Chapter 3 Dynamic Features and Methods of Analysis

3.1 Introduction

- 3.1.1 Fluid transport phenomena
 - = ability of fluids in motion to <u>convey materials and properties from place to place</u>
 - = mechanism by which materials and properties are <u>diffused and transmitted through the</u>

<u>fluid medium</u> because of molecular motion

3.1.2 Subsidiary Laws

 \rightarrow Relations between fluxes and driving force (gradient)

\rightarrow Transport analogy

Flux	Driving force	Law	Relation	
Mass flux q_m	$\frac{\text{concentration}}{\text{gradient}}$ $\frac{\partial c}{\partial x_j}$	Fick's law	$q_m = -D rac{\partial c}{\partial x_j} = -D abla c$ gradient	
Heat flux q_H	temperature gradient $\frac{\partial T}{\partial x_j}$	Fourier's law	$q_H = -k \frac{\partial T}{\partial x_j} = -k \nabla T$	
Momentum Flux, q_{mo}	velocity gradient $\frac{\partial u_i}{\partial x_j}$	Newton's law of viscosity	$\tau = \mu \frac{\partial u_i}{\partial x_j}$	

♦ momentum flux

$$q_{mo} = \frac{mu}{t(\Delta x \Delta y)} = \frac{m(u/t)}{A} = \frac{ma}{A} = \frac{F}{A} = stress = \tau \qquad (3.1)$$

Mass/heat transport:

с,

$$q_m, q_H$$
 - vector

momentum transport:

$$u_i$$
 – vector

$$q_{mo} = \tau$$
 - tensor

3.2 Mass Transport

All fluid motions must satisfy the principle of conservation of matter.

homogeneous fluid — single phase

non-homogeneous fluid ____ multi phase: air-liquid, liquid-solid

multi species: fresh water - salt water

Homogeneous fluid	Non-homogenous fluid	
single phase	multi phase	
single species	single phase & multi species	
Continuity Equation [Ch. 4]	mass transport due to local velocity + mass transport due to diffusion → <u>Advection-Diffusion Equation</u> [Advanced Environmental Hydraulics]	

Continuity equation: relation for temporal and spatial variation of velocity and density

3.3 Heat Transport

ſ	thermodynamics	modynamics ~ <u>non-flow processes</u>				
ļ	equilibrium states of matter					
l	fluid dynamics	~	transport of heat (scalar) by fluid motion			

• Apply conservation of energy to flow process (= 1st law of thermodynamics)

~ relation between pressure, density, temperature, velocity, elevation, mechanical work, and heat input (or output).

~ since heat capacity of fluid is large compared to its kinetic energy, <u>temperature and density</u> remain constant even though large amounts of kinetic energy are dissipated by friction.

- \rightarrow simplified energy equation
 - Heat transfer in flow process
 - 1) convection: due to velocity of the flow advection

2) conduction: analogous to diffusion, tendency for heat to move in the direction of decreasing temperature

- Application
 - 1) Fluid machine (compressors, pumps, turbines): energy transfer in flow processes
 - 2) Heat pollution: discharge of cooling water for nuclear power plant

[Re] Thermal stratification

- Ocean, lake, reservoir
- density variations

3.4 Momentum Transport

3.4.1 Momentum transport phenomena

~ encompass the mechanisms of <u>fluid resistance</u>, boundary and internal <u>shear stresses</u>, and propulsion and forces on immersed bodies.

Momentum = mass \cdot velocity vector = mu

Adopt Newton's 2nd law

$$\sum \vec{F} = m\vec{a} = m\frac{d\vec{u}}{dt} = \frac{d}{dt}\left(m\vec{u}\right)$$
(3.2)

 \rightarrow Equation of motion

• Effect of velocity gradient
$$\frac{\partial u}{\partial y}$$

- macroscopic fluid velocity tends to <u>become uniform</u> due to the random motion of molecules because of intermolecular collisions and the consequent <u>exchange of molecular momentum</u>

 \rightarrow the velocity distribution tends toward the dashed line \bigcirc

 \rightarrow momentum flux is equivalent to the existence of the shear stress

$$\tau \propto \frac{\partial u}{\partial y}$$

 $\tau = \mu \frac{\partial u}{\partial y} \longrightarrow$ Newton's law of friction (viscosity)

)

1.2. Classical and the state of the state of

3.4.2 Momentum transport for Couette flow

DYNAMIC FEATURES AND METHODS OF ANALYSIS

[Re] velocity gradient of Couette flow

- linear

$$\frac{dv}{dy} = \frac{U}{a}$$

3.5 Transport Analogies

- (1) Transport
 - 1) advection = transport by imposed current (velocity)
 - [cf] convection
 - 2) diffusion = movement of mass or heat or momentum in the direction of decreasing

concentration of mass, temperature, or momentum

[cf] conduction

where $K = \text{diffusivity constant} \left(\frac{m^2}{S} \right) \left[\frac{L^2}{t} \right]$

K = f (modes of fluid motion, i.e., laminar and turbulent flow)

r molecular diffusivity for laminar flow

turbulent diffusivity for turbulent flow

3.5.1 Momentum transport

Set $M = \text{momentum} = \Delta m u$

$$\therefore \quad \frac{d(\Delta mu)}{dt} \frac{1}{\Delta x \Delta z} = K \frac{d}{dy} \left(\frac{\Delta mu}{\Delta vol} \right)$$

Now, apply Newton's 2nd law to LHS

$$\frac{d}{dt}(mu) = m\frac{du}{dt} = ma = F$$
$$\therefore \quad \frac{d(\Delta mu)}{dt} = \Delta F_x$$
$$\therefore \quad LHS = \frac{\frac{d(\Delta mu)}{dt}}{\frac{dt}{\Delta x \Delta z}} = \frac{\Delta F_x}{\Delta x \Delta z} = \tau_{yx}$$

 τ_{yx} = shear stress parallel to the x-direction acting on a plane

whose normal is parallel to y-direction

RHS:

$$\frac{\Delta m}{\Delta vol} = \rho$$

$$\therefore RHS = K \frac{d}{dy} \left(\frac{\Delta mu}{\Delta vol} \right) = K \frac{d(\rho u)}{dy}$$

Combine (i) and (ii)

$$\tau_{yx} = K \frac{d(\rho u)}{dy} \tag{3.4}$$

If $\rho = \text{constant}$

$$\tau_{yx} = \rho K \frac{du}{dy} \tag{3.5}$$

K = molecular diffusivity constant (m²/s)

If
$$K \equiv v = \frac{\mu}{\rho}$$
 = kinematic viscosity

Then,

$$\tau_{yx} = \rho v \frac{du}{dy} = \mu \frac{du}{dy}$$
(3.6)

٦

3.5.2 Heat transport

Set

$$M = \text{heat} = Q = \Delta m C_p T \tag{3.7}$$

Г

where C_p = specific heat at constant pressure

Then, Eq. (3.3) becomes

$$\frac{dQ}{dt}\frac{1}{\Delta x\Delta z} = q_{H_y} = -K\frac{d}{dy}\left[\frac{\Delta mC_pT}{\Delta vol}\right]$$
(3.8)

 $q_{\rm H} = {
m time} {
m rate} {
m of heat} {
m transfer} {
m per} {
m unit} {
m area} {
m normal}$

to the direction of transport
$$(j / \sec - m^2)$$

 $K = \alpha$ = thermal diffusivity (m^2 / \sec)

If
$$\rho(=\frac{\Delta m}{\Delta vol})$$
 and $C_p = \text{const.}$

$$\therefore \quad q_{Hy} = -\rho C_p K \frac{dT}{dy} = -k \frac{dT}{dy}$$
(3.9)

where $k = \rho C_p K$ = thermal conductivity $(j / \sec - m - K)$

3.5.3 Mass transport

Set

$$M = \text{dissolved mass of substancs} = \Delta m_f C_M$$
 (3.10)

where $\Delta m_f = \text{mass of fluid}$

 $C_M = \text{concentration}$

 \equiv mass of dissolved substance /unit mass of fluid

[Cf] $C_s = \frac{\Delta m_s}{\Delta vol_f} (\text{mg}/l, ppm)$

Then, Eq. (3.3) becomes

$$\frac{d\left(\Delta m_{f}C_{M}\right)}{dt}\frac{1}{\Delta x\Delta z} = j_{M_{y}} = -K\frac{d}{dy}\left[\frac{\Delta m_{f}C_{M}}{\Delta vol}\right]$$
(3.11)

3-14

 j_M = time rate or mass transfer per unit area normal to the direction

of transport $kg/m^2 \cdot s$

If
$$\rho = \frac{\Delta m}{\Delta vol} = \text{const.} = \frac{\Delta m_f}{\Delta vol_f}$$

 $j_{M_y} = -\rho K \frac{dC_M}{dy}$
(3.12)

$$= -K\frac{dC_{M}\cdot\rho}{dy} = -K\frac{d\left(\frac{\Delta m_{s}}{\Delta m_{f}}\cdot\frac{\Delta m_{f}}{\Delta vol_{f}}\right)}{dy} = -K\frac{d\left(\frac{\Delta m_{s}}{\Delta vol_{f}}\right)}{dy} = -K\frac{dC_{s}}{dy}$$

Set K = D = molecular diffusion coefficient (m^2 / \sec)

$$j_{M_y} = -\rho K \frac{dC_M}{dy} = -D \frac{dC_s}{dy}$$

transport process	kinematic fluid property (m^2 / s)
momentum	ν (kinematic viscosity)
heat	α (thermal diffusivity)
mass	D (diffusion coefficient)

3.6 Particle and Control-Volume Concepts

3.6.1 Infinitesimal elements and control volumes

- Eulerian equations of fluid mechanics

- (1) Material method: particle approach
- ~ describe flow characteristics at a fixed point (x, y, z) by observing the motion

of a material particle of a infinitesimal mass

~ laws of conservation of mass, momentum, and energy can be stated in the differential form,

applicable at a point.

~ Newton's 2nd law

$$d\vec{F} = dm\vec{a}$$

• If fluid is considered as <u>a continuum</u>, end result of either method is <u>identical</u>.

(2) Control volume method

- 1 differential (infinitesimal) control volume parallelepiped control volume
- (2) finite control volume arbitrary control volume

[Re] Control volume

- fixed volume which consists of the same fluid particles and whose bounding surface moves with the fluid

- 1 Differential control volume method
 - ~ concerned with a fixed <u>differential control volume</u> (= $\Delta x \Delta y \Delta z$) of fluid
 - ~ 2–D or 3–D analysis, Ch. 6

$$\Delta \vec{F} = \frac{d}{dt} \left(\Delta m \vec{q} \right) = \frac{d}{dt} \left(\rho \Delta x \Delta y \Delta z \vec{q} \right)$$

- ~ $\Delta x, \Delta y, \Delta z$ become vanishingly small
- \rightarrow <u>point form</u> of equations for conservation of mass, momentum, and energy

- 2 Finite control volume method
 - \rightarrow frequently used for 1–D analysis, Ch. 4
 - ~ gross descriptions of flow
 - ~ analytical formulation is easier than differential control volume method
 - ~ integral form of equations for conservation of mass, momentum, and energy

