Ch. 6 The Impulse-Momentum Principle

Chapter 6 The Impulse-Momentum Principle

6.1 The Linear Impulse-Momentum Equation
6.2 Pipe Flow Applications
6.3 Open Channel Flow Applications

6.4 The Angular Impulse-Momentum Principle

Objectives:

- Develop impulse - momentum equation, the third of three basic equations of fluid

mechanics, added to continuity and work-energy principles

- Develop linear and angular momentum (moment of momentum) equations
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6.0 Introduction

 Three basic tools for the solution of fluid flow problems

~ Continuity principle

Work-energy principle (Bernoulli equation)

\- Impulse - momentum equation (Momentum equation)

*Impulse - momentum equation

~ derived from Newton's 2nd law in vector form
YF =ma
Multifly by dt

(zE)dt =madt =d(mv,)

~ d, —
F=—(mv
2F = (mv)

—_—

where V. = velocity of the center of mass of the system of mass

—

mv, = linear momentum
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m=| dm

sys

m 9 sys

(> F)dt =impulse in time dt

Define the fluid system to include all the fluid in a specified control volume whereas

the Euler equations was developed for a small fluid system

Restrict the analysis to steady flow

Shear stress is not explicitly included

This equation will apply equally well to real fluids as well as ideal fluids.

Develop linear and angular momentum (moment of momentum) equations

Linear momentum equation: calculate magnitude and direction of resultant forces
Angular momentum equation: calculate line of action of the resultant forces, rotating

fluid machinery (pump, turbine)
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6.1 The Linear Impulse — Momentum Equation

=" = Individual
fluid system

~—Control volume P

\ _Horizontal datum

Use the same control volume previously employed for conservation of mass and work-energy.

For the individual fluid system in the control volume,

Y F= mé:%mV:%dev (@)
Sum them all
3= I prev) = &[] v
Sys sys

Use Reynolds Transport Theorem for steady flow to evaluate RHS

_V_ipdvo|)+gSqSC_s_ipV.TA

Steady flow
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%IJJ(deV):Z—E:E[!ipV-dA: ” pv(v.dli)— ” pv(v-dﬁl) (b)

Sys . c.s.out c.s.in

i =V for momentum/mass

where E = momentum of fluid system in the control volume

| =V =momentum per unit mass

Because the streamlines are straight and parallel at Sections 1 and 2, velocity is constant over
the cross sections. The cross-sectional area is normal to the velocity vector over the entire
cross section. Thus, integration of terms in Eq. (b) are written as

J. c.s.outv(pv'dA) = J- c.s.outpv (UdAj = j c.s.outpvw = p2\72Q2
v Q

Flux out through

J csin¥ (0V-dA) = J csin PV [\Lﬁ dAj =—pV,Q, Section 2

-V

Flux in through

By Continuity eq: Q,0, =Q,0, =Qp Section 1
S RH.S.of () =Qp(V, -V ©)
Substitute (c) into (a)
> F=Qp(V,-V,) 6.1)
In 2-D flow,
Z F,=Qp (Voy = Vi) (6.2a)
Z F,=Qp(V,, -V, ) (6.2b)
6-5




Ch. 6 The Impulse-Momentum Principle

General form in case momentum enters and leaves the control volume at more than one

location:

Y F=(2Q0) —(2Qnv) 6.3)

- The external forces include both normal (pressure) and tangential (shear) forces on the fluid

in the control volume, as well as the weight of the fluid inside the control volume at a given

time.

= Advantages of impulse-momentum principle

~ Only flow conditions at inlets and exits of the control volume are needed for successful

application.

~ Detailed flow processes within the control volume need not be known to apply the principle.
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6.2 Pipe Flow Applications

Forces exerted by a flowing fluid on a pipe bend, enlargement, or contraction in a pipeline

may be computed by an application of the impulse-momentum principle.

* The reducing pipe bend

Vs

Free-body diagram

Known: flowrate, Q; pressures, p,, P,; velocities, V,, V,

Find: F (equal & opposite of the force exerted by the fluid on the bend)

= force exerted by the bend on the fluid
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* Pressures:

For streamlines essentially straight and parallel at section 1 and 2, the forces F1, and F, result

from hydrostatic pressure distributions.

If mean pressure P, and P, are large, and the pipe areas are small, then F = p,A and

F, = p,A,, and assumed to act at the centerline of the pipe instead of the center of pressure.

_ _

h h

c p

[Cf] Resultant force

(2.12): F=yh A
¥

p. =yh,

* Body forces:

= total weight of fluid, W

« Force exerted by the bend on the fluid, F

= resultant of the pressure distribution over the entire interior of the bend between Sections

1&2.

~ distribution is unknown in detail

~ resultant can be predicted by Impulse-momentum Eq.
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Now apply Impulse-momentum equation, Eg. (6.2)

(i) x-direction:

ZFX = plAi - pZAZCOSCX - I:x (@)

Qp(Vy Vi ) =Qp(V,cosa—V,) (b)

Combining the two equations to develop an expression for F

F, =pA-p,Acosa+Qp(V, -V, cosa)

(ii) z-direction

2F,=-W-p,Asina+F,

Qp(V,, —Vi, ) =Qp(V,sina -0)

F, =W + p,A sina+QpV,sina

(6.4.9)

(6.4.b)

If the bend is relatively sharp, the weight may be negligible, depending on the magnitudes of

the pressure and velocities.
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[IP 6.1] 300 I/s of water flow through the vertical reducing pipe bend. Calculate the force

exerted by the fluid on the bend if the volume of the bend is 0.085 m®.

590.6 N

V,=9.56 m/s

V,=4.24 m/s

Given: Q=3001/s=0.3m%/s; Vol. of bend = 0.085 m°
T 2 2 T 2 2
A 22(0-3) =0.071m"; A, :Z(O'Z) =0.031 m

p, =70 kPa=70x10® N/m?

Now, we apply three equation to solve this problem.

1) Continuity Eq.

Q=AV,=AV, (45)

6-10



Ch. 6 The Impulse-Momentum Principle

V=23 _ 404 mjs
0.071

V, = 03 _ 9.55 m/s
0.031

2) Bernoulli Eq. between 1 and 2

V.2 V.2
&+L+ 21:&4__24_22

Y 29 Y 29

3 2 2
70x10° (424 ,_ b, (955 .
9,800  2(9.8) 9,800 2(9.8)

p, =18.8 kPa

3) Momentum Eg.

Apply Egs. 6.4a and 6.4b

F =pA-p,Acosa+Qp(V, -V, cosa)

F, =W + p,A sina+QpV,sina

F.= p,A =4948 N
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F, = p,A, =18.8x10°x0.031=590.6 N

W =vy(volume) =9800x0.085=833 N

F, = 4,948 —(590.6) c0s120" + (998 x 0.3)(4.24 — 9.55c05120°) = 7,942 N

F, =833+ (590.6)sin 120" + (998 x 0.3)(9.55sin 120" —0) = 3,820 N

F=F2+F?=8813N

f=tan'—21=257
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 Abrupt enlargement in a closed passage ~ Real fluid flow

The impulse-momentum principle can be employed to predict the fall of the energy line

(energy loss due to a rise in the internal energy of the fluid caused by viscous dissipation) at

an abrupt axisymmetric enlargement in a passage.

Energy loss

AEL) -V,i2g,

J
+ HGL

e I e e

Control surface A ¢

Consider the control surface ABCD assuming a one-dimensional flow

i) Continuity
Q=AV,=AYV,
Result from hydrostatic pressure distribution over
the area
— For area AB it is an approximation because of
i) Momentum the dynamics of eddies in the “dead water” zone.

LFE =pA - p,A=Qp(V,-V)
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(P — P)A :V29A2 y(V,—V,)

- \Y
pl p2 :_2(\/2 _Vl)
Y 9

iii) Bernoulli equation

2 2
&+VL:&+V—2+AH
Yy 20 v 29

PL— P, :\/22 _\/12 +AH
Y 29 29

where AH =Borda-Carnot Head loss

Combine (a) and (b)

\Z (Vz _Vl) _ Vz2 _V12

+AH
9 29 29
AH = 2Vz2 ANS _Vz2 _|_V12 — (V1 _Vz)z
29 29 29 29
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6.3 Open Channel Flow Applications

* Applications impulse-momentum principle for Open Channel Flow

- Computation of forces exerted by flowing water on overflow or underflow structures
(weirs or gates)
- Hydraulic jump

- Wave propagation

[Case 1] Sluice gate

Control surface

NI o

DR Shear force is
neglected

Consider a control volume that has uniform flow and straight and parallel streamlines at the

entrance and exit

Apply first Bernoulli and continuity equations to find values of depths y; and y, and flowrate

per unit width g

Then, apply the impulse-momentum equation to find the force the water exerts on the sluice

gate
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ZFx =Qp(V, -V,)
2F=F-F-F= Q,D(Vzx _le) = qp(vz _Vl)

Q

where (= — =discharge per unit width =YV, =y,V,

Assume that the pressure distribution is hydrostatic at sections 1 and 2, replace V with g/y

Wi W, , 1 1
2 p o il

2

[Re] Hydrostatic pressure distribution

2
F=rhA=y 2y, ) =10k

2
| 1(y,)’° .
|_|C_ c — 12 ==Y,
LA Ay 6
1 1
Cp:Eyl_Eylzgyl
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For ideal fluid (to a good approximation, for a real fluid), the force tnagent to the gate is zero.

— shear stress is neglected.
— Hence, the resultant force is normal to the gate.

F=F,/cosé

We don’t need to apply the impulse-momentum equation in the z-direction.

[Re] The impulse-momentum equation in the z-direction
2 F, = Q;O(VzZ _Vlz)
2F, =Fos -W -F,=Qp(0-0)

F=W-F

z OB

T~

Non-uniform  pressure
distribution
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[IP 6.2] For the two-dimensional overflow structure, calculate the horizontal component of

the resultant force the fluid exerts on the structure
Lift gate

Ideal fluid
V].Z/Zgn B - /_

szf" 2z,

F,

122.5 kN/m _: '
i =
19.6 kN/m
« Continuity Eq.
q=5V,=2V, 4.7)
* Bernoulli's equation between (1) and (2)
V& V).
0+5m+-L-=0+2m+—= (5.7)
29 29

Combine two equations
V, =3.33m/s
V, =8.33m/s

q=5(3.33)=16.65 m*/s-m
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« Hydrostatic pressure principle (y =9.8 kN/m?’)

2
F, = yhA= y%y ~9.8 (52) —122.5 kN/m

2
= :9.8(22) =19.6 kN/m

* Impulse-Momentum Eq. (o =1000 kg/mg)
2 F, =122,500-F,—19,600 = (1000 x16.65)(8.33 - 3.33)

F, =19.65 kN/m

[Cf] What is the force if the gate is closed?
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Jamshil submerged weir (Seo, 1999)

Jamshil submerged weir with gate opened (Q = 200 m®/s)

6-20



Ch. 6 The Impulse-Momentum Principle

Bucket roller

Jamshil submerged weir Model Test (Q = 5,000 m%/s)
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[Case 2] Hydraulic Jump

When liquid at high velocity discharges into a zone of lower velocity, a rather abrupt rise (a
standing wave) occurs in water surface and is accompanied by violent turbulence, eddying,

air entrainment, surface undulation.

— such as a wave is known as a hydraulic jump

— large head loss (energy dissipation) Head loss due to

hydraulic jump

A(EL) EL B VZ_/QHH

B

hydraulic jump
turbulence, eddying, air
entrainment, surface \ 1
undulation in the T 28 1
v,2
o

o - | Neglect shear
force

Apply impulse-momentum equation to find the relation between the depths for a given

flowrate

Construct a control volume enclosing the hydraulic jJump between two sections 1 and 2 where
the streamlines are straight and parallel

2

2
SR =R R 2T g, )

where ( =flowrate per unit width
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Substitute the continuity relations

Rearrange (divide by ¥)

2 2 2 2

a4 n_a Y
ay, 2 gy, 2

Solve for Y, /Y,

2 2
y. 1 1+ 1+8—q3 1 1+ 1+8v1 (6.7)
y, 2 ay, | 2 )"
Set Fr,= L
ay,
V.
Fr,=—2= William Froude
VY, (1810~1879)

Inertia Force
Gravity Force

where Fr =Froude number =

v
Joy
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Then, we have

ﬁ:%[_1+1/1+ 8Fr12} Jump Equation

Y1

(@ Fr,=1: critical fow

a%:%[—l+\/l+8]=l Y, =Y, = No jump
1

(b) Fr,>1: super-critical flow

—>£>1 Y,>Y, — Hydraulic jump
Y1

(c) Fr,<1: sub-critical flow

SN ﬁ<1 y,<Yy, —> physically impossible
Y1

(" rise of energy line through the jump is impossible)

Conclusion: For a hydraulic jump to occur, the upstream conditions must be such that
2
V2 /gy, >1.

6-24



Ch. 6 The Impulse-Momentum Principle

[IP 6.3] p. 199 ; Water flows in a horizontal open channel.
y,=0.6m
q=3.7m%/s-m

Find Yy, , and power dissipated in hydraulic jump.

[Sol]

(i) Continuity
4=yM =Y.V,

Vv, _37 6.17 m/s
0.6

o Vi 6817
CoJoy,  /9.8(0.6)

=2.54>1 — hydraulic jump occurs

(i1) Jump Eq.

yzz%[—1+1/1+8Frf}

=1.88 m
6-25



V, =%:1.97 m/s

(iii) Bernoulli Eq. (Work-Energy EQ.)

2 2
y1+VL: Y, +V—2+AE
29 29

(617)° _, gg, (L97)°

0.6+ =1.
2(9.8) 2(9.8)

+AE

S.AE =0.46 m

Power = yQAE =9800(3.7)(0.46) =16.7 kW/meter of width

— The hydraulic jJump is excellent energy dissipator (used in the spillway).

Sluice
gale

Hydraulic
Jump

 Supercritical :Slibf;_l;iti'chl :
flow = — flow

FIGURE 13-10
Supercritical [low through a sluice
gate.
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TABLE 13-4
Classification of hydraulic jumps

Source: U.S. Bureau of Reclamation (1855},

Depth

Upstream Ratio

Fry

Yalv

Fraction of
Energy
Dissipation

Description

Surface
Profile

<1

1-1.7

1.7-2.5

Pulsating
jump

1

1-2

2-3.1

2.5-4.5

4.5-9

=9

3.1-5.2

5.9-12

0

<bh%

5-15%

15-45%

45-70%

70-85%

Impossible fump. Would violate the
second law of thermodynamics.

Undular jump (or standing wave).
Small rise in surface level. Low energy
dissipation. Surface rollers develop
near Fr = 1.7.

Weak jump. Surface rising smoothly,
with small rollers. Low energy
dissipation.

Osciflating jump. Pulsations caused by
entering jets at the bottom generate
large waves that can travel for miles
and damage earth banks. Should be

avoided in the design of stilling basins.

Steady jump. Stable, well-balanced,
and insensitive to downstream
conditions. Intense eddy motion and
high level of energy dissipation within
the jump. Recommended range

for design.

Strong jump. Rough and intermittent.
Very effective energy dissipation, but
may be’uneconomical compared to
othey/designs.

AE/E ~

85%
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[Case 3] Wave Propagation

The velocity (celerity) of small gravity waves in a body of water can be calculated by the

impulse-momentum equation.

esmall gravity waves

~ appears as a small localized rise in the liquid surface which propagate at a velocity a

~ extends over the full depth of the flow

[Cf] small surface disturbance (ripple)

~ liquid movement is restricted to a region near the surface

AR .
R by : 7,
JEPTINNNNNY i

As seen by an observer moving with the wave

For the steady flow, assign the velocity under the wave as a’

From continuity
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ay=a (y+dy)

From impulse-momentum

yy? 7(y+dy)
2 2

=(ay)p(a -a) (6.22)

Combining these two equations gives

a’=g(y+dy)

Letting dy approach zero results in

a=./gy (6.8)

— The celerity of the samll gravity wave depends only on the depth of flow.
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6.4 The Angular Impulse-Momentum Principle

The angular impulse-momentum equation can be developed using moments of the force and

momentum vectors

VZZ

V>

(X1, 71)

Individual (X2, 22)
fluid system

‘ Horizontal datum

Fig. 6.8

Take a moment of forces and momentum vectors for the small individual fluid system about

0
SixF =L Fxmy)= L Fx pdvoly)
dt a F
Sum this for control volume

zFxg’:%mSys(Fx\?)pdel. (a)
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Use Reynolds Transport Theorem to evaluate the integral

I=IrXV
?j—f:%jjj.sys(Fxg)pdVOl.:v”c.s.ip\#/-d—A
:.”Ac.s.out(va)pg-(:TA-FJ‘J‘c.s.in(F><\7)p\7.d_A (®)

where E = moment of momentum of fluid system

I =r xV =moment of momentum per unit mass

Restrict to control volume where the fluid enters and leaves at sections where the streamlines

are straight and parallel and with the velocity normal to the cross-sectional area

%-ULys (F % V)pd Vol. = ”c.s.out (F X (/)de B -”C.S.in (F 8 Q)de

Because velocity is uniform over the flow cross sections

e _ —

%JJJ‘SYS(FX\_;)pdVO|.:Qp(EX out)_QlO(ril’| XV'”)

=Qp| (FxV)y, = (rxV), | ©

where I = position vector from the moment center to the centroid of entering or leaving flow

cross section of the control volume
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Substitute (c) into (a)

S(r x Fp) = XMy =Qp| (rxV),, —(rxV),, | (6.13)
In 2-D flow,
2 |V|0 = Qp(rzvzt - rlvlt) (6.14)

where V, =component of velocity normal to the moment armr.

In rectangular components, assuming V is directed with positive components in both x and z-
direction, and with the moment center at the origin of the x-z coordinate system, for

clockwise positive moments,

XM =Qp[(2V, = XV,,) = (2Vyy = XV,,)] (6.15)

where X, Z, = coordinates of centroid of the entering cross section

X,, Z, = coordinates of centroid of the leaving cross section

For the fluid that enter or leave the control volume at more than one cross-section,

z M 0 = (zQpth)out - (ZQpth)in (6'16)
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[IP 6.6] Compute the location of the resultant force exerted by the water on the pipe bend.

[ ]

V,=9.55 m/s

V=424 mis

8,813 N

Assume that center of gravity of the fluid is 0.525 m to the right of section 1, and the forces
F, and F; act at the centroid of the sections rather than at the center of pressure.

Take moments about the center of section 1

XM, = Qp[(zzvzx — XV, ) = (ZVy, — lelx)]

For this case, X, =0,z =0, X,=0.6,z,=1.5
> T =-r(8,813) +0.525(833) +1.5(590c0s 60°) — 0.6(~590sin 60°)
=(0.3x998)| 1.5(~9.55-c0s60°) — 0.6(9.55 i 60") |
r=0.59m

6-33



Ch. 6 The Impulse-Momentum Principle

[Re] Torque for rotating system
— - - d -~ -
T=2(rxF)=—(rxmvc)
dt
Where T = torque
Tdt= torque impulse
I x m\z = angular momentum (moment of momentum)

I = radius vector from the origin 0 to the point of application of a force

[Re] Vector product (cross product)

V=FxG
-Magnitude:
V] =[F[c[sing

-Direction: perpendicular to the plane of F and é(right-hand rule)

_— —

If F,G areintheplaneof xand Y, then the V isinthe z plane.
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Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

6.1

6.6

6.14

6.16

6.30

6.34

6.36

6.40

6.55

6.60

Homework Assignment # 6

Due:

1 week from today
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