6 Inverse of a Matrix

6.1 Cramer's Rule \& Inverse for solving $A \mathrm{x}=\mathrm{b}$

$$
\begin{aligned}
& A\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
\Rightarrow & A\left[\begin{array}{lll}
x_{1} & 0 & 0 \\
x_{2} & 1 & 0 \\
x_{3} & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
b_{1} & a_{12} & a_{13} \\
b_{2} & a_{22} & a_{23} \\
b_{3} & a_{32} & a_{33}
\end{array}\right]:=B_{1}
\end{aligned}
$$

$\rightarrow \quad$ Take determinants : $\quad(\operatorname{det} A) x_{1}=\operatorname{det} B_{1}$

$$
\begin{gathered}
\therefore x_{1}=\frac{\operatorname{det} B_{1}}{\operatorname{det} A} \\
A\left[\begin{array}{lll}
1 & x_{1} & 0 \\
0 & x_{2} & 0 \\
0 & x_{3} & 1
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & b_{1} & a_{13} \\
a_{21} & b_{2} & a_{23} \\
a_{31} & b_{3} & a_{33}
\end{array}\right]:=B_{2}
\end{gathered}
$$

$\rightarrow \quad$ Take determinants : $\quad(\operatorname{det} A) x_{2}=\operatorname{det} B_{2}$

$$
\therefore x_{2}=\frac{\operatorname{det} B_{2}}{\operatorname{det} A}
$$

<Cramer's Rule>
If $\operatorname{det} A \neq 0, \quad A \mathrm{x}=\mathrm{b}$ has the unique soln.

$$
x_{j}=\frac{\operatorname{det} B_{j}}{\operatorname{det} A}
$$

where B_{j} has the column j of A replaced by the vector b .

Ex

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =1 \\
-2 x_{1}+x_{2} & =0
\end{aligned}
$$

$$
\begin{aligned}
& -4 x_{1}+x_{3}=0 \\
& |A|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 1 & \\
-4 & 1
\end{array}\right|=7 \\
& \left|B_{1}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & \\
0 & 1
\end{array}\right|=1 \\
& \left|B_{2}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 0 & \\
-4 & 0 & 1
\end{array}\right|=2 \\
& \left|B_{3}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 1 & 0 \\
-4 & 0
\end{array}\right|=4
\end{aligned}
$$

6.2 using Cramer's rule to compute the inverse
$A A^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
\Downarrow
b in the above example
$\therefore\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=$ the first column of A^{-1}

- In the above example, note that

$$
\begin{array}{r}
\left|B_{1}\right|=C_{11}, \quad\left|B_{2}\right|=C_{12}, \quad\left|B_{3}\right|=C_{13} \\
\therefore \quad \text { the first col. of } A^{-1}=\left[\begin{array}{c}
\frac{C_{11}}{|A|} \\
\frac{C_{12}}{|A|} \\
\frac{C_{13}}{|A|}
\end{array}\right]
\end{array}
$$

. use $\mathrm{b}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ to get the second column of A^{-1} :

$$
\begin{array}{ll}
\left|B_{1}\right|=\left|\begin{array}{lll}
0 & a_{12} & a_{13} \\
1 & a_{22} & a_{23} \\
0 & a_{32} & a_{33}
\end{array}\right|=C_{21} & \text { the 2nd col. of } A^{-1} \\
\left|B_{2}\right|=\left|\begin{array}{lll}
a_{11} & 0 & a_{13} \\
a_{21} & 1 & a_{23} \\
a_{31} & 0 & a_{33}
\end{array}\right|=C_{22} & \Rightarrow \\
\left|B_{3}\right|=\left|\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & 1 \\
\hline A \mid
\end{array}\right|=C_{23} & {\left[\begin{array}{c}
\frac{C_{21}}{|A|} \\
\frac{C_{22}}{|A|} \\
\frac{C_{23}}{|A|}
\end{array}\right]}
\end{array}
$$

. use $\mathrm{b}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ to get the second column of A^{-1} :

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{c}
\frac{C_{31}}{|A|} \\
\frac{C_{32}}{|A|} \\
\frac{C_{33}}{|A|}
\end{array}\right]
\end{aligned}
$$

If we define the cofactor matrix $C=\left[C_{i j}\right]$ then,

$$
A^{-1}=\frac{C^{T}}{\operatorname{det} A}
$$

Ex

$$
\begin{aligned}
& M_{11}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \Rightarrow C_{11}=1 \\
& M_{12}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \Rightarrow C_{12}=-1 \\
& M_{13}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \Rightarrow C_{13}=0
\end{aligned}
$$

$$
A^{-1}=\frac{C^{T}}{\operatorname{det} A}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

(The inverse of a triangular matrix is triangular)

6.3 inverse \& Rank

Theorem 1 (Existence of the inverse)
The inverse A^{-1} of an $n \times$ matrix A exists of and only if rank $A=n$, hence (by Theorem 3, Sec. 6.6) if and only if $\operatorname{det} A \neq 0$. hence A is nonsingular if rank $A=n$, and is singular if rank $A<n$.

Proof. Consider the linear system

$$
\begin{equation*}
\mathrm{Ax}=\mathrm{b} \tag{2}
\end{equation*}
$$

with the given matrix A as coefficient matrix. If the inverse exists, then multiplication from the left on both sides gives by (1)

$$
\mathrm{A}^{-1} \mathrm{Ax}=\mathrm{x}=\mathrm{A}^{-1} \mathrm{~b} .
$$

This shows that (2) has a unique solution x , so that A must have rank n by the Fundamental Theorem in Sec. 6.5

Conversely, let rank $\mathrm{A}=\mathrm{n}$. Then by the same theorem, the system (2) has a unique solution x for any b , and the back substitution following the Gauss elimination (in Sec 6.3) shows that its components x_{j} are linear combinations of those of b , so that we can write

$$
\begin{equation*}
x=B b \tag{3}
\end{equation*}
$$

Substitution into (2) gives

$$
\mathrm{Ax}=\mathrm{A}(\mathrm{Bb})=(\mathrm{AB}) \mathrm{b}=\mathrm{Cb}=\mathrm{b} \quad(\mathrm{C}=\mathrm{AB})
$$

for any b . Hence $\mathrm{C}=\mathrm{AB}=\mathrm{I}$, the unit matrix. Similarly, if we substitue (2) into (3) we get

$$
\mathrm{x}=\mathrm{Bb}=\mathrm{B}(\mathrm{Ax})=(\mathrm{BA}) \mathrm{x}
$$

for any x (and $\mathrm{b}=\mathrm{Ax}$). Hence $\mathrm{BA}=\mathrm{I}$. Together, $\mathrm{B}=\mathrm{A}^{-1}$ exists.

