Chapter 6 Mixing of Decaying Substances

Contents

- 6.1 Non-Conservative Pollutants
- 6.2 Analytical Solutions for Non-Conservative Pollutants
- 6.3 Modeling BOD-DO Coupled System
- 6.4 Modeling Heat Transport
- 6.5 Modeling Suspended Solids
- 6.6 Modeling Toxic Substances

Objectives

6.1 Non-Conservative Pollutants

6.1.1 Category of Non-Conservative Pollutants

- 1) Toxic Substance
 - Metals: mercury, cadmium, lead
 - Industrial chemicals: toluene, benzenes, phenols, PCB
 - Hydrocarbons: PAH (polycyclic aromatic hydrocarbons)
 - Agricultural chemicals: pesticides, herbicides, DDT
 - Radioactive substances
- 2) BOD-DO coupled system
- 3) Temperature
- 4) Suspended Solids
- 5) Bacteria and pathogens
- 6) Nutrients
- 7) Oil

[Cf] Conservative pollutants

- one which does not undergo any chemical or biochemical changes in transport
- no loss due to chemical reactions or biochemical degradation
- salt, chloride, total dissolved solids, some metals

6.1.2 Transport of Non-Conservative Pollutants

(1) Toxic Substance

Physio-chemical phases of the transport of toxic substances:

- loss of the chemical due to biodegradation, volatilization, photolysis, and other chemical and bio-chemical reactions
- sorption and desorption between dissolved and particulate forms in the water column and bed sediment
- settling and resuspension mechanisms of particulates between water column and bed sediment

Assume only loss of the chemical

$$\frac{\partial (hC)}{\partial t} + \frac{\partial}{\partial x}(uCh) + \frac{\partial}{\partial y}(vCh) = \nabla \cdot (hD\nabla C) + hS$$

where $S = \frac{\sinh}{\text{source term}}$

Assume first-order decay

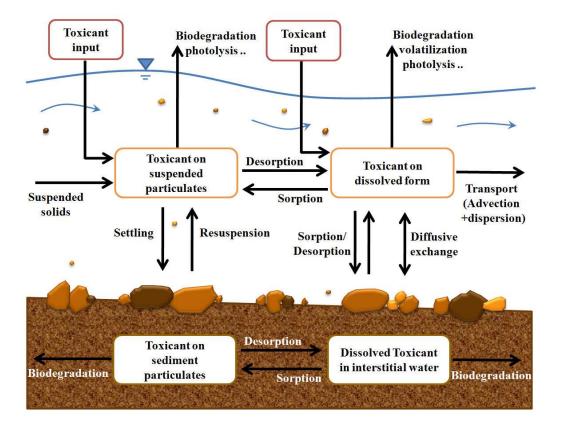
- decay rate is proportional to the amount of material present

$$\frac{dC}{dt} = -kC = S$$

where C = mass/volume; $S = \text{mass/(volume \cdot time)}$; k = 1/time = decay rate

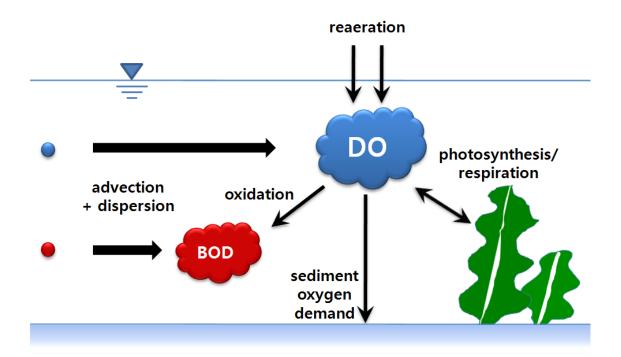
- Rate of disappearance of BOD due to biodegradation
- Radioactive substance also decay in strength in this way
- Coliform bacteria and pathogens die away with a rate of first-order decay

$$\frac{\partial (hC)}{\partial t} + \frac{\partial}{\partial x}(uCh) + \frac{\partial}{\partial y}(vCh) = \nabla \cdot (hD\nabla C) - khC$$



(2) **BOD-DO**

- Linked materials
- Behavior of one material depends upon the amount of another- Conc. of dissolved oxygen depends not only on transport of DO but also on the amount of BOD present
- Biodegradable substances undergo biochemical reactions
- Oxygen is used up in aerobic decomposition



(3) Heat transport

$$\frac{\partial hT}{\partial t} + \frac{\partial}{\partial x}(uTh) + \frac{\partial}{\partial y}(vTh) = \nabla \cdot (hD\nabla T) + hS$$

$$S = \frac{dT}{dt} = \frac{q_{net}}{\rho c_p h} = \frac{K(T - T_e)}{\rho c_p h}$$

K = atmospheric heat exchange coefficient $(W/m^2 {}^{\circ}C)$

 c_p = specific heat of water

 T_e = equilibrium temperature

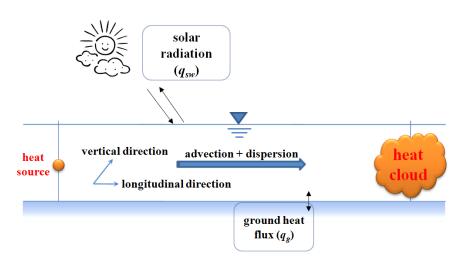
= temperature that a body of water would reach if all meteorological conditions were constant in time

Assume that u, v, h satisfy the continuity eq.

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{1}{h} \nabla \cdot (hD\nabla T) + \frac{A}{\rho c_p} (T - T_e)$$

$$T_e = T_d + \frac{q_{sw}}{K}$$

 T_e = dew point temperature



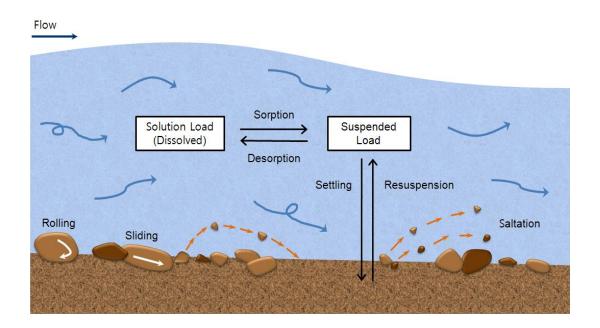
(4) Suspended Solids

Suspended solids= suspended sediments + particulate forms in the water column

$$\frac{\partial(hC)}{\partial t} + \frac{\partial}{\partial x}(uCh) + \frac{\partial}{\partial y}(vCh) = \nabla \cdot (hD\nabla C) + hS$$

$$S = \frac{W_s(C_{eq} - C)}{h}$$

$$C_{eq} = \frac{G_{gr} D \rho_s}{\rho h}$$



6.2 Analytical Solutions for Non-Conservative Pollutants

6.2.1 Steady state equations and solutions

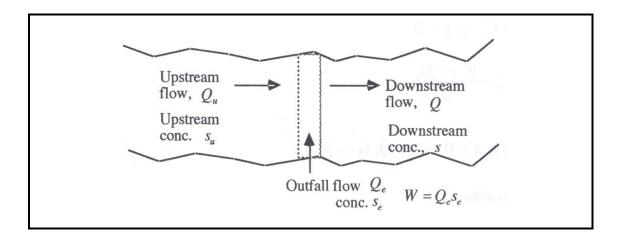
- Pollutant discharges are nearly constant over time (continuous discharge)
- Concentration in the stream will reach a steady state condition soon after the discharge starts.

$$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E \frac{\partial^2 C}{\partial x^2} + S$$

I. Conservative Pollutant					
Item	W/O Dispersion (Case 1)	W/ Dispersion (Case 2)			
G.E.	$0 = u \frac{\partial C}{\partial x}$	$0 = -u\frac{\partial C}{\partial x} + E\frac{\partial^2 C}{\partial x^2}$			
B.C.'s	$C(0) = C_0$ - continuous discharge	$C(0) = C_0$ - continuous discharge			
Solutions	$C(x) = C_0, x \ge 0$ $C_0 = \frac{Q_s C_{ws} + Q_w C_{ww}}{Q_s + Q_w}$	$C = C_0 \exp(\frac{u}{E}x), x < 0$ $C = C_0, (x \ge 0)$			
	Q_s = flowrate of the stream; Q_w = flowrate of waste discharge				
	C_{ws} = conc. of waste material in the stream flow				
	C_{ww} = conc. of waste material in the waste discharge				
Graphics		C ightharpoonup C i			

II. Non-conservative Pollutant				
Item	W/O Dispersion (Case 3)	W/ Dispersion (Case 4)		
G.E.	$0 = -u\frac{\partial C}{\partial x} - kC$	$0 = -u\frac{\partial C}{\partial x} + E\frac{\partial^2 C}{\partial x^2} - kC$		
B.C.'s	$C(0) = C_0$ $C_0 = \frac{W}{Q} = \frac{Q_s C_{ws} + Q_w C_{ww}}{Q_s + Q_w}$	$C(-\infty) = 0$ $C(\infty) = 0$ $C(0) = C_0$ $C_0 = \frac{W}{Q} \frac{1}{\alpha}$		
Solutions	$C(x) = C_0 \exp(-\frac{k}{u}x), x \ge 0$	$C(x) = C_0 \exp\left[\frac{u}{2E}(1+\alpha)x\right], x \le 0$ $C(x) = C_0 \exp\left[\frac{u}{2E}(1-\alpha)x\right], x \ge 0$ $\alpha = \sqrt{1 + \frac{4kE}{u^2}}$		
Graphics				

Boundary condition at the outfall



1) Conservative substance

Consider mass balance at discharge point (outfall)

Mass rate of substance upstream + mass rate added by outfall

= mass rate of substance immediately downstream from outfall assuming complete mixing (using midstream discharge of diffuser)

$$Q_{\nu}s_{\nu} + Q_{\rho}s_{\rho} = Qs \tag{a}$$

$$W = Q_e s_e = \text{input waste load [M/T]}$$
 (b)

[Re] mass rate = flow rate \times concentration

Flow continuity

$$Q_u + Q_e = Q (c)$$

Combine (a) \sim (c)

$$s = \frac{Q_u s_u + Q_e s_e}{Q} = \frac{Q_u s_u + W}{Q}$$

If
$$s_u = 0$$

Then
$$s = \frac{W}{O}$$

Thus, boundary condition at the outfall is give as

$$C = C_0 = \frac{W + C_u Q_u}{O} at \ x = 0$$

2) Non-conservative substance

Derive general solution to the governing equation below

$$0 = -u\frac{\partial C}{\partial x} + E\frac{\partial^2 C}{\partial x^2} - kC \tag{6.32}$$

This G.E. can be regarded as second order ordinary differential equation since C is a function of x.

It is a kind of characteristic equation.

Thus, we try a solution of the form $C = e^{mx}$, then $\frac{\partial C}{\partial x} = me^{mx}$ and $\frac{\partial^2 C}{\partial x^2} = m^2 e^{mx}$.

Applying these equations into G.E. gives characteristic equation as follow.

$$0 = -u(me^{mx}) + E(m^2e^{mx}) - k(e^{mx}) = e^{mx}(Em^2 - um - k)$$

$$\therefore m_1, m_2 = \frac{u \pm \sqrt{u^2 + 4kE}}{2E} = \frac{u}{2E} \left\{ 1 \pm \sqrt{1 + \frac{4kE}{u^2}} \right\}$$

$$\therefore \therefore C_1 = e^{m_1 x} \text{ and } C_2 = e^{m_2 x}$$

Let
$$\alpha = \sqrt{1 + \frac{4kE}{u^2}} > 1$$
, then $m_1, m_2 = \frac{u}{2E} (1 \pm \alpha)$

These functions are linearly independent and hence form a fundamental set of solution.

Therefore, general solution of the form of

$$C = K_1 \exp(m_1 x) + K_2 \exp(m_2 x)$$

 K_1 and K_2 can be evaluated from B.C.'s.

Boundary conditions are

$$C = 0$$
 at $x = \pm \infty$

$$C = C_0$$
 at $x = 0$

For $x \le 0$

$$C = 0 = K_1 e^{m_1(-\infty)} + K_2 e^{m_2(-\infty)} = K_1 e^{-\infty} + K_2 e^{+\infty} \rightarrow K_2 = 0$$

$$C = C_0 = K_1 + K_2 = K_1$$
 $\therefore C_0 = K_1$

For $x \ge 0$

$$C = 0 = K_1 e^{m_1 \infty} + K_2 e^{m_2 \infty} = K_1 e^{+\infty} + K_2 e^{-\infty} \rightarrow K_1 = 0$$

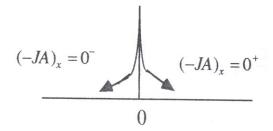
$$C = C_0 = K_1 + K_2 = K_2$$
 $\therefore C_0 = K_2$

Solutions are

$$C = C_0 e^{m_1 x}, \quad x \le 0$$

$$C = C_0 e^{m_2 x}, \quad x \ge 0$$

To get C_0 , Consider flux



$$W = \left(-JA\right)_{x=0^{-}} + \left(-JA\right)_{x=0^{+}} = -\left(uC_{0} - E\frac{\partial C}{\partial x}\Big|_{x=0^{-}}\right)A + \left(uC_{0} - E\frac{\partial C}{\partial x}\Big|_{x=0^{+}}\right)A$$

$$\therefore \frac{W}{EA} = \left(\frac{\partial C}{\partial x}\right)_{x=0^{-}} - \left(\frac{\partial C}{\partial x}\right)_{x=0^{+}}$$

$$x \le 0: \quad C = C_0 e^{m_1 x}$$

$$\frac{\partial C}{\partial x} = C_0 m_1 e^{m_1 x}; \quad at \quad x = 0^-, \quad \frac{\partial C}{\partial x} = C_0 m_1$$
6-13

$$x \ge 0: \quad C = C_0 e^{m_2 x}$$

$$\frac{\partial C}{\partial x} = C_0 m_2 e^{m_2 x}; \quad at \quad x = 0^+, \quad \frac{\partial C}{\partial x} = C_0 m_2$$

$$\therefore \frac{W}{EA} = C_0 m_1 - C_0 m_2 = C_0 (m_1 - m_2)$$

$$= C_0 \frac{u}{2E} (1 + \alpha - (1 \alpha)) + C_0 \frac{u}{2E} [\alpha] = C_0 \frac{u}{E} \alpha$$

$$C_0 = \frac{W}{uA} \frac{1}{\alpha} = \frac{W}{Q} \frac{1}{\alpha}$$

Note that

If
$$k = 0$$
 or $E = 0 \rightarrow C_0 = \frac{W}{Q}$; $\alpha = \sqrt{1 + \frac{4kE}{u^2}} = 1$

-Comparison of initial mixing distance X_m with decay distance X_d

Initial mixing distance X_m for steady flow (state)

$$X_m = 0.4 \,\overline{u}W^2 / \varepsilon_t \tag{a}$$

Distance required for decay of substance to a factor of e^{-1} (0.3678)

$$X_d = \overline{u} / k \tag{b}$$

Therefore, ratio is given as

$$\frac{X_d}{X_m} = \frac{\overline{u}/k}{0.4 \ \overline{u}W^2/\varepsilon_t} = 2.5 \frac{\varepsilon_t}{kW^2}$$
 (c)

Set
$$\alpha_1 = \frac{4Ek}{\overline{\mu}^2}$$
 (d)

Eq. (5.19):
$$E = 0.011 \,\overline{u}^2 W^2 / du^*$$
 (e)

Eq.(5.6):
$$\varepsilon_t = 0.6 du^*$$
 (f)

Thus, combining these equations gives

$$\alpha_1 = 0.0264 \ W^2 k / \varepsilon_t \tag{g}$$

Equating (c) and (g) yields

$$\frac{X_d}{X_m} = \frac{0.06}{\alpha_1}$$

Consider analytical solution for non-conservative substance with dispersion and decay terms

$$C(x) = C_0 \exp\left\{-\frac{kx}{\overline{u}} \left[\frac{2}{\alpha_1} \left(\sqrt{\alpha_1 + 1} - 1 \right) \right] \right\}$$

$$= C_0 \exp\left\{-\frac{\overline{u}x}{2E} \left(\sqrt{\alpha_1 + 1} - 1 \right) \right\}, x \ge 0$$
(6.33)

$$\text{If} \qquad \frac{X_d}{X_m} > 1 \ \left(X_d > X_m \right)$$

Then,

$$\frac{0.06}{\alpha_1} > 1 \rightarrow \alpha_1 < 0.06 \rightarrow \left[\left(\frac{2}{\alpha_1} \right) (\sqrt{\alpha_1 + 1} - 1) \right] \approx 0.985 \approx 1$$

From Eq. (6.33), this means that

$$C \cong C_0 \exp\left\{-\frac{kx}{\overline{u}}\right\}$$
 \rightarrow solution for case w/o dispersion

Therefore, there are two possibilities

(i)
$$X_d > X_m$$

- → The longitudinal dispersion term has a negligible effect.
- \rightarrow We may drop the dispersion term.

$$\rightarrow$$
 We may use an analytical solution. $C = C_0 \exp\left\{-\frac{kx}{\overline{u}}\right\}$

(ii)
$$X_d < X_m$$

- → The material decays before it mixes across the cross section
- \rightarrow Eq. (6.32) is not a suitable model.
- → The concentration distribution must be computed numerically.

6.2.2 Time Variable Analysis

Time variable behavior of water quality in river downstream of an outfall to describe

- 1) the downstream transport of peak in a waste-water discharge load;
- 2) an accidential spill of a chemical;
- 3) the day-to-day variation in water quality due to day-to-day changes in waste load inputs.

◆ Three types

W/O Dispersion	W/ Dispersion		
	Instantaneous Input	Continuous Input	
No mixing in the	Stream dispersion spreads the		
longitudinal	response temporally and	Rectangular input	
direction	spatially.	• $\eta = \frac{kE}{u^2}$ \rightarrow dimensionless	
		Relative effects of longitudinal	
■ Plug flow	• used to estimate the transient	mixing for a nonconservative	
	effects due to inputs such as	substance ① upland stream	
Impulse input	BOD from storm water	$\eta \approx < 0.01 \rightarrow \text{not significant}$	
remains its shape	overflow (by pass from	② Main drainage rivers	
as it progress	combined sewer system) and	$\eta \approx 0.01 \sim 0.5 \rightarrow \text{significant}$	
downstream	batch discharges of municipal	③ Large rivers	
	& industrial wastes	$\eta \approx 0.5 \sim 1.0$	

Time variable equations & solutions

$$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E \frac{\partial^2 C}{\partial x^2} + S$$

$$S = -kC \rightarrow \text{first-order decay}$$

Item	W/O Dispersion	W/ Dispersion	
G.E.	$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} - kC$	$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E \frac{\partial^2 C}{\partial x^2} - kC$	
Case	Case 5	Case 6	Case 7
	$C = (0) = C_0$	Instantaneous Input	Continuous Input over an interval of time
B.C.'s	$C = (0) = C_0$ $C_0 = \frac{W(t)}{Q}$	$M = M\delta(x)$	±Rectangular Input $C(x=0, t < \tau) = C_0$ $C(x=0, t > \tau) = 0$
Sol.	$C(x,t) = \frac{W(t-t^*)\exp\left(-\frac{kx}{u}\right)}{Q}$	$C(x,t) = \frac{M}{A\sqrt{4\pi Et}}$ $\exp\left[\frac{-(x-ut)^2}{4Et} - kt\right]$ mean = ut variance $\sigma^2 = 4Et$	$C(x,t) = \frac{C_0}{2} \cdot \exp\left(-\frac{kx}{u}\right)$ $\left[erf\left(\frac{x - u(t - \tau)(1 + \eta)}{\sqrt{4E(t - \tau)}}\right) - erf\left(\frac{x - nt(1 + \eta)}{\sqrt{4Et}}\right)\right]$ $\tau = \text{time interval of input}$ $\eta = \frac{kE}{u^2}$

6.3 Modeling BOD-DO Coupled System

6.3.1 Solutions of BOD-DO Coupled System

- ◆ Coupled system (BOD, DO)
- determination of dissolved oxygen concentrations downstream of a discharge of BOD
- ◆ Oxygen Demand
- = indirect measure of organic materials (= organic pollutants) in terms of the amount of oxygen required to (completely) oxidize it.

COD - Chemical Oxygen Demand

BOD: CBOD - Carbonaceous BOD

NBOD - Nitrogeneous BOD

Organic matter +
$$O_2 \rightarrow CO_2 + H_2O$$

- ◆ Importance of dissolved oxygen (DO)
- Anaerobic conditions in a stream are indicative of extreme pollution
- Low dissolved oxygen concentrations have severe effects on the kind of biota which inhabit the stream

- ◆ Sources and sinks of DO
- (a) Sources
 - Reaeration from the atmosphere
 - Photosynthetic oxygen production
 - DO in incoming tributaries
- (b) Sinks
 - Oxidation of BOD
 - Oxygen demand of sediments of water body
 - Use of oxygen for respiration by aquatic plants

$$\therefore \frac{dC}{dt} = \text{reaeration} + (\text{Photosynthesis-respiration}) - \text{oxydation of BOD}$$

- sediment oxygen demand ± oxygen transport (into and out of segment)

Let C =concentration of DO

L =concentration of BOD

(1) rate of utilization of DO by BOD

$$\frac{dL}{dt} = -k_1 L \to \text{ exertion of BOD}$$

= utilization of DO

= depletion of DO

 k_1 = deoxygenation coefficient

- (2) reaeration from the atmosphere
- = diffuse of oxygen into the stream rate of reaeration
 - \propto degree to which the water is unsaturated with oxygen

Let $C_s = DO$ saturation concentration

then oxygen deficit, DOD = $C_s - C$

: rate of reaeration

$$\frac{dC}{dt} = +k_2(C_s - C)$$

 k_2 = reaeration coefficient (1/T)

: Conservation equation for C

$$\frac{\partial C}{\partial t} = -u \frac{\partial C}{\partial x} + E \frac{\partial^2 C}{\partial x^2} - k_1 L + k_2 (C_s - C)$$

Let
$$D = C_s - C$$

Then dD = -dC

$$\therefore -\frac{\partial D}{\partial t} = +u \frac{\partial D}{\partial x} - E \frac{\partial^2 D}{\partial x^2} - k_1 L + k_2 D$$

$$\frac{\partial D}{\partial t} = -u \frac{\partial D}{\partial x} + E \frac{\partial^2 D}{\partial x^2} + k_1 L - k_2 D \Rightarrow \text{G.E. for DO Deficit}$$

For BOD

$$\frac{\partial L}{\partial t} = -u \frac{\partial L}{\partial x} + E \frac{\partial^2 L}{\partial x^2} - k_1 L \Rightarrow \text{G.E. for BOD concentration}$$

Let reaction terms

$$S_L = -k_r L$$

$$S_D = k_d L - k_a D$$

in which

L = concentration of remaining BOD

 $D = \text{dissolved oxygen deficit (DOD)} = C_s - C$

 C_s = DO saturation concentration

C = actual DO concentraion

 $k_r = BOD \text{ removal coefficient} = k_d + k_s$

 k_s = settling coefficient

 k_d = deoxygenation coefficient = biochemical degradation

 k_a = reaeration coefficient

G.E.: unsteady state

BOD
$$\frac{\partial L}{\partial t} = -u \frac{\partial L}{\partial x} + E \frac{\partial^2 L}{\partial x^2} - k_r L$$

DOD
$$\frac{\partial D}{\partial t} = -u \frac{\partial D}{\partial x} + E \frac{\partial^2 D}{\partial x^2} + k_d L - k_a D$$

◆ Steady state, W/ Dispersion (Estuary)

(i) BOD:
$$0 = -u \frac{\partial L}{\partial x} + E \frac{\partial^2 L}{\partial x^2} - k_r L \rightarrow \text{same as case 4}$$

$$L = L_0 \exp \left[\frac{u}{2E} (1 + \alpha_r) x \right], \quad x \le 0$$

$$=L_0 \exp\left[\frac{u}{2E}(1-\alpha_r)x\right], \quad x \le 0$$

in which

$$L_0 = \frac{W}{Q\alpha_r}$$

$$\alpha_r = \sqrt{1 + \frac{4k_r E}{u^2}}$$

(ii) DOD:
$$0 = -u \frac{\partial D}{\partial x} + E \frac{\partial^2 D}{\partial x^2} + k_d L - k_a D$$

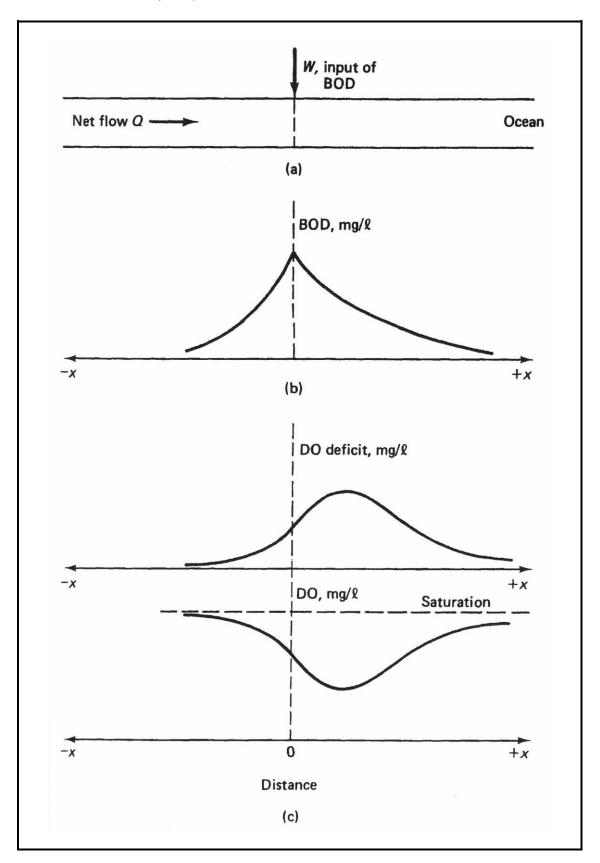
$$D = \frac{W}{Q} \frac{k_d}{k_a - k_r} \left\{ \frac{\exp\left[\frac{u}{2E}(1 + \alpha_r)x\right]}{\alpha_r} - \frac{\exp\left[\frac{u}{2E}(1 - \alpha_a)x\right]}{\alpha_a} \right\}, \quad x \le 0$$

$$D = \frac{W}{Q} \frac{k_d}{k_a - k_r} \left\{ \frac{\exp\left[\frac{u}{2E}(1 - \alpha_r)x\right]}{\alpha_r} - \frac{\exp\left[\frac{u}{2E}(1 + \alpha_a)x\right]}{\alpha_a} \right\}, \quad x \ge 0$$

in which

$$\alpha_a = \sqrt{1 + \frac{4k_a E}{u^2}}$$

Thomann & Mueller (1987)



6.3.2 Streeter-Phelps Equation

- ◆ Streeter-Phelps Equation (1925)
- no dispersion (river) E = 0
- steady state

BOD:
$$0 = -u \frac{\partial L}{\partial x} - k_1 L$$

DOD:
$$0 = -u \frac{\partial D}{\partial x} + k_1 L - k_2 D$$

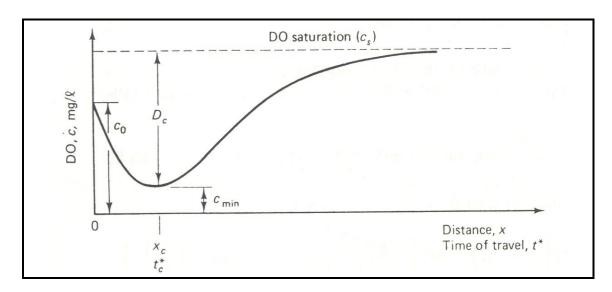
For BOD we have solution (Case 3)

$$\therefore L = L_0 \exp(-\frac{k_1}{u}x) = \frac{W}{Q} \exp(-\frac{k_1}{u}x)$$

B.C.:
$$D(0) = D_0 = C_s - C_0$$

Solution:

$$D(x) = \frac{k_1}{k_2 - k_1} L_0 \left[e^{-\left(\frac{k_1}{u}\right)x} - e^{-\left(\frac{k_2}{u}\right)x} \right] + D_0 e^{-\left(\frac{k_2}{u}\right)x}, \quad x \ge 0$$
 (1)



lacktriangle Critical deficit D_c (@ t_c uptake of oxygen by BOD is just balanced by the input of oxygen from atmosphere)

let x/u = t (= time of flow) time of travel

 \rightarrow Then Eq. (1) becomes

$$D(t) = \frac{k_1}{k_2 - k_1} L_0 \left[e^{-k_1 t} - e^{-k_2 t} \right] + D_0 e^{-k_2 t}, \quad x \ge 0$$
 (2)

 $\rightarrow t_c$ may be found as

$$\frac{\partial D}{\partial t} = 0; \quad t_c = \frac{1}{k_2 - k_1} \ln \left\{ \frac{k_2}{k_1} \left[1 - \frac{(k_2 - k_1)}{k_1} \frac{D_0}{L_0} \right] \right\}$$

$$D_c = \frac{k_1}{k_2} L_0 e^{-k_1 t_c} \quad \leftarrow \quad \text{from Eq.(2)}$$

- ◆ Modified Streeter-Phelps equation
- account for other processes
- (1) BOD removal due to sedimentation
 - non-oxygen-demanding
 - reduces BOD w/o changing oxygen concentration

$$\frac{\partial L}{\partial t} = -k_3 L$$

- (2) BOD addition due to scour from the bottom and surface runoff from the land
 - rate of addition is assumed to be constant
- (3) Oxygen use other than by aerobic biochemical oxygen demand in the water, and oxygen addition other than through reaeration.
 - net of these processes is constant rate A
- ◆ Solution :

$$D_{t} = \frac{k_{1}}{k_{2} - (k_{1} + k_{3})} \left(L_{0} - \frac{P}{k_{1} + k_{2}} \right) \left\{ e^{-(k_{1} + k_{2})t} - e^{-k_{2}t} \right\}$$
$$+ \frac{k_{1}}{k_{2}} \left(\frac{P}{k_{1} + k_{2}} - \frac{A}{k_{1}} \right) \left(1 - e^{-k_{2}t} \right)$$

Consider only k_3 neglect A & P

Let
$$k_r = k_1 + k_3$$
, $k_d = k_1$, $k_s = k_3$, $k_a = k_2$

Then

$$D_{t} = \frac{k_{d}}{k_{a} - k_{r}} L_{0} \left\{ e^{-k_{r}t} - e^{-k_{a}t} \right\} + D_{0}e^{-k_{a}t}$$

[Remark]

G.E.:
$$0 = -u \frac{\partial L}{\partial x} - k_r L$$
 BOD
$$0 = -u \frac{\partial D}{\partial x} + k_d L - k_a D$$
 DOD