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Chapter 4 Shear Flow Dispersion
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4.1 Dispersion in Laminar Shear Flow
4.2 Dispersion in Turbulent Shear Flow
4.3 Dispersion in Unsteady Shear Flow

4.4 Dispersion in Two Dimensions

Objectives:

Taylor, Geoffrey — English
fluid mechanician

1) Derive shear flow dispersion equation using Taylor’ analysis (1953, 1954)

- laminar flow in pipe (1953)

- turbulent flow (1954)

— apply Fickian model to dispersion

— reasonably accurate estimate of the rate of longitudinal dispersion in rivers and estuaries

2) Extend dispersion analysis to unsteady flow and two-dimensional flow
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4.1 Dispersion in Laminar Shear Flow

4.1.1 Introductory Remarks

Shear effect

- Taylor's analysis (1953) in laminar flow in pipe

Consider laminar flow in pipe with velocity profile shown below.

Assume two molecules are being carried in the flow; one in the center and one near the wall.
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1) Rate of separation caused by the difference in advective velocity

> separation by molecular motion

2) Because of molecular diffusion, given enough time, each molecule would wander

randomly throughout the cross section.

3) If a long enough averaging time was available, a single molecule’s time-averaged velocity

would be equal to the instantaneous cross-sectional average of all molecules’ velocities.
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4) If we adopt a coordinate system moving at the mean velocity, the random steps are likely

to be back and forward.

— motion of single molecule is the sum of a series of independent steps of random length.

5) Fickian diffusion equation, Eq. (2.4) can describe the spread of particles along the axis of

the pipes, except that since the step length and time increment are much different from those

of molecular diffusion. We expect to find a different value of diffusion coefficient.

— dispersion coefficient

Now, find the rate of spreading for laminar shear flow in pipe

For turbulent flow, diffusion coefficient is given as
e=<U?>T,

where U = velocity deviation

Mean square velocity deviation of
the molecule results from the

T, = Lagrangian time scale wandering of the molecule across
the cross section.

Molecule samples velocities
ranging from zero at the wall to the
peak velocity up at the centerline.

For laminar flow in pipe; <U? > u02
~ time required to sample
the whole field of velocities
T o c’:l_2 ~ time scale for cross-
"D sectional mixing
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where U, = maximum velocity at the centerline of pipe

a = radius of pipe

D = molecular diffusion coefficient

Thus, longitudinal dispersion coefficient due to combined action of shear advection and

molecular diffusion is given as

K=<U?>T, ocu,’ (4.1)

a.2
D

— Kis inversely proportional
to molecular diffusion.
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[Re] Dispersion in shear flow vs. diffusion in uniform flow

uniform flow

shear flow -" w

longitudinal
diffusion

Upstream

Downstream

Upstream

separation by different
velocities

4-5
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4.1.2 A Generalized Introduction

Iy
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{a) (b)

(a) example velocity distribution (b) transformed coordinate system moving at the

mean velocity

Consider the 2-D laminar flow with velocity variation u(y) between walls

T~

Define the cross-sectional mean velocity as Shear flow
_ 1
Then, velocity deviation is
u=u(y)-a (4.3)

Let flow carry a solute with concentration C(x, y) and molecular diffusion coefficient D.

Define the mean concentration at any cross section as

_ 1 _
c :EJ'Othy, C=f(x)=f(y) (4.4)
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Then, concentration deviation is

C =C(y)-C, C=C(xy) (4.43)

Molecular
diffusion

Now, use 2-D diffusion equation with gnly flow in x-direction (v =0)

2 2
8C+UGC+V@C/_D8C+D8C )

Substitute (4.2)~(4.4) into (1)

L€ +C)+(@+u) S (E+C)= D{aa—;(@c%;y—zi/ﬁ/m')} @5

Now, simplify (4.5) by a transformation of coordinate system whose origin moves at the

mean flow velocity

X ot
=t @:O @:1
OX ot

Chain rule

o 8 o o o)
OX OXOE OXOr OF
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o 90 oro o 9
— = : =0 —+— ©
ot otoF otor  OF or

Substitute Eqg. (b)-(c) into Eq. (4.5)
0 = .. 0 .= _. 0? 0°C
’—/z/a—f(c:+0)+5(c:+c:)+5y/ )—g(c C)= D{?(C C)+ @}

—(C+C)+u—(§(C+C) D{a—;(C C)+ (iyc} (4.8)

— view the flow as an observer moving at the mean velocity

— U'is the only observable velocity

Now, neglect longitudinal diffusion because rate of spreading along the flow direction due to

velocity difference greatly exceed that due to molecular diffusion.

\ L

u i(C +C)> Da—(C +C)

a% o, iC / »

A e as M T
1\

Taylor’s
assumption

— This equation is still intractable because U varies with y.

— General solution cannot be found because a general procedure for dealing with differential

equations with variable coefficients is not available.
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Now introduce Taylor's assumption

— discard three terms to leave the easily solvable equation for C ()

-D (4.10)

[Re] Derivation of Eq. (4.10) using order of magnitude analysis
Take average over the cross section of Eq. (4.9)

1 ¢h
— apply the operator —_[ ()dy

oC a;z/ /5((: .oC ,é
ot /% /8y

Apply Reynolds rule of average

oC ac

— =0 411
or ' aE (11

Subtract Eq.(4.11) from Eq.(4.9)

oC  .oC .oC  .oC o°C
+U u =

Assume C,C' are well behaved, slowly varying functions and C>C

«
o' o

.0C
Then U—>>U
0S5
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: .0C
Thuswe candrop U —, U —
o5 0¢
. o~ _
oC _pdC _, L ”
or oy o0&

.0C :
—U —— =source term of variable strength

—> Net addition by source term is zero because the average of U is zero.

oC . . .
Assume that— remains constant for a long time, so that the source is constant.

Then, Eq. (a) can be assumed as steady state.

L L g

or

Then (a) becomes

_ -

longitudinal u @ =D oC Cross-sectional

advective _\ o0& oy’ / diffusive transport
(A)

transport
(B)

— same as Eq. (4.10)

— Cross sectional concentration profile C'(y) is established by a balance between

longitudinal advective transport and cross sectional diffusive transport.
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Ty

uCdy

1 L]
|,
1 1 |
ADVECTIVE TRANSPORT | I 4

dy

1

_pic 9 (—piC
D d“ay ( Day)dydx

dy

ey uCdy + -5%- (uCldxdy

|

: ! 1o}
| | DIFFUSIVE TRANSPORT -D dy dx
i

—{dx fo—

X

<Fig. 4.3> The balance of advective flux versus diffusive flux

« fluxes in x-direction of moving coordinate system

= uC+(—D/%C/T
9

advective flux

diffusive flux

« fluxes in y-direction of moving coordinate system

advective flux

diffusive flux

In balance, for steady state, net transport = 0

L = 0/ = oC
UCdy —<uCdy+—(uC)dxdy } +<{ —-D—dx —
g { g 8x( ) y} { oy

OX

Q(U'C)ZE(D(?_C'
X oy\ oy

|

—i(u'é)dxdy+%[D%C]dydx =0

4-11
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Conservation of mass in
2D flow

—D—dx+£(—Da—C']dydx} =0
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Now, let’s find solution of Eg. (4.10)

°C_18C, 1,
oy° Do D ox

Integrate (e) twice w.r.t. y

C'(y )_iﬁjj u'dydy +C'(0)

Consider mass transport in the streamwise direction

M = joh qdy = _[Oh{u'c' + (—D %XI }dy

(€)

(4.14)

(f)

Substitute (4.14) in ()

concentration gradient in
the streamwise direction

M = f uCdy 18CI _[Iudydydy

(4.15)

since [ 'u{C'(0)}dy=0

N

constant

— EQ. (4.15) means that total mass transport in the streamwise direction is proportional to the

concentration gradient in that direction.
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M oc— (9)

—This is exactly the same result that we found for molecular diffusion (Fick’s law).

oC
= —D—
q OX

But this is diffusion due to whole field of flow.

Let g = rate of mass transport per unit area per unit time
Then, (g) becomes

M oC
Q="—"Fo—
hxl 0OX

where h = depth = area per unit width of flow
Now introducing constant of proportionality with K yields
M oC

-K

= - KX h
hx1 OX ")

q

K = longitudinal dispersion coefficient (= bulk transport coefficient)

— express as the diffusive property of the velocity distribution (shear flow)

Then, (h) becomes

M =—hk & (4.16)
OX
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Comparing Eqg. (4.15) and Eq. (4.16) to derive an equation for K

1 ¢h cpypey o
K:—ﬁjoujo joudydydy (4.17)
Kocl
D

Now, we can express this transport process due to velocity distribution as a one-dimensional
Fickian-type diffusion equation in moving coordinate system.

— Substitute (h) into conservation of mass

c__x

ot o

Then, we have

_ -
ngKaS (4.18)
or o0&
Return to fixed coordinate system
_ _ -
oc +U8C =K8C2: (4.19)
OX OX

where C, U = cross-sectional average values

— 1-D advection-dispersion equation
~ can be applied to analysis of dispersion in natural rivers and estuaries

~ can be applied to far-field mixing
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= Balance of advection and diffusion in Eq. (4.10)

-
LINE ADVECTED -
SOURCE LINE c
SOURCE
A

X X

(o) (b) (c) :

Figure 4.4 The production of a skewed longitudinal distri
(a) The line source and the velocity profile. (b) The advect
distribution of the cross-sectional mean concentration corr

in (b).

butipn by advection of a line source.
ed line source. (c) The longitudinal
esponding to the distribution shown

Suppose that at some initial time t = 0 a line source of tracer is deposited in the flow.

— Initially the line source is advected and distorted by the velocity profile (Fig. 4.4).

At the same time the distorted source begins to diffuse across the cross section.

— Shortly we see a smeared cloud with trailing stringers along the boundaries (Fig. 4.4b).

During this period, advection and diffusion are by no means in balance.

— Cross-sectional average concentration is skewed distribution (Fig. 4.4c).

— Taylor’s assumption does not apply.

If we wait much longer time, the cloud of tracer extends over a long distance in the x

direction.
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. oC _ .
— C varies slowly along the channel, and 8_ is essentially constant over a long period
X

of time.

— C becomes small because cross-sectional diffusion evens out cross-sectional

concentration gradient.

« Chatwin (1970) suggested two regions

2
i) Initial period: t< 0.4%

— advection > diffusion

2
ii) Taylor period: | t > 0.4%

— advection =~ diffusion

— can use Eq. (4.19)

_ . . 0ot
— The initial skew degenerates into the normal distribution W =2K

4-16
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[Re] Taylor model
Taylor Model 1 Taylor Model I
Model: 1D advection-dispersion equation,
o FC
Model ot 6x ox?
where C, U : cross-sectional average values

K . longitudinal dispersion coefficient

Start with 2D depth-averaged advection-dispersion equation for turbulent shear

Base fIOW
Equation &  _6c _& 0 a0 oc
— +0—+V (DL+5X)—+—(DT+gy)—
ot OX 8y X ox oy oy
(D Decomposition (D Transform coordinates
C=C+c", u=U+u",v=v" | @ Decomposition
where, C", U", V": deviation c=C+c"u=U+u",v=v"
2 Averaging across the cross section | @ Drop longitudinal dispersion term
of the channel @ Discard three terms (Taylor’s
Derivation
Procedure (3 Drop terms using Reynolds rules | assumption 2)

of average

§+U8C

x((DL +8X)88_§<:j

and solve for ¢"(Y)

FpE

82 n
t ayZ
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@ u"c"=K @ (Taylor’s u"—=¢
OX

assumption 1)

c"(y) = gi%ﬂu "dydy +c"(0)

@ -
Substitute Fickian model © Consider mass transport,
M —_ W n n d
aact: +U %—C B jo u-c-ady
X
a :i@j;/vulljloyjoyundydydy
((K+D +& )—j &g OX
"X
1 == 6C
— —UC
W Tox
i u "C n — K @
W OX

(Same with Taylor s assumption 1)

® Substitute Fickian dispersion into

mass conservation equation

2
%,y & _C
at OX OX

Demerits

(D Cannot be applied during initial time, should be applied to Taylor period;

0.4W 2

&

t>

@ Have to input dispersion coefficient, K into the model
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[Re] Time-split advection-diffusion model for sequential mixing process

~ assume cross-sectional mixing occurs shortly after shear advection in the stream-wise

direction
\/e/[go“lg U J-@V(dl.:.»cv\J \}'/(8> @
A $é
LG P b Al 4 e ~
“cy) %
o - ";c
(D T Gt
& N
Ad 2 / _ . %‘ AT
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‘ ,CCY) ©)
B. Comcenliatim doyialionV aud

Cross-sectiond — ayerage Concewtadeon, &2

cly t=0 T3
|

e

o) Tt
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4.1.3 A Simple Example

Consider laminar flow between two plates — Couette flow

4

0.042
— A -U/2 urse —_—
L\\T\xxxxl\\\\\\\\\, SONNN NN NN

/,
u

¢

P/
4
4

4 I
NAMANNANNNNVNNNNTN AN Y Y Y N NI N N N N N N N
- -0.05 0.05 -+ ——

aC
X

C’D/h*U

Fig. 4.5 Velocity profile and the resulting concentration profile

_uYy
ww—uh

12y
Uu=—|%3U=dy=0
hLZ e

~u'(y) =u(y)

2
Suppose t > B — tracer is well distributed

— Taylor’s analysis can be applied

From Eq. (4.14)

16

(y) Dmﬁﬁmecm)
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1 8CJ. J'y Uyd dy+C(——)

10C¢v[ U Y . h
=——— dy+C (——
D&x-[—g 2hy}hy 2

2

~1aC[uy* uh | . h
y +
" Dox| 6h 8 h

_1aCluy’ Uhy Uh? Uh? Loh
" Dox| 6h 8 48 16

_1acu y_3_h_2 R, C'(—Dj
D ox 2h 4 y 12 2
By symmetry C =0 @ y=0

_1eCU| h ( hj
_____ +C -
" Dox 2h| 12 2

~ 2
() Leeur

2) Dox 24
LUy
Dox2h| 3 4
h 1oC h?
—> :—,C :——U —_—
@y=3 D ox { 24}

4-24
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— 6C(_3: D = —% =-0.042
——~uh?
OX
From (a):
Dispersion coefficient K .
DC : ( h
(=22 cy)-c (-]
o

__i u Yy
= hDI—ZZU Igjzu dydydy

(A)

"“h

Note that K oc — — Larger lateral mixing coefficient makes C to be decreased
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4.1.4 Taylor's Analysis of Laminar Flow in a Tube

lal‘?‘ P
L =

Consider axial symmetrical flow in a tube — Poiseuille flow

Tracer is well distributed over the cross section.

2

u(r)=u, (1— r—zj — paraboloid (a)
a

Integrate u to obtain mean velocity

dr

&

dQ = u2zrdr

4-26
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QD

By theway, Q =T - 7a’

Uy

SU=—
2

2-D advection-dispersion equation in cylindrical coordinate is

2 2 2

T 1 r)C_pf7C, 1 o o
ot a” ) ox or: ror oX

Shift to a coordinate system moving at velocity UEO

2
as hefore

oC
Neglect — and 5
ot OX

r
Let z=—,E=Xx—-Ut, 7=t
a

Decompose C, then (b) becomes

u,a’
D

oC _o'C  1oC
o  o1° 7 oz
4-27
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Integrate twice w.r.t. z

, _
c =2 (zz —Ez“)§+const ()
8D 2 OX
M 1_ju'c'dA (d)
AT
OX OX

Substitute (a), (c) into (d), and then perform integration

_a’uy
192D

[Example] Salt in water flowing in a tube
D =10"cm?*/sec
u, =lcm/sec
a=2mm

_ud _ (0.01)(0.004)

o x10° 40 << 2000 — laminar flow
\' X

R

_aty? (02)°(1)
192D 192(10—5)

=21cm?/sec ~10°D
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= Initial period

2

> 0.4(0.2)

t0:0.4a—: —~—=1600sec = 27min
D (10°)

—(0.5)(1600) = 800cm

_800_ 4000a
0.2

X> X, —> 1-D dispersion model can be applied
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Homework Assignment No. 4-1

Due: Two weeks from today

100 mg/1 0.2 m/sec —p

100 mg/l 0.4 m/seC P

100 mg/l 0.2m/sec —>

A hypothetical river is 30 m wide and consists of three "lanes", each 10m in width.
The two outside lanes move at 0.2 m/sec and the middle lane at 0.4m/sec. Every ty, second

complete mixing across the cross section of the river (but not longitudinally) occurs. An

instantaneous injection of a conservative tracer results in a uniform of 100mg/{ in the water 2
m upstream and downstream of the injection point. The concentration is initially zero
elsewhere. As the tracer is carried downstream and is mixed across the cross-section of the

stream, it also becomes mixed longitudinally, due to the velocity difference between lanes,

even though there is no longitudinal diffusion within lanes. We call this type of mixing

"dispersion™.

1) Mathematically simulate the tracer concentration profile (concentration vs.
longitudinal distance) as a function of time for several (at least four) values of t,

including 10 sec. Use MATLAB or FORTRAN to code your program.
4-30
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2) Compare the profiles and decide whether you think the effective longitudinal

mixing increases or decrease as ty, increases.

This "scenario” represents the one-dimensional unsteady-state advection and

longitudinal dispersion of an instantaneous impulse of tracer for which the concentration

profile follow the Gaussian plume equation

2
C:Lexp _(X_—Ut)
47Kt 4Kt

in which x = distance downstream of the injection point, M = mass injected width of the
stream, K = longitudinal dispersion coefficient, U = bulk velocity of the stream

(flowrate/cross-sectional area), t = elapsed time since injection.

3) Using your best guess of a value for U, find a best-fit value for K for each and for

which you calculated a concentration profile. Tabulate of plot the effective K as a

function t, of and make a guess of what you think the functional form is.
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@ Dispersion mechanism in a hypothetical river

J0Qmg/!I 0.2m/s|—»
|0Qmg/l 0.4m/sf——» w [2Ym
100mg/ 0.2m/s}—» v
T B B
0

1) 3 lanes of different velocities

2) Every t,, seconds complete mixing occurs across the cross section of the river (but not

longitudinally) occurs, after shear advection is completed.

— sequential mixing model

8( 6Cj
—| &,— |0
OX OX

3) Instantaneous injection

t =10s; u,=0.2m/s; AX=2m
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t=0

100100 {00

100100 ] 00

100,100 | 00

Ax A —y
0

(i) t=2ty . After shear advection

0 0 67 100 33 O

0 0 0 67 100 33

0 0 67 100 33 O

longitudinal
/ advection

i) t=t

01

ooi 100 10

01
1

+

t=tn : After lateral mixing

0 67 100 33 O

0 67 100 33 O

0 67 100 33 O

t=2t,": After lateral mixing

0 0 45 89 55 11 O

0 0 45 89 55 11 O

0 0 45 89 5 11 O
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‘ a %,
Fig. 1 Concentration|: rofiles, Tm=10sec

&o
Initial period Taylor period
70 +
L
s
o
£
c
2
g
&
c
©
o
c
<)
3}
Distance frem the injection point, m
a tso + t100 © t150 a t200 X t250 v t30e -
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[Re] Longitudinal Dispersion in 2-lane river

L u+Au ¥ B _ _
Fast : > 1—g o= Area fraction of river
: T occupied by slow lane
U
Slow —» a 0<a<1l
| v
Ug =u
U =U+Au

U = cross-sectional mean velocity

=au+(1-a)(u+Au)

Consider deviations:

U =Ug —U=U—au—(1-a)(u+Au)
=U—aUu-U—Au+au+cAu=—(1-a)Au
UL =U; —U=U+AU—-U=U+AU-au—(1-a)(u+Au)
=aAu

(i) Before any processes

A

F Cu Cd l-a
A 4
A

S Cu Cd a
A 4

< Ax >< Ax >
AX=Au-t_
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(ii) Just before mixing (JBM) .... after advection only
A
F 0 C, Cq 11—
A 4
A
S Cu Cd 0 (04
A 4

C,=C,~-C=C,-aC, -(1-a)C,
=(1-a)(C,-C,)

C.=C,-C=C,—aC,—(1-a)C,

u

:_a(Cd _Cu)

(iii) Just after mixing (JAM)

F CUz Cdz

S Cuz Cdz
AX

C=C,

C.=0

C.=0

4-36



Ch 4. Shear Flow Dispersion

== uc'dA
AJA

0T =4 {(¥C),,, + (T,
= lae), +(@-a)uc),)
——{a[-(t-a)au][(1-@)(C, ~C,)J+(1-a)[aru][(-a)(c, ~C,) )
:%(052 —a)Au(Cd -C,)

oC C,-C,

ox Aut

oC (C,-C,)
OX Aut
= %(a ~a’ )(Au) t
<Example>

azg; Au=0.2; t =10sec

2
K=1 E—FJ (0.2)°t, =0.0044t,
2(3 (3

t,=5 10 20 30
K =0.0222 0.0444 0.0889 0.1333
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4.1.5 Aris's Analysis

Aris (1956) proposed the concentration moment method in which he obtained Taylor’s main

results without stipulating the feature of the concentration distribution.

Begin with 2-D advective-diffusion equation in the moving coordinate system to analyze the

flow between two plates (Fig. 4.5)

2 2
© Ly %028, 26) -
T

@ @ @

Now, define the [, moments of the concentration distribution

Co(y)=] ¢&°c(&y)dé (4.30)

Define cross-sectional average of p,, moment

— 1
M, =Cp =—[,Co(y)dA

Take the moment of Eq. (4.29) by applying the operator on EP ( )d§

0 w oC
(1):.[ gng_cdgzaij fprdf:a—p « Leibnitz rule
e T T T

[Re] Leibnitz formula

“ O gy = 91" fax
U Oox da v
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u—\ /_V’

(2):_[00 épu'%dézu ép— & «— integral by parts

C| =0 (:
- [5ﬁ -] pericas

E=tm
=—pu'[~ &PCdé=—puC,,

u v

(3)= I §D8Cd§ DI gpag(agjdg « integral by parts

gl s

4 0C
o¢

_DJ‘é:p dé

—-op{[e ] [ c(p-sae

=Dp(p-1)[ £"°Cdé=Dp(p-1)C, ,

2 2
0 C J‘ £°CdE =D 0°Cp
oy’
Therefore Eq. (4.29) becomes
oC, 0°C
——PuC, {p(p—l)Cp_z +—ayf} (4.33)
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B.C. gives
oC, :
D =0at y=0,h « impermeable boundary
Take cross-sectional average of Eq. (4.33 2 e
ge of Eq. (4.33) / °C, _0°Cp _ a(ac)zo
éc, E— oy* oyt oyl oy
— = PuC,; =Dy p(p-1)C, , +
dMm )
i =p(p-1)DM (4.34)
Eq. (4.34) can be solved sequentially forp=0, 1, 2, ...
Equation Consequences as t — o0

p=0 dM, /dr =0

MO%jACO(y)dA:%JAI:CdédA

2
(4.33) > %y = D8 C;O
ot oy
p= dg{[ll = u_C0 M, — consant

82C

(4.33) — G uC,=D
or

- L 2
M, _2uC, +20C, do

— molecular diffusion and shear flow dispersion are additive

Mass is conserved

n =2K +2D

Aris’ analysis is more general than Taylor’s analysis in that it applies for low values of time.
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Ch 4. Shear Flow Dispersion

4.2 Dispersion in Turbulent Shear Flow

4.2.1 Extension of Taylor’s analysis to turbulent flow

Cross-sectional velocity profile in turbulent motion in the channel is different than in a

laminar flow.

Consider unidirectional turbulent flow between parallel plates

Begin with 2-D turbulent diffusion equation

oC oC oC a( acj a( acj
+U—+V—= —

=—le— |[+—| ¢
ot ox oy ox\ “ox) oyl Yoy

Here, the cross-sectional mixing coefficient £(Y) is function of cross-sectional position.

_ 1 T
C,u,v = time mean values; C:C:—j cdt
T Jo

Let v=0, turbulent fluctuation vV # 0
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Ch 4. Shear Flow Dispersion

0 0oC oC
Assume —¢&, — <<U—
oX = OX OX

Then (a) becomes

oC aC o oC
&y —— (b)
a X Gy[ j

Now, decompose C and u into cross-sectional mean and deviation

—a(CaJ;C)+(U+u')§(C+C'):%gy%}ﬁ/+C') (©

Transform coordinate system into moving coordinate accordingto U

Now, introduce Taylor's assumptions (discard three terms)

oC o oC

Uu—=—¢g — (4.35)
o5 oy ' oy

Solution of Eqg. (4.35) can be derived by integrating twice w.r.t. y

. OC v 1y . .
C :gfo g—yjoudydy+0(0)
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Ch 4. Shear Flow Dispersion

Mass transport in streamwise direction is

M = johu'C'dy = %johu'joygi _[Oyu'dydydy
y

q:M:_Kg
h ols
Leh ey 1y .
Kz—ﬁj'oujo 5_ij u dydydy (4.36)
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4.2.2 Taylor's analysis of turbulent flow in pipe (1954)

U
[ o4 4 D )
’ _\ ’
0 7\ o ) X
r dz 1
Set Z=— > —=—
a dr a
Then, velocity profile is
u(z)=u,—u f(z) (a)
. . « ) T,
in which U =shear velocity = [—
Yo,
f(z) = logarithmic function
[Re] velocity defect law [Eq. (1.27)]
_3u° 230 . e
U=+—-——+——u log,, =
2 K K a
in which K = von Karman's constant = 0.4

¢ = distance from the wall

u=0+3.75u" +5.75u" log,, <
a
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Ch 4. Shear Flow Dispersion

U-U _375,25n%
u a

The cross-sectional mixing coefficient can be obtained from Reynolds analogy.

— The mixing coefficients for momentum and mass transports are the same.

i) momentum flux through a surface

. =1 Daily & Harleman (p. 56)
yo r

Kinematic eddy

viscosity
i) mass flux - Fickian behavior
q=—c2
or
. 9 7
LE= ] % = ] (lu (b)
or p or

For turbulent flow in pipe, shear stress is given

T=T r—Z‘l'
oa 0

(©)
Differentiate (a) w.r.t. r
8_U ——u df (z) % = _u*ii (d)
or dz dr dz a
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Ch 4. Shear Flow Dispersion

Divide (c) by (d)
T Iz,
CTRNY: ©
or dz a
*\2
Substitute (€) into (b) / (u)
1y, arnlp) aw
RTINS - ]
'Oar p dz a dz dz
Now, it is possible to tabulate U (r) =u(r)—a, &(r) )

And, numerically integrate Eq. (4.39) [Taylor’s equation in radial coordinates] to obtain

C (r) using &(r) obtained in (f)

.oC 0°’C 1oC
U= =g 5+ =2 (4.39)
o0& or r or
Again, numerically integrate Eq. (4.36) to find K
K =10.1au” (4.40)

in which a = pipe radius

2, 2
a’u,

[Cf] For laminar flow in a tube, K =
192D
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4.2.3 Elder’s application of Taylor's method (1959)

Consider turbulent flow down an infinitely wide inclined plane assuming von Karman

logarithmic velocity profile

. u’ .

u(y)=—@0+Iny) (@)

K
where U =u—-0 — d—uzu—il (b)
dy «~yd

=vyl/d \

y=Yy d_U_O

d = depth of channel dy -

For open channel flow, shear stress is given

du Parabolic
szgd_:To(l_ y‘) profile
y

_0@-Y) % @-Y) v Syt
g(y)—p du —pu*ll—l(y( y )du (d)

dy Ky d

Substitute Eq. (a) and Eq. (d) into Eq. (4.36) and integrate

ac d (Z u) ~0.648) (4.49)
~n?
K = 0'484 du’ (4.45)
K
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Ch 4. Shear Flow Dispersion

Input x=0.41

K =5.93du”

3. Shear Flow Dispersiom

Figure 10.5

Variations in the velocity of flow in natural stream channels occur both horizontally and vertically.
Friction reduces the velocity along the floor and sides of the chanaels. The maximum velocity in a steaight
channel is near the top and center of the channel

ppu ut‘."‘*
Slews

-
r u

o

i) T=0

N

WPIPIFTIR

Ry
! ZIE

tt

\ :
Shear advection + '%:famszfne
(Separatiest) diffusion

W 1= at” .
) t=48%
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Ch 4. Shear Flow Dispersion

® General form for the longitudinal dispersion coefficient

Introduce dimensionless quantities

y'=%—>y=hy', dy = hdy (a)

U= —>u':u"\fu=2 (b)
ulZ

£=2 5e=¢E ()

Where E = cross-sectional average of &

U = velocity deviation from cross-sectional mean velocity

Ju? = {%j: (U')Zdy}2

= intensity of the velocity deviation (different from turbulent intensity)

= measure of how much the turbulent averaged velocity deviates throughout the cross section

from its cross-sectional mean

Substitute (a) ~ (c) into Eq. (4.36)

K = —%j:u"\/u_?joyl.i_[Oylu"\/u;zhe’dy'dy'dy'

cE

1 1 [, ¢t ey Lloey vy, oy,
-T2 [ 2 ] waydyy

ERNRETTY 0
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Ch 4. Shear Flow Dispersion

Loaey Loy oo
Set I _—jou jo ;.[0 u dy dy dy (4.48)
Then (d) becomes
hu?
K = I (4.47)
E
= Range of values of | for flows of practical interest
| =0.054~0.10 — 1=0.10
Charac.
Flow Velocity profile I K
length, h
r? a’u,’
(i)Laminar flow in a tube u=u,(1-=) a |0.0625 g
a 192D
(it)Laminar flow at depth 2 2., 2
u=u, Z(Xj - y_2 ¢ 002 o d'y,
down on inclined plane d) d 945 D
(iii)Laminar flow with a linear
21,2
velocity profile across a u=Uu A h 0.10 Uh
h 120D
spacing
(iv) Turbulent flow in a pipe empirical a 0.054 10.1au”
(v)Turbulent flow at depth u y
u=o+—(Q1+ Ina) 4 | 0067 5.93du”

down an inclined plane

K
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4.3 Dispersion in Unsteady Shear Flow

Real environmental flows are often unsteady flow.

- reversing flow in a tidal estuary; wind driven flow in a lake caused by a passing storm

- unsteady flow = steady component + oscillatory component

Application of Taylor's analysis to an oscillatory shear flow

(1) Linear velocity profile with a sinusoidal oscillation
. (2
u=uU Xsm et
h T

where T = period of oscillation

(4.49)

€

> e

bl =
AN

Y !

= ‘flip-flop' sort of flow
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Ch 4. Shear Flow Dispersion

- reversing instantaneously between U =U % and —u=U % after every time interval
T
2

— after each reversal the concentration profile has to be reversed

— substitute —y for y in Eq. (4.21)

— but enough time bigger than mixing time (T, ~ h*/ D) is required before the

concentration profile is completely adopted to a new velocity profile.
1) T>>T;

- concentration profile will have sufficient time to adopt itself to the velocity profile in each

direction
- time required for to reach the profile given by Eq.(4.21) is short compared to the time
during which has that profile.

— dispersion coefficient will be the same as that in a steady flow

— dispersion as if flow were steady in either direction

2 T<<T,

- period of reversal is very short compared to the cross-sectional mixing time

- concentration profile does not have time to respond to the velocity profile

- C will oscillate around the mean of the symmetric limiting profiles, which is C =0.

— dispersion coefficient tends toward zero

— no dispersion due to the velocity profile
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%@2@; NAME Course Sheet
i@%ﬁ_\g SEOUL NATIONAL UNIVERSITY 8y Date
® Shear effects in oscillating (low
Gl T o rK,,o____A___,,
,Q, Zi.} F Lol o — I o st et
3 [
o o
\
N\
N
U= Uo Sim( | 71,3
: lvne e o il me :5.,_@tumed
Bt e q- -{-,o it
------- e —po;.hm
(”) T n T(;
U=Uo 5ii (ZE) o "’t’=‘.} e T T
@ Line source f5 @‘thm dye/
- strecked out well  auined” over
;) ciey 'S,E E“.’?‘“‘ f_“.’e“
Jue to Jateral diffwsiv
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Ch 4. Shear Flow Dispersion

= Fate of an instantaneous line source when T <<T_

yd v yd yd yd A4
LINE
SOURCE (A)
i
—
t=0
Ho t=1/2 T
Vd VAW araya VAV arays rd VAV AR A e Vd

(a)

(b)

(c)

(d)

Solution of Eq. (4.13) by Carslaw and Jaeger (1959)

. .-
oC _DGC;
ot oy
_

Taylor’s

unsteady
.0C ~ source term

EH

equation  for u:u'=U%sin¥(~.-U=O)

unsteady flow

B.C.

.C.

_u:Ul
h

£=Oat y=+—
oy
C'(y,0)=0

h
2

use2

_—

\\\\,\\\\\\\\\\

T
|

[ X
-u
NN N NN NN
l..,.\

u

/,

¢

P/
4
4

“ |
AR A ANV TR YXTT™

N\

N

\\\\\‘\\\\

-0.05

Co/hty 4=

'C'

0.05

-
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Ch 4. Shear Flow Dispersion

.0C :
Replace unsteady source term U 8_ by a source of constant strength by setting t =1,

* 2 * —
oC_p&C _ jYE g2
ot oy h ox T
£:O at y=J_rh
oy 2
C’(y,0)=0

where C’ = distribution resulting from a suddenly imposed source distribution of constant

strength

As diagrammed in Fig. 2.8, the solution for a series of sources of variable strength, can be

obtained by

. t 0 o«
C (0=, ~C (yt-tit)d,

For large t

: t 0 .«
Cy) =], 2.C(nt-tit)dh

C"can be expressed by the sum

C'(y,)=u(y) +w(y.t)
w(y,t) can be solved by separation of variables and Fourier expansion.
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Ch 4. Shear Flow Dispersion

Further integration of the result leads to

- 2Uh2186i (-D)"
7°D T, & 15 (2n-1)

=sin(2n —1)7;%

1

2 g
X (E(Zn—l)j L) sin(EJrHZn_lj
2 T, T

2 2
where 6, , =sin™ —{{%n(Zn—l)le} +l}

c

Average over the period of oscillation of K

i S O o
K:?JO(—Izquy/hﬁ—X}dt

T<<T, K—>0

- 2112
T>>T, KO:LU h
240 D

[Re] Case of T >>T,

y

For a linear steady velocity profile, u=U FSin a
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Ch 4. Shear Flow Dispersion

1 Uh . ,«a
G = sin? =
120 D D

1 U’n?

Intermediate behavior — Fig.4.7

is an ensemble average of K over all values of o

l =0.1->K = 0.03K,

T

I— —15K ~0.8K,

:Fr_ =10->K =K,
IOE
D

~— o,g: ///
Qol_ 1 /4 1 I | T | 1 |
00001 000! 001 0.1 1.0
v <K/ 300

Figure 4.7 The dependence of the dispersion coefficient on the period of oscillation, as given
by Eq. (4.55). y is the ratio of K in a flow oscillating with period T to K in the same flow as T — co.
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Ch 4. Shear Flow Dispersion

(ii) Flow including oscillating and a steady component

— pulsating flow found in blood vessel

u(y)=u,(y)sin2zt/T +u,(y)

u,=u,=Uy/h

Assume that the results by separate velocity profile are additive.

: - -
Let C =C, +C, issolution to £+u(t)§:ga(§
ot OX oy

Then C,' is solution to the equation

. ~ i
o +ulsin(27zt/T)§:ga Czl
OX oy

C, "is solution to the equation

oC, oC oC,
+U,—=&—
ot OX oy

cycle-averaged dispersion coefficient
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Ch 4. Shear Flow Dispersion

where K, = result of oscillatory profile = f (T /T,) — Fig. 4.7

K, = result of steady profile

= Application to tidal rivers and estuaries

Consider shear effects in estuaries and tidal rivers
Flow oscillation - flow goes back and forth.

Consider effect of oscillation on the longitudinal dispersion coeff.

K=K, f(T') (7.0)

where f(T') is plotted in Fig. 4. 7.

T'=T/T,= dimensionless time scale for cross-sectional mixing

T = tidal period ~12 hrs

T, = cross-sectional mixing time = W?/ ¢,

K, = dispersion coefficient if T >Tc

* For wide and shallow cross section with no density effects

K, = 1u"T, (5.17)

where | = dimensionless triple integral ~0.1 (Table 4.1)

Combine Eq. (7.1) and Eq. (5.17)
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Ch 4. Shear Flow Dispersion

K =0T [(U/T)f(T")] (7.2)

Function [(1/T")f(T")] is plotted in Fig.7.4

Max = 0.8

10 prrrr———r— e T
r
X

(1/7T") £(T")

fo Yo | i wri—t " e Yy ) SR VISR 1 | R R T 1
10 10 (o} 00l

Ti

Figure 7.4 The quantity 7'~ 'f(T") used in Eq. (7.2).
2

i) T issmall (narrow estuary) T, :5_
t

T’:l>>1 — K issmall
C

i) T, isvery large (very wide estuary)

T .
T'=—<<1 — K issmallest
C

T
i) T'=—"=1 | (LT f(T")|=0.8
i Tt [T ()]

- K, =0.08u"T

[Ex] T=125hrs, T=03m/s, u?=0.20 e

K. =0.08x0.2(0.3)? x (12.5x3600) ~ 60 m’/s
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4.4 Dispersion in Two Dimensions

In many environmental flows velocity vector rotates with depth

where U = component of velocity U in the x direction

V =component of velocity U in the y direction

¢(2)
v x

v

u(z)
y V(@)

\ 4
yA

Fig. 4.8 skewed shear flow in the surface layer of Lake Huron

* Taylor’s analysis applied to a skewed shear low with velocity profiles

The 2-D form of Eq. (4.10) for turbulent flow is

.oC .oC o oC
U—+V—=

—+V —=—c— (4.61)
OX oy o0z oz

oC
—=0 at z=0,h (water surface & bottom)

1/
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Integrate (4.61) w.r.t. z twice

jo ; j [ +V —jdzdz

Bulk dispersion tensor can be defined by

M, = [ uCdz=—hK, L _pg
0 OX Y oy
M, = [, VCdz=-hK,, € _pg &

0 OX Y oy

Substitute (4.62) into (4.63)

@ [ jogj[ v—jdzdzdz_hL K aa_g_ny%j

K, = —%johu' j; %_[Ozu'dzdzdz

Ky = —% Johu' IOZ %jozv'dzdzdz

depend on the interaction of the x

and y velocity profiles

(b): j jo J[ v—jdzdzd _h[ (Z—f—KW%)

Ky = —%J.Ohv'j:%fozu'dzdzdz

K,, = —%johv' .[OZ %joz v dzdzdz
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Ch 4. Shear Flow Dispersion

The velocity gradient in the x direction can produce mass transport in the y direction and vice

Versa.

ny = x-dispersion coefficient due to velocity gradient in the y direction

KyX = y-dispersion coefficient due to velocity gradient in the x direction

= Mean flow on a continental shelf (Fischer, 1978)

y (offshore)
V=V,
// >
X (alongshare)

<_

u
o
> z=d

v=-V

0

2(U2/120 50, /192
K:d_( : oo J (4.65)

£ (5U\V, /192 U,?/120

Distribution of
concentrated slug of

dye after 5 days
yt
t =5days
u=5cm/s
x=22km U,=5m/s
(=ut) V, =5cm/s
4
28 km
Source
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[Re] Derivation of 2-D dispersion equation

v

d, X
q, ax
7 dy _> qx+%Ax
l OX
aq
vy q, +—~Ay
b0y

(i) Conservation of mass

oC aq, aq
EAxAy {qx — (qx + anj}Ay + {qy - [qy + Eyij}Ax

oC  ag, o9,

ot ox oy

(ii) Apply Taylor’s Analysis on 2-D shear flow

1)

4, =M ( ) .[ quz_I I I[ v—jdzdzdz
oC oC
:—KXX&— nya )
qy: ( ) j vcdz_jvj j( v—jdzdzdz
oC oC
:_nya_ KWE ®)
(iii) Substitute (2) & (3) into (1)
oC__of_ XXaC_KX aC| o —KXaC—K oC
ot OX OX Yoy ) oy “ox o Yoy
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(iv) Return to fixed coordinate system containing mean advective velocities

8C+U8C+VGC:2 KXX£+KX§ +Q KX£+K @
OX OX g oyl "ox "oy

In general K, and K, are small compared with K, and K . Thus, those two terms

are often neglected. Then, 2-D depth-averaged transport equation becomes

oc oC oC a( 6C) 0 oC
+U—+V—=—| K, — [+ —| K, —
ot oX oy oX ox ) oyl Yoy
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[Cf] 2-D depth-averaged models (ASCE, 1988; vol.114, No.9)

- Scalar transport equation for @

+;&jpu d'dz +——J.de)dz

dispersion dispersion

where J, = I—pu'_¢'dz turbulent diffusion in x-dir

3y = j—pu'_¢'dz turbulent diffusion in y-dir

=u-U — time fluctuation
$=¢-0
U =U-uU — depth deviation
O =0-D

If dispersion >> turbulent diffusion

— neglect turbulent diffusion or incorporate turbulent diffusion into dispersion.
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