

u

u

kk

kk

f

f

Stiffness Matrix 

f1 f2 

k 
Node 1 Node 2 

u1 u2 

This stiffness matrix is Singular, i.e., its inverse does not 
exist and it cannot be solved! 

It means that the structure has not been secured to the ground. As the system 
stands, no limitation has been placed on any of the displacements u1 and u2. 
Therefore, the application of any form of external loading will result in the system 
moving as a rigid body. 

The problem can be rendered solvable simply by specifying sufficient boundary 
conditions to prevent the structure moving as a rigid body. Therefore assume node 
1 to be fixed (u1=0), and the force applied on node 2 f2 is given; then u2 can be 
determined and f1 is found consequently.  

=0 

Rockey K. C., The Finite Element method, A basic introduction, Crosby Lockwood Staples, 1975, pp. 16~17 
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2.2 ELEMENT : BAR 

- DERIVATION OF THE STIFFNESS MATRIX BY 
APPLYING GALERKIN’S RESIDUAL METHOD  
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Element : Bar – Problem Definition 

y

x

o

l

( )u x

1f 2f

2

2

( )
( ) 0

d u x
EA f x

dx
 

1 2, :concentrated forces exerted on the ends of the barf f

P와 dP의 차이가 
없는 이유를 써 넣
을 것 

1) The concentrated forces f1 and f2 are exerted on the ends of the bar. 

2) There is no distributed force. 

Given: 

Find: 

1) The displacement at the ends of the bar u1, u2. 

좌표 통일 
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Element : Bar - Differential Eq. 

The bar element is assumed to have constant cross-section area A, modulus of 
elasticity E, and initial length l, and there is no distributed force:  

y

x

o

l

( )u x

1f 2f

a c

b d

a

b

c

d

P

dx

P

2

2

( )
( ) 0

d u x
EA f x

dx
 

P : the (internal) forces acting on the cross sections of a small element of the 
bar of length  dx

1 2, :concentrated forces exerted on the ends of the barf f

( )P A x 

( )P EA x 

E 

( )
( )

du x
P EA x

dx


( )du x

dx
 

From the force equilibrium, “P” dose not 
change along the x-axis 

( )
( ) 0

dP d du x
EA x

dx dx dx

 
  

 

2

2

( )
0

d u x
EA

dx


If A(x) is constant “A” 

Reference) Logan, A first course in the finite element method, 3rd edition, Thomson learning, 2002, p.64 

P와 dP의 차이가 
없는 이유를 써 넣
을 것 

Ad몇과 cd면에 적용해도 동일
한 du/dx가 나옴 본 페이지를 8페이지와 변경할 것 

Boundary Condition 

0

(0) , ( )
x x l

du du
EA P EA P l

dx dx 

 

이와 같이 바운더리를 설명하고 
그러면 바운더리가 무엇인가? 
그래서 8페이지가 나옴 

Differential Equation 
(Governing Equation) 

Then, how can we represent the boundary conditions with the given 
external forces? 
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Element : Bar – Determination of the stress resultant 

y

x

o

l

1f 2f

2

2

( )
( ) 0

d u x
EA f x

dx
 

1 2, :concentrated forces exerted 

on the ends of the bar

f f

P와 dP의 차이가 
없는 이유를 써 넣
을 것 Remember! 

The stress resultant, such as a tensile force P at the end of the bar, is not given, but can be 
represented with the given external forces f1, f2. 

Deformation sign conventions  

(0)P ( )P l

1P : tensile force at x=0 

The minus sign of tensile force P(0) is the result of opposite sign 
conventions between the static and deformation at x=0.  

Static sign conventions  

1(0)P f 

2( )P l f 

Tensile force at x=0 

Tensile force at x=l 

l

Boundary Condition 

0

(0) , ( )
x x l

du du
EA P EA P l

dx dx 

 
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Function Approximation by Shape Functions 
(Basis Function of order 1) 

1

2

1 ,
ux x

where
ul l

  
     
   

N d

Differential Equation without distributed force 

2

2

( )
0

d u x
EA

dx


0 1
ˆ( )u x a a x 

since it is 
approximated 
solution 

2

2

ˆ( )d u x
EA

dx

1
x x

l l

 
  
 

N

1N 2N

1

0
.) ( ) 0ref u v uv xv dx    

basis function 

오스틴의 책의 식인데, 
직접 관련은 없음 

W를 여러 개로 나누는 이유 

Assume an approximation for the displacement in axial direction 
through the element length to be 

This displacement function is appropriate because there are two  
degrees of freedom. 

1 2
ˆ ˆ(0) , ( )u u u l u 

0 1a u
1 2 1

1
, ( )a u u

l
 

should be satisfied. 

1 2
ˆ( ) 1

x x
u x u u

l l

 
   
 

1 1 2 2
ˆ( )u x N u N u 

1 21 ,
x x

where N N
l l

  

1 

0 x

y
1N

1 

0 x

y
2N

l

l

Shape functions Ni 
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Galerkin’s Residual Method  

V

R dV

Differential Equation without distributed force 

2

2

( )
0

d u x
EA

dx


since        is 
approximated solution 

2

2

ˆ( )d u x
EA

dx 0 R

Thus substituting the approximated solution, which satisfy the boundary conditions, into 

the differential equation results in a residual R over the whole region of the problem as 

follows 

In the residual method, we require that a weighted value of the residual be a minimum over 

the whole region. The weighting functions allow the weighted integral of residuals to go to 

zero 

0
V

R W dV 

The basis functions      are chosen to play the role 

of the weighting functions 𝑊𝑖 

Galerkin’s Residual Method: 

iN 0 ,( 1,2)
V

iR dVN i 

1

0
.) ( ) 0ref u v uv xv dx    

오스틴의 책의 식인데, 
직접 관련은 없음 

W를 여러 개로 나누는 이유 

We could require that an “appropriate number” of integrals of the error, “weighted in 
different ways”, be zero 

0i

V

R W dV  , where “ i “is i-th weighting  function. 

ˆ( )u x

, where       is an independent weighting function W

1 1 2 2
ˆ( )u x N u N u 

1 21 ,
x x

where N N
l l

  
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Element : Bar (1 element , 2 nodes) 
- Galerkin’s Residual Method  

2

20

ˆ( )
0 , ( 1,2)

l

i

d u x
AE N dx i

dx
 

이전 장에서 유도한 미분 방정식은 Bar의 모든 미소 element에 대하여 성립해야 

하므로 Galerkin’s residual method를 적용하여 아래와 같이 식을 유도할 수 있다. 

integration by parts 

0
0

ˆ ˆ
0

l
l

i
i

dNdu du
N AE AE dx

dx dx dx

 
  

 


1 1 2 2
ˆ, ( )where u x N u N u 

1 2, 1 ,
x x

N N
l l

  

1

0
02

ˆ1 1
, ( 1,2)

l
l

i
i

udN du
AE dx N AE i

udx l l dx

    
      
    



1

2

1 1 u

ul l

  
    
   

1 2
1 2

ˆ dN dNdu
u u

dx dx dx
 since 

11
1

0
02

ˆ1 1
l

l udN du
AE dx N AE

udx l l dx

    
     
    



12
2

0
02

ˆ1 1
l

l udN du
AE dx N AE

udx l l dx

    
     
    



1:i 

2 :i 

1 1

0

ˆ ˆ

x l x

du du
N AE N AE

dx dx 



2 2

0

ˆ ˆ

x l x

du du
N AE N AE

dx dx 



1 1(0) 1, ( ) 0N N l 

2 2(0) 0, ( ) 1N N l 

since 

(0)P

( )P l

1

0
.) ( ) 0ref u v uv xv dx    

여기 f가 나온것을 설명할 것 

오스틴의 책의 식인데, 
직접 관련은 없음 

Differential Equation 

2

2

( )
0

d u x
EA

dx


P(0) 

P(l) 

Freedom 이야기 쓸 것 

여기에서도 확실히  
0부터 l이라는 것을 표시할 것 

여기서 또 반복할 필요 없음 

여기에서 u헷을 먼저 설명할 
것, N을 설명할 것, 그림도 
넣을 것, 부분적분은 다음 장
에 나올 것 

Galerkin’s residual method 
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Element : Bar (1 element , 2 nodes) 
- Galerkin’s Residual Method  

Differential Equation 
2

2

( )
0

d u x
EA

dx




  1

2

1 1 (0)
uAE

P
ul

 
   

 

  1

2

1 1 ( )
uAE

P l
ul

 
  

 

1

2

1

2

(0)1 1
, , ,

( )1 1

u PEA
where

l

f

u P l f

     
  

 
        
 


K d F Kd F

1

0
.) ( ) 0ref u v uv xv dx    

여기 f가 있어야 할 것 

해당 그림이 있어야 함 

Bar 

(0)P ( )P l

1f 2f

Tensile force 

External force 

좌표까지 표기 

l 

l 

y

x

y

x

11

0
2

1 1
(0)

l udN
AE dx P

udx l l

  
       



12

0
2

1 1
( )

l udN
AE dx P l

udx l l

  
      



     1 1 1 1

2 20 0
2 2 2 2

1 1 1 1 1
1 1 1 1

l lu u u uAE
AE dx AE dx AE l l

u u u ul l l l l l

          
                 
           

 

     1 1 1 1

2 20 0
2 2 2 2

1 1 1 1 1
1 1 1 1

l lu u u uAE
AE dx AE dx AE l l

u u u ul l l l l l

          
                

           
 

L.H.S 
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REFERENCE: GALERKIN’S RESIDUAL METHOD 
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and if we introduce a set of independent trial functions       
 
                                such that              for all  

Approximation by Trial Functions 
- Function Approximation by Trial Functions 

1

ˆ
M

m m

m

a N  


  

where,         are some parameters which are 
computed so as to obtain a good “fit”  

0mN



 
 
If we can find any function     satisfying  

{ ; 1,2,3...}mN m  m

then at all points in     , we can approximate to      by         

ma

frequently 
referred as shape 
or basis function  

[Zienkiewicz 1983] Ch. 2.1 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

181 
Computer Aided Ship Design, III-2. Grillage Analysis for Midship Structure, Fall 2011, Kyu Yeul Lee  

Approximation by Trial Functions 
- Function Approximation by Trial Functions 

1

ˆ
M

m m

m

a N  


 
 

 


0mN



The manner in which     and the trial function set are 

defined automatically ensures that  

the approximation has the property that whatever the 

values of the parameters 



̂ 




ma

[Zienkiewicz 1983] Ch. 2.1 
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Approximation by Trial Functions 
- Weighted Residual Approximations 

1

ˆ
M

m m

m

a N  


 

where,         are some 
parameters which are 
computed so as to obtain 
a good “fit”  

ma

 
 


0mN



We shall now attempt to develop a general method 
for determining the parameters       in the 
approximation 

ma

We begin by introducing the error, or residual       
in the approximation 

R

ˆR    

which is a function of position in  

[Zienkiewicz 1983] Ch. 2.1 
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Approximation by Trial Functions 
- Weighted Residual Approximations 

1

ˆ
M

m m

m

a N  


 

where,         are some 
parameters which are 
computed so as to obtain 
a good “fit”  

ma

 
 


0mN



residual 

ˆR    

In an attempt to reduce this residual in some 
overall manner over the whole domain  

We could require that an appropriate number of 
integrals of the error over     , weighted in different 
ways, be zero 



ˆ( ) 0i iW d W R d  
 

    
1,2,...,i M

where       is a set of independent weighting functions iW

[Zienkiewicz 1983] Ch. 2.1 
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Approximation by Trial Functions 
- Weighted Residual Approximations 

1

ˆ
M

m m

m

a N  


 

where,         are some 
parameters which are 
computed so as to obtain 
a good “fit”  

ma

 
 


0mN



residual 

ˆR    

The general completeness (convergence) requirement 

̂  M as 

can then be cast in an alternative form by requiring 

0iW R d


  for all     as    i M 

[Zienkiewicz 1983] Ch. 2.1 
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Approximation by Trial Functions 
- Weighted Residual Approximations 

1

ˆ
M

m m

m

a N  


 

where,         are some 
parameters which are 
computed so as to obtain 
a good “fit”  

ma

 
 


0mN



residual 

ˆR    

alternative form of completeness requirement 

0iW R d


  for all  i    as    M 

1

( ) 0
M

i m m

m

W a N d 




   

standard weighted 
residual statement ˆ( ) 0iW d 


  

[Zienkiewicz 1983] Ch. 2.1 

the function to be approximated is given 

Find 

User defined 
weighting 

function chosen to satisfy the B/C  

chosen to be zero at the B/C  
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2.3. ELEMENT : BAR 

- COMPARISON BETWEEN “DIRECT EQUILIBRIUM 
APPROACH” AND “GALERKIN’S RESIDUAL METHOD” 
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Element : Bar (1 element , 2 nodes) 
: , :E Young s Modulus A sectional area

f1 f2 

k 
Node1 Node 2 

u1 
u2 































2

1

2

1

u

u

kk

kk

f

f

]][[][ uKf 

EA
k

l


stiffness matrix 

2

2

( )
0

d u x
EA

dx


Galerkin’s  
residual  
method 

Differential Equation 

1 1

2 2

1 1 (0)

1 1 ( )

u fPEA

u fP ll

       
       

      

0 1
ˆ( )u x a a x 

Solutions of D/E using Galerkin’s Residual Method  

Direct equilibrium approach 

l

Bar 

1f 2f

Tensile force 

External force 

P(0) 
P(l) 

l 

l 

(0)P ( )P l

y

x

y

x
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2.4. ELEMENT : BAR 

- DERIVATION OF STIFFNESS MATRIX FOR A BAR 
COMPOSED OF 2 ELEMENTS BY APPLYING 
GALERKIN’S RESIDUAL METHOD 
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y

x

y

x

Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  

Differential Equation 
2

2

( )
0

d u x
EA

dx
 0 x l 

Boundary Condition 

0

(0) , ( )
x x l

du du
EA P EA P l

dx dx 

 

Bar 

P P
Tensile force 

1F 3F
External force 

그림이 반복
되면 너무 어
려움  이미 앞에서 

이 식이 나와
있어야 함 

왜 나누는지 설명해야 함, 17
페이지에서 한글 글자만 있
으면 됨. 

l 

l 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  

2

2
( ) 0 0

d u
A u EA in x l

dx
   

The weighted residual form: 

2

20

ˆ
0, 1,2,3

l

i

d u
W EA dx i

dx

 
  

 


2

2

ˆ
ˆ( ) ( ) 0

d u
A u A u EA in x l

dx
     R

The residual in domain: 

0
0, 1,2,3

l

iW dx i   R

1 1 2 2 3 3
ˆu u N u N u N u   

Node를 왜 3개로 하였는지 
설명, 서매이션을 풀어쓸 것 

Wn을 Wi로 수정할 것 

1 

0 
x

y

1N

1 

0 
x

y

2N

1 

0 
x

y

3N

1x 2x 3x

1 2 3 

1 2 Element 

Node 

Shape functions Ni 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

Integration by parts 

0
0

ˆ ˆ
0, 1,2,3

l
l

i
i

dW du du
EA dx EA W i

dx dx dx

 
    

 


2

20

ˆ
0, 1,2,3

l

i

d u
W EA dx i

dx
 

2

20

ˆ
0, 1,2,3

l

i

d u
W EA dx i

dx

 
  

 


2

20

ˆ
0, 1,2,3

l

i

d u
EA W dx i

dx
 

1 1 2 2 3 3
ˆu u N u N u N u   
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

 1 1 2 2 3 3

0
0

ˆ
0, 1,2,3

l
l

i
i

d N u N u N udW du
EA dx EA W i

dx dx dx

   
   

 


Galerkin methods i iW N

 1 1 2 2 3 3

0
0

ˆ
0, 1,2,3

l
l

i
i

d N u N u N udN du
EA dx EA N i

dx dx dx

   
   

 


31 2
1 2 3

0 0 0

0

ˆ
, 1, 2,3

l l l
i i i

l

i

dN dN dN dNdN dN
EA u dx EA u dx EA u dx

dx dx dx dx dx dx

du
EA N i

dx

 

 
  

 

  

𝑢 ≈ 𝑢 = 𝑁1𝑢1 + 𝑁2𝑢2 + 𝑁3𝑢3 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

1,2,3i 

31 2
1 2 3

0 0 0

0

ˆ

l l l
i i i

l

i

dN dN dN dNdN dN
EA u dx u dx u dx

dx dx dx dx dx dx

du
N EA

dx

 
   

 

 
  
 

  

31 1 1 2 1
1 2 3 1

0 0 0
0

ˆ
l

l l l dNdN dN dN dN dN du
EA u dx u dx u dx N EA

dx dx dx dx dx dx dx

   
     

  
  

32 1 2 2 2
1 2 3 2

0 0 0
0

ˆ
l

l l l dNdN dN dN dN dN du
EA u dx u dx u dx N EA

dx dx dx dx dx dx dx

   
     

  
  

3 3 3 31 2
1 2 3 3

0 0 0
0

ˆ
l

l l ldN dN dN dNdN dN du
EA u dx u dx u dx N EA

dx dx dx dx dx dx dx

   
     

  
  
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

31 1 1 2 1 1

00 0 0

1

32 1 2 2 2
2 2

0 0 0

3
3 3 3 31 2

0 0 0

ˆ

ˆ

l

l l l

l l l

l l l

du
dNdN dN dN dN dN N EA

dx dx dx dx
dx dx dx dx dx dx u

dNdN dN dN dN dN du
EA dx dx dx u N EA

dx dx dx dx dx dx dx
u

dN dN dN dNdN dN
dx dx dx

dx dx dx dx dx dx

 
 

 
   

  
   

   
    

 
  

  

  

  

0

3

0

ˆ

l

l
du

N EA
dx

 
 
 
 

 
  
 
  
    

K d F

31 1 1 2 1
1 2 3 1

0 0 0
0

ˆ
l

l l l dNdN dN dN dN dN du
EA u dx u dx u dx N EA

dx dx dx dx dx dx dx

   
     

  
  

32 1 2 2 2
1 2 3 2

0 0 0
0

ˆ
l

l l l dNdN dN dN dN dN du
EA u dx u dx u dx N EA

dx dx dx dx dx dx dx

   
     

  
  

3 3 3 31 2
1 2 3 3

0 0 0
0

ˆ
l

l l ldN dN dN dNdN dN du
EA u dx u dx u dx N EA

dx dx dx dx dx dx dx

   
     

  
  
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

31 1 1 2 1

0 0 0

32 1 2 2 2

0 0 0

3 3 3 31 2

0 0 0

l l l

l l l

l l l

dNdN dN dN dN dN
dx dx dx

dx dx dx dx dx dx

dNdN dN dN dN dN
EA dx dx dx

dx dx dx dx dx dx

dN dN dN dNdN dN
dx dx dx

dx dx dx dx dx dx

 
 
 
 
 
 
 
  

  

  

  

K

Kd F

1

2

3

u

u

u

 
 


 
  

d

1

0

2

0

3

0

ˆ

ˆ

ˆ

l

l

l

du
N EA

dx

du
N EA

dx

du
N EA

dx

  
  
  
 
      
 
  
    

F

1 

0 
x

y

1N

1 

0 
x

y

2N

1 

0 
x

y

3N

1x 2x 3x

1 2 3 

1 2 Element 

Node 

Ni is corresponding to 
the 1st order B-spline 
basis functions 

이 그림이 가장 앞에 나올 것. 엘
리먼트가 1개, 2개일 때 
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2

1

x

x

3

2

x

x

Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

Kd F

1 

0 
x

y

1N

1 

0 
x

y

2N

1 

0 
x

y

3N

1x 2x 3x

1 2 3 

1 2 Element 

Node 

0

1 2 K K K

1 K

2 K

2 2 2

1 1 1

2 2 2

1 1 1

2 2 2

1 1 1

31 1 1 2 1

32 1 2 2 2

3 3 3 31 2

x x x

x x x

x x x

x x x

x x x

x x x

dNdN dN dN dN dN
dx dx dx

dx dx dx dx dx dx

dNdN dN dN dN dN
EA dx dx dx

dx dx dx dx dx dx

dN dN dN dNdN dN
dx dx dx

dx dx dx dx dx dx

 
 
 
 
 
 
 
  

  

  

  

3 3 3

2 2 2

3 3 3

2 2 2

3 3 3

2 2 2

31 1 1 2 1

32 1 2 2 2

3 3 3 31 2

x x x

x x x

x x x

x x x

x x x

x x x

dNdN dN dN dN dN
dx dx dx

dx dx dx dx dx dx

dNdN dN dN dN dN
EA dx dx dx

dx dx dx dx dx dx

dN dN dN dNdN dN
dx dx dx

dx dx dx dx dx dx

 
 
 
 
 
 
 
  

  

  

  

l

31 1 1 2 1

0 0 0

32 1 2 2 2

0 0 0

3 3 3 31 2

0 0 0

l l l

l l l

l l l

dNdN dN dN dN dN
dx dx dx

dx dx dx dx dx dx

dNdN dN dN dN dN
EA dx dx dx

dx dx dx dx dx dx

dN dN dN dNdN dN
dx dx dx

dx dx dx dx dx dx

 
 
 
 
 
 
 
  

  

  
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

Kd F
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x x x
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dx dx dx

dx dx dx dx dx dx

dNdN dN dN dN dN
EA dx dx dx

dx dx dx dx dx dx

dN dN dN dNdN dN
dx dx dx

dx dx dx dx dx dx

 
 
 
 
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 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

Kd F

1 

0 
x

y

1N
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0 
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y

2N
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0 
x

y
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 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

Kd F
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l l
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In the same manner, 

l

/ 2l
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

Kd F

1 

0 
x

y

1N

1 

0 
x

y

2N

1 

0 
x

y

3N

1x 2x 3x

1 2 3 

1 2 Element 

Node 

0

1 2  K K K

/ 2l1 1 0

1 1 1 1
/ 2

0 1 1

EA

l

 
 
  
 
  

2 K
1 K

1 1 0

1 1 0
/ 2

0 0 0

EA

l

 
 

 
  
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 
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2.5. ELEMENT : BAR 

- DERIVATION OF STIFFNESS MATRIX FOR A BAR 
COMPOSED OF 2 ELEMENTS BY SUPERPOSITION OF 
STIFFNESS MATRIX  
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Element : Bar (2 elements , 3 nodes) 
- Direct equilibrium approach 

F1 

ka 

Node 1 
Node 2 u1 u2 

kb 

Node 3 
u3 

F3 

f1 f2 

k 
Node1 Node 2 

u1 
u2 































2

1

2

1

u

u

kk

kk

f

f

]][[][ uKf 
stiffness matrix 

Recall stiffness matrix for single bar element 

element #1 element #2 

F1 and F3 are external forces which are applied at node 1 and 3, respectively. 

We will consider two spring assemblage. 
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Element : Bar (2 elements , 3 nodes) 
- Direct equilibrium approach  

F1 

ka 

Node 1 
Node 2 u1 u2 

kb 

Node 3 
u3 

F3 

f1
(1) f2

(1) 

ka Node1 Node 2 

u1 
u2 

element #1 

element #2 

f2
(2) f3

(2) 

kb Node2 Node 3 

u2 
u3 

element #2 

element #1 

, where forces     correspond to internal forces at the ith node of the jth element. 
( )j

if

Fi : External forces  
at the ith node. 

Free-body diagrams of each element and nodes are shown as follows: 
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Element : Bar (2 elements , 3 nodes) 
- Direct equilibrium approach  

f1
(1) f2

(1) 

ka Node1 Node 2 
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u2 
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f2
(2) f3

(2) 

kb Node2 Node 3 

u2 
u3 










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3

)2(

2

u

u

kk

kk

f

f

bb

bb

element #2 

, where forces     correspond to internal forces at the ith node of the jth element. 
( )j

if

Free-body diagrams of each element and nodes are shown as follows: 
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Element : Bar (2 elements , 3 nodes) 
- Direct equilibrium approach  
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Element : Bar (2 elements , 3 nodes) 
- Direct equilibrium approach  

f1
(1)

 f2
(1)

 

ka Node1 Node 2 

u1 
u2 

element #1 

f2
(2)

 f3
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kb Node2 Node 3 

u2 
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element #2 
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Node 1 
Node 2 u1 u2 

kb 

Node 3 
u3 

F3 

element #2 element #1 

Fi : forces at the ith  
node. 

Based on the free-body diagrams, and the fact that external forces must equal internal 
forces at each node, we can write nodal equilibrium equations at each node as follows. 
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Element : Bar (2 elements , 3 nodes) 
- Comparison between the Solutions of D/E using Galerkin’s Residual Method and Direct 
Equilibrium Approach 

※ superposition of stiffness matrix 
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Reference) Calculation of stiffness constant of spring 

k 

l

Young’s Modulus: 

Cross Section Area: 

Therefore 

,
EA

P ku where k
l

 

E 

Stress(axial force per 
unit cross section area): 

Strain(elongation 
per unit length): 

E

A





Constitutive Equation 

Multiplying cross section area A gives 

A

A EA 

Substituting “stress resultant” P for       gives 

P EA

Multiplying the length l yields 

lP EAl

EA u



 
EA

P u
l

 or 

PP

k 

PP

u
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Reference) Calculation of stiffness constant of spring 

1

1

,
EA

k
l



k1 

1l

Series assembly of the spring 

k2 

2l

2

2

,
EA

k
l

 3

1 2

EA
k

l l




1 2 3

1 1 1

k k k
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Parallel assembly of the spring 

k2 

k1 

l

1 2 1 2
1 2 3

( )
, ,

EA EA E A A
k k k

l l l


  

1 2 3k k k 

Assumption: Young’s modulus and area are same. 

Assumption: Young’s modulus and length are same. 

EA
k

l

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2.6. ELEMENT : BEAM 

- DERIVATION OF THE STIFFNESS MATRIX BY 
APPLYING DIRECT EQUILIBRIUM APPROACH 
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Element : Beam – Problem Definition 

y

x

( )f x

Beam의 problem definition을 작성해야 함 

- Consider a beam element 

with the simple supports 

1yf 2yf

2M1M

1) The concentrated forces fy1 and fy2 are exerted on the ends of the bar. 

3) distributed force f(x) is applied to the element 

Given: 

Find: 

1) The vertical displacement at the ends of the bar dy1, dy2. 

2) The moment M1 and M2 are exerted on the ends of the bar. 

2) The rotation angle at the ends of the bar ф1, ф2. 

- Moments and rotations are 

positive in the counterclockwise 

direction. 

- Force and displacement are 

positive in the positive y direction. 

l
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Element : Beam – Determination of the stress resultant 

y

x

( )f x

1yf 2yf

2M1M

Remember! The stress resultants, such as a bending moment “m” and shear force “V” at the end of the 
beam, are not given, but can be represented by the given external forces. 

Remember: The bending moment and shear force at the ends of the beam are independent of the distributed 
force, but only dependent on the boundary conditions. 

l

Reference) Logan, A first course in the finite element method, 3rd edition, Thomson learning, 2002, pp.138~158 

The minus sign of bending moment m(0) and shear force V(l) are the result of opposite 
sign conventions between the static and deformation at x=0 and x=l respectively.  

Shear force at x=0 

1(0) yV f

1(0)m M 

Bending moment at x=0 

Shear force at x=l 

Bending moment at x=l 

2( ) yV l f 

2( )m l M

Static sign conventions Deformation 
sign conventions  

,V M

f
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Element : Beam – Determination of the stress resultant 

y

x

( )f x

1yf 2yf

2M1M

Remember! The stress resultants, such as a bending moment “m” and shear force “V” at the end of the 
beam, are not given, but can be represented by the given external forces. 

Deformation 
sign conventions  

Remember: The bending moment and shear force at the ends of the beam are independent of the distributed 
force, but only dependent on the boundary conditions. 

l

Reference) Logan, A first course in the finite element method, 3rd edition, Thomson learning, 2002, pp.138~158 

Shear force at x=0 

1(0) yV f

1(0)m M 

Bending moment at x=0 

Shear force at x=l 

Bending moment at x=l 

2( ) yV l f 

2( )m l M

Static sign conventions 

,V m

f

1yf

(0)V ,V m

f

Deformation 
sign conventions  

(0)m
1M

2yf

( )V l
2M( )m l

(0)V (0)m  ( )m l  ( )V l 
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Element: Beam 
- Derivation of the beam elemental stiffness matrix 

y

x

( )y x

2

Assume an approximation function for the vertical displacement variation through the element length to be 
2 3

0 1 2 3
ˆ( )y x b b x b x b x   

The complete cubic displacement function is appropriate because there are four degrees of freedom. 

1yd 2yd

1

( )y x : the vertical displacement variation 
through the element length 

1 2 1 2

ˆ ˆ
ˆ ˆ(0) , ( ) , (0) , ( )y y

dy dy
y d y l d l

dx dx
    

0 1yb d    2 1 2 1 22

3 1
, 2y yb d d

l l
     1 1,b 

   3 1 2 1 23 2

2 1
y yb d d

l l
    

       2 3

1 1 1 2 1 2 1 2 1 22 3 2

3 1 2 1
ˆ( ) 2y y y y yy x d x d d x d d x

l l l l
    

   
             

   

The boundary conditions                                                                   should be satisfied. 

1(0) yV f

1(0)m M 
2( ) yV l f 

2( )m l M

Reference) Logan, A first course in the finite element method, 3rd edition, Thomson learning, 2002, pp.138~158 

v를 y로 변경할 것 

여기서 이것을 basis에 
대해서 설명할 것, 
C0 ~ c3까지 의미가 
없지만, 이를 변경하면 
d1, ~ 파이 2까지가 의
미를 가진다. 
 
뒤에 N유도를 여기로 
가져올 것 

3 2 3 3 2 2 3 3 2 3 2 2

1 1 2 23 3 3 3

1 1 1 1
ˆ( ) (2 3 ) ( 2 ) ( 2 3 ) ( )y yor y x x x l l d x l x l xl x x l d x l x l

l l l l
           
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Element: Beam 
- Reference) Derivation of shape function Ni 

부호 및 화살표를 잘 설명할 것 

y

x

( )y x

2

1yd 2yd

1

( )y x : the vertical displacement variation 
through the element length 

1(0) yV f

1(0)m M 
2( ) yV l f 

2( )m l M

3 2 3 3 2 2 3 3 2 3 2 2

1 1 2 23 3 3 3

1 1 1 1
ˆ( ) (2 3 ) ( 2 ) ( 2 3 ) ( )y yy x x x l l d x l x l xl x x l d x l x l

l l l l
           

 

1

1

1 2 3 4

2

2

ˆ( )

y

y

d

y x N N N N
d





 
 
 
 
 
  

3 2 3

1 3

1
(2 3 )N x x l l

l
  

3 2 2 3

2 3

1
( 2 )N x l x l xl

l
  

3 2

3 3

1
( 2 3 )N x x l

l
  

3 2 2

4 3

1
( )N x l x l

l
 

The shape functions and their 
coefficients, i.e., displacement of 
deformation, can be regarded as 
basis functions and control points of 
B-spline curve, respectively. 

1 1 2 1 3 2 4 2
ˆ( ) y yy x N d N N d N    
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Element: Beam 
- Derivation of the beam elemental stiffness matrix 

y

x

( )y x

2

1yd 2yd

1

( )v x : the vertical displacement variation 
through the element length 

       2 3

1 1 1 2 1 2 1 2 1 22 3 2

3 1 2 1
ˆ( ) 2y y y y yy x d x d d x d d x

l l l l
    

   
             

   

3 2

3 2

ˆ ˆ
( ), ( )

d y d y
EI V x EI m x

dx dx
 ->

Derive the element stiffness matrix and equations using a direct equilibrium approach. 

1(0) yV f

1(0)m M 
2( ) yV l f 

2( )m l M

3

1 1 1 2 23 3

ˆ(0)
(0) (12 6 12 6 )y y y

d y EI
f V EI d l d

dx l
      

2
2 2

1 1 1 2 22 3

ˆ(0)
(0) (6 4 6 2 )y y

d y EI
M m EI ld l ld l

dx l
        

3

2 1 1 2 23 3

ˆ( )
( ) ( 12 6 12 6 )y y y

d y l EI
f V l EI d l d

dx l
         

2
2 2

2 1 1 2 22 3

ˆ( )
( ) (6 2 6 4 )y y

d y l EI
M m l EI ld l ld l

dx l
      

3 2 3 2

11

2 2
11

2 2

3 2 3 2

2 2

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

yy

y y

EI EI EI EI

l l l l
fdEI EI EI EI

Ml l l l

dEI EI EI EI f

l l l l M

EI EI EI EI

l l l l





 
 

    
    
         
      
     
 
 
 

Matrix 
form 

Reference) Logan, A first course in the finite element method, 3rd edition, Thomson learning, 2002, pp.138~158 

Recall that the approximation function 𝑦 (𝑥  is so constructed that 

the boundary conditions of 𝑦(𝑥  are satisfied. 
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Element: Beam 
- Equivalent nodal forces 

y

x

( )f x

1yf 2yf

2M1M

l

3 2 3 2

11

2 2
11

2 2

3 2 3 2

2 2

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

yy

y y

EI EI EI EI

l l l l
fdEI EI EI EI

Ml l l l

dEI EI EI EI f

l l l l M

EI EI EI EI

l l l l





 
 

    
    
         
      
     
 
 
 

1, ( )

1, ( )

2, ( )

2, ( )

y f x

f x

y f x

f x

f

M

f

M

 
 

 
  

 
 

 

equivalent nodal forces 

Reference) Logan, A first course in the finite element method, 3rd edition, Thomson learning, 2002, pp.138~158 
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Element: Beam 
- Work-Equivalence Method 

We can use the work-equivalence method to replace a distributed force by a set of 
discrete forces. This method is based on the concept that the work of the distributed 
force f(x) in going through the displacement field y(x) is equal to the work done by 
nodal force f'yi,f(x) and M'i,f(x) in going through the nodal displacement dy1, and ф1 for 
arbitrary nodal displacements. 

y

x

( )f x

1yf 2yf

2M1M

l

0
( ) ( )

l

distibutedW f x y x dx  

1, ( ) 1 2, ( ) 2 1, ( ) 1 2, ( ) 2discrete f x f x y f x y y f x yW M M f d f d           

Work done by distributed force 

Work done by nodal forces 

In this problem, the distributed force is acting in 
negative direction of the static sign conventions. 

Reference) Logan, A first course in the finite element method, 3rd edition, Thomson learning, 2002, pp.138~158 

M1,f(x)로 변경할 것 
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Element: Beam 
- Work-Equivalence Method 

부호 및 화살표를 잘 설명할 것 

0
( ) ( )

L

distibutedW f x y x dx  

Work done by distributed force 

Work done by nodal forces 

 

1

1

1 2 3 4

2

2

ˆ( )

y

T

y

d

y x N N N N
d





 
 
  
 
 
  

N d

3 2 3

1 3

1
(2 3 )N x x l l

l
  

3 2 2 3

2 3

1
( 2 )N x l x l xl

l
  

3 2

3 3

1
( 2 3 )N x x l

l
  

3 2 2

4 3

1
( )N x l x l

l
 

1
0

1

2
0 1

0
2

3
0

2

4
0

( )

( )
( )

( )

( )

T
l

y
l

l
T

distibuted l
y

l

f x N dx
d

f x N dx
W f x dx

df x N dx

f x N dx





  
   
               
    
        










N d

1, ( ) 1 2, ( ) 2 1, ( ) 1 2, ( ) 2discrete f x f x y f x y y f x yW M M f d f d           

11, ( )

11, ( )

2, ( ) 2

2, ( ) 2

T

yy f x

f x

discrete

y f x y

f x

df

M
W

f d

M





   
  

   
  
  

      

1
0

1, ( )

2
01, ( )

2, ( )
3

0

2, ( )

4
0

( )

( )

( )

( )

l

y f x l

f x

l
y f x

f x l

f x N dx
f

f x N dxM

f f x N dx
M

f x N dx

  
   
               
        









Work-Equivalence 

Reference) Logan, A first course in the finite element method, 3rd edition, Thomson learning, 2002, pp.138~158 

인테그랄 적기 전에 
M1,f(x) M2어쩌구 적
을 것 
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Element: Beam 
- Derivation of the beam elemental stiffness matrix 

3 2 3 2
1

0

11

2 2 2
011

2 2
3

3 2 3 2 0

2 2

2 2

12 6 12 6

( )

6 4 6 2
( )

12 6 12 6 ( )

( )6 2 6 4

l

yy l

l
y y

EI EI EI EI

f x N dxl l l l
fdEI EI EI EI

f x N dxMl l l l

dEI EI EI EI f f x N dx
l l l l M

f x NEI EI EI EI

l l l l





 
   

    
                

       
     
   
 
 







4
0

l

dx

 
 
 
 
 
 
 
 
 

y

x

( )f x

1yf 2yf

2M1M

l

1) The concentrated forces fy1 and fy2 are exerted on the ends of the bar. 

3) distributed force f(x) is applied to the element 

Given: 

Find: 

1) The vertical displacement at the ends of the bar dy1, dy2. 

2) The moment M1 and M2 are exerted on the ends of the bar. 

2) The rotation angle at the ends of the bar ф1, ф2. 

Reference) Logan, A first course in the finite element method, 3rd edition, Thomson learning, 2002, pp.138~158 
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2.7. ELEMENT : BEAM 

- DERIVATION OF STIFFNESS MATRIX BY APPLYING 
GALERKIN’S RESIDUAL METHOD 
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Element : Beam – Problem Definition 

Beam의 problem definition을 작성해야 함 

y

x

( )f x

1yf 2yf

2M1M

l

1) The concentrated forces fy1 and fy2 are exerted on the ends of the bar. 

3) distributed force f(x) is applied to the element 

Given: 

Find: 

1) The vertical displacement at the ends of the bar dy1, dy2. 

2) The moment M1 and M2 are exerted on the ends of the bar. 

2) The rotation angle at the ends of the bar ф1, ф2. 

“Deflection Curve of a Beam” 

3

3
( )

d y
EI V x

dx
 

4

4
( )

d y
EI f x

dx
 

Differential Equation: Deflection Curve of a Beam is derived as follows. 

2

2
( )

d y
EI m x

dx


2

2

( )d y m x

dx EI


( )V x : Shear force : Bending moment ( )m x

3

13

0

ˆ
(0) y

x

d y
EI V f

dx


 
2

12

0

ˆ
, (0)

x

d y
EI m M

dx


  

Boundary Condition 

3

23

ˆ
, ( ) y

x l

d y
EI V l f

dx


  
2

22

ˆ
, ( )

x l

d y
EI m l M

dx


 
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Element : Beam - Galerkin’s Residual Method  

the test functions      are chosen to play the role of 

the weighting functions W 

Galerkin Method 

iN

0 , ( 1,2,3,4)i

V

R N dV i 
weighting function 

residual  (test function        used) N

Differential Equation 
4

4

( )
( ) 0

d y x
EI f x

dx
 

4

40

ˆ( )
( ) 0 , ( 1,2,3,4)

l

i

d y x
EI f x N dx i

dx

 
   

 


Beam - Galerkin’s Residual Method  

1

0
.) ( ) 0ref u v uv xv dx    

1 1 2 1 3 2 4 2
ˆ, ( ) T

y ywhere y x N d N N d N      N d

2. 여기는 정의를 해서 사
용하고 있는데, 

1. 여기는 
approximation을 하
고  

여기에 대하여 설명을 해
야 함 

내가 작성한 자료에도 이
부분이 있는지 볼 것 

B를 detail하게 설
명할 것 

 

1

1

1 2 3 4

2

2

ˆ( )

y

y

T

d

y x N N N N
d





 
 
 
 
 
  

 N d

3 2 3

1 3

1
(2 3 )N x x l l

l
  

3 2 2 3

2 3

1
( 2 )N x l x l xl

l
  

3 2

3 3

1
( 2 3 )N x x l

l
  

3 2 2

4 3

1
( )N x l x l

l
 

3

13

0

ˆ
(0) y

x

d y
EI V f

dx


 

2

12

0

ˆ
, (0)

x

d y
EI m M

dx


  

3

23

ˆ
, ( ) y

x l

d y
EI V l f

dx


  

2

22

ˆ
, ( )

x l

d y
EI m l M

dx


 

, where 

Boundary Conditions 
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Element : Beam - Galerkin’s Residual Method  

4

40

ˆ( )
( ) 0 , ( 1,2,3,4)

l

i

d y x
EI f x N dx i

dx

 
   

 


Beam - Galerkin’s Residual Method  

integration by parts 

3 3

3 30 0
0

ˆ ˆ
( ) 0 , ( 1,2,3,4)

l
l l

i
i i

dNd y d y
N EI EI dx f x N dx i

dx dx dx

 
    

 
 

2 2 3 2

2 2 3 20 0
0

ˆ ˆ ˆ
( ) 0 , ( 1,2,3,4)

l
l l

i i
i i

d N dNd y d y d y
EI dx EI N f x N dx i

dx dx dx dx dx

 
     

 
 

1

0
.) ( ) 0ref u v uv xv dx    

ˆ, ( ) Twhere y x  N d

3 2 3

1 3

1
(2 3 )N x x l l

l
  

3 2 2 3

2 3

1
( 2 )N x l x l xl

l
  

3 2

3 3

1
( 2 3 )N x x l

l
  

3 2 2

4 3

1
( )N x l x l

l
 

integration by parts again 

2

20 0
0

( ) 0 ,( 1,2,3,4)

l
l l

i i
i i

d N dN
EI dx EI N V m f x N dx i

dx dx

 
      

 B d

0 0
0

( ) 0

l
T

l l
T T Td

EI dx EI m V f x dx
dx

 
    

 
 

N
B B d N N

In matrix form, 

V(x) and m(x) are substituted for 

d3v/dx3 and d2v/dx2 when the “x” is 

0 or l, since V(0), m(0), V(l), and 

m(l) are the boundary conditions. 

2

2

ˆd y

dx
 B d

1 3

1
(12 6 )B x l

l
 

2

2 3

1
(6 4 )B xl l

l
 

3 3

1
( 12 6 )B x l

l
  

2

4 3

1
(6 2 )B xl l

l
 

2. 여기는 정의를 해서 사
용하고 있는데, 

1. 여기는 
approximation을 하
고  

여기에 대하여 설명을 해
야 함 

내가 작성한 자료에도 이
부분이 있는지 볼 것 

B를 detail하게 설
명할 것 

Differential Equation 
4

4

( )
( ) 0

d v x
EI f x

dx
 

3

13

0

ˆ
(0) y

x

d y
EI V f

dx


 

2

12

0

ˆ
, (0)

x

d y
EI m M

dx


  

3

23

ˆ
, ( ) y

x l

d y
EI V l f

dx


  

2

22

ˆ
, ( )

x l

d y
EI m l M

dx


 

Boundary Conditions 
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Element : Beam - Galerkin’s Residual Method  

2 2 2 3 2 2 2

3

( ) 1
6 6 3 4 6 6 3 2

d x
x xl x l xl l x xl x l xl

dx l
        

N

3 2 3 3 2 2 3 3 2 3 2 2

3

1
( ) 2 3 2 2 3x x x l l x l x l xl x x l x l x l

l
         N

 (0) 1 0 0 0N

 
( )

, 0 0 0 1
x l

d x

dx 


N

 
0

( )
, 0 1 0 0

x

d x

dx 


N

 , ( ) 0 0 1 0l N

0 0
0

1
0

2
0

( ) ( ) ( ) ( ) ( ) (0) (0) (0) (0) ( )

( )
0 0 0 1

( )0 0 1 0
( ) ( ) (0) (0)

0 1 0 0

1 0 0 0

l
T T T

l l
T T T T T

l

l

d d d
EI m V f x dx m l l V l l m V f x dx

dx dx dx

N f x dx

N f x dx
m l V l m V

 
       

 



       
        
           
        
       
       

 





N N N
N N N N N

1
0

2
0

3 3
0 0

4 4
0 0

(0) ( )

(0) ( )

( ) ( ) ( )

( ) ( ) ( )

l

l

l l

l l

V N f x dx

m N f x dx

N f x dx V l N f x dx

N f x dx m l N f x dx

   
   
   

    
   

    
   
    
   





 

 

R.H.S 

0 0
0

( )

l
T

l l
T T Td

EI dx EI m V f x dx
dx

 
   

 
 

N
B B d N N

여기에는 f가 붙어있음. 
정리할 것 

Nt임, Nt가 빠졌음 

, where 
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Element : Beam - Galerkin’s Residual Method  

Differential Equation 

4

4

( )
0

d v x
EI f

dx
 

2 2

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

l l

l l l lEI

l ll

l l l l

 
 


 
   
 

 

 
0

l
TEI dx K B B

 Kd F
2 2

3

2 2

12 6 12 6

6 4 6 2
,

12 6 12 6

6 2 6 4

l l

l l l lEI
where

l ll

l l l l

 
 


 
   
 

 

K

1
0

2
0

3
0

4
0

(0) ( )

(0) ( )
,

( ) ( )

( ) ( )

l

l

l

l

V N f x dx

m N f x dx

V l N f x dx

m l N f x dx

 
 
 
  

  
  
 
 
 









F

Where 설명도 뒤
에 나오는데, 설명 
적을 것 

앞에 설명이 되어
야 함 

이것은 엘리먼트 
단위에서는 외력임 

1
0

2
0

0

3
0

4
0

(0) ( )

(0) ( )

( ) ( )

( ) ( )

l

l

l
T

l

l

V N f x dx

m N f x dx
EI dx

V l N f x dx

m l N f x dx

 
 
 
  

  
  
 
 
 










B B d

3

13

0

ˆ
(0) y

x

d y
EI V f

dx


 

2

12

0

ˆ
, (0)

x

d y
EI m M

dx


  

3

23

ˆ
, ( ) y

x l

d y
EI V l f

dx


  

2

22

ˆ
, ( )

x l

d y
EI m l M

dx


 

Boundary Conditions 

 F

K

 Kd F
2 2

3

2 2

12 6 12 6

6 4 6 2
,

12 6 12 6

6 2 6 4

l l

l l l lEI
where

l ll

l l l l

 
 


 
   
 

 

K

2

2

(0)
2

(0)
12

,

( )
2

( )
12

l
V f

l
m f

l
V l f

l
m l f

 
 

 
 
 
 

  
  
 
 
 
  

F

If the “f(x)” is constant “f”, then 

Applying Galerkin’s residual 
method and integration by parts 
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(derivation) 

2 2

3 3 3 3 3 3 3 3

2 2 2 2 2 2

3 3 3 3 3 3 3 3

3

1 1 1 1 1 1 1 1
(12 6 ) (12 6 ) (12 6 ) (6 4 ) (12 6 ) ( 12 6 ) (12 6 ) (6 2 )

1 1 1 1 1 1 1 1
(6 4 ) (12 6 ) (6 4 ) (6 4 ) (6 4 ) ( 12 6 ) (6 4 ) (6 2 )
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( 12 6
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2.8. ELEMENT : BEAM 

- COMPARISON BETWEEN “DIRECT EQUILIBRIUM 
APPROACH” AND “GALERKIN’S RESIDUAL METHOD” 
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Element : Beam 
- Comparison between the Solutions of D/E using Galerkin’s Residual Method and direct 
equilibrium approach  

※ superposition of stiffness matrix 

Galerkin’s  
residual  
method 

Differential Equation 

Beam 

4

4

( )
( ) 0

d y x
EI f x

dx
 

1
0
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2 2
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3

2 2
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0
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( )3 2 32

6 3 6 3 ( )
3 3 2
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l

yy l

l
y y

l

f x N dx
fdl l

f x N dxMl l l lEI

dl l fl f x N dx
l l l l M

f x N dx





  
 

      
      
       
                  

    








2 3

0 1 2 3
ˆ( )y x b b x b x b x   

Solutions of D/E using Galerkin’s Residual Method  

Direct equilibrium approach 

1
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4
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f x N dxMl l l lEI

dl l fl f x N dx
l l l l M

f x N dx





  
 

      
      
       
                  

    









Logan책을 따라서 Notation 정리 

Beam 

m(0) m(l) 

V(l) V(0) 

y

x

( )f x

1yf 2yf

2M1M

l

y

x

( )f x

1yf 2yf
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l



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

231 
Computer Aided Ship Design, III-2. Grillage Analysis for Midship Structure, Fall 2011, Kyu Yeul Lee  

2.9. ELEMENT : SHAFT 

- DERIVATION OF STIFFNESS MATRIX BY APPLYING 
GALERKIN’S RESIDUAL METHOD 
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Shear Stress in torsion 

Deformation of a circular bar in pure torsion 

Torque TT

Free-body diagram of the bar 

r



O O

Shear  
stress 

T

A
T dA 

dA



Shear force acting on the area       :     dA dA

Resultant moment about a longitudinal axis through point     is equal to the torque : 



Sectional area A

O
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Shear Strain in torsion 

Deformation of a circular bar in pure torsion 

Torque TT
dx

'aa d

ba dx

 



d

dx


 

r

dx

ab
O

'a



Shear strain 

'
tan

aa

ba
  

1Assume, 

dx



d

r
O
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Relation between the torque and the angle of twist  

Shear strain 
d

dx


 

dA
Shear force acting on area  dA

O

Shear  
stress 

dA





Sectional area A

Hooke’s law in shear deformation 

G 

d
dA G dA

dx


 

2 2

A A A

d d
T dA G dA G dA

dx dx

 
      

Resultant moment about a longitudinal axis through the point     is equal to the torque: 

d
T GJ

dx




Relation between the torque and the angle of twist  

2

A
J dA Polar moment of inertia 

O
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-Chapter 5. Element : Shaft 

Element : Shaft* 

O 

r a 

b 

c 

d 





c’ 

rdcc '① 

'
tan

'

cc rd

ac dx


   

② assume, γ≪1 



 GrG 

④ Hooke’s law in shear for the linearly elastic material 

: shear modulus of elasticity 

Cf.)  E

 r





dx

d
③   let               , (    : angle of twist per unit length ) 

*Gere, J.M., Mechanics of Materials, 6th Edition, Thomson, 2006, pp 189~195 

dx

Shaft 

: shear stress 

O 

c d 

d

c’ 

r 

dx

G

: shear strain 
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Element : Shaft* 

⑤ the shear stress at an interior point ( radius    ) 

 G

O 

c d 



⑥ we consider an element of area       located at radial distance  

☞ shear force acting on the element :  

☞ moment : 

dAGdA  

2dA G dA   

⑦ the resultant moment equal to the torque 

JGdAGdAGT
AA

  
22






  A dAJ 2※ J : Polar Moment of Inertia 

⑧ for a bar in pure torsion, the total angle of twist    ,  

equal to the rate of twist times the length of the bar 

l 


l

GJ
JGT 

GJ

lT




*Gere, J.M., Mechanics of Materials, 6th Edition, Thomson, 2006, pp 189~195 

:G Shear Modulus 

, G Gr   



dx

d

d
T GJ

dx








r dA

dA 
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Equation of Motion for Torsional Vibration of a Shaft 

z

r
o

a c

b d
x dx

( , )f x t

L

x

a
c

b d

dx
( , )T x t

( , ) ( , )T x t dT x t

( , ) ( , )x t d x t 

( , )x t

( , )f x t dx

x

2

2
( )T dT fdx T I dx

t


   



The application of Newton’s second law yields the equation of motion  

2

2
I dx

t





Inertia torque action on an element of length dx 

, :I mass polar moment of inertia of the shaft per unit length 

Rao S.S., Mechanical Vibrations, Fourth Edition, Prentice-Hall, 2004, pp.606-607 

Fixed 

2

2

( , ) ( , )
( , )

T x t x t
dx f x t dx I dx

x t

 
 

 

T
dT dx

x





2

2

( , ) ( , )
( , )

T x t x t
f x t I

x t

 
 

 
divided by 
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Equation of Motion for Torsional Vibration of a Shaft 

2

2

( , ) ( , )
( , )

T x t x t
f x t I

x t

 
 

 

Equation of motion  

( , )
( , ) ( )

x t
T x t GJ x

x




 :GJ

:G Shear modulus 

Torsional stiffness 

Relation between torsional deflection and the twisting moment 

2

2

( , ) ( , )
( ) ( , )

x t x t
GJ x f x t I

dx x t

    
    

2 2

2 2

( , ) ( , )
( , )

x t x t
GJ f x t I

x t

  
 

 
structural vibration 

Rao S.S., Mechanical Vibrations, Fourth Edition, Prentice-Hall, 2004, pp.606-607 

d
T GJ

dx


2

A
J dA 

if      is constant  J

z

r
o

a c

b d
x dx

( , )f x t

L

x

Fixed 

z

r
o

( , )f x t

x

z

r
o

x

x

Fixed 

2

2

( , )
( , )

x t
f x t I

t






2

2

( )
( ) 0

x
GJ f x

x


 



rigid body dynamics 

structural statics 

2. . tt xxc f U c U
homogeneous 

nonhomogeneous 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

239 
Computer Aided Ship Design, III-2. Grillage Analysis for Midship Structure, Fall 2011, Kyu Yeul Lee  

Element : Shaft 
T : Torque 

l : length 

G : Shear Modulus 

J : Polar Moment of Inertia 

 Reference : Chapter.1 Bar 

Shaft 
Torsion 

2

2

( )
0

d x
GJ

dx


 1

2

1 1

1 1

TGJ

Tl





     
        

0 1( )x c c x  
2

20

( )
0

L

l

d x
W GJ dx

dx

 
 

 
T T

Bar 

Tension 
2

2

( )
0

d u x
EA

dx
 1

2

1 1

1 1

u PEA

u Pl

     
        

0 1( )u x a a x 
2

20

( )
0

L

l

d u x
W EA dx

dx

 
 

 


P P 
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2.10. SUPERPOSITION OF STIFFNESS MATRIX AND 

COORDINATE TRANSFORMATION 
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Node 

f1 f2 

k 
node 1 node 2 

δ1 δ2 

The nodes are points at which equilibrium will be 

enforced and displacement found. They are generally 

located at the ends of the elements for most common 

structural shapes such as bars and beams.* 

element 1 

node 2 

x 

y 

1tonf 
node 3 

node 1 

100cm 

1
0
0
c
m

 

element 2 
22kN 

x 

z 

y 

element 1 

element 2 

node 1 

node 3 

node 2 

3m 

3m 

ex.1) ex.2) 

*Sennet, R.E., Matrix Analysis of Structres, Prentice-Hall, 1994, p.4 
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Representation of the elemental displacements and forces 
in terms of the global displacements and forces 

 The elemental displacement 𝛿𝑝1, 𝛿𝑞1, 𝛿𝑝2, 𝛿𝑞2  

are parallel and perpendicular to the member 

coordinate system 𝑝 and 𝑞 



𝛿𝑝1  

x 

y 

𝛿𝑞1  𝑝 

𝑞 

𝛿𝑞2  

𝛿𝑝2  

𝛿𝑥1  

𝛿𝑦1  

𝛿𝑥2  

𝛿𝑦2  

 The elemental forces which act in the 

elemental coordinate system 𝑝 and 𝑞 are 

denoted by 𝑓𝑝1, 𝑓𝑞1, 𝑓𝑝2, 𝑓𝑞2 in order to 

distinguish them from the global force 𝑓1 and 

𝑓2 

𝑓1  

𝑓2  

𝑓1  

𝑓𝑝1  

𝑓𝑞1  

𝑓2  

𝑓𝑝2  

𝑓𝑞2  

 Express the elemental displacements in 

terms of the global displacements. 
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Coordinate System 

x 

y 

1pf

2pf

1qf

2qf

Local Coordinate System  

: pqr-coordinate system 

node 1 

node 2 

x 

y 

1xf

2xf

1yf

2yf

Global Coordinate System 

: xyz-coordinate system 

node 1 

node 2 

1p

2p

1q

2q

1x

2x

1y

2y

x 

y 

z 

Sign Convention : positive moment  

node 2 
node 1 

θ2 

θ1 
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Angle 

 Angles in global coordinate system : counterclockwise at the lower number of node 

node 1 

node 2 

x 

y 

 node 2 

node 1 

x 

y 



x 

y 

node 1 

node 2 



x 

y 
node 2 

node 1 

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Representation of the elemental displacements in terms 
of the global displacements  



𝛿𝑝1  

x 

y 

𝛿𝑞1  𝑝 

𝑞 

𝛿𝑞2  

𝛿𝑝2  

𝛿𝑥1  

𝛿𝑦1  

𝛿𝑥2  

𝛿𝑦2   Consider the vector displacement of the left 

end of the member. 

x 

y 

𝑝 

𝑞 

𝛿𝑞1  

𝛿𝑥1  



𝛿𝑞1  

𝛿𝑝1  

𝛿𝑦1  
𝛿𝑝1  

𝛿𝑥1 sin 𝜃  

displacement vector 

𝛿𝑝1 = 𝛿𝑥1 cos 𝜃 + 𝛿𝑦1 sin 𝜃 

𝛿𝑦1 cos 𝜃 

𝛿𝑞1 = 𝛿𝑦1 cos 𝜃 − 𝛿𝑥1 sin 𝜃 

 The same relationships between displacements will also exist at the right end of the member 

𝛿𝑝2 = 𝛿𝑥2 cos 𝜃 + 𝛿𝑦2 sin 𝜃 

𝛿𝑞2 = 𝛿𝑦2 cos 𝜃 − 𝛿𝑥2 sin 𝜃 
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Representation of the elemental displacements in terms 
of the global displacements  



𝛿𝑝1  

x 

y 

𝛿𝑞1  𝑝 

𝑞 

𝛿𝑞2  

𝛿𝑝2  

𝛿𝑥1  

𝛿𝑦1  

𝛿𝑥2  

𝛿𝑦2  

x 

y 

𝑝 

𝑞 

𝛿𝑞1  

𝛿𝑥1  



𝛿𝑞1  

𝛿𝑝1  

𝛿𝑦1  
𝛿𝑝1  

𝛿𝑥1 sin 𝜃  

displacement vector 

𝛿𝑝1 = 𝛿𝑥1 cos 𝜃 + 𝛿𝑦1 sin 𝜃 

𝛿𝑦1 cos 𝜃 

𝛿𝑞1 = 𝛿𝑦1 cos 𝜃 − 𝛿𝑥1 sin 𝜃 

𝛿𝑝2 = 𝛿𝑥2 cos 𝜃 + 𝛿𝑦2 sin 𝜃 

𝛿𝑞2 = 𝛿𝑦2 cos 𝜃 − 𝛿𝑥2 sin 𝜃 































































1

1

1

1

1

2

1

1

cossin00

sincos00

00cossin

00sincos

y

x

y

x

q

p

q

p

























]][[][ xypq  T

transformation matrix 
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Representation of the elemental forces in terms of the 
global forces 
































































2

2

1

1

2

2

1

1

cossin00

sincos00

00cossin

00sincos

y

x

y

x

q

p

q

p

f

f

f

f

f

f

f

f









 Forces in 2 Dimension (xy → pq) :  

1 1

1 1

1 1

2 2

2 2

2 2

cos sin 0 0 0 0

sin cos 0 0 0 0

0 0 1 0 0 0

0 0 0 cos sin 0

0 0 0 sin cos 0

0 0 0 0 0 1

p x

q y

z z

p x

q y

z z

f f

f f

M M

f f

f f

M M

 

 

 

 

    
    


    
    

    
    
    
    
       

 Forces and Moment in 3 Dimension (xyz → pqr) 



x 

y 

𝑝 

𝑞 

𝑓1  

𝑓𝑝1  

𝑓𝑞1  

𝑓2  

𝑓𝑝2  

𝑓𝑞2  

In the same way,  

]][[][ xypq FTF 
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Element : 2-Dimensional Bar  

 Solution of 2-Dimensional Bar 

Step1. Find stiffness matrix in the local coordinate system (pq-coordinate system) 

Step2. Find transformation matrix between the local and the global coordinate system 

Step3. Find stiffness matrix in the global coordinate system (xy-coordinate system) 



x 

y 

𝑝 
𝑞 

𝑓1  

𝑓2  
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Element : 2-Dimensional Bar  

Step1. Find stiffness matrix in the local 

coordinate system (pq-coordinate system) 

Notation 

qi

pi



 : displacement parallel to the p axis at node i 

: displacement parallel to the q axis  

at node i 

qi

pi

f

f : force parallel to the p axis at node i 

: force parallel to the q axis at node i 

































































2

2

1

1

2

2

1

1

0000

00

0000

00

q

p

q

p

q

p

q

p

kk

kk

f

f

f

f









]][[][ pqpqpq δKF 

① 



𝛿𝑝1  

x 

y 

𝑝 

𝑞 

𝛿𝑝2  

𝑓1  
𝑓𝑝1  

𝑓𝑞1  

𝑓2  

𝑓𝑝2  

𝑓𝑞2  
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Element : 2-Dimensional Bar  

Step2. Find transformation matrix between 

the local and the global coordinate system 

(1) the forces with respect to the global 

coordinate system 
































































2

2

1

1

2

2

1

1

cossin00

sincos00

00cossin

00sincos

y

x

y

x

q

p

q

p

f

f

f

f

f

f

f

f









]][[][ xypq FTF 
② 

(2) the displacements with respect to the global 

coordinate system 
































































2

2

1

1

2

2

1

1

cossin00

sincos00

00cossin

00sincos

y

x

y

x

q

p

q

p

























]][[][ xypq  T

③ 



𝛿𝑝1  

x 

y 

𝛿𝑞1  𝑝 

𝑞 

𝛿𝑞2  

𝛿𝑝2  

𝛿𝑥1  

𝛿𝑦1  

𝛿𝑥2  

𝛿𝑦2  

𝑓1  

𝑓2  

𝑓1  

𝑓𝑝1  

𝑓𝑞1  

𝑓2  

𝑓𝑝2  

𝑓𝑞2  
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Element : 2-Dimensional Bar    

]][[][ pqpqpq δKF ① ]][][[]][[ xypqxy TKFT 

]][][[][][ xypq

T

xy TKTF 

T][][ 1
TT multiply  

]][[][ xypq FTF ② ]][[][ xypq  T③ 

Step3. Find stiffness matrix in the global coordinate system (xy-coordinate system) 









































































2

2

1

1

22

22

22

22

2

2

1

1

y

x

y

x

y

x

y

x

SCSSCS

CSCCSC

SCSSCS

CSCCSC

k

f

f

f

f









C:cos 
S:sin 

x 

y 



fx1 

fy1 

fx2 

fy2 

δx2 

δy2 

δx1 

δy1 

]][[][ xyxyxy KF  stiffness equation 













































































































2

2

1

1

2

2

1

1

00

00

00
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Element : 2-Dimensional Bar 

ex.) Find a stiffness equation of the following system: 

x 

y 

1
2

ka kb 

node 1 

node 2 

node 3 







































































2

2

1

1

1

2

111

2

11

111

2

111

2

1

2

111

2

11

111

2

111

2

2

2

1

1

y

x

y

x

a

y

x

y

x

SSCSSC

SCCSCC

SSCSSC

SCCSCC

k

f

f

f

f























































































3

3

2

2

2

2

222

2

22

222

2

222

2

2

2

222

2

22

222

2

222

2

3

3

2

2

y

x

y

x

b

y

x

y

x

SSCSSC

SCCSCC

SSCSSC

SCCSCC

k

f

f

f

f

















(1) Stiffness equation of bar a 

(2) Stiffness equation of bar b 
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3 

EA = constant 

2 1 

5 

6 

x 

y 

global system 

3F

4F

3 

4 

The system displacements with 
respect to the global coordinate 
system are as follows: 

 Node   System displacements 
 1  u1 , u2 

 2  u3 , u4 

 3  u5 , u6 

Element 1 

Element 3 

1 

2 
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For element number 1, consider nodes 
number 1 and 2 as the left and right ends 
of the member, respectively. 
 
Thus, for element number 1, with θ1-2 = 0° 
and C = 1, S = 0, we have 
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Element 3

For element number 2, nodes 2 and 3 
locate the left and right ends of the 
member. 
 
Therefore θ2-3 = 135°, and 
Thus, 
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Element 1

Element 3

For element 3, nodes 1 and 3 are located 
at the left and right ends of the member,  
 
So θ1-3 = 90° and S = 1, C = 0. 
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Since we now have all elemental stiffnesses expressed in terms of the 
global coordinate system, we can now construct the system stiffness 
matrix. The structure has three nodes and therefore six degrees of 
freedom. The structural stiffness matrix will be a 6 x 6 matrix. 
Accumulating elements of the elemental stiffness matrices using the 
global codes noted above and to the right of the matrices we find 
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Both nodes 1 and 3 are pinned. 
Thus  

Eliminating the rows and columns 
associated with these zero 
displacements results in the reduced 
stiffness matrix shown in equation 
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Truss Examples 
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The reactions F1, F2, F5, and F6 are found by substituting displacements u1 ~ u6 
into the equation . We find, 

andFFFFFF ,,0),( 452431  46 FF 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

260 
Computer Aided Ship Design, III-2. Grillage Analysis for Midship Structure, Fall 2011, Kyu Yeul Lee  

Truss Examples 
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Sketching these reactions and the applied loads F3 and F4 
on the structure as shown below,  we verify overall 
equilibrium.  
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Truss Examples 

Member force for the element 1 
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F3는 1번 element가 모두 지지하고 있음 

F3는 2, 3 element에 어떠한 영향도 주지 않음 

즉, 2, 3 element가 없다고 가정 하여도 정적 평형상태임 

F4로 인하여 2번 element는 pin 3을 기준으로 회전함 
이로 인하여 1번 element는 인장을 하게 되므로 
tensile force를 받음 

This forces are described in local 
coordinate of each element! 
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Truss Examples 

Member force for the element 2 
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F3는 2, 3 element에 어떠한 영향도 주지 않음 

즉, 2, 3 element가 없다고 가정 하여도 정적 평형상태임 

따라서 2번 element는 F3로 인하여 어떠한 힘도 받지 않음 

F4로 인하여 2번 element는 pin 3을 기준으로 회전 함 
하지만 1번 element가 회전 운동을 하지 못하도록 막고 있음 
이로 인하여 4번 element는 압축력을 받게 됨 

This forces are described in local 
coordinate of each element! 
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Truss Examples 

Member force for the element 3 
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F3가 0일 때나 F4가 0일 때, 어떠한 경우에도 element 3에는 아무런 힘이 가해지지 않음 
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This forces are described in local 
coordinate of each element! 
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2.11. STIFFNESS MATRIX FOR GRILLAGE 
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Grillage 

 Grillage* (Grid Structure) : A structure that has loads applied perpendicular to its plane. 

The elements are assumed to be rigidly connected at the joints. The floor system shown in 

the figure is an example of a very common grillage. 

  As in the case of the beam element, we assume that axial deformation is neglected. 

However, in addition to bending about the horizontal axis of the cross section, the elements 

will also resist the loads by twisting about the axis of the element, thus developing torsional 

moments. Therefore, at each joint we will have a vertical displacement, a rotation about the 

horizontal axis of the cross section due to bending, and a rotation about the axis of the 

element due to torsion. There are three degrees of freedom at each node. 

<example of grillage : typical floor system> 

x 

y 

z 

1yf 1, y

1, x

1, z

node 

1zM

1xM

x
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z

*Daryl L. Logan, A first Course in the Finite Element Method, 2nd edition,  PWS Publishing,1993, p.87 
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Grillage : Stiffness Equations 
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step1. Coordinate System 
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step2. Variables at each nodes 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

267 
Computer Aided Ship Design, III-2. Grillage Analysis for Midship Structure, Fall 2011, Kyu Yeul Lee  

Grillage : Stiffness Equations 

Step3. Stiffness Equations 
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Grillage : Stiffness Equations 
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z 

y 

 transformation matrix between pq and xy coordinate system 

rotation transformation along with y axis 
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Grillage : Stiffness Equations 

 Stiffness Equations 

[ ] [ ][ ]pq pq pqf δ K① [ ][ ] [ ][ ][ ]xy pq xyf T K T

[ ] [ ] [ ][ ][ ] [ ][ ]T

xy pq xy xy xyf   T K T K

T][][ 1
TT 

multiply 

[ ] [ ][ ]pq xyf f T② ]][[][ xypq  T③ 



































































































































































2

2

2

1

1

1

22

2323

22

2323

2

2

2

1

1

1

cos0sin000

010000

sin0cos000

000cos0sin

000010

000sin0cos

46
0

26
0

612
0

612
0

0000

26
0

46
0

612
0

612
0

0000

cos0sin000

010000

sin0cos000

000cos0sin

000010

000sin0cos

z

y

x

z

y

x

z

y

x

z

y

x

L

EI

L

EI

L

EI

L

EI
L

EI

L

EI

L

EI

L

EI
L

GJ

L

GJ
L

EI

L

EI

L

EI

L

EI
L

EI

L

EI

L

EI

L

EI
L

GJ

L

GJ

M

f

M

M

f

M





























x 
z 

y 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

270 
Computer Aided Ship Design, III-2. Grillage Analysis for Midship Structure, Fall 2011, Kyu Yeul Lee  

Ex.) Grillage 

ex.) Find displacements and reaction force at each 

nodes of frame in the following figure. 

Step1. Input Data 

element  cosθ sin θ 
length 

(m) 

moment of inertia 

(m4) 

Young’s 
moldulus 

(kN/m2) 

shear modulus 

(kN/m2) 

polar moment of 
inertia 

(m4) 

1 1 0 3 
I=16.6X10-5 E=210X106 G=84X106 J=4.6X10-5 

2 0 -1 3 

 constants (           ,              ) 01  2 270  
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Ex.) Grillage 

Step2. Stiffness Equation 
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Ex.) Grillage 

Step2. Stiffness Equation 
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Ex.) Grillage 

 known/unknown displacements 

 known : θx1,δy1,θz1 ,θx3, δy3, θz3(=0) 

 unknown : θx2,δy2, θz2 

Step3. Find Displacements 

 known/unknown forces 

 known : Mx2(=0), fy2(=-22kN), Mz2(=0) 

 unknown : Mx1,  fy1, Mz1, Mx3,  fy3, Mz3 

2 2

2 2

2 24

3 3

3 3

3 3

0 2.32 2.32 0

0 2.32 1.55 0

0 0 0 0 0.128
10

2.32 2.32 0 4.65 2.32 0

2.32 1.55 0 2.32 1.55 0

0 0 0.128

4.65 2.32

2.32 1.55

0.12

0 0 0.128

8

x x

y y

z z

x x

y y

z z

M

f

M

M

f

M













    
    


   
   

    
   

     
   

      









1 1

1 1

1 14

2 2

2 2

2 2

0.128 0 0 0.128 0 0

0 1.55 2.32 0 1.55 2.32

0 2.32 4.65 0 2.32 2.33
10

0.128 0 0 0 0

0 1.55 2.32 0

0 2.

0.128

1.55 2.32

2.32 4.6532 2.33 0

x x

y y

z z

x x

y y

z z

M

f

M

M

f

M













    
    


   




  
    

   
    
   
      









22kN 

x 

z 

y 

element 1 
element 2 

node 1 

node 3 

node 2 

3m 
3m 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

274 
Computer Aided Ship Design, III-2. Grillage Analysis for Midship Structure, Fall 2011, Kyu Yeul Lee  

Ex.) Grillage 
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

-Chapter 7. Grillage 

22kN 

x 

z 

y 

element 1 
element 2 

node 1 

node 3 

node 2 

3m 
3m 

 known/unknown displacements 

 known : θx1,δy1,θz1 ,θx3, δy3, θz3(=0) 

 unknown : θx2,δy2, θz2 

Step3. Find Displacements 

 known/unknown forces 

 known : Mx2(=0), fy2(=-22kN), Mz2(=0) 

 unknown : Mx1,  fy1, Mz1, Mx3,  fy3, Mz3 
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Ex.) Grillage 
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22kN 

x 

z 

y 

element 1 
element 2 

node 1 

node 3 

node 2 

3m 
3m  known/unknown displacements 

 known : θx1,δy1,θz1 ,θx3, δy3, θz3(=0) 

 unknown : θx2,δy2, θz2 

Step3. Find Displacements 

 known/unknown forces 

 known : Mx2(=0), fy2(=-22kN), Mz2(=0) 

 unknown : Mx1,  fy1, Mz1, Mx3,  fy3, Mz3 
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22kN 

x 

z 

y 

element 1 
element 2 

node 1 

node 3 

node 2 

3m 
3m 

Ex.) Grillage 0 zyx 

1 2

2

2

2 4

2

2

4.778 2.32 0 0 0.126 10
1

2.32 3.10 2.32 22 0.259 10
10

0 2.32 4.778 0 0.126 10

x

y

z

rad

cm

rad







 





      
      

            
               

2 2

4

2 2

2 2

0 4.778 2.32 0

22 10 2.32 3.10 2.32

0 0 2.32 4.778

x x

y y

z

M

f kN

M







     
     

    
     
           

 known/unknown displacements 

 known : θx1,δy1,θz1 ,θx3, δy3, θz3(=0) 

 unknown : θx2,δy2, θz2 

Step3. Find Displacements 

 known/unknown forces 

 known : Mx2(=0), fy2(=-22kN), Mz2(=0) 

 unknown : Mx1,  fy1, Mz1, Mx3,  fy3, Mz3 
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Ex.) Grillage 
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22kN 

x 

z 

y 

element 1 
element 2 

node 1 

node 3 

node 2 

3m 
3m 

0 zyx 

 known/unknown displacements 

 known : θx1,δy1,θz1 ,θx3, δy3, θz3(=0) 

 unknown : θx2,δy2, θz2 

Step3. Find Displacements 

 known/unknown forces 

 known : Mx2(=0), fy2(=-22kN), Mz2(=0) 

 unknown : Mx1,  fy1, Mz1, Mx3,  fy3, Mz3 
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Ex.) Grillage 

Step4. Find Reaction Forces 

superposition of reaction forces of each elements 
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Ex.) Grillage 

































































mkN

kN

mkN

mkN

kN

mkN

M

f

M

M

f

M

z

y

x

z

y

x

65.1

11

31

65.1

11

65.1

3

3

3

2

2

2

































































mkN

kN

mkN

mkN

kN

mkN

M

f

M

M

f

M

z

y

x

z

y

x

65.1

11

65.1

31

11

65.1

2

2

2

1

1

1

 reaction forces for element  1 

 reaction forces for element  2 

 total reaction forces 

















































































mkN

kN

mkN

kN

mkN

kN

mkN

M

f

M

M

f

M

M

f

M

z

y

x

z

y

x

z

y

x

65.1

11

31

0

22

0

31

11

65.1

3

3

3

2

2

2

1

1

1

22kN 

x 

z 

y 

element 1 

element 2 

node 1 

node 3 

node 2 

total reaction forces 

11kN 

11kN 
31kN·m 

31kN·m 

1.65kN·m 

1.65kN·m 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

280 
Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

N
a
v
a
l 
A
rc

h
it
e
c
tu

re
 &

 O
c
e
a
n
 E

n
g
in

e
e
ri
n
g
 

SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

3. Finite Difference Method 
and Finite Element Method  
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3. Finite Difference Method and Finite Element 
Method  

3.1 INTRODUCTION TO FDM AND FEM 
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Introduction 

Physical Phenomena 

Ordinary or Partial Differential Equations 
with Boundary and Initial Conditions 

quantitative description 

Exact Solution 

available mathematical method 

While searching for a quantitative description of physical phenomena, the engineer or the scientist establishes generally 
a system of ordinary or partial differential equations valid in a certain region (or domain) and imposes on this system 
suitable boundary and initial conditions 

Here come the major difficulties, as only the very simplest forms of equations, within geometrically trivial boundaries, 
are capable of being solved exactly with available mathematical method 

only the very simplest forms of equations, 
within geometrically trivial boundaries 

Major difficulty 

[Zienkiewicz 1983] pp.1 

[Zienkiewicz 1983] Ch. 1.1 
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Introduction 
O.D.E. : Ordinary Differential Equation 
P.D.E. : Partial Differential Equation 
B/C : Boundary Condition 
I/C : Initial Condition 

O.D.E or P.D.E with B/C and I/C 
Exact  

Solution 

To overcome such difficulties, it is necessary to recast the problem in a purely algebraic form, involving only basic 
arithmetic operations. To achieve this, various forms of discretization of the continuum problem defined by the 
differential equations can be used. 

In such a discretization, the infinite set of numbers representing the unknown function or functions is replaced by a 
finite number of unknown parameters, and this process, in general, requires some form of approximation 

Difficult  

Algebraic form 
Approximated 

Solution 

Discretization 

Approximation 

[Zienkiewicz 1983] pp.1-2 

[Zienkiewicz 1983] Ch. 1.1 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

285 
Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

Introduction 

Of the various forms of discretization which are possible, one of the simplest is the finite difference process and the 
others are various trial function approximations falling under the general classification of finite element methods. 

O.D.E or P.D.E with B/C and I/C 

Algebraic form 

Discretization 
Approximation 

Finite Difference Method 

Finite Element Method 

[Zienkiewicz 1983] p.2 

[Zienkiewicz 1983] Ch. 1.1 
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Some Examples of Continuum Problems 

A problem of heat flow in a two-dimensional domain Ω 

,x yq q the heat flowing in the direction of the x and y 
per unit length and in unit time 

problem domain 

( , , )x y t temperature distribution 



boundary 
element 

dx

dy

[Zienkiewicz 1983] Ch. 1.2 
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Some Examples of Continuum Problems 

A problem of heat flow in a two-dimensional domain Ω 

dx

dy

xq dy x
x

q
q dx dy

x

 
 
 

yq dx

y

y

q
q dy dx

y

 
 
 

    the difference between outflow and inflow for an element size     D dxdy

yx
x x y y

qq
D q dx q dy q dy q dx

x y

  
       

    
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Some Examples of Continuum Problems 

A problem of heat flow in a two-dimensional domain Ω 

The heat generated in the element 

Qdxdy

dx

dy
Q

The heat released in unit time due to the temperature change 

c dx dy
t









where      is the specific heat  
and        id the density  

c


c
t








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Some Examples of Continuum Problems 

A problem of heat flow in a two-dimensional domain Ω 

For conservation of heat,  
the difference 
must be equal to  
the sum  
of the heat generated  
and released in the element 


yx

x x y y

qq
q dx q dy q dy q dx

x y

  
      
    

c dx dy
t








Qdxdy

0
yx

qq
dxdy dxdy Qdxdy c dxdy

x y t




 
   

  

0
yx

qq
Q c

x y t




 
    

  

1 equation 

3 variables 
Can we solve this problem? 
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Some Examples of Continuum Problems 

A problem of heat flow in a two-dimensional domain Ω 

Introducing a physical law governing the heat flow in an isometric medium, 

nq k
n


 


where,      is a property of the medium known as 
the conductivity 

k

specifically,  ,x yq k q k
x y

  
   

 

0k k Q c
x x y y t

  


      
       

       

The heat conservation, therefore, leads to 

0k k Q c
x x y y t

  


      
     

       
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Some Examples of Continuum Problems 

A problem of heat flow in a two-dimensional domain Ω 

Differential Equation governing the problem at hand  

0k k Q c
x x y y t

  


      
     

       

Such a solution needs the specification  
of initial conditions at time, 
and  
of boundary conditions on the boundary  
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Some Examples of Continuum Problems 

A problem of heat flow in a two-dimensional domain Ω 

Initial Condition 

e.g. the distribution of temperature given everywhere in     at    0t t
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Some Examples of Continuum Problems 

A problem of heat flow in a two-dimensional domain Ω 

Boundary Conditions 

Typically two different kinds of boundary condition may be involved 

a portion    of 
the boundary 

qa portion    of 
the boundary 

the values of the temperature are specified 0 on    

the values of the temperature derivative 
are specified 

0 q

d
k q on

dn


   

“Dirichlet” B/C 

“Neumman” B/C 
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Some Examples of Continuum Problems 

A problem of heat flow in a two-dimensional domain Ω 

, 0 on    

, 0 q

d
k q on

dn


   

0k k Q c
x x y y t

  


      
     

       

if steady-state conditions are assumed 0
t






0k k Q
x x y y

      
    

      

for one dimensional  problem  

0k Q
x x

  
  

  

if    is constant k

2

2
0k Q

x


 


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3. Finite Difference Method and Finite Element 
Method  

3.2 FINITE DIFFERENCE METHOD(FDM) 
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- Collocation Method 
- Subdomain Method 
- Galerkin Method 
- Least Square Method 

Approximation 

Finite Difference Method 

Differential 
Equation 

Integral 
Equation 

Integral Form 
-Weighted Residual Method 
-Calculus of Variation 
-Integral Equation 

Algebraic 
Equation 

-Discretization 
 

Physical 
Phenomena 

-mathematical 
modeling 
 

Differential Form 
- Linear or Nonlinear D.E 
- Ordinary or Partial D.E. 
- Initial and/or Boundary 
Value Problem 

[Zienkiewicz 1983] Ch. 1.3 
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Finite Difference in One Dimension 

A Simple one-dimensional boundary value problem : 
 
Problem Definition of Temperature Distribution 

We wish to determine a function ( )x

which satisfies a given differential equation 

2

2
( )

d
k Q x

dx


  in the region  0 x L 

with the associated boundary conditions 

0(0) , ( ) LL    

where     is the material thermal conductivity (assumed to be constant) k

[Zienkiewicz 1983] Ch. 1.3 
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Finite Difference in One Dimension 

The Finite Difference Approximation of Derivatives 

A derivative of the function    
at      : slope AB , or    /

l
d dx

x

y

( )y x

( )

lx

x l

( )x

lx

A

B
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The Finite Difference Approximation of Derivatives 

A graphical interpretation of 
some finite difference 
approximations to  

Forward difference : slope of AC  

Backward difference : slope of DA  

Central difference : slope of DC  
  

x

y

( )y x

A

B

( )

lx

x l

C

D

1lx 1lx 

/
l

d dx
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The Finite Difference Approximation of Derivatives 

Using Taylor’s theorem 

or we can rewrite 

 
2 2

1 2
( ) ( ) ( )

2
l l l

x l x l

xd d
x x x x x

dx dx

 
  

 


     

 
2 2

1 22
l l

l l

xd d
x

dx dx

 
 


   

therefore 

2

1

22

l l

l l

d x d

dx x dx

    
  


1l l

l

d

dx x

   




“forward difference” 
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The Finite Difference Approximation of Derivatives 
In a similar manner by using Taylor’s theorem 

 
2 2

1 22
l l

l l

xd d
x

dx dx

 
 


   

therefore 

2

1

22

l l

l l

d x d

dx x dx

   
  



1l l

l

d

dx x

  




“backward difference” 

 
2 2

1 22
l l

l l

xd d
x

dx dx

 
  


    

Rewriting the equation for       gives  1l 
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The Finite Difference Approximation of Derivatives 

In a similar manner by using Taylor’s theorem 

   
2 32 3

1 2 32 6
l l

l l l

x xd d d
x

dx dx dx

  
 

 
     (1) 

   
2 32 3

1 2 3

1 1
2 6

l l

l l l

x xd d d
x

dx dx dx

  
 

 

 
    (2) 

(1)-(2) :  
 

3 3

1 1 3
2

3
l l

l l

xd d
x

dx dx

 
  


   

“central difference” 1 1

2

l l

l

d

dx x

   



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The Finite Difference Approximation of Derivatives 

Forward difference : slope of AC  

Backward difference : slope of DA  

Central difference : slope of DC  

x

y

( )y x

A

B

lx

C

D

1lx 1lx 

1l l

l

d

dx x

   




1l l

l

d

dx x

  




1 1

2

l l

l

d

dx x

   




x x
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The Finite Difference Approximation of Derivatives 

In a similar manner by using Taylor’s theorem 

   
2 32 3

1 2 32 6
l l

l l l

x xd d d
x

dx dx dx

  
 

 
     (1) 

   
2 32 3

1 2 3

1 1
2 6

l l

l l l

x xd d d
x

dx dx dx

  
 

 

 
    (2) 

(1)+(2) :   
2

2

1 1 2
2l l l

l

d
x

dx


      

“the second derivative of 
central difference” 

 

2

1 1

22

2l l l

l

d

dx x

     



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The Finite Difference Approximation of Derivatives 

x

y

( )y x

AB

lx

C

1lx 1lx 

The first derivative of  
central difference at  1lx x 

2lx  2lx 

2

1 2

l l

l

d

dx x

  







 Slop of BA 

The first derivative of  
central difference at  1lx x 

2

1 2

l l

l

d

dx x

  







 Slop of AC 

2 x 2 x
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The Finite Difference Approximation of Derivatives 

The first derivative of central difference: 

The second derivative of  
central difference at lx x

1

2

2

1

2

l

l

l

d

dd

d

d

x

x

d

x

x

 

  






2 2

2

2

2
l l l l

x

x

x

   









x

y

( )y x

AB

lx

C

1lx 1lx 2lx  2lx 

2

1

,
2

l l

l

d

dx x

  







2

1 2

l l

l

d

dx x

  








 
2 2

2

2

2

l l l

x

    




2 x
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The Finite Difference Approximation of Derivatives 

The second derivative of  
central difference at lx x

 

2

2 2

22

2

2

l l l

l

d

dx x

     




x

y

( )y x

AB

lx

C

1lx 1lx 2lx  2lx 

 

2

1 1

22

2l l l

l

d

dx x

     




2 1

2 1

2

l l

l l

x x

 

 

 

 

  




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Finite Difference in One Dimension 
-Solution of a Differential Equation by the Finite Difference Method 

2

2
( )

d
k Q x

dx


  ,0 x L 

0, (0) , ( ) LL    

2

1 1

2 2

2l l l

l

d

dx x

     




second derivatives approximated by the central difference method 

1 1

2

2
( )l l l

lk Q x
x

    
 



the approximation produces the equation 

at each of the interior grid points 
lx

, 1,2,..., 1l L 

0 0, (0) , ( ) L LL        
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Finite Difference in One Dimension 
-Solution of a Differential Equation by the Finite Difference Method 

An equation of this form arises at each of the interior grid points on the finite different 
mesh.  
Writing down these equation separately gives 

0 0, , L L    1 1

2

2
( )l l lk Q x

x

    
 


, 1,2,..., 1l L 

2

1
2 1 02

x Q

k
  


   

2

2
3 2 12

x Q

k
  


   

2

2
1 2 32 L

L L L

x Q

k
   

  


   

2

1
2 12 L

L L L

x Q

k
   

 


   

2

1
2 1 02

x Q

k
  


   

2

1
1 22 L

L L L

x Q

k
  

 


    

( )l lQ Q x
[Zienkiewicz 1983] Ch. 1.3 
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2

1
2 1 0

2

2
3 2 1

2

2
1 2 3

2

1
1 2

2

2

2

2

L
L L L

L
L L

x Q

k

x Q

k

x Q

k

x Q

k

  

  

  

  


  


 


   


   


   


  

this set of equations may be written as a single 
matrix equation 

2 1 0

1 2 1

1 2 1

1 2 1

1 2

 
 
 
 
  

  
 
  
 

 

K

K f

where, 

1

2

3

2

1

L

L















 
 
 
 

  
 
 
 
  

 

2

1
0

2

2

2

1

,

L
L

x Q

k

x Q

k

x Q

k





 
 

 
 

 
 
 
 

 
 

f

multiply -1 both side of the 
equations in the previous slide 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

311 
Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

Solution by the Finite 
Difference Method 

K f

given 

find 

2

2
( )

d
k Q x

dx


  ,0 x L 

0, (0) , ( ) LL    

Differential Equation 
The original problem of determining an 
unknown continuous function  ( )x

1 2 1, ,..., L   

has been replaced by the problem of solving 
a matrix equation for the discrete set of 
values  

The finite difference method will, therefore,  
give information about the function values 
at the mesh points 
 
but no information about the functions 
values between these points 
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Example 1.1 

0 

2

1 1

2 2

2l l l ld

dx x

     




Boundary Condition 1 0x  1x at at 

2

2

d

dx




It is required to obtain the function ( )x

which satisfies the governing equation 

A mesh spacing 
1

3
x  is chosen 

and 

The left side of the governing equation can be approximated as follows 

Solution) 
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Example 1.1 

0 

1 1

2

2l l l
l

x

  
  




Boundary Condition 1 0x  1x at at 

2

2

d

dx


governing equation 

and 

2

1 1

2 2

2l l l ld

dx x

     




3 1x 0 0x 
1

1

3
x  2

2

3
x 

0 0  1 2 3 1 
1

3
x 

2

1 12l l l lx       

2

2 1 0 12 x      

2

3 2 1 22 x      2,l 

1,l when 

Solution) 

2 unknowns 

2 equations 

1

3
x A mesh spacing:  
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2

2 1 0 12 x      

2

3 2 1 22 x      2,l 

1,l when 

2 1 1 0

1
2

9
      

2 2 1 3

1
2

9
       

2 1

1
2 0

9
   

2 1

1
2 1

9
  

1 20.2893, 0.6107  

Solution) 

1

3
x 

0 0 

3 1 
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Analytic Solution) 

xe Suppose that 

Substituting           into the governing equation gives xe 

2 x xe e   2 1  1  

General solution:  
1 2

x xc e c e
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Analytic Solution) 

General solution:  
1 2

x xc e c e  

(0) 0 

1 2 0c c 

From B/C: (1) 1 

1 2

1
1c e c

e
 

1

1
,

1/
c

e e



2

1

1/
c

e e

 
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Analytic Solution) 1 1

1/ 1/

x xe e
e e e e

  
  

1 20.2893, 0.6107  

FDM) 1 20.2893, 0.6107  

1 2

1 2
0.2889, 0.6102

3 3
   

   
      

   
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Derivative Boundary Conditions 
-Boundary condition in terms of a derivative 

d
k q

dx


 

If the gradient of the temperature is 
specified for the previous heat 
conduction example 

at x L

then 2

1
1 22 L

L L L

x Q

k
   

 


   

unknown 

2

1
2 1 0

2

2
3 2 1

2

2
1 2 3

2

1
1 2

2

2

2

2

L
L L L

L
L L L

x Q

k

x Q

k

x Q

k

x Q

k

  

  

  

  


  


 


   


   


   


   

1La set of       equations  

L unknowns  

we need one more equation 

[Zienkiewicz 1983] Ch. 1.4 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

319 
Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

Derivative Boundary Conditions 
-Boundary condition in terms of a derivative 

L

d
k q

dx


 

2

1
1 22 L

L L L

x Q

k
   

 


   

unknown 

one more equation  
by the backward difference approximation 

L

d q

dx k


 

1L L q

x k

  
 



[Zienkiewicz 1983] Ch. 1.4 
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2

1
1 22 L

L L L

x Q

k
   

 


   

If we want to use the central difference 
approximation, 

first, we introduce a fictitious mesh point  

1L Lx x x  

with the associated “temperature”  1L 

1L          has no physical 
significance as the 
point         lies outside 
of the boundary 

1Lx 

then we have 

2

1 12 L
L L L

x Q

k
   


   

2

1
2 1 02

x Q

k
  


   

La set of       equations  

1L unknowns  

we need one more equation 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

321 
Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

2

1
1 22 L

L L L

x Q

k
   

 


   

2

1 12 L
L L L

x Q

k
   


   

2

1
2 1 02

x Q

k
  


   

La set of       equations  

1L unknowns  

L

d
k q

dx


 one more equation  

by the central difference approximation 

we need one more equation 

1 1

2

L L q

x k

  
 


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Example 1.2 

0 

2

1 1

2 2

2l l l ld

dx x

     




Boundary Condition / 1d dx 0x  1x at at 

2

2

d

dx




It is required to obtain the function ( )x

which satisfies the governing equation 

A mesh spacing 
1

3
x  is chosen 

and 

The left side of the governing equation can be approximated as follows 

Solution) 
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1 1

2

2l l l
l

x

  
  




3 1x 0 0x 
1

1

3
x  2

2

3
x 

0 0  1 2 3
1

3
x 

2

1 12l l l lx       

2

2 1 0 12 x      

2

3 2 1 22 x      2,l 

1,l when 

Solution) 

Example 1.2 

Boundary Condition 

2

2

d

dx


governing equation 

0  / 1d dx 0x  1x at at and 

3
/ 1d dx 

3 unknowns 

2 equations 

1

3
x A mesh spacing:  
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2

2 1 0 12 x      

2

3 2 1 22 x      

Solution) 

Using a backward difference representation of the derivative 
boundary condition at         produces  

1

l

l l

x

d

x dx

  




3 1x 

3 2 1
x

 



3 2

1

3
  

2 1

1
2 0

9
  

1 2 3

1
2 0

9
    

0 0, 
1

3
x 

1 2 30.2477, 0.5229, 0.8563    



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

325 
Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

Analytic Solution) 

xe Suppose that 

Substituting           into the governing equation gives xe 

2 x xe e   2 1  1  

General solution:  
1 2

x xc e c e
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Analytic Solution) 

General solution:  
1 2

x xc e c e  

(0) 0 

1 2 0c c 

From B.C.: 
1

/ 1
x

d dx



1 2

1
1c e c

e
 

1

1
,

1/
c

e e



2

1

1/
c

e e






1 2

x xd
c e c e

dx

  



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

327 
Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

Analytic Solution) 1 1

1/ 1/

x xe e
e e e e

  
 

FDM) 

 1 2 3

1 2
0.2200, 0.4648, 1 0.7616

3 3
     

   
        

   

1 2 30.2477, 0.5229, 0.8563    

1 2 30.2477, 0.5229, 0.8563    
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Example 1.3 

0 

2

1 1

2 2

2l l l ld

dx x

     




Boundary Condition / 1d dx 0x  1x at at 

2

2

d

dx




It is required to obtain the function ( )x

which satisfies the governing equation 

A mesh spacing 
1

3
x  is chosen 

and 

The left side of the governing equation can be approximated as follows 

Solution) 

Solve this problem using central difference approximation for B.C. 
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3 1x 0 0x 
1

1

3
x  2

2

3
x 

0 0  1 2 3
1

3
x 

2

2 1 0 12 x      

2

3 2 1 22 x      

1 1

2

2l l l
l

x

  
  




2

1 12l l l lx       

2,l 

1,l when 

Solution) 

Example 1.3 

Boundary Condition 

2

2

d

dx


governing equation 

0  / 1d dx 0x  1x at at and 

3
/ 1d dx 

3 equations 

1

3
x A mesh spacing:  

4 4 unknowns 

The fictitious 
mesh point 

4

4

3
x 

2

4 3 2 32 x      3,l 
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2

2 1 0 12 x      

2

3 2 1 22 x      

Solution) Central differencing of the derivative boundary condition  
at         produces  

1 1

2
l

l l

x

d

x dx

   




3 1x 

4 2 1
2 x

 



4 2

2

3
  

2 1

1
2 0

9
  

1 2 3

1
2 0

9
    

0 0, 
1

3
x 

1 2 30.2168, 0.4576, 0.7493    

2

4 3 2 32 x      
2 3 4

1
2 0

9
    
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Example 1.2, 1.3 

Boundary Condition 

2

2

d

dx


governing equation 

0  / 1d dx 0x  1x at at and 

1

3
x A mesh spacing:  

Solution using central differencing of the derivative boundary condition  

1 2 30.2168, 0.4576, 0.7493    

Solution using backward difference representation of the derivative 
boundary condition 

1 2 30.2477, 0.5229, 0.8563    

Exact Solution 

1 2 30.2200, 0.4648, 0.7616    

Solution using central differencing can be seen to be considerably more accurate  
than the solution calculated using the backward difference representation  
of the derivative B.C 
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Nonlinear Problems 

Physical Phenomena 

Nonlinear Differential Equation and/or B.C. 

mathematical modeling 

Exact Solution 

usually fail 

The mathematical modeling of physical problems frequently produces governing differential equations and/or boundary 
conditions that are nonlinear in character 

whereas analytical methods of solution for linear equations normally fail to cope with nonlinear differential equations 

[Zienkiewicz 1983] Ch. 1.5 
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Nonlinear Differential Equation 

When the boundary value problem is nonlinear, application of the finite difference method produces a set of nonlinear 
algebraic equations 

Nonlinear Algebraic equations 

Discretization 

Approximation 

빨간색으로 
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we can consider the physically realistic problem where the thermal 
conductivity      is a given function of the temperature k

( ) ( )
d d

k Q x
dx dx




 
  

 

then, the governing equation is nonlinear 

0k k Q c
x x y y t

  


      
     

       
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( ) ( )
d d

k Q x
dx dx




 
  

 

by using a central difference approximation, we can write 

1 1

2 2

( ) ( )
l l

l

d d
k k

dx dx
Q

x

 
 

 



 


or,  
1 1

2 2

( ) ( ) l

l l

d d
k k xQ

dx dx

 
 

 

  

where the subscript          indicates an evaluation at the point 
 
midway between      and    

1

2
l 

lx 1lx 
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by using a central difference approximation again, 

1 1

2 2

( ) ( ) l

l l

d d
k k xQ

dx dx

 
 

 

  

1

1

2

l l

l

d

dx x

  








     

1 1
1 1

2 2

2

1 1 1 1

2 2

( ) ( )

( ) ( )

l l l l
l

l l

l l l l l
l l

k k xQ
x x

k k x Q

   
 

     

 

 

 
 

 
  

 

     

thus application of the finite difference method to  
the original nonlinear differential equation  
has produced the set of nonlinear algebraic equations  

 
2

1 1 1 1 1 1

2 2 2 2

( ) ( ) ( ) ( )l l l l
l l l l

k k k k x Q       
   

 
      
 

it should be noted that this equation reduces to linear equations when      is constant k

, 1,2,..., 1l L 
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nonlinear algebraic equations  

 
2

1 1 1 1 1 1

2 2 2 2

( ) ( ) ( ) ( )l l l l
l l l l

k k k k x Q       
   

 
      

 
, 1,2,..., 1l L 

it may be conveniently expressed in the form  

( ) K f 
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Simple iteration in which the system of equations is 
solved repeatedly with successively improved values of  

( ) K f 

( )K 

0( ) K K

 If we start from some initial guess 0 

and evaluate the matrix 

1an improved approximation for     can be obtained as  

1

0

K f

This process can be obviously continued writing 

1

1n n



K f
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( ) K f 

1

1n n



K f

This process is proceeding until the difference between  
 
      and        is within a suitable tolerance n 1n
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Example 1.4 

0 

  2

1/2 1 1/2 1/2 1/2 1 10l l l l l l l lk k k k x x            

Boundary Condition 

1 0.1k  

0x  1x at at 

10
d d

k x
dx dx

 
  

 

It is required to obtain the function ( )x

which satisfies the governing equation 

A mesh spacing 
1

3
x  is chosen 

and 

Using central difference representation, 
the governing equation can be approximated as follows 

Solution) 

0 

, where 
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Solution) 

1

3
x 

Example 1.4 

One methods of obtaining this value is to use the approximation 

0 1
1/2

2

 



 1 2

3/2
2

 



 2 3

5/2
2

 





can be represented with 1/2 3/2 5/2, ,  
0 1 2 3, , ,   

1

1

3
x 

2

2

3
x 

 1/2 1/2 0 1 11 0.1 1 0.05 1 0.05k          

 3/2 3/2 1 21 0.1 1 0.05k       

 5/2 5/2 2 3 21 0.1 1 0.05 1 0.05k          

Boundary Condition 

governing equation 

0  0x  1x at at and 

1 0.1k  10
d d

k x
dx dx

 
  

 
, where 

0 
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3 1x 0 0x 
1

1

3
x  2

2

3
x 

0 0  1 2 3 0 
1

3
x 

Solution) 

1

3
x 

Example 1.4 

2 unknowns 

2 knowns 

  2

1/2 1 1/2 1/2 1/2 1 10l l l l l l l lk k k k x x            

2,l 

1,l when   2

3/2 2 3/2 1/2 1 1/2 0 110k k k k x x       

  2

5/2 3 5/2 3/2 2 3/2 1 210k k k k x x       

The central difference representation of the governing equation 
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0 0  1 2 3 0 Solution) 

1

3
x 

Example 1.4 

2 unknowns 2 knowns, 

0 1
1/2 ,

2

 





1 2
3/2 ,

2

 



 2 3

5/2
2

 





2,l 

1,l 

1

1

3
x 

2

2

3
x 

  2

3/2 2 3/2 1/2 1 1/2 0 110k k k k x x       

  2

5/2 3 5/2 3/2 2 3/2 1 210k k k k x x       

  2

3/2 2 3/2 1/2 1 110k k k x x     

  2

5/2 3/2 2 3/2 1 210k k k x x    
1 2

1 1 2
, ,

3 3 3
x x x   

 5/2 3/2 2 3/2 1

20

27
k k k   

 3/2 2 3/2 1/2 1

10

27
k k k    
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Solution) 

1

3
x 

Example 1.4 
0 1

1/2 ,
2

 





1 2
3/2 ,

2

 



 2 3

5/2
2

 



 1

1

3
x 

2

2

3
x 

 5/2 3/2 2 3/2 1

20

27
k k k   

 3/2 2 3/2 1/2 1

10

27
k k k    

 

 
3/2 1/2 3/2 1

3/2 5/2 3/2 2

10

27

20

27

k k k

k k k





 
     

     
      

  
1/2 11 0.05 ,k  

 3/2 1 21 0.05 ,k    

5/2 21 0.05k     

    
1 2 1 2 1

1 2 1 2 2

10

2 0.05 2 1 0.05 27

1 0.05 2 0.05 2 20

27

    

    

 
         

              
  

f
( )K 
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1

3
x 

Example 1.4 
1

1

3
x 

2

2

3
x 

Solution) 
   

    
1 2 1 2 1

1 2 1 2 2

10
2 0.05 2 1 0.05 27

( ) , ,
1 0.05 2 0.05 2 20

27

    

    

 
        

               
  

K f  ( ) K f 

0

0

 
  
 

Step 0: 
2 1

1 2

 
   

Κ

1 Κ f 

Step 1: 

Initial guess 

0.49383

0.61728

 
  
 



0.49383

0.61728

 
  
 

 1

2.08025 1.05556

1.05556 2.08642

 
   

Κ

1

2 1

 Κ f

2

0.48190

0.59883

 
  
 



Step 2: 

Step 3: 3

0.48221

0.59934

 
  
 

 3

2.07819 1.05408

1.05408 2.08404

 
   

Κ

1

4 3

Κ f

4

0.48220

0.59932

 
  
 



2

0.48190

0.59883

 
  
 

 2

2.07813 1.05404

1.05404 2.08398

 
   

Κ

1

3 2

Κ f

3

0.48221

0.59934

 
  
 


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[REVIEW] HEAT EQUATION 
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Some Examples of Continuum Problems 

1-D Heat Equation 

Assumptions 
 The flow of heat within the rod takes place only in the x-direction 

 The lateral, or curved, surface of the rod is insulated; that is , no heat 
escapes from this surface 

 No heat is being generated within rod 

 The rod is homogeneous; that is, its mass per unit volume ρ is constant 

 The specific heat(비열)* γ and thermal conductivity(열전도도)** K of material 
of the rod are constants 

 

Cross-section of area A 
xLxx x0

rod 

One dimension flow of heat 

* Oxtoby, Principles of Modern Chemistry, Sixth Edition, Thomson, Index 1.25, “Specific heat capacity : The amount of heat required to raise 
the temperature of one gram of a substance by one kelvin at constant pressure” 
** 여상도, 열역학 개념의 해설, 청문각, 2006, p18 “온도가 동일한 두 물체와 우리의 손이 닿았을 때 그 차갑고 뜨거운 정도가 다른 이유는, 두 
물체의 온도가 다르기 때문이 아니라 우리 손에서 물체로 이동하는 열의 전달 속도가 다르기 때문이다. 열전도도가 큰 철판이 열전도도가 작은 
나무판에 비해 훨씬 빨리 손으로부터 열을 빼앗아 간다.” 
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1-D Heat Equation 

(i) The quantity of heat(열량)     in an element of mass(질량소) m is  

(ii) The rate of heat flow(열흐름율)     through the cross-section 
indicated in Figure is proportional to the area A of the cross-section 
and the partial derivative with respect to x of the temperature 

Q cm

t

d
Q kA

dx


 

Q

tQ

specific heat(비열) c 
temperature of the element q 

thermal conductivity(열전도도) k 

Heat flows in the direction of 
decreasing temperature 

Two empirical laws of heat conduction 
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1-D Heat Equation 

Q c A x  

(1)
dQ dq

c A x
dt dt

 

xAm  

( )i Q c m

Substitute 

Differentiate respect to time 
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1-D Heat Equation 

Q c A x  

(1)
dQ dq

c A x
dt dt

 

xAm  

( )i Q c m

Substitute 

Differentiate respect to time 
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1-D Heat Equation 

( , ) [ ( , )]

[ ( , ) ( , )] (2)

dQ d d
kA x t kA x x t

dt dx dx

d d
kA x x t x t

dx dx

 

 

     

   

( )
dQ d

ii kA
dt dx


 

Net flow rate 
in  

Cross-section of area A 
xLxx x0

rod 

One dimension flow of heat 

( , )x x x

The rate of heat flow(열흐름율)  through the cross-section 
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1-D Heat Equation 

1
( , ) ( , )

d d d
k x x t x t c

x dx dx dt

  


 
      

[ ( , ) ( , )]
d d d

kA x x t x t c A x
dx dx dt

  
   

From (1) and (2) 

(1)
dQ d

c A x
dt dt


 

[ ( , ) ( , )] (2)
dQ d d

kA x x t x t
dt dx dx

 
  

,0xAs 

1 d d
k c

dx dx dt

 


 
 

 

( , ) ( , )

( , ) ( , )

x xq x x t q x t

q x x t q x t

x

  

  



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3. Finite Difference Method and Finite Element 
Method  

3.3 FINITE ELEMENT METHOD(FEM) 

Of the various forms of discretization which are possible, one of the simplest is the finite difference process and the 
others are various trial function approximations falling under the general classification of finite element methods. 

O.D.E or P.D.E with B/C and I/C 

Algebraic form 

Discretization 
Approximation 

[Zienkiewicz 1983] p.2 
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[Zienkiewicz 1983] vii 

The “Finite element method” 

is 

a tool 

for the approximate solution 

governing 

of differential equation (with B/C*)  

diverse physical phenomena 

mathematical modeling 

B/C : boundary condition 
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Function Approximation by trial function 
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Function Approximation by Trial Functions 

In the finite difference method we have concentrated on 
defining the value of the unknown function Φ(x) at a 
finite number of values x 

Alternative methods for determining numerically the 
solution to differential equations can ,however, be 
developed by making the process of function 
approximation more systematic and general 

Introduction 

[Zienkiewicz 1983] Ch. 2.1 
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Function Approximation by Trial Functions 


We wish to approximate a given function     in some region 
bounded by a closed curve  



In problems involving differential equations, 
it is required to find the solution satisfying certain boundary 
conditions. 

We ,therefore, attempt initially to construct approximations 
which are exact equal to prescribed values of     on the 
boundary curve  


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and if we introduce a set of independent trial functions       
 
                                such that              for all  

1

ˆ
M

m m

m

a N  


  

where,         are some parameters which are 
computed so as to obtain a good “fit”  

0mN



 
 
If we can find any function     satisfying  

{ ; 1,2,3...}mN m  m

then at all points in     , we can approximate to      by         

ma

frequently 
referred as shape 
or basis function  
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1

ˆ
M

m m

m

a N  


 
 

 


0mN



The manner in which     and the trial function set are 

defined automatically ensures that  

the approximation has the property that whatever the 

values of the parameters 



̂ 




ma
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1

ˆ
M

m m

m

a N  


 

 
 


0mN



The trial function set should clearly be chosen 
so as to ensure that improvement in the 
approximation occurs with increase in the 
number M of trial functions used 

Completeness (convergence) requirement                      

̂  M as 
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1

ˆ
M

m m

m

a N  


 

 
 


0mN



Example) 

the chosen functions      are of a discontinuous form, 
shown to have value unity on a suitable interval and 
the value zero elsewhere  

mN

1N 2N

… 

any function can be approximated as 
closely as desired by dividing the total 
domain into ever smaller intervals  

1 

 

̂ 

M as 

Completeness 
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Approximation by Trial Functions 
- Weighted Residual Approximations 

1

ˆ
M

m m

m

a N  


 

where,         are some 
parameters which are 
computed so as to obtain 
a good “fit”  

ma

 
 


0mN



We shall now attempt to develop a general method 
for determining the parameters       in the 
approximation 

ma

We begin by introducing the error, or residual       
in the approximation 

R

ˆR    

which is a function of position in  
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Weighted Residual Approximations 

1

ˆ
M

m m

m

a N  


 

where,         are some 
parameters which are 
computed so as to obtain 
a good “fit”  

ma

 
 


0mN



residual 

ˆR    

In an attempt to reduce this residual in some 
overall manner over the whole domain  

we could require that an appropriate number of 
integrals of the error over     , weighted in different 
ways, be zero 



ˆ( ) 0l lW d W R d  
 

    
1,2,...,l M

where       is a set of independent weighting functions lW
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1

ˆ
M

m m

m

a N  


 

where,         are some 
parameters which are 
computed so as to obtain 
a good “fit”  

ma

 
 


0mN



residual 

ˆR    

The general completeness (convergence) requirement 

̂  M as 

can then be cast in an alternative form by requiring 

0lW R d


  for all     as    l M 
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1

ˆ
M

m m

m

a N  


 

where,         are some 
parameters which are 
computed so as to obtain 
a good “fit”  

ma

 
 


0mN



residual 

ˆR    

alternative form of completeness requirement 

0lW R d


  for all     as    l M 

1

( ) 0
M

l m m

m

W a N d 




   

standard weighted 
residual statement ˆ( ) 0lW d 


  

the function to be approximated is given 

Find 

User defined 
weighting 

function chosen to satisfy the B/C  

chosen to be zero at the B/C  
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Expansion of the equation of weighted residual 

1

1 1 2 2

( )

( )

M

l m l m

m

l l l M l M

W d a W N d

W d a W N d a W N d a W N d

 

 

 


   

    
 

     

 

   

1,2,..,m M

1 1 1 1 2 1 2 1

2 1 2 1 2 2 2 2

1 1 2 2

( )

( )

( )

M M

M M

M M M M M M

W d a W N d a W N d a W N d

W d a W N d a W N d a W N d

W d a W N d a W N d a W N d

 

 

 

   

   

   

     

     

     

   

   

   

1,2,..,l M

1

( ) 0
M

l m m

m

W a N d 




   

1

( )
M

l m l m

m

W d a W N d 
 



    

Find: Given: 

2011 Fall, Computer Aided Ship Design, Part3 Finite Element Method 
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(Derivation) 

1 1 1 1 2 1 2 1

2 1 2 1 2 2 2 2

1 1 2 2

( )

( )

( )

M M

M M

M M M M M M

W d a W N d a W N d a W N d

W d a W N d a W N d a W N d

W d a W N d a W N d a W N d

 

 

 

   

   

   

     

     

     

   

   

   

Find: Given: 

1 1 1 1 2 1
1

2 2 1 2 2 2 2

1 2

( )

( )

( )

M

M

M
M M M M M

W d W N d W N d W N d
a

W d W N d W N d W N d a

a
W d W N d W N d W N d

 

 

 

   

   

   

       
    
        
    
    
    
        

   

   

   

   

in matrix form 
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(Derivation) 

1 1 1 1 2 1 2 1

2 1 2 1 2 2 2 2

1 1 2 2

( )

( )

( )

M M

M M

M M M M M M

W d a W N d a W N d a W N d

W d a W N d a W N d a W N d

W d a W N d a W N d a W N d

 

 

 

   

   

   

     

     

     

   

   

   

Find: Given: 

1 1 1 1 2 1
1

2 2 1 2 2 2 2

1 2

( )

( )

( )

M

M

M
M M M M M

W d W N d W N d W N d
a

W d W N d W N d W N d a

a
W d W N d W N d W N d

 

 

 

   

   

   

       
    
        
    
    
    
        

   

   

   

   

in matrix form 

K af
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Weighted Residual Approximations 
- Matrix representation 

(Derivation) 

1 2

[ ], ( )

[ ],

[ ]

l l l

lm lm l m

T

M

f f W d

K K W N d

a a a

 




   

  







f

K

a

It can be written quite generally as  

Ka f
given 

find 

the function to be approximated is given 

chosen to 
satisfy the B/C  

find 

various forms of weighting 
functions sets can be used in 
practice 

1

ˆ
M

m m

m

a N  


 

chosen to be 
zero at the B/C  
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Weighted Residual Method 
- Unit Impulse 

  Unit Impulse 

 External force of large magnitude that acts only for a very 
short period of time 

  

t

y

a2/1

at 0

a2

at 00t

For small a,           have large magnitude. )( 0tta 





















att

attat
a

att

tta

0

00

0

0

,0

,
2

1

0,0

)(
1)(

0
0 



dttta

‘Unit’ impulse 

Magnitude of the  
unit impulse function 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

371 
Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

Weighted Residual Method 

- Weighting function:  Dirac delta function 

  The Dirac Delta Function 

)(lim)( 0
0

0 tttt a
a





1)()(
0

0 
x

dtttii 

t

y

0t

For small a,           have  
large magnitude. 

)( 0tta 










0

0

0
,0

,
)()(

tt

tt
tti 

)()()()( 0
0

0 tGdttttGiii
x

 

Magnitude of 

The Dirac delta function is chosen as weighting functions sets. 
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Weighted Residual Method 
- Point Collocation 

1 2

[ ],

( ) ,

[ ],

[ ]

l

l l

lm

lm l m

T

M

f

f W d

K

K W N d

a a a

 






  



 







f

K

a

Ka f

1

ˆ
M

m m

m

a N  


 

( )l lW x x  ,where                is the Dirac delta function  ( )lx x 

properties of the Dirac 
delta function 

1

2

1 2

( ) 0 ,

( ) ,

( ) ( ) ( )

,

l l

l l

x

l l
x

l

x x x x

x x x x

G x x x dx G x

where x x x







  

   

 

 



Ka f

1 2, [ ], [ ], [ ]T

l lm Mf K a a a  f K a

 

( ) ( )

( )

l

l

l l

x x

lm l m

m x x

f x x d

K x x N d

N

  

 











   

 

  







[Zienkiewicz 1983] Ch. 2.2 
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Weighted Residual Method 
- Subdomain Collocation  

1 2

[ ],

( ) ,

[ ],

[ ]

l

l l

lm

lm l m

T

M

f

f W d

K

K W N d

a a a

 






  



 







f

K

a

Ka f

1

ˆ
M

m m

m

a N  


 

1

1

1

1

1

1

0 ( ) 1 ( ) 0 ( )

( )

0 1 0

l

x x l x xl l

l

l

l

x x l x xl l

l

l

x

l
x

x

x

x

lm m m m
x

x

m
x

f dx dx dx

dx

K N dx N dx N dx

N dx

     

 



 






 




 

 

        

 

     



  



  



1

1

1 ,

0 , ,

l l

l

l l

x x x
W

x x x x





 
 

 

Ka f

1 2, [ ], [ ], [ ]T

l lm Mf K a a a  f K a

1

lx
1lx

x

lW
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Weighted Residual Method 
- The Galerkin Method  

1 2

[ ],

( ) ,

[ ],

[ ]

l

l l

lm

lm l m

T

M

f

f W d

K

K W N d

a a a

 






  



 







f

K

a

Ka f

1

ˆ
M

m m

m

a N  


 

lm l mK N N dx


 

l lW N

[ ]lmKK

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

M

M

M

M M M M M

N N dx N N dx N N dx N N dx

N N dx N N dx N N dx N N dx

N N dx N N dx N N dx N N dx

N N dx N N dx N N dx N N dx

   

   

   

   

 
 
 
 
 
 
 
 
 
 

   

   

   

   

K

we notice the computational advantages of the 
method in that the matrix     is symmetric K

, 1,2,3,...,l m M
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Summary : Weighted Residual Method 

1 2
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Weighted Residual Method 
- The Galerkin Method : Case 1 

- Given function        over the range  

- The trial function set for the approximation of 

the given function is 

- This trial function leads to typical coefficients                                      

 sin( / ); 1,2,3,...mN m x L m 

( )x 0 x L 

1 2

[ ],

( ) ,

[ ],

[ ]

l

l l

lm

lm l m

T

M

f

f W d

K

K W N d

a a a

 






  



 







f

K

a

Ka f

1

ˆ
M

m m

m

a N  


 

l lW N

The Galerkin Method  
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The Galerkin Method  
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The Galerkin Method  
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The Galerkin Method  
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Diagonal form!!! 
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The Galerkin Method  
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Using Galerkin method with the trial function 

set                                          to approximate 

a function       over the range               leads to 

typical coefficients                                      

 sin( / ); 1,2,3,...mN m x L m 

( )x 0 x L 

The particular simplicity of the equations 
produced by the Galerkin approximation on this 
case was due to the orthogonality property of 
the trial function. 

The truncated Fourier sine series representation 
of a function can be regarded as a Galerkin 
weighted residual approximation. 
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- Given function        over the range  

- The trial function set for the approximation of 

the given function is 
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The trial function set  1; 1,2,3,...m

mN x m 
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we notice the computational advantages of the 
method in that the matrix     is symmetric K

2011 Fall, Computer Aided Ship Design, Part3 Finite Element Method 
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Weighted Residual Method 
- Least square method  
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The standard least-squares leads to  
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APPROXIMATION TO THE SOLUTIONS OF 
DIFFERENTIAL EQUATIONS AND THE USE OF TRIAL 
FUNCTION 

[Zienkiewicz 1983] Ch. 2.3 
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Comparison 

Function Approximation 
by Trial Function 
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a function which is the solution 
of the D.E with B.C. 

[Zienkiewicz 1983] Ch. 2.3 
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Differential Equation Boundary Condition 

Case 1  

Case 3 

Case 2  

Approximation to the Solutions of Differential Equations 
and the Use of Trial Function 

possibilities in which we choose trial functions such that.. 

Not Satisfied Satisfied 

Not Satisfied Not Satisfied 

Not Satisfied Satisfied 

the coefficients of the trial functions will be determined 
to satisfy them by “weighted residual” process 

[Zienkiewicz 1983] Ch. 2.3 

ex) Linearized 
hydrodynamics 
using Rankin 
source 

ex) Rayleigh–Ritz 
method 
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linear differential operator 
 
General expression with an appropriate linear differential 
operator 
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A steady-state problem of heat flow 
in a two-dimensional domain Ω 

0k k Q
x x y y

      
    

      

we will now write quite generally with 
an appropriate linear differential 
operators       as 

( ) 0A p in    L

,k k p Q
x x y y

     
    
      

L, where 

L
differential equation 

k k
x x y y

k k
x x y y

  

 

     
    
      

     
    
      
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1

ˆ
M

l l

l

a N  


 

0 on    

0 q

d
k q on

dn


   

we will now write quite generally with 
an appropriate linear differential 
operators         as 

( ) 0B r on    M
for Dirichlet B/C 

1, r on    M

M

for Neumann B/C 

, q

d
k r q on

dn
    M

Dirichlet B/C 

Neumann B/C 

boundary condition 
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General expression with an appropriate linear differential 
operator 

1

ˆ
M

l l

l

a N  


 

we will now write quite generally with an appropriate linear 
differential operators           to a differential equation and 
boundary conditions as 

( ) 0B r on    M

,L M

( ) 0A p in    Ldifferential equation 

boundary conditions 
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We need only ensure that    approximately satisfies the 
differential equation 

̂

③Weighted Residual Method 
1

ˆ
M

m m

m

a N  


 

② Approximation by Trial Functions 

Case 1 : Boundary conditions are satisfied by choice of trial function  
while differential equations are not satisfied 

and then,     automatically satisfies 
the boundary condition 

̂

0r on   M

( ) 0A p in    L

( ) 0B r on    M

① Original Differential Equation & B/C 

( ) 0A in  

ma
We shall now attempt to develop a general method for 
determining the parameters        

ˆˆ( ) ( ) nA pA iR        LResidual  

0lW R d


 

, 1,2,...,m l M

the function    and the trial 
functions        are chosen such 
that 



mN

1

1

0

0

M

m m

m

M

m m

m

a N r on

r a N









 
    

 

  





M

M M

0

0m

r
on

N

   


 

M
M

,or 

It can be represented as matrix form. 
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1

1

1

1

ˆ 0

0

0

0

l

M

l m m

m

M

l m m

m

M

l m l m l

m

M

m l m l l

m

W p d

W a N p d

W a N p d

W d a W N d W p d

a W N d W p d W d



















  


  


   
 

  
     

  

 
    

 

  

     
 







  

   

L

L

L L

L L

L L

( ) 0A p in    L

( ) 0B r on    M

ˆˆ( ) ( ) nA pA iR        L
1

ˆ
M

m m

m

a N  


 

ˆ 0lW p d


   
  L
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1

M

m l m l l

m

a W N d W p d W d
  



     
    L L

1 1 2 2l l M l M l la W N d a W N d a W N d W pd W d
    

              
         L L L L

1 1 1 2 1 2 1 1 1

1 2 1 2 2 2 2 2 2

1 1 2 2

M M

M M

M M M M M M M

a W N d a W N d a W N d W p d W d

a W N d a W N d a W N d W p d W d

a W N d a W N d a W N d W p d W d







    

    

   

              
     

              
     

              
     

    

    

   

L L L L

L L L L

L L L L


, 1,2,...,m l M

( ) 0A p in    L

( ) 0B r on    M

ˆˆ( ) ( ) nA pA iR        L
1

ˆ
M

m m

m

a N  


 

ˆ 0lW p d


   
  L
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1 1 1 2 1 2 1 1 1

1 2 1 2 2 2 2 2 2

1 1 2 2

M M

M M

M M M M M M M

a W N d a W N d a W N d W p d W d

a W N d a W N d a W N d W p d W d

a W N d a W N d a W N d W p d W d







    

    

   

              
     

              
     

              
     

    

    

   

L L L L

L L L L

L L L L


1 1 1 2 1 1 1
1

2 1 2 2 2 2 22

1 2

M

M

M
M M M M M M

W N d W N d W N d W p d W d
a

W N d W N d W N d W p d W da

a
W N d W N d W N d W p d W d







    

    

    

         
    
          
    
    
    
          

   

    

    

    

L L L L

L L L L

L L L L

in matrix form 

( ) 0A p in    L

( ) 0B r on    M
ˆˆ( ) ( ) nA pA iR        L

1

ˆ
M

m m

m

a N  


 

ˆ 0lW p d


   
  L

K a f
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1 2

[ ], ,

[ ], ,

[ ]

lm lm l m

l l l l

T

M

K K W N d

f f W p d W d

a a a





 

  

     





 

K

f

a

L

L

Ka f

1 1 1 2 1 1 1
1

2 1 2 2 2 2 22

1 2

M

M

M
M M M M M M

W N d W N d W N d W p d W d
a

W N d W N d W N d W p d W da

a
W N d W N d W N d W p d W d







    

    

    

         
    
          
    
    
    
          

   

    

    

    

L L L L

L L L L

L L L L

( ) 0A p in    L

( ) 0B r on    M
ˆˆ( ) ( ) nA pA iR        L

1

ˆ
M

m m

m

a N  


 

ˆ 0lW p d


   
  L
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[Zienkiewicz 1983] Ch. 2.2 

Example 2.2 

0 Boundary Condition 1 0x  1x at at 

2

2

d

dx




It is required to obtain the function ( )x

which satisfies the governing equation 

and 

( ) 0B r on    M

( ) 0A p in    L

0r on   M

From Boundary Condition: ( ) 0B r on    M

1

ˆ
M

m m

m

a N  


  Approximation by Trial Functions 
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Example 2.2 

0 Boundary Condition 1 0x  1x at at 

2

2

d

dx


governing equation 

and 

Boundary Condition ( ) 0B r on    M

0  0x at 

1  1x at 

0 0   0x at 

1 0   1x at 

1M
0r  0x at 

1r   1x at 

( ) 0B r on    M

( ) 0A p in    L

0

0m

r
on

N

   


 

M
M

1

ˆ
M

m m

m

a N  


  

0

0m

r
on

N

   


 

M
M

0
0

0m

at x
N

  


 

1
1

0m

at x
N

  


 

substituting 

 M
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0
0

0m

at x
N

  


 

( ) 0B r on    M

( ) 0A p in    L

0

0m

r
on

N

   


 

M
M

1

ˆ
M

m m

m

a N  


  

1
1

0m

at x
N

  


 

Governing equation ( ) 0A p in    L

2

2

d

dx




2

2
0

d

dx


  

2

2
, 0

d
p

dx


    L

The function          satisfies the required conditions on      , and as trial 

functions, vanishing at         and at        , 

we can take the set 

x  

0x  1x 

 sin( ); 1,2,3,...mN m x m 

2

2
1

d

dx
  L
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( ) 0B r on    M

( ) 0A p in    L

1

ˆ
M

m m

m

a N  


  

1 2

[ ],

,

[ ],

,

[ ]

lm

lm l m

l

l l l

T

M

K

K W N d

f

f W p d W d

a a a





 



 



   





 

K

f

a

L

L

Ka f

 

  

2
1

20

1
2 2

0

1
2 2

0

,

sin( )
sin( )

sin( ) sin( )

1 sin( )

lm l m

l

l

l

K W N d

d m x
W m x dx

dx

W m m x m x dx

W m m x dx




  

 


 

 
   

 

 

 









L

2

2
1, 0

d
p

dx
   L , x  , sin( )mN m x

substituting 

is not defined lW
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0r on   M

( ) 0B r on    M

( ) 0A p in    L

2

2
1, 0

d
p

dx
   L

1

ˆ
M

m m

m

a N  


  

, x  , sin( )mN m x

1 2

[ ],

,

[ ],

,

[ ]

lm

lm l m

l

l l l

T

M

K

K W N d

f

f W p d W d

a a a





 



 



   





 

K

f

a

L

L

Ka f

  
1

2 2

0
1 sin( )lm lK W m m x dx  

2

2

1

0

l l l

l l

l

f W p d W d

d x
W p d W x d

dx

W xdx


 

 

   

 
      

 

 

 

 



L

substituting 

is not defined lW
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0r on   M

( ) 0B r on    M

( ) 0A p in    L

1 2

[ ],

,

[ ],

,

[ ]

lm

lm l m

l

l l l

T

M

K

K W N d

f

f W p d W d

a a a





 



 



   





 

K

f

a

L

L

Ka f

  
1

2 2

0
1 sin( )lm lK W m m x dx  

1

0
l lf W xdx 

We shall take         , so the two unknown 

parameters     and     are involved. 

2M 

1a 2a

, , 1,2where l m 
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0r on   M

( ) 0B r on    M

( ) 0A p in    L

For Galerkin method 

l lW N

  
1

2 2

0
1 sin( ) ,lm lK W m m x dx  

1

0
l lf W xdx  , , 1,2where l m 

 
1

2

12
0

1 4 sin sin 2

0

K x xdx    




1

2

l

m

 
 

 

 

 

1
2

22
0

2

1 4 sin 2 sin 2

1
1 4

2

K x xdx  



  

 


2

2

l

m

 
 

 

 
1

2

21
0

1 4 sin 2 sin

0

K x xdx    




2

1

l

m

 
 

 

1

1

l

m

 
 

 

 

 

1
2

11
0

2

1 sin sin

1
1

2

K x xdx  



  

 



sin( )mN m x
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0r on   M

( ) 0B r on    M

( ) 0A p in    L

For Galerkin method 

l lW N

12 0K 

21 0K   2

22

1
1 4

2
K  

  
1

2 2

0
1 sin( ) ,lm lK W m m x dx  

1

0
l lf W xdx  , , 1,2where l m 

 2

11

1
1

2
K  

sin( )mN m x

 

 

2

1

2 2

11
1 0

2

1 1
0 1 4

2 2

a

a







  
     

     
     

     

1 20.05857, 0.007864a a  

For Galerkin method 

1

1
0
sin

1

f x xdx



  

 


1

2
0
sin 2

1

2

f x xdx



  





It should be noted that again the Galerkin 
process used in conjunction with suitable 
trigonometric functions has resulted in a 
diagonal form of the matrix K due to the 
orthogonality of the shape functions. 
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0r on   M

( ) 0B r on    M

( ) 0A p in    L

For Galerkin method 

l lW N

  
1

2 2

0
1 sin( ) ,lm lK W m m x dx  

1

0
l lf W xdx  , , 1,2where l m 

sin( )mN m x

1 20.05857, 0.007864a a  

, sin( )mN m xx 

1

ˆ
M

m m

m

a N  


  

ˆ 0.05857sin( ) 0.007864sin(2 )x x x    

For Galerkin method 
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0r on   M

( ) 0B r on    M

( ) 0A p in    L

  
1

2 2

0
1 sin( ) ,lm lK W m m x dx  

1

0
l lf W xdx  , , 1,2where l m 

For point collocation process, with      made 

equal to zero at          at       and          at       . 

 l lW x x 

R

1

1

3
x  2

2

3
x 1l  2l 

    

 

1
2

11 1
0

2

1 sin

1 sin
3

K x x x dx  




  

 


1

1

l

m

 
 

 

    

 

1
2

12 1
0

2

1 4 sin 2

2
1 4 sin

3

K x x x dx  




  

 


1

2

l

m

 
 

 

    

 

1
2

22 2
0

2

1 4 sin 2

4
1 4 sin

3

K x x x dx  




  

 


2

2

l

m

 
 

 

    

 

1
2

21 2
0

2

1 sin

2
1 sin

3

K x x x dx  




  

 


2

1

l

m

 
 

 
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0r on   M

( ) 0B r on    M

( ) 0A p in    L

 2

11 1 sin
3

K


   2

12

2
1 4 sin

3
K


 

 2

22

4
1 4 sin

3
K


  2

21

2
1 sin

3
K


 

   

   

2 2

1

2 2 2

2 1
1 sin 1 4 sin

3 3 3

2 4 2
1 sin 1 4 sin

3 3 3

a

a

 
 

 
 

   
      

    
      

      

 
1

1 1
0

1

3

f x x xdx  

 


 1l 

 
1

2 2
0

2

3

f x x xdx  

 


 2l 

1 20.05312, 0.004754a a  

For point collocation  
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( ) 0B r on    M

( ) 0A p in    L

1 20.05312, 0.004754a a  

, sin( )mN m xx 

1

ˆ
M

m m

m

a N  


  

ˆ 0.05312sin( ) 0.004754sin(2 )x x x    

For point collocation  

ˆ 0.05857sin( ) 0.007864sin(2 )x x x    

cf) For Galerkin method 
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0r on   M

( ) 0B r on    M
( ) 0A p in    L

sin( )mN m x

x Finite 
Difference 

Point 
Collocation 

Galerkin method Exact 

1/3 0.2893 0.2941 0.2894 0.3038 0.2889 

2/3 0.6107 0.6165 0.6091 0.5898 0.6102 

The approximate values and the exact values at the finite difference  
mesh point          and          . 1/ 3x  2 / 3x 

ˆ 0.05857sin( )

0.007864sin(2 )

x x

x

 



 

 2

ˆ 0.068 0.632

0.226

x

x

  


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Case 2 
Differential Equation Boundary Condition

Case 1 

Case 3

Case 2 

Not Satisfied Satisfied

Not SatisfiedNot Satisfied

Not SatisfiedSatisfied

the coefficients of the trial functions will be determine 
to satisfy them by “weighted residual” process
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    does not satisfy a priori some or all of 
the problem boundary conditions 

③ Weighted Residual Method 

̂

Case 2: Simultaneous approximation to the solutions of 
differential equations and to the boundary conditions 

( ) 0A p in    L

( ) 0B r on    M

① Original Differential Equation & B/C 

1

ˆ
M

m m

m

a N 


 cf) in previous section 

1

ˆ
M

m m

m

a N 




If now we postulate that an 
expansion 

② Approximation by Trial Functions 

ˆ ˆ( ) ( )A A p in       R L
The residual in domain 

The boundary residual 

ˆ ˆ( ) ( )B B r on       R M

The weighted sum of the residual 

0l lW d W d 
 

   R R

It can be represented as matrix form. 

Where, in general,      and     can be 
chosen independently 

lW
lW
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1

ˆ
M

m m

m

a N




ˆ p in   R L
The residual in domain 

The boundary residual 

ˆ r on   R M

Approximation by Trial Functions 

1 1

M M

m m m m

m m

a N p a N p

 

 
    

 
 R L L

1 1

M M

m m m m

m m

a N r a N r

 

 
    

 
 R M M

Substituting     in       and         ̂ R R
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The weighted sum of the residual 

0l lW d W d 
 

   R R

1

M

l m m

m

W a N p d




 
  

 
 L

 
1

M

m l m l

m

a W N d W pd
 



     L

1

M

m m

m

a N p



 R L

1

M

m m

m

a N r



 R M

1 1 2 2 ...l l M l M la W N d a W N d a W N d W pd
   

        L L L

Substituting      in the first term of the weighted sum of the residual         
R

1,2,3,...,m M



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

415 
Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

The weighted sum of the residual 

0l lW d W d 
 

   R R

Substituting      in the first term of the weighted sum of the residual         
R

1 1

M M

m m m m

m m

a N p a N p

 

 
    

 
 R L L

1 1

M M

m m m m

m m

a N r a N r

 

 
    

 
 R M M

1 1 2 2 ...l l M l M la W N d a W N d a W N d W pd
   

       L L L

1

M

l m m

m

W a N r d




 
  

 
 M

Substituting      in the second term of the weighted sum of the residual         
R

 
1

M

m l m l

m

a W N d W rd
 



     M

1 1 2 2 ...l l M l M la W N d a W N d a W N d W rd
   

        M M M

1,2,3,...,m M



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

416 
Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

The weighted sum of the residual 

   

 

1 1 1 2 2 2

... 0

l l l l

M l M l M l l

a W N d W N d a W N d W N d

a W N d W N d W pd W rd

   

   

    

       

   

   

L M L M

L M

0l lW d W d 
 

   R R

1 1 2 2 ... 0l l M l M la W N d a W N d a W N d W rd
   

         M M M

1 1 2 2 ...l l M l M la W N d a W N d a W N d W pd
   

       L L L

1,2,3,...,m M

   

 

1 1 1 2 2 2

...

l l l l

M l M l M l l

a W N d W N d a W N d W N d

a W N d W N d W pd W rd

   

   

    

       

   

   

L M L M

L M

0l lW d W d 
 

   R R

1

M

m m

m

a N p



 R L

1

M

m m

m

a N r



 R M

1

ˆ
M

m m

m

a N



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The weighted sum of the residual 

1,2,3,...,l M

   

 

1 1 1 2 2 2

...

l l l l

M l M l M l l

a W N d W N d a W N d W N d

a W N d W N d W pd W rd

   

   

    

       

   

   

L M L M

L M

   

 

1 1 1 1 1 2 1 2 1 2

1 1 1 1... M M M

a W N d W N d a W N d W N d

a W N d W N d W pd W rd

   

   

    

       

   

   

L M L M

L M

   

 

1 2 1 2 1 2 2 2 2 2

2 2 2 2... M M M

a W N d W N d a W N d W N d

a W N d W N d W pd W rd

   

   

    

       

   

   

L M L M

L M

   

 

1 1 1 2 2 2

...

M M M M

M M M M M M M

a W N d W N d a W N d W N d

a W N d W N d W pd W rd

   

   

    

       

   

   

L M L M

L M

0l lW d W d 
 

   R R

1

M

m m

m
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

 R L

1

M

m m

m
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

 R M
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ˆ
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m m

m

a N

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     1 1 1 1 1 2 1 2 1 2 1 1 1 1... M M Ma W N d W N d a W N d W N d a W N d W N d W pd W rd
       

                   L M L M L M

     1 2 1 2 1 2 2 2 2 2 2 2 2 2... M M Ma W N d W N d a W N d W N d a W N d W N d W pd W rd
       

                   L M L M L M

     1 1 1 2 2 2 ...M M M M M M M M M M Ma W N d W N d a W N d W N d a W N d W N d W pd W rd
       

                   L M L M L M

The weighted sum of the residual 

Matrix representation 

1 1 1 1 1 2 1 2 1 1
1

2 1 2 1 2 2 2 2 2 2 2

1 1 2 2

M M

M M

M
M M M M M M M M

W N d W N d W N d W N d W N d W N d
a

W N d W N d W N d W N d W N d W N d a

a
W N d W N d W N d W N d W N d W N d

     

     

     

      
 

      
 
 
 

      
 

     

     

     

L M L M L M

L M L M L M

L M L M L M

1 1

2 2

M M

W pd W rd

W pd W rd

W pd W rd

 

 

 

   
  

     
   
   
   

    
 

 

 

 

K a f

0l lW d W d 
 

   R R

1

M

m m

m

a N p



 R L

1

M

m m

m

a N r



 R M

1

ˆ
M

m m

m

a N




1 2[ ], , [ ], , [ ]T

lm lm l m l m l l l l MK K W N d W N d f f W pd W rd a a a
   

            K f aL M
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1

ˆ
M

m m

m

a N 




If now we postulate that an 
expansion 

1

ˆ
M

m m

m

a N 


 cf) in previous section 

( ) 0A p in    L

( ) 0B r on    M

① Original Differential Equation & B/C 

② Approximation by Trial Functions 

    does not satisfy a priori some or all of 
the problem boundary conditions 

③ Weighted Residual Method 

̂

0l lW d W d 
 

   R R

matrix representation 

Ka f

1 2

[ ],

,

[ ], ,

[ ]

lm

lm l m l m

l l l l

T

M

K

K W N d W N d

f f W pd W rd

a a a

 

 



  

    



 

 

K

f

a

L M

, where 

Summary of case 2   
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Simultaneous approximation to the solutions of differential 
equations and to the boundary conditions 

Example 2.4 

0 Boundary Condition 1 0x  1x at at 

2

2

d

dx




It is required to obtain the function ( )x

which satisfies the governing equation 

and 

Governing equation ( ) 0A p in    L

2

2

d

dx




2

2
0

d

dx


 

( ) 0A p in    L

( ) 0B r on    M

Boundary Conditions ( ) 0B r on    M
0  0x at 

1  1x at 

0 0   0x at 

1 0   1x at 

2

2
( ) 0

d
A in

dx


    

( ) 0 0B at x   

( ) 1 0 1B at x    

in 0 1x 

1

ˆ
M

m m

m

a N 



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Example 2.4 

0l lW d W d 
 

   R R

2

2

ˆ ˆ( ) ( ) ( )

ˆ
ˆ 0 1

A A A

d
in x

dx

  




   

   

R

The residual in domain 

The boundary residual 

ˆ ˆ( ) ( ) 0B B at x      R

ˆ ˆ( ) ( ) 1 1B B at x       R

2

2
( ) 0 0 1

d
A in x

dx


     

( ) 0 0B at x   

( ) 1 0 1B at x    

1

ˆ
M

m m

m

a N 




( ) 0A p in    L

( ) 0B r on    M

cf) Using the trial function set 
which satisfy the boundary 
conditions: 

2

2

ˆ ˆ( ) ( ) ( )

ˆ
ˆ 0 1

A A A

d
in x

dx

  




   

   

R
The residual in domain 

The boundary residual 

ˆ( ) ( ) 0B B    R

,since ˆ( ) 0B  



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

422 
Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

2

2

ˆ
ˆ 0 1

d
in x

dx


    R

The residual in domain The boundary residual 

ˆ 0at x  R
ˆ 1 1at x   R

0l lW d W d 
 

   R R

In this case the boundary curve     consists of the two points       
and        , so that the integration over the boundary reduces to two 
discrete residuals 

 0x 
1x 

2
1

20 0 1

ˆ
ˆ ˆ ˆ( 1) 0l l l

x x

d
W dx W W

dx


  

 

 
             

 


0l lW d W d 
 

   R R

1

ˆ
M

m m

m

a N 




ˆ 0at x  R

ˆ 1 1at x   R
2

2

ˆ
ˆ 0 1

d
in x

dx


    R

, l lW N


 l lW N
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2
1

20 0 1

ˆ
ˆ ˆ ˆ( 1) 0l l l

x x

d
W dx W W

dx


  

 

 
             

 


The weighting functions will be defined by           and 
l lW N l lW N


 

In general,      and     can be chosen independently. lW
lW

2
1

20 0 1

ˆ
ˆ ˆ ˆ( 1) 0l l l

x x

d
N dx N N

dx


  

 

 
             

 


1

ˆ
M

m m

m

a N 




2
1

20 0 1

ˆ
ˆ ˆ ˆ( 1) 0l l l

x x

d
N dx N N

dx


  

 

 
               

 


0l lW d W d 
 

   R R

ˆ 0at x  R

ˆ 1 1at x   R
2

2

ˆ
ˆ 0 1

d
in x

dx


    R

, l lW N


 l lW N
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2
1

20 0 1

ˆ
ˆ ˆ ˆ( 1) 0l l l

x x

d
N dx N N

dx


  

 

 
             

 


A possible trial function set is taken now simply as                          .  1; 1,2,3...m

mN x m 

And using a three-term expansion 2

1 2 3
ˆ a a x a x    , 1,2,3l m 

1

ˆ
M

m m

m

a N 




2 2
1

2 11 2 3
1 2 320

1 2 1 2

1 2 3 1 2 30 1

( )

( ) ( 1) 0

l

l l

x x

d a a x a x
a a x a x x dx

dx

x a a x a x x a a x a x



 

 

  
   

 

             



0l lW d W d 
 

   R R

ˆ 0at x  R

ˆ 1 1at x   R
2

2

ˆ
ˆ 0 1

d
in x

dx


    R

, l lW N


 l lW N
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1

ˆ
M

m m

m

a N 




2 2
1

2 11 2 3
1 2 320

1 2 1 2

1 2 3 1 2 30 1

( )

( ) ( 1) 0

l

l l

x x

d a a x a x
a a x a x x dx

dx

x a a x a x x a a x a x



 

 

  
   

 

             



 
1

2 1

3 1 2 3
0

1 2 1 2

1 2 3 1 2 30 1

2

( ) ( 1) 0

l

l l

x x

a a a x a x x dx

x a a x a x x a a x a x



 

 

  

             



     
1

2 1 1

3 1 2 3 1 2 3 1 2 300
2 0 0 1 ( 1 1 1) 0l l

x
a a a x a x x dx x a a a a a a 



                 
 

 
1

2 1 1

3 1 2 3 1 1 2 300
2 1 0l l

x
a a a x a x x dx x a a a a 


         

1 1

1
1 1l l

x
x  


 

0l lW d W d 
 

   R R

ˆ 0at x  R

ˆ 1 1at x   R
2

2

ˆ
ˆ 0 1

d
in x

dx


    R

, l lW N


 l lW N
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 
1

2 1 1

3 1 2 3 1 1 2 300
2 1 0l l

x
a a a x a x x dx x a a a a 


         

1 1 1 1
1 1 1 1 2 1

3 1 2 3 1 1 2 300 0 0 0
2 1 0l l l l l

x
x dxa x dxa x xdxa x x dxa x a a a a    


            

 
1 1 1 1

1 1 1 1

3 1 2 3 1 2 300 0 0 0
2 1 1 0l l l l l

x
x dxa x dxa x dxa x dxa x a a a   


            

     
1 1 1 1

1 1 1 1

1 2 300 0 0 0
1 1 2 1 1l l l l l

x
x dx x a x dx a x dx x dx a   


            

0l lW d W d 
 

   R R

ˆ 0at x  R

ˆ 1 1at x   R
2

2

ˆ
ˆ 0 1

d
in x

dx


    R

, l lW N

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     
1 1 1 1

1 1 1 1

1 2 300 0 0 0
1 1 2 1 1l l l l l

x
x dx x a x dx a x dx x dx a   


            

     
1 1 1 1

2

1 2 3
0 0 0 0
1 2 1 2 1 1 1dx a xdx a dx x dx a           

1,2,3l 

     
1 1 1 1

1 2 1 3

1 2 3
0 0 0 0

1 1 2 1 1x dx a x dx a x dx x dx a           

     
1 1 1 1

2 3 2 4

1 2 3
0 0 0 0

1 1 2 1 1x dx a x dx a x dx x dx a           

1 0

01, 0 0
1 1l

xl x x
x x

  
  

1 1

2, 0 0
, 0l

l x x
x x

  
  1 2

3, 0 0
, 0l

l x x
x x

  
 

0l lW d W d 
 

   R R

ˆ 0at x  R

ˆ 1 1at x   R
2

2

ˆ
ˆ 0 1

d
in x

dx


    R

, l lW N


 l lW N
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     
1 1 1 1

2

1 2 3
0 0 0 0
1 2 1 2 1 1 1dx a xdx a dx x dx a           

     
1 1 1 1

1 2 1 3

1 2 3
0 0 0 0

1 1 2 1 1x dx a x dx a x dx x dx a           

     
1 1 1 1

2 3 2 4

1 2 3
0 0 0 0

1 1 2 1 1x dx a x dx a x dx x dx a           

Matrix representation 

   
   
   

1 1 1 1
2

0 0 0 0

1
1 1 1 1

1 2 1 3

2
0 0 0 0

31 1 1 1
2 3 2 4

0 0 0 0

1 2 1 2 1 1
1

1 1 2 1 1

1
1 1 2 1

dx xdx dx x dx
a

x dx x dx x dx x dx a

a
x dx x dx x dx x dx

      
 

    
           
    
       

      
 

   

   

   

0l lW d W d 
 

   R R

ˆ 0at x  R

ˆ 1 1at x   R
2

2

ˆ
ˆ 0 1

d
in x

dx


    R

, l lW N


 l lW N
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   
   
   

1 1 1 1
2

0 0 0 0

1
1 1 1 1

1 2 1 3

2
0 0 0 0

31 1 1 1
2 3 2 4

0 0 0 0

1 2 1 2 1 1
1

1 1 2 1 1

1
1 1 2 1

dx xdx dx x dx
a

x dx x dx x dx x dx a

a
x dx x dx x dx x dx

      
 

    
           
    
       

      
 

   

   

   

3 2
3

2 3

3 4 1
,

2 3 4

4 5 8

3 4 15

 
  

 
    
 
 
   
  

K

1

1

1

 
 

 
 
  

fKa f , where 

3 2
3

2 3

3 4 1
,

2 3 4

4 5 8

3 4 15

 
 

 
 
 
 
 
  

K

1

1

1

 
 


 
  

f

0l lW d W d 
 

   R R

ˆ 0at x  R

ˆ 1 1at x   R
2

2

ˆ
ˆ 0 1

d
in x

dx


    R

, l lW N


 l lW N
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Example 2.4 
3 2

3
2 3

3 4 1

2 3 4

4 5 8

3 4 15

 
 

 
 
 
 
 
  

KKa f

1

1

1

 
 


 
  

f, where 

2 2

1 2 3
ˆ 0.068 0.632 0.226a a x a x x x      

The convergence of the approximation to the prescribed conditions at 
       and at        is shown in the above table, which compares the 
behavior of the one-, two-, and three-term approximations at these 
two points. 

0x  1x 

0.068

0.632

0.226

 
 


 
  

a

x One term Two terms Three terms Exact 

0 1/3 -0.095 0.068 0 

1 1/3 0.762 0.925 1 

2011 Fall, Computer Aided Ship Design, Part3 Finite Element Method 

Behavior of the one-, two-, and three-term 
approximations 
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Example 2.4 

x One term Two terms Three terms Exact 

0 1/3 -0.095 0.068 0 

1 1/3 0.762 0.925 1 

The approximation functions 
do not satisfy the boundary 
condition. 
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Case 3 

APPROXIMATION TO THE SOLUTIONS OF 
DIFFERENTIAL EQUATIONS AND THE USE OF TRIAL 
FUNCTION 

Differential Equation Boundary Condition

Case 1 

Case 3

Case 2 

Not Satisfied Satisfied

Not SatisfiedNot Satisfied

Not SatisfiedSatisfied

the coefficients of the trial functions will be determine 
to satisfy them by “weighted residual” process

Boundary solution methods 
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Since    satisfy differential equations  

③ Weighted Residual Method 

̂

Case 3 : Differential equations are satisfied by choice of trial function while boundary 
conditions are not satisfied 

( ) 0A p in    L

( ) 0B r on    M

① Original Differential Equation & B/C 

The boundary residual 

ˆ ˆ( ) ( )B B r on       R M

The weighted sum of the boundary residual 

0lW d


  R

1

ˆ
M

m m

m

a N 




We choose trial function such 
that the approximation     
automatically satisfies the 
differential equation, but does 
not satisfy the B/Cs 

② Approximation by Trial Functions 

̂

ˆ ˆ( ) ( ) 0A A p in        R L
The residual in domain 
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1

ˆ
M

m m

m

a N 




( ) 0A p in    L

( ) 0B r on    M

① Original Differential Equation & B/C 

② Approximation by Trial Functions 

③ Weighted Residual Method 

ˆ ˆ( )B r on     R M

0lW d


  R

1

0
M

l m m

m

W a N r d




  
    

  
 M

Given from the boundary condition. 

Weighting 
functions are 
chosen 

Find 
Trial function set is 
chosen  

However, this set of trial function is more 
difficult to choose.  
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1

ˆ
M

m m

m

a N 




( ) 0A p in    L

( ) 0B r on    M

ˆ ˆ( )B r on     R M

0lW d


  R

Considering the example of the Laplace 
differential equation in which the choice 
of the trial function set is particularly 
easy. 

Choice of the trial function set which satisfy 
the differential equation 

2 0f 

What is trial function which satisfy the Laplace equation? 

If        is an analytic function of the complex variable z x iy 

 f z, then       automatically satisfy the Laplace equation 

 f z
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1

ˆ
M

m m

m

a N 




( ) 0A p in    L

( ) 0B r on    M

ˆ ˆ( )B r on     R M

0lW d


  R

Choice of the trial function set which satisfy 
the differential equation 

Analytic function of the complex variable 

z x iy 

 f z

2 0f The Laplace equation:  

,where 

2 2

2 2

( ) ( ) ( ) ( ) ( )

( ) ( )

f z df z z df z df z df z
d d

f z z d f zx dz x dz dz dz

x x x x dz x dz dz

          
                           

    

2 2

2 2

( ) ( ) ( ) ( ) ( )

( ) ( )

f z df z z df z df z df z
i d i d i

y dz yf z z d f zdz dz dz
i

y y y y dz y dz dz

                                      
    

2 ( )f z
2 2

2 2

( ) ( )f z f z

x y

 
 

 

2 2

2 2

( ) ( )
0

d f z d f z

dz dz
  

 f z         satisfies  
the Laplace equation 
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1

ˆ
M

m m

m

a N 




( ) 0A p in    L

( ) 0B r on    M

ˆ ˆ( )B r on     R M

0lW d


  R

Choice of the trial function set which satisfy 
the differential equation 

z x iy  f z

2 0f The Laplace equation:  

satisfies the Laplace equation, where 

  nf z z u iv  

We can immediately use an analytic function such as 

,where u and v are real 

This leads to the follow set: 

1,n  ,u x v y

2,n  2 2 ,u x y  2v xy

3,n  3 23 ,u x xy  2 33v x y y 

4,n  4 2 2 46 ,u x x y y   3 34 4v x y xy 
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Example 2.8 

0  on the boundary 

2 2

2 2
2

d d

dx dy

 
  

It is required to obtain the function ( )x

which satisfies the differential equation 3 3x   2 2y  in 

To enable us to use the trial set of functions which satisfy the Laplace 
equation, we introduce a new variable 

 2 21

2
x y   


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Approximation to the Solutions of Differential Equations and the Use of Trial Function 
- Differential equations are satisfied by choice of trial function while boundary conditions 
are not satisfied 

Example 2.8 

0  on the boundary 

2 2

2 2
2

d d

dx dy

 
  the differential equation 3 3x   2 2y  in 

   2 2 2 2 2 2

2 2

1 1

2 2
2

d x y d x y

dx dy

 
   

      
     

 2 21

2
x y   Substituting                     into the differential equation 

   2 2 2 2 2 2

2 2

2 2 2 2

1 1

2 2
2

d x y d x y
d d

dx dx dy dy

 

   
    

       

2 2

2 2
1 1 2

d d

dx dy

 
    

2 2

2 2
0

d d

dx dy

 
 
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2 2

2 2
2

d d

dx dy

 
  the differential equation 3 3,x   2 2y  in 

2 2

2 2
0

d d

dx dy

 
  3 3,x   2 2y  in the differential equation 

1

ˆ
M

m m

m

a N 




( ) 0A p in    L

( ) 0B r on    M

ˆ ˆ( )B r on     R M

0lW d


  R

 2 21

2
x y    0  on the boundary 

x

y

4

6

2

2

3 3

Plastic bar 

boundary 

1,n  v y

2,n  2v xy

3,n  2 33v x y y 

4,n  3 34 4v x y xy 

,u x
2 2 ,u x y 
3 23 ,u x xy 
4 2 2 46 ,u x x y y  

f u iv 

The required solution will 
be symmetric in x and y, 
and so we can use as trial 
function the set 

boundary 
y

x
33

2

2
symmetric 
trial function 
in x and y 
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2 2 4 2 2 4

1 2 31, , 6N N x y N x x y y     

A three-term approximation would be 

   2 2 4 2 2 4

1 2 3
ˆ 6a a x y a x x y y      

which satisfy the differential equation in terms of     exactly 

1

ˆ
M

m m

m

a N 




( ) 0A p in    L

( ) 0B r on    M

ˆ ˆ( )B r on     R M

0lW d


  R

1,n  v y

2,n  2v xy

3,n  2 33v x y y 

4,n  3 34 4v x y xy 

,u x
2 2 ,u x y 
3 23 ,u x xy 
4 2 2 46 ,u x x y y  

f u iv 
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2 2

2 2
2

d d

dx dy

 
  the differential equation 3 3,x   2 2y  in 

2 2

2 2
0

d d

dx dy

 
  3 3,x   2 2y  in the differential equation 

1

ˆ
M

m m

m

a N 




( ) 0A p in    L

( ) 0B r on    M

ˆ ˆ( )B r on     R M

0lW d


  R

The weighted residual statement is thus 

0lW d


  R

 2 21

2
x y   

0  on the boundary 

   2 2 4 2 2 4

1 2 3
ˆ 6a a x y a x x y y      

 2 21ˆ ˆ
2

x y    should satisfy          on the boundary ˆ 0 

   2 21ˆ ˆ 0
2

l lW d x y W d 
 

 
      

 
 
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boundary 
y

x
3

2

3

2

1

ˆ
M

m m

m

a N 




( ) 0A p in    L

( ) 0B r on    M

ˆ ˆ( )B r on     R M

0lW d


  R

 2 21ˆ 0
2

lx y W d


 
    

 


Since the trial function set is symmetric in x and y, 
boundary to be satisfied will be chosen as follows: 

0 3, 2x y  

3,0 2x y  
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1

ˆ
M

m m

m

a N 




( ) 0A p in    L

( ) 0B r on    M

ˆ ˆ( )B r on     R M

0lW d


  R

 2 21ˆ 0
2

lx y W d


 
    

 


If we choose weighting functions      defined by              , lW l lW N




   
2 3

2 2

3 20 03 2

1 1ˆ ˆ9 4 0
2 2

l lx yx y
y N dy x N dx 

  

   
        

   
 

boundary 
y

x
3

2

3

2

3,0 2x y   0 3, 2x y  
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   
2 3

2 2

3 20 03 2

1 1ˆ ˆ9 4 0
2 2

l lx yx y
y N dy x N dx 

  

   
        

   
 

   2 2 4 2 2 4

1 2 3
ˆ 6a a x y a x x y y      

     

     

2
2 2 4 2 2 4 2

1 2 3 30

3
2 2 4 2 2 4 2

1 2 3 20

1
3 3 6 3 9

2

1
2 6 2 2 4 0

2

l x

l y

a a y a y y y N dy

a a x a x x x N dx





 
        

 

 
          

 





      
    

   

2 3 2 3
2 2 2 2

1 23 2 3 20 0 0 0

2 3
4 2 2 4 4 2 2 4

3 3 20 0

2 3
2 2

3 20 0

3 2

3 6 3 6 2 2

1 1
9 4 0

2 2

l l l lx y x y

l lx y

l lx y

a N dy N dx a y N dy x N dx

a y y N dy x x N dx

y N dy x N dx

   

 

 

    

       

   
         

   

   

 

 
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      
    

   

2 3 2 3
2 2 2 2

1 23 2 3 20 0 0 0

2 3
4 2 2 4 4 2 2 4

3 3 20 0

2 3
2 2

3 20 0

3 2

3 6 3 6 2 2

1 1
9 4 0

2 2

l l l lx y x y

l lx y

l lx y

a N dy N dx a y N dy x N dx

a y y N dy x x N dx

y N dy x N dx

   

 

 

    

       

   
         

   

   

 

 

1 1 2 2 3 3 0l l l la K a K a K f   

   

   

   

2 3

1 3 20 0

2 3
2 2 2 2

2 3 20 0

2 3
4 2 2 4 4 2 2 4

3 3 20 0

2 3
2 2

3 20 0

3 2

3 6 3 6 2 2

1 1
9 4

2 2

l l lx y

l l lx y

l l lx y

l l lx y

K N dy N dx

K y N dy x N dx

K y y N dy x x N dx

f y N dy x N dx

 

 

 

 

 

   

       

   
        

   

 

 

 

 

, where 

1lK 2lK

3lK

lf
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   

   

   

2 3

1 3 20 0

2 3
2 2 2 2

2 3 20 0

2 3
4 2 2 4 4 2 2 4

3 3 20 0

2 3
2 2

3 20 0

3 2

3 6 3 6 2 2

1 1
9 4

2 2

l l lx y

l l lx y

l l lx y

l l lx y

K N dy N dx

K y N dy x N dx

K y y N dy x x N dx

f y N dy x N dx

 

 

 

 

 

   

       

   
        

   

 

 

 

 

, where 1 1 2 2 3 3 0l l l la K a K a K f   

1 1 2 2 3 3l l l la K a K a K f    2 2 4 2 2 4

1 2 31, , 6N N x y N x x y y     

1 11 2 12 3 13 1

1 21 2 22 3 23 2

1 31 2 32 3 33 3

a K a K a K f

a K a K a K f

a K a K a K f

   

   

   

1,2,3l 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

K K K a f

K K K a f

K K K a f

     
     

 
     
          

K a f
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   

   

   

2 3

1 3 20 0

2 3
2 2 2 2

2 3 20 0

2 3
4 2 2 4 4 2 2 4

3 3 20 0

2 3
2 2

3 20 0

3 2

3 6 3 6 2 2

1 1
9 4

2 2

l l lx y

l l lx y

l l lx y

l l lx y

K N dy N dx

K y N dy x N dx

K y y N dy x x N dx

f y N dy x N dx

 

 

 

 

 

   

       

   
        

   

 

 

 

 

, where 

2 2 4 2 2 4

1 2 31, , 6N N x y N x x y y     

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

K K K a f

K K K a f

K K K a f

     
     

 
     
          

5 12.3333 95

12.3333 145 98.543 ,

95 98.543 18,170.4

 
 


 
  

K

20.8333

78.1

539.643

 
 


 
  

fKa f , where 

3.2154

0.2749

0.01438

 
 

 
 
  

a

   2 2 4 2 2 4

1 2 3
ˆ 6a a x y a x x y y      

 2 21

2
x y   

     2 2 4 2 2 4 2 21ˆ 3.2154 0.2749 0.01438 6
2

x y x x y y x y        
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NATURAL BOUNDARY CONDITIONS 
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Weak form 

The weighted residual form could require the evaluation of integrals  
involving derivatives of     along the boundaries which may present 
difficulties if these boundaries are of curved or complicated. 

The weighted sum of the residual 

0l lW d W d 
 

   R R

ˆ ˆ( ) ( )A A p in       R L
The residual in domain 

The boundary residual 

ˆ ˆ( ) ( )B B r on       R M

̂

In this section we show, for certain equations and boundary conditions 
how such boundary derivative evaluations can be made unnecessary. 
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Weak form 

The weighted sum of the residual 

0l lW d W d 
 

   R R

ˆ ˆ( ) ( )A A p in       R L
The residual in domain 

The boundary residual 

ˆ ˆ( ) ( )B B r on       R M

 ˆ
l lW d W p d

 
    R L

The first term of the residual statement 

can be frequently be rearranged to yield an expression of the form 

    ˆ ˆ ˆ
l l lW d W d W d  

  
     L C D E

Where       ,      and      are linear differential operators involving an 
order of differentiation lower than that of the original operator     . L

D EC

The resulting expression is often termed the weak 
form of the weighted residual statement, which 
relaxes the requirement on the trial functions. 

ex) integration by part 
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Natural Boundary Condition 

The weighted sum of the residual 

0l lW d W d 
 

   R R

 ˆ
l lW d W p d

 
    R L

    ˆ ˆ ˆ
l l lW d W d W d  

  
     L C D E

    ˆ ˆ 0l l l lW d W d W p d W d  
   

        RC D E

    ˆ ˆ 0l l l lW d W p d W d W d  
   

         RC D E
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    ˆ ˆ 0l l l lW d W p d W d W d  
   

         RC D E

It may be possible to arrange for the last term (1) to cancel with the 
term (2) by a suitable choice of the boundary weighting function 

lW

(1) (2) 

,thus eliminating the integral involving    or its derivatives along the 
boundary. 

̂

This will only be possible for certain boundary conditions that we term 
natural. 

In general, boundary conditions involving prescribed values of the 
function itself will not benefit from this treatment, while certain 
boundary conditions on derivatives will. 
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Natural Boundary Condition 

Example 2.6 

0 Boundary Condition 0x at 

2

2

d

dx




It is required to obtain the function ( )x

which satisfies the governing equation in 0 1x 

Let us assume that we choose an approximation 

/ 20d dx  1x at and 

1

ˆ
M

m m

m

a N 


 

where     and the set       is such that the condition at         is 

automatically satisfied, for example        ;                                     

could be a suitable choice here 

0 

 0x 

 ; 1, 2,3,...m

mN x m 

mN
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Governing equation ( ) 0A p in    L

2

2

d

dx




2

2
0

d

dx


 

2

2
( ) 0

d
A in

dx


    

Boundary Conditions ( ) 0B r on    M
0  0x at 

/ 1d dx  1x at 

0 0   0x at 

/ 20 0d dx   1x at 

( ) 0 0B at x   

( ) / 20 0 1B d dx at x    

0   ; 1,2,3,...m

mN x m 

1

ˆ
M

m m

m

a N 


 
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Example 2.6 0   ; 1,2,3,...m

mN x m 

1

ˆ
M

m m

m

a N 


 

The weighted residual form: 

2
1

20

1

ˆ ˆ
ˆ 20 0ll

x

d d
W dx W

dx dx

 




    
          

     


2

2
( ) 0 0 1

d
A in x

dx


     

2

2

ˆ
ˆ ˆ( ) ( ) 0 1

d
A A in x

dx


        R

The residual in domain: 

1

,1
0 1

ll
x

W dx W 


 R R

( ) 0 0B at x   

( ) / 20 0 1B d dx at x    

,0
ˆ ˆ( ) ( ) 0 0B B at x       R

The boundary residual: 

,1
ˆ ˆ( ) ( ) / 20 0 1B B d dx at x        R

The residual at x=0 being omitted, as the trial function satisfy the 
boundary condition at   0x 
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0   ; 1,2,3,...m

mN x m 

1

ˆ
M

m m

m

a N 


 

2
1

20

1

ˆ ˆ
ˆ 20 0ll

x

d d
W dx W

dx dx

 




    
          

     


Carrying out integration by parts gives 

2
1 1

20 0

1

ˆ ˆ
ˆ 20 0ll l

x

d d
W dx W dx W

dx dx

 




  
      

   
 

1

1 1

0 0

0 1

ˆ ˆ ˆ
ˆ 20 0l

ll l

x

dW d d d
dx W W dx W

dx dx dx dx

  




    
          

     
 

The resulting expression is often termed the weak form of the 
weighted residual statement, which relaxes the requirement on 
the trial functions. 
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eliminating the integral involving    or its derivatives along 
the boundary. 

̂
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Thus in this formulation there is no need to evaluate the derivative 
of     at       , and the boundary condition to be applied at this point 
is a natural condition 

̂ 1x 
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PIECEWISE DEFINED TRIAL FUNCTIONS AND  

THE FINITE ELEMENT METHOD 
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Introduction 

Function Approximation by Trial Functions 

1

ˆ
M

m m

m

Na  


 

We assumed implicitly that 

the trial functions were, defined by a 

single expression, valid throughout 
the whole domain 

ˆ0,lW R d R   


   

and the integral of the approximating 

equations were evaluated in one 
operation over the domain  

The trial functions were can be also defined 

in a piecewise manner by using various 
expressions in the various subdomains. 

1

e

E

l l

e

W R d W R d
 

 



   

divide the domain    and the boundary     
into a number of nonoverlapping 
elements       and   



e

1

ˆ
E

m m

m

N   


 



e

1 1

,
E E

e e

e e 

  

: .E total no of elements

if the subdomains are of a relaticvely simple Trial and if the definition of the trial functions over therse subdomains can be made in a repeatable manner, 
it is possible to deal in this fashion with assembled regions of complex Trials quite readily. 
 
If the trial functions are to be defined in a piecewise manner, it is advantageous to assign to them a narros "base" and make their value zero everywhere except in 
the element in question and in the subdomains immediately adjacent to this element. This, as we shall see later, will give banded matrices. 

simplified domain 

banded matrix 

The definite integral can be obtained simply 
by summing the contributions from each 
subdomain as 
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Function Approximation by Trial Functions defined by  
“a single expression, valid throughout the whole domain” 

1 221
ˆ Na Na   

1 0.5 

1.0 

0.0 x

y

1N

1 0.5 

1.0 

0.0 

-0.1 

x

y

2N

given 

0.2 

0.0 

-0.2 

0.4 

0.2 1 0.8 0.4 0.6 

̂



1 2,a ain this case             are determined to satisfy            at   ˆ 
1 2

,
3 3

x x 

, x 

1

3
x 

2

3
x 







two trial functions are chosen such as 

function approximation :  
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Function Approximation by Trial Functions defined by  
“in a piecewise manner in the various subdomains” 

1 0.5 

1.0 

0.0 x

y

1 0.5 

1.0 

0.0 
x

y

1 2,a ain this case             are determined to satisfy            at   ˆ 
1 2

,
3 3

x x 

1

2

when two trial functions are chosen such as 

11 22
ˆ Na Na  function approximation :  

1N

2N

given 

0.2 

0.0 

-0.2 

0.4 

0.2 1 0.8 0.4 0.6 

̂



1

3
x 

2

3
x 

Approximation of a given function    by means of a function    
which takes a constant value on each element 



Note)  the arbitrary function     has been omitted. The end values , however, can be satisfied as closely as required 
by suitable reduction in the length of the elements at the end points ([Zienkiewicz 1983] pp.97-98 

, x 


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if five trial 
functions 
are chosen 
such as 

11 2 3 43 4 552
ˆ a a aN N N N Na a    function approximation :  

given 

0.2 

0.0 

-0.2 

0.4 

0.2 1 0.8 0.4 0.6 



̂
5N

main this case      are determined to satisfy          at midpoint of each    ˆ 
m

, 1, ,5m 
m ma   “Point collocation method” 

1 0.4 

1.0 

0.0 x
0.2 0.6 0.8 

2N
2

1 0.4 

1.0 

0.0 x

y

0.2 0.6 0.8 

1N
1

1 0.4 

1.0 

0.0 x
0.2 0.6 0.8 

3N3

1 0.4 

1.0 

0.0 x
0.2 0.6 0.8 

4N4
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An improved 
approximation has 
been produced by 
using an 
approximation 
function that varies 
linearly with over 
each subdomain 
called ‘element’ 
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1
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
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 

Weighted Residual Method for the Function Approximation by 
Piecewise Linear Trial Functions 
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The Weighted Residual Statement 
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Piecewise Linear Trial Functions 
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The Galerkin Method  

,where E is number of the elements. 
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(derivation) 
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for instance, 
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(derivation) 
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(derivation) 
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(derivation) 
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4 4 4 4 4
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(derivation) 
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notation of the indices 
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in general, 
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C.f. B-Spline Basis Functions 
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APPROXIMATION TO SOLUTIONS OF DIFFERENTIAL 
EQUATIONS AND 

CONTINUITY REQUIREMENTS 
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Approximation to Solutions of Differential Equations 

Recall,  

Approximation to the Solutions of 
Differential Equations and the Use of 
Trial Function 

Differential Equation Boundary Condition

Case 1 

Case 3

Case 2 

Not Satisfied Satisfied

Not SatisfiedNot Satisfied

Not SatisfiedSatisfied

the coefficients of the trial functions will be determine 
to satisfy them by “weighted residual” process

( ) 0A p in    L

( ) 0B r on    M

Differential Equation 

Boundary Conditions 

we shall obtain out(?) discrete approximation equations in weighted 
residual form as 

0l lW R d W R d 
 

   
with ˆ ˆ,R p R r     L M
Now if integrals of the weighted residual type are evaluated, it is 
desirable to avoid infinite value. 
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1sC “       continuity” 

If the integrals contain derivatives of order    (i.e., the operators              
contain such derivatives) , we must ensure that derivatives of the order                 
         are continuous in the trial functions       used in the approximation. 

S orL M

1S  mN

Continuity requirements for the trial functions 
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Continuity requirements 

We consider the behavior of three types of one dimensional Trial functions       near a junction    
of two elements 

mN A

mN

mdN

dx

2

2

md N

dx

3

3

md N

dx

continuous 

discontinuous 

discontinuous 

discontinuous continuous 

continuous 

infinite 

infinite 

infinite 

case(1) case(2) case(3) 
0C

0C

1C

If integrals of the weighted 
residual type are evaluated, it is 
desirable to avoid infinite value 
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Continuity Requirements 

mN

mdN

dx

2

2

md N

dx

3

3

md N

dx

continuous

discontinuous

discontinuous

discontinuous continuous

continuous

infinite

infinite

infinite

case(1) case(2) case(3)

0C

If the first derivatives occur in              ,  
that is            1S 

orL M

1sC “       continuity” 

then,      continuity is necessary  
trial function such as case (2) is 
required 

1C

If the second derivatives occur 
in              , that is            2S orL M

then,      continuity is necessary  
trial function such as case (3) is required 

The continuity requirements are also applicable to the weighting 
function  

lW
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Weak Formulation and the Galerkin Method 

Example 3.1 

0 Boundary Condition 1 0x  1x at at 

2

2

d

dx




It is required to obtain the function ( )x

which satisfies the governing equation 

and 

in 

We shall now attempt to solve this problem by the finite element 
method. And associate a piecewise linear global shape function      . mN

1

1

ˆ ,
E

m m

m

N  




  0 1x 

0 1x 

,where E is the number of the elements 

Governing equation ( ) 0A p in    L

2

2

d

dx




2

2
0

d

dx


 

2

2
( ) 0

d
A in

dx


    
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Weak Formulation and the Galerkin Method 

Example 3.1 

The weighted residual form: 

2
1

20

ˆ
ˆ 0, 1,2,..., 1l

d
W dx l E

dx




 
     

 


2

2
( ) 0 0 1

d
A in x

dx


     

0 Boundary Condition 1 0x  1x at at and 

2

2

ˆ
ˆ ˆ( ) ( ) 0 1

d
A A in x

dx


        R

The residual in domain: 

1

1

ˆ ,
E

m m

m

N  




  0 1x 
,where E is the number of the elements 

1

0
0, 1,2,..., 1lW dx l E    R
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The weighted residual form: 

2
1

20

ˆ
ˆ 0, 1,2,..., 1l

d
W dx l E

dx




 
     

 


In its present form, this statement requires continuity of first 
derivatives of the trial functions if infinite values are to be avoided. 

Derivatives of order two       continuity is necessary for trial function 

Integration by parts relaxes this requirement on the trial functions and 
leads to a weak form of the weighted residual statement. 

1C
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The weighted residual form: 

2
1

20

ˆ
ˆ 0, 1,2,..., 1l

d
W dx l E

dx




 
     

 


Boundary Condition 

0  1 0x  1x at at and 

1

1

ˆ ,
E

m m

m

N  




  0 1x 

Integration by parts 

1

1 1

0 0

0

ˆ ˆ
ˆ 0l

l l

dW d d
dx W W dx

dx dx dx

 


 
    

 
 

2
1 1

20 0

ˆ
ˆ 0l l

d
W dx W dx

dx


  

Now it is apparent that only      continuity of     (and hence of     ) 
and      is demanded 

0C ̂ mN

lW

Derivatives of order one 
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Boundary Condition 

0  1 0x  1x at at and 

1

1

ˆ ,
E

m m

m

N  




  0 1x 
1

1 1

0 0

0

ˆ ˆ
ˆ 0l

l l

dW d d
dx W W dx

dx dx dx

 


 
    

 
 

1

1
11 1

1

0 0
1

0

ˆ
0

E

m m E
l m

l m m l

m

d N
dW d

dx W N dx W
dx dx dx
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The definite integrals occurring in the approximating equations can be 
obtained simply by summing the contributions from each elements 

 K f 1

1

1

M
e

lm lm

e

e eM e
e el m
l m

e
e

K K

dN dN
N N dx

dx dx









 
  

 




1

1 1
0

ˆM M
e e

l l l

e e

d
f f N

dx



 

 
   

 
 

, where 1 , 1l m E  



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

511 
Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

1 1 1 1
31 1 1 2 1 1 4

1 1 1 2 1 3 1 4
0 0 0 0

1 1 1
32 1 2 2 2 2 4

2 1 2 2 2 3 2 4
0 0 0

dNdN dN dN dN dN dN dN
N N dx N N dx N N dx N N dx

dx dx dx dx dx dx dx dx

dNdN dN dN dN dN dN dN
N N dx N N dx N N dx N N

dx dx dx dx dx dx dx dx

      
         

      

     
        

     

   

  
1

0

1 1 1 1
3 3 3 31 2 2 4

3 1 3 2 3 3 3 4
0 0 0 0

1 1 1
34 1 4 2 4 4 4

4 1 4 2 4 3
0 0 0

dx

dN dN dN dNdN dN dN dN
N N dx N N dx N N dx N N dx

dx dx dx dx dx dx dx dx

dNdN dN dN dN dN dN dN
N N dx N N dx N N dx

dx dx dx dx dx dx dx dx





       
         

      

    
       

     



   

  
1

4 4
0

N N dx

 
 
 
 
 
 
 
 
 
  

  
  


1

0
x

y

1N

1

0
x

y

2N

1

0
x

y

3N

1

0
x

y

4N

1x 2x 3x 4x

1

1 2 3 4

1 2 3

Node

Element

1

1N 2

1N
1

3N

1

2N 2

2N 3

2N

1

3N 2

3N
3

3N

1

4N 2

4N 3

4N
1

2

3

4









 
 
  
 
 
 

1 1 1 1

1 2 3 4

0 0 0 0

ˆ ˆ ˆ ˆ
T

d d d d
N N N N

dx dx dx dx

           
        
         

K

f

 K f

Suppose that the number of the elements “E” is 3. 
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The definite integrals occurring in the approximating equations 
can be obtained simply by summing the contributions from each 
elements 
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The value of the trial function           are zero, 
in element 3 

1 2,N N

4 4
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3 3 2 4
3 3 3 4

34 4 4
4 3 4 4

0 0 0 0

0 0 0 0
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dN dN dN dN
N N dx N N dx

dx dx dx dx
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dx dx dx dx
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 
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T

d d d d
N N N N

dx dx dx dx

           
        
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ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
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x x x
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d d d d
N N N

dx dx dx dx

d d d
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dx dx dx

d d d
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dx dx dx

d d d d
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dx dx dx dx

   
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 
    

 

 
   

 

 
   

 

 
   

 

(1) (2) (3) (4) 

(1) 

(2) 

(3) 

(4) 

1 1(0) 1, (1) 0where N N 

2 2(0) 0, (1) 0where N N 

3 3(0) 0, (1) 0where N N 

4 4(0) 0, (1) 1where N N 
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By using Boundary Condition 

0  1 0x  1x at at and 

1 40, 1  
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            
     

2 30.2855, 0.6098  1

3
h 
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[Zienkiewicz 1983] Ch. 2.2 

Example 2.2 

0 Boundary Condition 1 0x  1x at at 

2

2

d

dx




It is required to obtain the function ( )x

which satisfies the governing equation 

and 

( ) 0B r on    M

( ) 0A p in    L

0r on   M

From Boundary Condition: ( ) 0B r on    M

1

ˆ
M

m m

m

a N  


  Approximation by Trial Functions 

[Recall] 
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0r on   M

( ) 0B r on    M
( ) 0A p in    L

sin( )mN m x

x Finite 
Difference 

Point 
Collocation 

Galerkin 
method 

Exact 

1/3 0.2893 0.2941 0.2894 0.2889 

2/3 0.6107 0.6165 0.6091 0.6102 

The approximate values and the exact values at the finite difference  
mesh point          and          . 1/ 3x  2 / 3x 

[Recall] 
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Example 3.2 

0 Boundary Condition / 1d dx 0x  1x at at 

2

2

d

dx




It is required to obtain the function ( )x

which satisfies the governing equation 

and 

in 0 1x 

Governing equation ( ) 0A p in    L

2

2

d

dx




2

2
0

d

dx


 

2

2
( ) 0

d
A in

dx


    

Boundary Conditions ( ) 0B r on    M
0  0x at 

/ 1d dx  1x at 

0 0   0x at 

/ 1 0d dx   1x at 

( ) 0 0B at x   

( ) / 1 0 1B d dx at x    
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Example 3.2 

The weighted residual form: 

2
1

20

1

ˆ ˆ
ˆ 1 0, 1,2,..., 1ll

x

d d
W dx W l E

dx dx

 




    
            

     


2

2
( ) 0 0 1

d
A in x

dx


     

2

2

ˆ
ˆ ˆ( ) ( ) 0 1

d
A A in x

dx


        R

The residual in domain: 

1

,1
0 1

, 1, 2,..., 1ll
x

W dx W l E 


   R R

( ) 0 0B at x   

( ) / 1 0 1B d dx at x    
,0

ˆ ˆ ˆ( ) ( ) 0 0B B at x       R

The boundary residual: 

,1
ˆ ˆ ˆ( ) ( ) / 1 0 1B B d dx at x        R

The residual at x=0 being omitted, as this will be made identically 
zero later, as in the example 3.1 
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2
1

20

1

ˆ ˆ
ˆ 1 0, 1,2,..., 1ll

x

d d
W dx W l E

dx dx

 




    
            

     


Carrying out integration by parts gives 

2
1 1

20 0

1

ˆ ˆ
ˆ 1 0ll l

x

d d
W dx W dx W

dx dx

 




  
      

   
 

1

1 1

0 0

0 1

ˆ ˆ ˆ
ˆ 1 0l

ll l

x

dW d d d
dx W W dx W

dx dx dx dx

  




    
          

     
 
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1

1 1

0 0

0 1

ˆ ˆ ˆ
ˆ 1 0l

ll l

x

dW d d d
dx W W dx W

dx dx dx dx

  




    
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     
 
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l l xx

W W


 

1

1 1

0 0

0 1

ˆ ˆ ˆ
ˆ 1 0l

l l l

x

dW d d d
dx W W dx W

dx dx dx dx

  




    
          

     
 

1

1 1

10 0

0 1

ˆ ˆ ˆ
ˆ 0l

l l l l x

x

dW d d d
dx W W dx W W

dx dx dx dx

  






 
      

 
 

/ 1d dx  1x at Boundary condition 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

530 
Computer Aided Ship Design, III-3. Finite Difference Method and Finite Element Method, Fall 2011, Kyu Yeul Lee  

1

1 1

10 0

0 1

ˆ ˆ ˆ
ˆ 0l

l l l l x

x

dW d d d
dx W W dx W W

dx dx dx dx

  






 
      

 
 

/ 1d dx  1x at Boundary condition 

1 1

10 0

1 0 1

ˆ ˆ ˆ ˆ
ˆ 0l

l l l l l x

x x x

dW d d d d
dx W W W dx W W

dx dx dx dx dx

   




  

       

1 1

10 0

0

ˆ ˆ
ˆ 0l

l l l x

x

dW d d
dx W dx W W

dx dx dx

 






     

1

10

0

ˆ ˆ
ˆ 0l

l l l x

x

dW d d
W dx W W

dx dx dx

 






 
      

 


The boundary condition to 
be imposed at x=1 can be 
seen to be a natural 
condition for this problem. 
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1

10

0

ˆ ˆ
ˆ 0l

l l l x

x

dW d d
W dx W W

dx dx dx

 






 
    

 


When the weighting functions are defined by            , 
and with the three equal elements, just as in example 3.1. 

l lW N

 K f

1 1
0 0

3 6

1 1 1
2 0

6 3 6

1 1 1
0 2

6 3 6

1 1
0 0

6 3

h h

h h

h h h

h h h

h h h

h h h

h h

h h

 
   

 
         

 
  

      
 

 
 

    

1 1 1

0

2 2 1

0

3 3 1

0

4 4 1

0

ˆ

ˆ

ˆ

ˆ

x

x

x

x

x

x

x

x

d
N N

dx

d
N N

dx

d
N N

dx

d
N N

dx

























 
  
 
 
  
 
 
 
  
 
 
 
  
 

1

2

3

4









 
 
 
 
 
 

1

1

0

0

ˆ ˆ
ˆ 0l

l l

dW d d
W dx W

dx dx dx

 


   
       

   


1 1
0 0

3 6

1 1 1
2 0

6 3 6

1 1 1
0 2

6 3 6

1 1
0 0

6 3

h h

h h

h h h

h h h

h h h

h h h

h h

h h

 
   

 
         

 
  

      
 

 
 

    

1

1

0

1

2

0

1

3

0

1

4

0

ˆ

ˆ

ˆ

ˆ

d
N

dx

d
N

dx

d
N

dx

d
N

dx









  
  
  
 
  
  
  

  
  
  
  
 
  
  
  

1

2

3

4









 
 
 
 
 
 

cf) Example 3.1 

0

ˆ

0

0

1

x

d

dx





 
 
 
 
 
 
 
 
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 K f

1 1
0 0

3 6

1 1 1
2 0

6 3 6

1 1 1
0 2

6 3 6

1 1
0 0

6 3

h h

h h

h h h

h h h

h h h

h h h

h h

h h

 
   

 
         

 
  

      
 

 
 

    

0

ˆ

0

0

1

x

d

dx





 
 
 
 
 
 
 
 

1

2

3

4









 
 
 
 
 
 

The boundary condition at x=0 now imposed by deleting 
the first equation from this set and setting 1 0 

2 3

2 3 4

3 4

1 1
2 0

3 6

1 1 1
2 0

6 3 6

1 1
1

6 6

h h

h h

h h h

h h h

h h

h h

 

  

 

   
       

   

     
            
     

   
        
   

2

3

4

0.2193

0.4634

0.7600










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 K f

1 1
0 0
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1 1 1
2 0
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1 1 1
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h h h
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 
   

 
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



 
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 
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 
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







 
 
 
 
 
 

Then    −
𝑑𝜙 

𝑑𝑥
|𝑥=0   can be determined  
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3 1x 0 0x 
1

1

3
x  2

2

3
x 

0 0  1 2 3
1

3
x 

2

2 1 0 12 x      

2

3 2 1 22 x      

1 1

2

2l l l
l

x

  
  




2

1 12l l l lx       

2,l 

1,l when 

Solution) 

Example 1.3 

Boundary Condition 

2

2

d

dx


governing equation 

0  / 1d dx 0x  1x at at and 

3
/ 1d dx 

3 equations 

1

3
x A mesh spacing:  

4 4 unknowns 

The fictitious 
mesh point 

4

4

3
x 

2

4 3 2 32 x      3,l 

[Recall] 
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Example 1.2, 1.3 

Boundary Condition 

2

2

d

dx


governing equation 

0  / 1d dx 0x  1x at at and 

1

3
x A mesh spacing:  

Solution using central differencing of the derivative boundary condition  

1 2 30.2168, 0.4576, 0.7493    

Solution using backward difference representation of the derivative 
boundary condition 

1 2 30.2477, 0.5229, 0.8563    

Exact Solution 

1 2 30.2200, 0.4648, 0.7616    

Solution using central differencing can be seen to be considerably more accurate  
than the solution calculated using the backward difference representation  
of the derivative B.C 

[Recall] 
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Overview(move to the end) 

Differential 
Equation (ODE) 

Integral 
Equations 

Calculus of 
Variation 

 Rayleigh-Ritz  

Approximate Method 

Galerkin 

Collocation 

Least Square 

Approximate Method 

Volterra 

Weighted 
Residual2) Approximate Method4) 

( ) ( ) ( ) ( , ) ( )
x

a
x y x F x K x y d      

( ) ( ) ( ) ( , ) ( )
b

a
x y x F x K x y d      Fredholm 

Leibnitz formula1) 

( ) ( )

( ) ( )

( , )
( , )

[ , ( )] [ , ( )]

B x B x

A x A x

d d F x
F x d d

dx dx x

dB dA
F x B x F x A x

dx dx


  






 

 

1) Jerry, A.j., Introduction to Integral Equations with Applications, Marcel Dekker Inc., 1985, p19~25 
2) ‘variational statement of the problem’ -Becker, E.B., et al, Finite Elements An Introduction, Volume 1, Prentice-Hall, 1981, p4 
3) Becker, E.B., et al, Finite Elements An Introduction, Volume 1, Prentice-Hall, 1981, p2 . See also Betounes, Partial Differential Equations for Computational Science, Springer, 1988, p408 “…the weak solution is actually a strong (or classical) solution…” 
4) some books refer as ‘Method of Weighted Residue’ from the Finite Element Equation point of view and they have different type depending on how to choose the weight functions. See also Fletcher,C.A.J., “Computational Galerkin Methods”, Springer, 
1984 
5) Jerry, A.j., Introduction to Integral Equations with Applications, Marcel Dekker Inc., 1985, p1 “Problems of a ‘hereditary’ nature fall under the first category, since the state of the system u(t) at any time t depends by the definition on all the previous 
states u(t-τ) at the previous time t-τ ,which means that we must sum over them, hence involve them under the integral sign in an integral equation. 
 
    
 

whenever a smooth ‘classical(strong)’ 
solution to a (D.E.) problem exists, it is 
also the solution of the weak problem3) 

1

0
( ) 0

(0) 0, (1) 0

u u x vdx

u u

   

 

 1

0
( ) 0v uv xu v dx   

 integration by part and demand 
the test function v vanish at the 

endpoints 

2

2

( ) ( )

0

d y x x y x
y T

x x

d dy
T y

dx dx

 

 

   
     

  

 
    

  2

2 2

0

1
0

2 2

l T dy
y py dx

dx
 

  
    

   


, 0 1,

(0) 0, (1) 0

u u x x

u u

    

 

ex.) 

Work and Energy Principle 

1

( ) ( )
n

k k i i

k

c s x F x




   
2

1

min
nb

k k
a

k

c s x F x dx


 
 

 


1

( ) ( ) ( ) ( )
n b b

k i k i
a a

k

c x s x dx x F x dx 


  

1

( ) ( )
n

k k

k

c s x F x




, ( ) ( ) ( , ) ( )
b

k k
a

s x x K x y d      

assume: 

problem of a 
“hereditary’ 
nature5) 

multiply virtual 
displacement       y

integration  
by part and B/C 

2d dy
T y p y

dx dx
 

  
  

  




multiply a weight function, or           
test function,    and integration  v

- Variation and integration 
- Integration and variation 

 
1 11

00 0
( ) ( )u v dx u v u v dx        

assume: 

( ) ( )
n

k k

k

y x c x( ) k

k

k

y x c x




A power series 
defines a function 

Approximated  
Solution of I.E 

system of equations Series Solution 

2

2 2

0

1

2 2

l T dy
I y py dx

dx


   
          


interpretation : 
minimize 

virtual work 

kinetic energy T potential Energy V

0
L L

x y y

   
  

   
Euler-Lagrange 

Eqn. 

L T V 

W
I

in static equilibrium 2

0 2

l

in virtual

T dy
I py dx

dx

   
             


total 
potential internal 

energy 
potential due to 
external work 

Finite Element Method 

( ) ( , ) ( )
b

a
y x G x d   

‘kernel’ 

‘Green’s function’ 

0y  L

Approximate Method 

discretization  
 Algebraic Equation 

1
( ) ( )

n

k kk
y x c x




1
( ) ( )

n

k kk
y x c x




1
, ( ) ( )

n

k ik
x a x 




1

( ) ( )
n

k k

k

c s x F x




Integral form           
1 1

0 0
1 1

0
N N

i j i j i j i

i j

x x x x dx x x dx      
 

 
       

 
   

 
1

n

i ij j ij
K F 




ijK iF

1
( ) ( )

n

i ii
v x x




1
( ) ( )

n

i ii
u x x




Galerkin 

ij j iK F 

(0) 0, ( ) 0y y l 

2

( ) ( )

y

y

y

ma F

y x x y x
F T

x

ma x y 



  




    





2d dy
T y p

dx dx
 

 
     

 

with. external force 

본 페이지는 맨 뒤로 옮길 것 
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Supplementary Slide 

Galerkin’s Residual Method  
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d N d N dNdv dv d v d v
EI dx EI EI N f N dx i

dx dx dx dx dx dx dx

   
         

  
 
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d v x
EI f N dx i

dx

 
   

 


integration by parts 

integration by parts 2 times 

integration by parts 3 times 

the order of derivative: 3 

the order of derivative: 3 

the order of derivative: 2 

This equation involves 
an order of differentiation  
lower than other equations 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  

Differential Equation 
2

2

( )
( ) 0

d u x
EA f x

dx
 

x

L

( )f x

Governing equation ( ) 0A u u p in   L

2

2
0

d u
EA f

dx
 

2

2
( ) 0

d u
A u EA f in

dx
   

0 x L 

Boundary Condition 

0
0 , 0

x
x L

du
u EA

dx


 

( ) :f x f const

: External force ( )f x
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  

2

2
( ) 0 0

d u
A u EA f in x L

dx
    

The weighted residual form: 

2

20

ˆ
0, 1,2,..., 1

L

l

d u
W EA f dx l E
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 
    

 
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A u A u EA f in x L

dx
      R

The residual in domain: 
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lW dx l E    R
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ˆ ,
E

m m

m

u u u N




  0 x L 

,where E is the number of the elements 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  

1
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ˆ ,
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m m
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u u u N



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,where E is the number of the elements 

The weighted residual form: 

Integration by parts 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

0 0
0

ˆ ˆ
0, 1,2,..., 1

L
L L

l
l l

dW du du
EA dx EA W W fdx l E

dx dx dx

 
      

 
 

1

1

0 0
0

ˆ
0, 1,2,..., 1

E

Lm m
L L

l m
l l

d u N
dW du

EA dx W fdx EA W l E
dx dx dx



  
      

 


 

1

1

0 0
0

ˆ
0, 1,2,..., 1

E

Lm m
L L

l m
l l

d u N
dW du

EA dx W fdx EA W l E
dx dx dx



  
     

 


 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

543 
Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 
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2

x

x

Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 
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550 
Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 
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Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 
Kd F
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In a manner similar to calculate K1, 
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552 
Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 
Kd F
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Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 
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Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 
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Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 

1 

0 
x

y

1N

1 

0 
x

y

2N

1 

0 
x

y

3N

1x 2x 3x

1 2 3 

1 2 Element 

Node 

0 L

l

K

Kd F

1

2

3

u

u

u

 
 


 
  

d

0

ˆ1

4

1

2

1

4

x

du
f L EA

dx

f L

f L



 
   
 
 

   
 
 

 
 
 

F

1 1 0

1 1 1 1

0 1 1

EA

l

 
 
  
 
  

Boundary Condition 

0
0 ,

0

x

x L

u

du
EA

dx









1 0u 



SDAL @ Advanced Ship Design Automation Lab. 
http://asdal.snu.ac.kr 

Seoul  
National 
Univ. 

556 
Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 
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Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 
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Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Direct equilibrium approach  
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Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Direct equilibrium approach  

② Case #2: The node 2 and 3 are fixed. (u2= u3=0) 
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Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Direct equilibrium approach  

③ Case #3: The node 1 and 3 are fixed. (u1= u3=0) 
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Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Structural analysis using direct stiffness method 
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Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (2 elements , 3 nodes) 
- Structural analysis using direct stiffness method 
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Computer Aided Ship Design, III. Supplementary Slide-Galerkin’s Residual Method, Fall 2011, Kyu Yeul Lee  

Element : Bar (3 elements , 4 nodes) 
- Structural analysis using direct stiffness method 

ex) 3 elements  
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Element : Bar - Finite Element Method 

x

( )u xl

1u 2u( )u x

1 2( )u x c c x assume: 
1 2, (0) , ( )u u u l u 

discretization 

1 element , 2 nodes finite element method 
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Element : Bar - Finite Element Method 

1 2( )u x c c x assume: 

1 2( )u l c c l 

1 2, ( ) 1
x x

or u x u u
l l

 
   
 

1 2, (0) , ( )u u u l u 

1(0)u c 1 1c u

2 1
2

u u
c

l




2 1
1( )

u u
u x u x

l

 
   

 

1u 2u( )u x
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Element : Bar - Finite Element Method 

1 2( ) 1
x x

u x u u
l l

 
   
 

1

2

( ) 1 1 udu x

udx l l

  
    
   

( ) ,u x  Nd
( )du x

dx
 Bd

1

2

( ) 1
ux x

u x
ul l

  
    
   

differentiation with respect to  x

1

2

1 1
1 , ,

ux x
where

ul l l l

    
         
     

N B d

1u 2u( )u x
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Element : Beam - Finite Element Method 

Variational Method 

x

( )v x
l

1v 2v
( )v x

1
2

2 3

0 1 2 3( )v x c c x c x c x   assume: 1 2, (0) , ( )v v v l v 

1 2, (0) , ( )
dv dv

l
dx dx

  

discretization 

1 element , 2 nodes finite element method 

 
2

2

20 2

l EI d v
fv dx

dx


  
  
   


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Element : Beam - Finite Element Method 

2 3

0 1 2 3 2( )v l c c l c l c l v    

0(0)v c
0 1c v

   2 1 2 1 22

3 1
2c v v

l l
     

1v 2v
( )v x

1
2

2 3

0 1 2 3( )v x c c x c x c x   assume: 1 2, (0) , ( )v v v l v 

1 2, (0) , ( )
dv dv

l
dx dx

  

1(0)
dv

c
dx



2

1 2 3 2( ) 2 3
dv

l c c l c l
dx

   

1 1c 
   3 1 2 1 23 2

2 1
c v v

l l
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Element : Beam - Finite Element Method 

0 1c v    2 1 2 1 22

3 1
, 2c v v

l l
     

1v 2v
( )v x
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2

2 3

0 1 2 3( )v x c c x c x c x   assume: 1 2, (0) , ( )v v v l v 

1 2, (0) , ( )
dv dv
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dx dx

  

1 1,c 

   3 1 2 1 23 2

2 1
c v v

l l
    
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1 1 1 2 1 2 1 2 1 22 3 2

3 1 2 1
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    

   
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   

3 2 3 3 2 2 3 3 2 3 2 2

1 1 2 23 3 3 3

1 1 1 1
( ) (2 3 ) ( 2 ) ( 2 3 ) ( )or v x x x l l v x l x l xl x x l v x l x l

l l l l
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Element : Beam - Finite Element Method 

 

1

1

1 2 3 4

2

2

( )

v

v x N N N N
v





 
 
 
 
 
 

1v 2v
( )v x

1
2
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1 1 2 23 3 3 3

1 1 1 1
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l l l l
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3 2 3

1 3
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(2 3 )N x x l l
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3 2 2 3
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( 2 )N x l x l xl
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3 2

3 3
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Element : Beam - Finite Element Method 

 

1

2
1

1 2 3 42

2

2

( )

v

d v x
B B B B

vdx





 
 
 
 
 
  ( ) ,v x Nd

2

2

( )d v x

dx
 Bd

 
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1 2 3 4
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( )

v

v x N N N N
v





 
 
 
 
 
 

differentiation with respect to       twice  x

1v 2v
( )v x
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2

3 2 3 3 2 2 3 3 2 3 2 2

1 1 2 23 3 3 3

1 1 1 1
( ) (2 3 ) ( 2 ) ( 2 3 ) ( )v x x x l l v x l x l xl x x l v x l x l

l l l l
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1 3
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Element : Bar 

Bar 

Element 

2

2

( )
( ) 0

d u x
EA f x

dx
 

Differential 
Equation 

Mx F , 0where x

Variational 
Method 

2

0
( ) 0

2

l EA du
f u dx

dx


  
   

   


1 1

2 2

1 1

1 1

u fEA

u fl

     
    

     

0 1( )u x a a x 

Kd F

Finite Element 
Method 

•Discretization 
•Approximation 

f1 f2 

k 
node 1 node 2 

δ1 
δ2 

bar element 

! Notation 































2

1
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


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]][[][ Kf 
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l


: , :E Young s Modulus A sectional area

stiffness equation 

stiffness matrix 
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Element : Bar - Linearity 

Linearity 

 Bar - Linearity 

)()()( 2121  fff 

)()(

)()()(

11

2121

vv

vvvv

LL

LLL







2211 )(   ,   )(  kfkf 

)()()( 212121   kkkff

)()( 2121   kf

11)(  kf 

111 )()(  kkf 

)()( 11  fk 

(      Scalar) :

)()( 11  ff 

(      Scalar) :

Definition of  Linearity 

f2 f1 

A(Sectional Area) 

E(Young’s Modulus) 

L 

f1 f2 

L

EA
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Element : Bar - Superposition 

f1 f2 
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Element : Bar - Superposition 

ex.) Find a stiffness equation of the following system: 
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Naval Architecture & Ocean Engineering 

Reference 
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EXPLANATION ABOUT BAR ELEMENT IN KOREAN 
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Element : Bar - Differential Eq. 

길이가 l인 bar의 양 끝에 힘 f1, f2가 작용하고, distributed force가 작용하지 
않을 때, 미분 방정식은 아래와 같이 유도 됨 

z

x

o

l

( )u x

1f 2f

a c

b d

a

b

c

d

P

dx

P

2

2

( )
( ) 0

d u x
EA f x

dx
 

( )P A x 

( )P EA x 

E 

( )
( )

du x
P EA x

dx


( )du x

dx
 

From the force equilibrium, “P” dose not 
change along the x-axis 

( )
( ) 0

dP d du x
EA x

dx dx dx

 
  

 

2

2

( )
0

d u x
EA

dx


If A(x) is constant “A” 

Reference) Logan, A first course in the finite element method, 3rd edition, Thomson learning, 2002 

주의: 여기에서 “P”는 외력이 아닌 외력 f1, f2에 의해서 발생되는 stress 
resultants임 
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Element : Bar (1 element , 2 nodes) 
- Galerkin’s Residual Method  

2

20

( )
0 , ( 1,2)

l

i

d u x
AE N dx i

dx
 

이전 장에서 유도한 미분 방정식은 Bar의 모든 미소 element에 대하여 성립해야 

하므로 Galerkin’s residual method를 적용하여 아래와 같이 식을 유도할 수 있다. 

integration by parts 

0
0

0

l
l

i
i

dNdu du
N AE AE dx

dx dx dx

 
  

 


1 1 2 2, ( )where u x N u N u  Nd
1 2, 1 ,

x x
N N

l l
  

1

0
02

1 1
,( 1,2)

l
l

i
i

udN du
AE dx N AE i

udx l l dx

    
      
    



1

2

1 1 u

ul l

  
    
   

1 2
1 2

dN dNdu
u u

dx dx dx
 since 

11
1

0
02

1 1
l

l udN du
AE dx N AE

udx l l dx

    
     
    



12
2

0
02

1 1
l

l udN du
AE dx N AE

udx l l dx

    
     
    



1:i 

2 :i 

1 1

0x l x

du du
N AE N AE

dx dx 



2 2

0x l x

du du
N AE N AE

dx dx 



1 1(0) 1, ( ) 0N N l 

2 2(0) 0, ( ) 1N N l 

since 
du

AE AE A P
dx

   since 

1 0x
N P




2 x l
N P



P

P

1

0
.) ( ) 0ref u v uv xv dx    

여기 f가 나온것을 설명할 것 

오스틴의 책의 식인데, 
직접 관련은 없음 

Bar 

P P

1f 2f

Tensile force 

External force 

여기서 주의할 점은                   라는 것이다.  
du

AE P
dx



즉,                                 는 각각 x=0과 x=l 에서의 tensile force를 의미하는 것이다. 외력 f1, f2가 아님!!! 
0

,
x x l

du du
AE AE

dx dx 
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문제 정의에서 처음에 주어진 것이 외력 f1과 f2이다. 따라서 tensile force인 

–P, P를 f1과 f2를 이용하여 계산하고, 치환하여 표현한 것이 위 식의 파란색 

Column matrix이다. 

Element : Bar (1 element , 2 nodes) 
- Galerkin’s Residual Method  

Differential Equation 
2

2

( )
0

d u x
EA

dx


2

20

( )
0 , ( 1,2)

l

i

d u x
AE N dx i

dx
 

Bar - Galerkin’s Residual Method  

integration by parts 

1 1 2 2, ( )where u x N u N u  Nd
1 2, 1 ,

x x
N N

l l
  

11

0
2

1 1l udN
AE dx P

udx l l

  
       



12

0
2

1 1l udN
AE dx P

udx l l

  
      



     1 1 1 1

2 20 0
2 2 2 2

1 1 1 1 1
1 1 1 1

l lu u u uAE
AE dx AE dx AE l l

u u u ul l l l l l

          
                 
           

 

     1 1 1 1

2 20 0
2 2 2 2

1 1 1 1 1
1 1 1 1

l lu u u uAE
AE dx AE dx AE l l

u u u ul l l l l l

          
                           

 


  1

2

1 1
uAE

P
ul

 
   

 

  1

2

1 1
uAE

P
ul

 
  

 

1

2

1

2

1 1
, , ,

1 1

u PEA
where

u P

f

fl

     
        

 
  
  

K d F Kd F

1

0
.) ( ) 0ref u v uv xv dx    

여기 f가 있어야 할 것 

해당 그림이 있어야 함 

Bar 

P P

1f 2f

Tensile force 

External force 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  

Differential Equation 
2

2

( )
0

d u x
EA

dx
 0 x L 

Boundary Condition 

0

,
x x L

du du
EA P EA P

dx dx 

 

Bar 

P P
Tensile force 

distributed load가 작용하지 않는 bar에 대하여 미분 방정식을 세우고(미분 방
정식에 f(x)가 포함되어 있지 않음), Galerkin’s residual method를 적용한다. 여
기서 element를 2개로 정의할 예정인데, 그렇다면 두 element 사이의 node에 
작용하는 외력이 어떻게 표현 되는지 살펴보자 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 

1 

0 
x

y

1N

1 

0 
x

y

2N

1 

0 
x

y

3N

1x 2x 3x

1 2 3 

1 2 Element 

Node 

1

2

3

u

u

u

 
 


 
  

d

1

0

2

0

3

0

ˆ

ˆ
0

ˆ

l

l

l

du
N EA

dx
P

du
N EA

dx
P

du
N EA

dx

  
    

  
          

   
  
    

F

Kd F

K

1 1 0

1 1 1 1
/ 2

0 1 1

EA

L

 
   
 

  

P P

P P

P PP P

1F 3F
2F

Tensile force 

External forces 

1

2

3

0

F P

F P P

F P

  

   



최종 유도한 식은 위와 같다. 여기에서 두 
element 사이에 작용하는 외력 F2, 즉 중간 
node에 작용하는 외력은 0으로 유도 되었
다. 이는 bar의 양 끝 단에 작용하는 힘 F1, 
F3 이외의 외력(분포 하중)은 없다고 가정하
고 미분 방정식을 유도한 결과이다. 
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CHAPTER 1. ELEMENT : BAR 
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Element : Bar - Differential Eq. 

“Longitudinal Vibration of a Bar or Rod : Rao,S.S., Mechanical Vibrations, Fourth Edition, Prentice Hall, 2004, pp597-600 
 

z

x

o
a

c

b
dx dx

( , )f x t

l

a

b

c

d

f dx

P dP

dx

Equilibrium  
position a

b

c

d u

u du

Displaced 
position 

P

( )u x

( )u x

x
0 l

an example of displacement in x-direction at x 

:density, : Young s Modulus, :sectionalareaE A 

( , ):external force per unit length, distributed forcef x t

P : the (internal) forces acting on the cross sections of a small element of the 
bar of length  dx

Internal force 인지 확인 P와 f의 확인 

Free body diagram이라는 말을 사용하여 internal이 external이라는 말을 할 것 

1f 2f

1 2, :concentrated forces exerted on the ends of the barf f

참고자료 
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Element : Bar - Differential Eq. 

A Bar in Axial Vibration 

2

2

( , )
( ) ( )

u x t
P dP f dx P A x dx

t



   



F ma

2

2

( , )
( )

u x t
dP f dx A x dx

t



 



2

2

( , ) ( , )
( ) ( , ) ( )

u x t u x t
EA x dx f x t dx A x dx

x x t


   
  

   

( , ):external force per unit length, distributed forcef x t

2

2

( )
( ) 0

d u x
EA f x

dx
 0

u

t






2 2

2 2

( , ) ( , )
( , )

u x t u x t
EA f x t A

x t


 
 

 

dynamics (vibration) 

( ) : .if A x A const

( , )
( ) ( ) ( )

( , )
( )

u x t
P A x EA x EA x

x

P u x t
dP dx EA x dx

x x x

 


  


   
   
   

‘constitutive equation’ 

“Longitudinal Vibration of a Bar or Rod : Rao,S.S., Mechanical Vibrations, Fourth Edition, Prentice Hall, 2004, pp597-600 

subjected to 

0

0

( , 0) ( ), 0

( , 0) ( ), 0

u x t u x x l

u
x t u x x l

t

   



    

I.V.P 

(0, ) 0, 0

( , ) 0 or ( , ) 0, 0

u t t

u u
AE l t l t t

x x

 


 
    

at the free end , axial force 

B.V.P 

statics 

:density, : Young s Modulus, :sectionalareaE A 

z

x

o
a

c

b
dx dx

( , )f x t

l

a

b

c

d

a

b

c

d 

f dx

P dP

u

u du

dx

Equilibrium  
position 

Displaced 
position 

P

( )u x

P와 f의 확인 

Reference 찾아서 interface word 정리할 것 

1f 2f

1 2, :concentrated forces exerted on the ends of the barf f

참고자료 
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Element : Bar - Differential Eq. 

Consider that the tensile force is not constant and there is no other force  
such as distributed force. Then, this infinitesimal element will move until the 
tensile forces acting on the opposite side of the element become same. 
Therefore, if the element is in equilibrium state, the tensile force should be 
constant. 

a

b

c

d

P dP

dx

P

2

2

( )
( ) 0

d u x
EA f x

dx
 

P와 dP의 차이가 
없는 이유를 써 넣
을 것 

Reference) Logan, A first course in the finite element method, 3rd edition, Thomson learning, 2002, p.64 
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Memo 

1) distributed force인 f(x)가 존재하는 경우 
이 경우에 대하여 Rao는 distributed force인 f(x)가 있다고 가정하여 
-P + f(x)dx + P + dP = 질량 * 가속도 
라는 식을 세웠습니다. 
 
여기에서 statics를 고려해야 하므로, 가속도가 0이라고 가정하면 
-P + f(x)dx + P + dP = 0 
f(x)dx + dP = 0 
라는 식이 되어 P의 변화량인 dP를 f(x)dx가 상쇄시켜줄 수 있습니다. 
반대로 해석하면, f(x)dx가 P의 변화인 dP를 야기시킨다고 해석할 수 도 있을 것입니다. 
 
2) distributed force인 f(x)가 존재하지 않는 경우 
이 경우에 대하여 Rao가 세운 식에서 f(x)=0이라고 가정하여 
-P + P + dP = 질량 * 가속도 
라는 식을 세울 수 있으며, statics를 고려하기 위해, 가속도가 0이라고 가정하면 
-P + P + dP = 0 
dP = 0 
이라는 식이 유도 됩니다. 
즉, distributed force인 f(x)가 존재하지 않고, statics를 고려하면 
dP는 자동으로 0이되어 P=constant라는 결론을 내릴 수 있습니다. 
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ELEMENT : BAR (E ELEMENTS , E+1 NODES) 
- SOLVING D/E USING GALERKIN’S RESIDUAL 
METHOD  
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  

Differential Equation 
2

2

( )
0

d u x
EA

dx


Governing equation ( ) 0A u u p in   L

2

2
0

d u
EA

dx


2

2
( ) 0

d u
A u EA in

dx
  

0 x L 

Boundary Condition 

0

,
x x L

du du
EA P EA P

dx dx 

 

Bar 

P P
Tensile force 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  

2

2
( ) 0 0

d u
A u EA in x L

dx
   

The weighted residual form: 

2

20

ˆ
0, 1,2,..., 1

L

l

d u
W EA dx l E

dx

 
   

 


2

2

ˆ
ˆ( ) ( ) 0

d u
A u A u EA in x L

dx
     R

The residual in domain: 

0
0, 1,2,..., 1

L

lW dx l E    R

1

1

ˆ
E

m m

m

u u u N




 
,where E is the number of the elements 
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  

1

1

ˆ
E

m m

m

u u u N




 
,where E is the number of the elements 

The weighted residual form: 

Integration by parts 

0
0

ˆ ˆ
0, 1,2,..., 1

L
L

l
l

dW du du
EA dx EA W l E

dx dx dx

 
     

 


2

20

ˆ
0, 1,2,..., 1

L

l

d u
W EA dx l E

dx
  

2

20

ˆ
0, 1,2,..., 1

L

l

d u
W EA dx l E

dx

 
   

 


2

20

ˆ
0, 1,2,..., 1

L

l

d u
EA W dx l E

dx
  
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

0
0

ˆ ˆ
0, 1,2,..., 1

L
L

l
l

dW du du
EA dx EA W l E

dx dx dx

 
     

 


1

1

0
0

ˆ
0, 1,2,..., 1

E

Lm m
L

l m
l

d u N
dW du

EA dx EA W l E
dx dx dx



  
    

 



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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

1

1

0
0

ˆ
0, 1,2,..., 1

E

Lm m
L

l m
l

d u N
dW du

EA dx EA W l E
dx dx dx
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
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Galerkin methods l lW N
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
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

1

0
1 0

ˆ
0, 1,2,..., 1
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l m
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

1,2,..., 1l E 

1 2 1
1 2 1

0 0 0
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...

ˆ

L L L
l l l E
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: 

1 1 1 2 1 1

0 0 0

1

2 1 2 2 2 1
2

0 0 0
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1 1 1 2 1 1

0 0 0

...
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L L L
E

L L L
E

EL L L
E E E E

dN dN dN dN dN dN
dx dx dx

dx dx dx dx dx dx u
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Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 

1 1 1 2 1 1

0 0 0

2 1 2 2 2 1
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Ni is corresponding to 
the 1st order B-spline 
basis functions 
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2

1

x

x

3

2

x

x

Element : Bar (2 elements , 3 nodes) 
- Solving D/E using Galerkin’s Residual Method  
The weighted residual form: The number of the 

elements E is 2 
1 1 1 2 1 1
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SUMMARY 
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Element : Bar (1 element , 2 nodes) 
- Comparison between the Solutions of D/E using Galerkin’s Residual Method and direct 
equilibrium approach  

f1 f2 

k 
Node1 Node 2 

u1 
u2 
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

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

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


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2
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u
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]][[][ uKf 
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k

l


: , :E Young s Modulus A sectional area

stiffness matrix 

2

2

( )
0

d u x
EA

dx


Bar 

Galerkin’s  
residual  
method 

Differential Equation 

1 1

2 2

1 1

1 1

u fPEA

u fPl

       
       

      

0 1( )u x a a x 

Forces exerted 
on the nodes 

Solutions of D/E using Galerkin’s Residual Method  

Direct equilibrium approach  

l

P P

1f 2f

Tensile force 

External force 
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Element : Bar (2 elements , 3 nodes)  
External force and internal force for two spring assemblage 

F1 

F2 
ka 

Node 1 
Node 2 u1 u2 

kb 

Node 3 
u3 

F3 

F1, F2, and F3 are external forces which are applied at node 1, 2, and 3 respectively. 

Free-body diagrams of each element and nodes are shown as follows 

f1
(1) f2

(1) 

ka Node1 Node 2 

u1 
u2 

element #1 

f2
(2) f3

(2) 

kb Node2 Node 3 

u2 
u3 

element #2 

f1
(1), f2

(1), f2
(2), and f3

(2) are internal forces.  

We will consider two spring assemblage. 

Based on the free-body diagrams, however, “f” can be regarded as external forces 
for each element. 
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Element : Bar (2 elements , 3 nodes) 
- Comparison between the Solutions of D/E using Galerkin’s Residual Method and direct 
equilibrium approach  
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Differential Equation 

/ 2

EA
k

l


Solutions of D/E using Galerkin’s Residual Method  

Direct equilibrium approach  

l

F1, F2, F3: Applied external force at each node. 

Bar 

1F

External force 

2F 2F
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Element : Beam 
- Comparison between the Solutions of D/E using Galerkin’s Residual Method and direct 
equilibrium approach  

※ superposition of stiffness matrix 

Galerkin’s  
residual  
method 

Differential Equation 
Beam 
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d w x
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dx
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Solutions of D/E using Galerkin’s Residual Method  

Direct equilibrium approach  
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Logan책을 따라서 Notation 정리 

Beam 
m(0) m(l) 

V(l) V(0) 
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SUMMARY 
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Element: Beam 
- Definition 

  Beam1)2) 

 Structural members subjected to lateral loads, that is, forces or moments 

having their vectors perpendicular to the axis of the member. 

 Lateral loads occur shear forces and bending moments in beams. 

 Beam elements have two degrees of freedom at each end: a rotation about axis 

perpendicular to the plane of the mean and a translation perpendicular the axis 

of the beam. 

 Axial deformation is neglected.  

11 , yyf 

11 ,M

22 ,M22 , yyf 

Beam 

1) Gere, J. M., Goodno, B. J, Mechanics of Meterials, 7th edition, Cengage Learing, 2009, p.306 
2) Sennett, R. E., Matrix analysis of structures, Prentice hall, 1994, p.59 

여기서 화살표가 
이해가 안감. 설명
이 필요함 
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Element: Beam 
- Boundary Condition 

Free-End Fixed End Simple Support 

Known 

Unknown 

,1y

1

1M

,1yf

,1y 1

1M,1yf ,1y 1

1M,1yf

(=0) (=0) (Given) 
,1yf 1y

,1M 1

Force, moment,  

and deformations 

 Boundary condition 

① If the loads are given, the deformations are unknown variables. 

② If the deformations are given, the loads are unknown variables.  

왼쪽(서포트되어있는 쪽)을 이야기하는 것임을 확실히 할 것 

Examples of left end of a beam 
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Element: Beam 
- Derivation of the beam elemental stiffness matrix1) 

(1) Case #1: The node2 is fixed supported  0,0 22   y

Integration of Eq.(1) 
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Deflection curve of beam: 
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① 

② Integration of Eq.(2) 
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1) 박재형, “구조해석 꼭 어려워야 하나” , 기문당, 2006, pp.99~103 

-(1) 

-(2) 

-(3) 

부호 및 화살표를 잘 설명할 것 
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Element: Beam 
- Derivation of the beam elemental stiffness matrix 

③ Using Eq. (2) and (3), translation in y direction(δy1) and rotation(θ1) can be calculated at x=0 
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Translation in y direction(δy1) at x=0 

Rotation(θ1) can be calculated at x=0 

 Matrix form 

-(2) 

-(3) 
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Element: Beam 
- Derivation of the beam elemental stiffness matrix 

④ Using force and moment equilibrium at x=L, fy2 and M2 can be calculated 
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equilibrium: 
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Element: Beam 
- Derivation of the beam elemental stiffness matrix 

(2) Case #2: The node1 is fixed supported 

 0,0 11   y

xfM
dx

yd
EI y222

2



x 

y 

l 

Node2 Node1 

M2 

fy2,δ2 

θ2 

Integration of Eq.(4) 
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② Integration of Eq.(5) 
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Element: Beam 
- Derivation of the beam elemental stiffness matrix 

③ Using Eq. (5) and (6), translation in y direction(δy2) and rotation(θ2) can be calculated at x=l 
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Translation in y direction(δy1) at x=l 

Rotation(θ1) can be calculated at x=l 

 Matrix form 
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Element: Beam 
- Derivation of the beam elemental stiffness matrix 

④ 

021  yyy fffForce 

equilibrium: 

02121  MMlfM y
Moment 

equilibrium: 

 Force at node 1 

21 yy ff 

 Moment at node 1 

221 MlfM y 

 Matrix form 
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Using force and moment equilibrium at x=0 , fy1 and M1 can be calculated 
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Element: Beam 
- Derivation of the beam elemental stiffness matrix 
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(1) Case #1: The node2 is fixed 

supported 
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(1) Case #2: The node1 is 

fixed supported 
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 the beam elemental stiffness matrix 
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Rotational Transformation : Point 

 Rotational Transformation : Point 

② components of point  A 
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③ by using the angle sum identities 
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Rotational Transformation : Coordinate System 
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y 

 Rotational Transformation : Coordinate System  
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Rotational Transformation : Coordinate System 

 2 Dimension (xy → pq) 
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 3 Dimension (xyz → pqr) 
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