Chapter 7 Some Fundamental Concepts and Specialized

Equations in Fluid Dynamics

7.1 Flow Classifications

7.1.1 Various Flows

(1) Laminar flow vs. Turbulent flow

- Laminar flow ~ water moves in parallel streamline (laminas);

viscous shear predominates; low Re (Re < 2100)

- Turbulent flow ~ water moves in random, heterogeneous fashion;

inertia force predominates; high Re (Re > 4000)

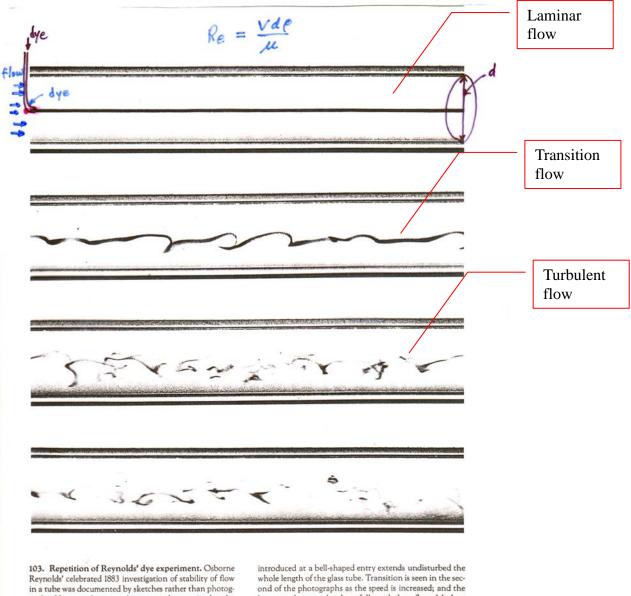
Reynolds number =
$$\frac{inertia\ force}{viscous\ force} = \frac{Ma}{\tau A} = \frac{\rho l^3(\frac{v^2}{l})}{\mu \frac{dv}{dy}l^2} = \frac{\rho v^2 l^2}{\mu v l} = \frac{\rho v l}{\mu} = \frac{v l}{v}$$

Neither laminar nor turbulent motion would occur in the absence of viscosity.

(2) Creeping motion vs. Boundary layer flow

- Creeping motion – high viscosity $\rightarrow low Re$

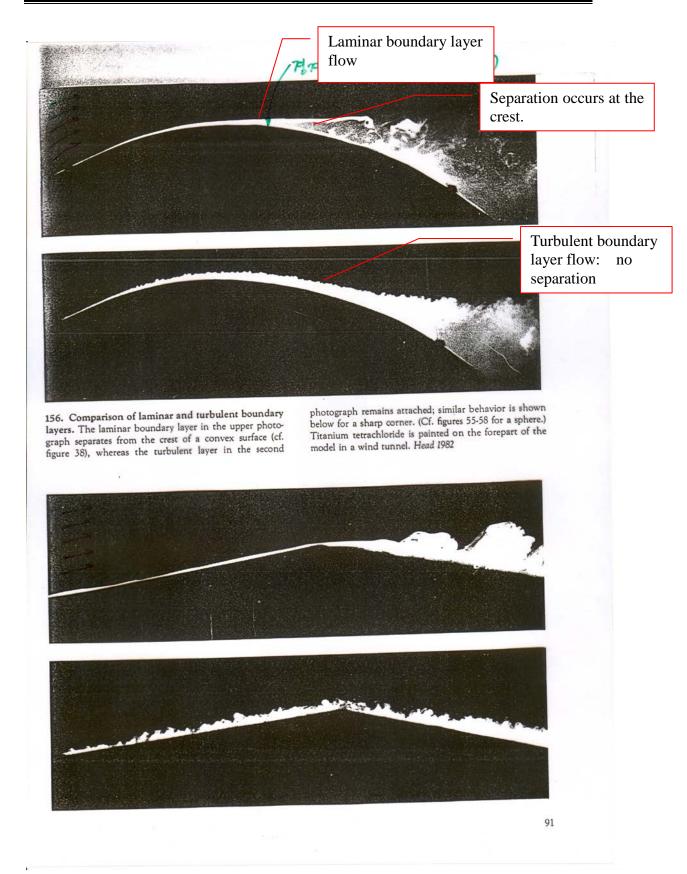
- Boundary layer flow– low viscosity \rightarrow high Re

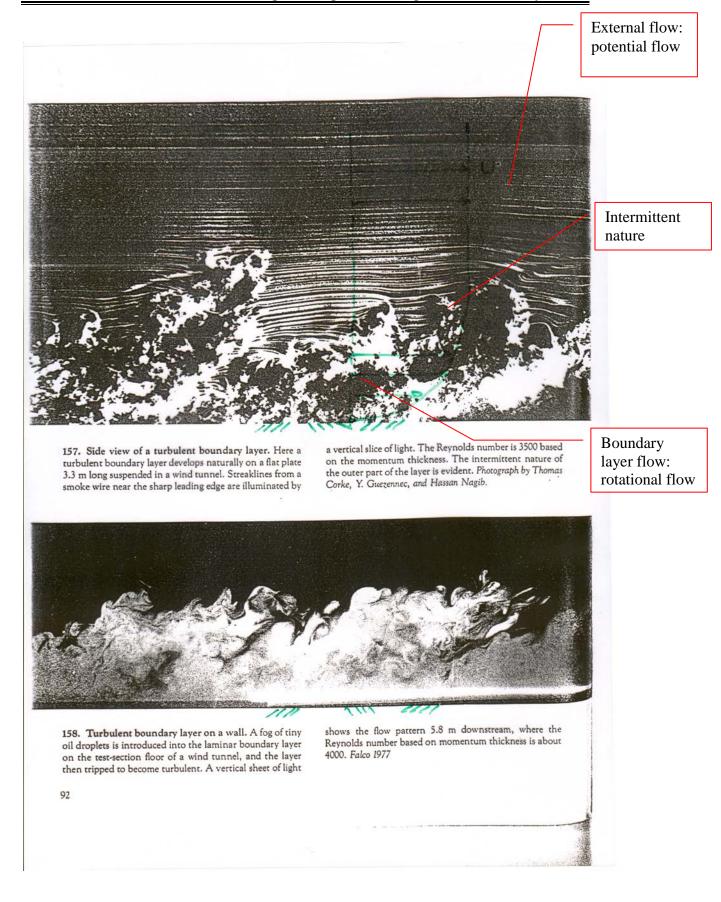


Reynolds' celebrated 1883 investigation of stability of flow in a tube was documented by sketches rather than photography. However the original apparatus has survived at the University of Manchester. Using it a century later, N. H. Johannesen and C. Lowe have taken this sequence of photographs. In laminar flow a filament of colored water introduced at a bell-shaped entry extends undisturbed the whole length of the glass tube. Transition is seen in the second of the photographs as the speed is increased; and the last two photographs show fully turbulent flow. Modern traffic in the streets of Manchester made the critical Reynolds number lower than the value 13,000 found by Reynolds.

61

Ch 7. Some Fundamental Concepts and Specialized Equations in Fluid Dynamics





(a)

(b) (c) G E S (d) (e) (a) (b)

 $\begin{array}{ll} \mbox{Figure 1.4} & \mbox{Flow behind a cylinder:} \\ \mbox{(a) } Re < 1; \mbox{(b) } 5 < Re < 40; \\ \mbox{(c) } 100 < Re < 200; \mbox{(d) } Re \ \sim \ 10^4; \\ \mbox{and } (e) \ Re \sim 10^6. \end{array}$

Figure 1.13 Schematic representation of flow over a sphere at $\text{Re} = 2 \times 10^4$: (a) snapshot of the flow as illustrated by dye injected into the boundary layer; (b) timeaveraged flow pattern as seen in a time-lapse photograph. See also Plate 4 for the actual flow at $\text{Re} = 2 \times 10^4$ and 2×10^5 .

→ Seo, I. W., and Song, C. G., "Numerical Simulation of Laminar Flow past a Circular
 Cylinder with Slip Conditions," *International Journal for Numerical Methods in Fluids*, Vol.
 68, No. 12, 2012. 4, pp. 1538-1560.

→ 34th IAHR World Congress, Brisbane, Australia, Jun. 26 - Jul. 1 2011

7.1.2 Creeping motion

Creeping motion:

~extreme of laminar motion - viscosity is very high, and velocity is very small.

 \rightarrow Inertia force can be neglected ($Re \rightarrow 0$).

 \rightarrow Convective acceleration and unsteadiness may also be neglected.

For incompressible fluid,

Continuity Eq.: $\nabla \cdot \vec{q} = 0$

Navier-Stokes Eq.:
$$\rho \frac{\partial \vec{q}}{\partial t} + \rho (\vec{q} \cdot \nabla) \vec{q} = \rho \vec{g} - \nabla p + \mu \nabla^2 \vec{q} + \frac{\mu}{3} \nabla (\nabla \cdot \vec{q})$$

[Ex] - fall of light-weight objects through a mass of molasses \rightarrow Stoke's motion Re < 1

- filtration of a liquid through a densely packed bed of fine solid particles (porous media)

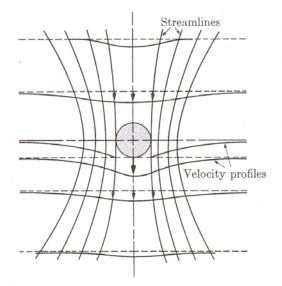
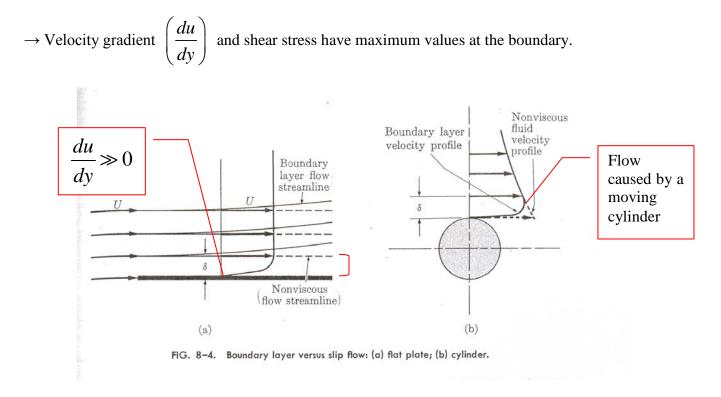


FIG. 8–3. Deformation flow around a falling sphere. (Streamlines and velocity profiles are shown for observer at rest.)

7.1.3 The boundary layer concept

For continuum fluid, there is <u>no slip</u> at the rigid boundary. [Cf] partial slip

 \rightarrow Fluid velocity relative to the boundary is zero.



For very low viscosity and high acceleration of the fluid motion

- \rightarrow Significant viscous shear occurs only within a relatively thin layer next to the boundary.
- \rightarrow boundary layer flow (Prandtl, 1904)
- Boundary layer flow:
- ~ inside the boundary layer, viscous effects override inertia effects.
- Outer flow:

~outside the layer, the flow will suffer only a minor influence of the viscous forces.

~Flow will be determined primarily by the relation among inertia, pressure gradient, and

body forces.

 \rightarrow <u>potential flow</u> (irrotational flow)

1) Flow past a thin plate and flow past a circular cylinder

 \rightarrow Due to flow retardation within boundary-layer thickness δ , <u>displacement of streamlines</u> is necessary to satisfy continuity.

2) Boundary layers in pipes

- uniform laminar flow between parallel walls

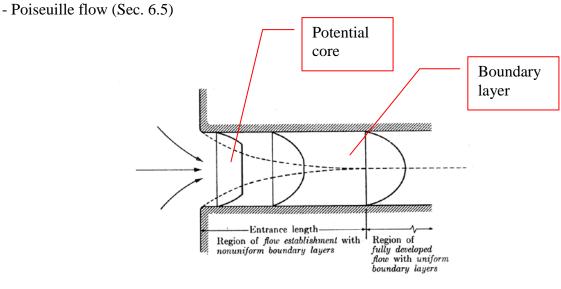


FIG. 8-5. Boundary layers in ducts.

[Re]

Creeping flow: very viscous fluids \rightarrow only laminar flow

Boundary-layer flow: slightly viscous fluids \rightarrow both laminar and turbulent flows

7.2 Equations for Creeping Motion and 2-D Boundary Layers

7.2.1 Creeping motion

Assumptions:

- incompressible fluid
- very slow motion \rightarrow inertia terms can be neglected.

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial z} + \omega \frac{\partial u}{\partial z} = -\underbrace{g \frac{\partial h}{\partial x}}_{body force normal force} + \underbrace{\frac{\mu}{\rho} \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right]}_{shear force}$$

$$= inertia effect \rightarrow 0$$

$$x-Eq.$$

$$\frac{\partial (p + \gamma h)}{\partial x} = \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

$$y-Eq.$$

$$\frac{\partial (p + \gamma h)}{\partial y} = \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right)$$

$$z-Eq.$$

$$+ \underbrace{\frac{\partial (p + \gamma h)}{\partial z}}_{\nabla (p + \gamma h)} = \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)$$

$$\nabla (p + \gamma h) = \mu \nabla^2 \vec{q}$$
(7.1a)

 \rightarrow pressure change = combination of viscous effects and gravity

1) For incompressible fluids in an enclosed system (fluid within fixed boundaries)

$$p = p_d + p_s$$

where p_d = pressure responding to the <u>dynamic effects by acceleration</u>

 $p_s = const. - \gamma h$ (<u>hydrostatic</u> relation)

where const. depends only on the datum selected.

$$\therefore p = p_d + const - \gamma h$$

Eq. (7.1a) becomes

$$\nabla(p_d + const - \gamma h + \gamma h) = \mu \nabla^2 \vec{q}$$

$$\nabla p_d = \mu \nabla^2 \vec{q}$$
(7.2)

 \rightarrow Equation of motion for creeping flow

2) Continuity eq. for constant density

$$\nabla \cdot \vec{q} = 0 \tag{A}$$

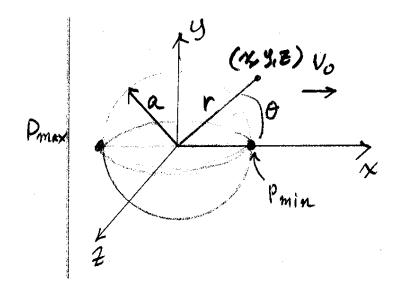
Solve (7.2) and (A) together with BC's

$$\begin{bmatrix} Unknowns = u, v, w, p \\ Eqs. = 3+1 \end{bmatrix}$$

[Ex] **Stoke's motion**: Re < 1

~ very slow flow past a fixed sphere \rightarrow Figs. 9.1-9.3 (D&H)

~ solid sphere falling through a very viscous infinite fluid



• Solution:

$$u = V_0 \left[\frac{3}{4} \frac{ax^2}{r^3} (\frac{a^2}{r^2} - 1) - \frac{1}{4} \frac{a}{r} (3 + \frac{a^2}{r^2}) + 1 \right]$$

$$v = V_0 \frac{3}{4} \frac{axy}{r^3} (\frac{a^2}{r^2} - 1)$$

$$w = V_0 \frac{3}{4} \frac{axz}{r^3} (\frac{a^2}{r^2} - 1)$$

$$p_d = -\frac{3}{2} \mu \frac{ax}{r^3} V_0$$
(9.4)

• Pressure distribution: Eq. $(9.4) \rightarrow Fig 9.4$

$$p \Big|_{r=a} = -\frac{3}{2} \mu \frac{x}{a^2} V_0 = -\frac{3}{2} \frac{\mu V_0}{a} \cos \theta \quad (\because x = a \cos \theta)$$

$$\therefore p_{\max} \Big|_{x=-a} = \frac{3}{2} \frac{\mu V_0}{a} \quad \sim upstream \ stagnation \ point$$

$$p_{\min} \Big|_{x=a} = -\frac{3}{2} \frac{\mu V_0}{a} \quad \sim downstream \ stagnation \ point$$

• Shear stress:

$$\tau_{r\theta} = \mu \left(\frac{1}{r} \frac{\partial v_r}{\partial \theta} + \frac{\partial v_\theta}{\partial r}\right)$$
(9.12)

where
$$v_r = V_0 \cos \theta \left(1 - \frac{3}{2} \frac{a}{r} + \frac{1}{2} \frac{a^3}{r^3}\right)$$

 $v_\theta = -V_0 \sin \theta \left(1 - \frac{3}{4} \frac{a}{r} - \frac{1}{4} \frac{a^3}{r^3}\right)$
 $\therefore \tau_{r\theta}\Big|_{r=a} = \frac{3}{2} \frac{\mu V_0}{a} \sin \theta$
(9.13)

• Drag on the sphere

Eq. (8.22):

$$D = \frac{+\int_{0}^{\pi} \tau_{r\theta} \sin \theta ds}{D_{f} = frictional \ drag} - \frac{\int_{0}^{\pi} p \cos \theta ds}{pressure \ drag} = D_{p}$$

where $ds = 2\pi a^2 \sin \theta d\theta$

$$\therefore D = \frac{4\pi a \mu V_0}{frictional \ drag} + \frac{2\pi a \mu V_0}{pressure \ drag} = 6\pi a \mu V_0$$

Eq. (8.27):

$$D = C_D \rho \frac{V_0^2}{2} A = C_D \rho \frac{V_0^2}{2} \pi a^2$$

$$\therefore 6\pi a \mu V_0 = C_D \rho \frac{V_0^2}{2} \pi a^2$$

$$\therefore C_D = \frac{12\mu}{\rho V_0 a} = \frac{24}{\rho V_0 D / \mu} = \frac{24}{\text{Re}}$$
(9.17)

 \rightarrow Fig. 9.5: valid if Re < 1;

for Re > 1 we cannot neglect inertia effect.

7.2.2 Equations for 2-D boundary layers

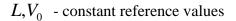
- (1) Two-dimensional boundary layer equations: Prandtl
- \rightarrow simplification of the N-S Eq. using <u>order-of-magnitude arguments</u>

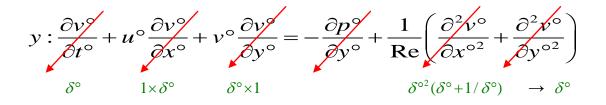
 \rightarrow <u>2D dimensionless N-S eq</u>. for incompressible fluid (omit gravity)

$$x:\frac{\partial u^{\circ}}{\partial t^{\circ}} + u^{\circ}\frac{\partial u^{\circ}}{\partial x^{\circ}} + v^{\circ}\frac{\partial u^{\circ}}{\partial y^{\circ}} = -\frac{\partial p^{\circ}}{\partial x^{\circ}} + \frac{1}{\operatorname{Re}}\left(\frac{\partial^{2}u^{\circ}}{\partial x^{\circ^{2}}} + \frac{\partial^{2}u^{\circ}}{\partial y^{\circ^{2}}}\right) (7.3)$$

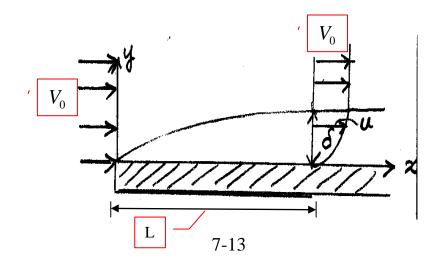
$$1 \quad 1 \times 1 \quad \delta^{\circ} \times 1/\delta^{\circ} \quad \delta^{\circ^{2}}(1+1/\delta^{\circ^{2}}) \to 1$$

where
$$x^{\circ} = \frac{x}{L}$$
; $y^{\circ} = \frac{y}{L}$; $u^{\circ} = \frac{u}{V_0}$; $v^{\circ} = \frac{v}{V_0}$; $p^{\circ} = \frac{p}{\rho V_0^2}$





Continuity:
$$\frac{\partial u^{\circ}}{\partial x^{\circ}} + \frac{\partial v^{\circ}}{\partial y^{\circ}} = 0$$



Within <u>thin and small</u> curvature boundary layer

$$u \gg v, \qquad x \gg y$$

 $\frac{\partial u}{\partial y} \gg \frac{\partial u}{\partial x}$
 $\frac{\partial p}{\partial y}$ is small ~ may be neglected

dimensionless boundary-layer thickness δ°

$$\delta^{\circ} = \frac{\delta}{L} \to \delta^{\circ} \ll 1$$

 \therefore scale for decreasing order

$$\frac{1}{\delta^{\circ^2}} > \frac{1}{\delta^{\circ}} > 1 > \delta^{\circ} > \delta^{\circ^2}$$

Order of magnitude

$$x^{\circ} \sim O(1)$$
$$y^{\circ} \sim O(\delta^{\circ})$$
$$u^{\circ} \sim O(1)$$
$$v^{\circ} \sim O(\delta^{\circ})$$

$$\frac{\partial u^{\circ}}{\partial x^{\circ}} \sim O(1)$$

$$\frac{\partial v^{\circ}}{\partial y^{\circ}} \sim O(1) \leftarrow continuity \left(\frac{\partial v^{\circ}}{\partial y^{\circ}} = -\frac{\partial u^{\circ}}{\partial x^{\circ}}\right)$$

$$\frac{\partial u^{\circ}}{\partial y^{\circ}} \sim O\left(\frac{1}{\delta^{\circ}}\right)$$
$$\frac{\partial v^{\circ}}{\partial x^{\circ}} \sim O\left(\delta^{\circ}\right)$$

$$\frac{\partial^2 u^{\circ}}{\partial (x^{\circ})^2} = \frac{\partial}{\partial x^{\circ}} \left(\frac{\partial u^{\circ}}{\partial x^{\circ}} \right) \sim O(1)$$
$$\frac{\partial^2 v^{\circ}}{\partial (y^{\circ})^2} = \frac{\partial}{\partial y^{\circ}} \left(\frac{\partial v^{\circ}}{\partial y^{\circ}} \right) \sim O(\frac{1}{\delta^{\circ}})$$
$$\frac{\partial u^{\circ}}{\partial t^{\circ}} = \frac{\partial u^{\circ}}{\partial x^{\circ}} \frac{\partial x^{\circ}}{\partial t^{\circ}} = u^{\circ} \frac{\partial u^{\circ}}{\partial x^{\circ}} \sim O(1)$$
$$\frac{\partial v^{\circ}}{\partial t^{\circ}} = \frac{\partial v^{\circ}}{\partial x^{\circ}} \frac{\partial x^{\circ}}{\partial t^{\circ}} = u^{\circ} \frac{\partial v^{\circ}}{\partial x^{\circ}} \sim O(\delta^{\circ})$$
$$\operatorname{Re} = \frac{\rho v y}{\mu} \sim O(\delta^{\circ^2})$$

Therefore, eliminate all terms of order less than unity in Eq. (7.3) and revert to dimensional terms

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\mu}{\rho} \frac{\partial^2 u}{\partial y^2}$$
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
(7.7)

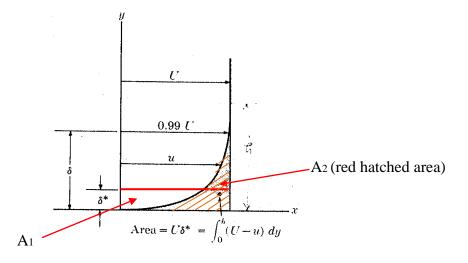
 \rightarrow <u>Prandtl's 2-D boundary-layer equation</u>

BC: 1)
$$y = 0; u = 0, v = 0$$

2) $y = \infty; u = U(x)$ (7.8)

Unknowns: u, v, p; Eqs. = 2 \rightarrow needs assumptions for p

7.2.3 Boundary - layer thickness definitions



(1) Boundary-layer thickness, δ

~ The point separating the boundary layer from the <u>zone of negligible viscous influence</u> is not a sharp one. \rightarrow very intermittent

 δ = distance to the point where the velocity is within 1% of the free-stream velocity, U

$$@ y = \delta \rightarrow u_{\delta} = 0.99U$$

(2) Mass displacement thickness, $\delta^*(\delta_1)$

~ δ^* is the thickness of an <u>imaginary</u> layer of fluid of velocity *U*.

~ δ^* is the thickness of mass flux rate equal to the amount of defect

$$A_1 = A_2$$

$$\rho U \delta^* = \frac{\rho \int_0^h (U - u) dy}{mass \ defect} \qquad h \ge \delta$$

$$\therefore \delta^* = \int_0^h (1 - \frac{u}{U}) dy$$
(7.9)

7-16

[Re] mass flux = mass/time

$$= \rho Q = \rho U A = \rho U \delta^* \times 1$$

(3) Momentum thickness, $\theta(\delta_2)$

 \rightarrow Velocity retardation within δ causes a <u>reduction in the rate of momentum flux</u>.

 $\rightarrow \theta$ is the thickness of an imaginary layer of fluid of velocity U for which the momentum flux rate equals the reduction caused by the velocity profile.

$$\rho \theta U^{2} = \rho \int_{0}^{h} (U - u) u dy = \rho \int_{0}^{h} (U u - u^{2}) dy$$

$$\therefore \theta = \int_{0}^{h} \frac{u}{U} (1 - \frac{u}{U}) dy \qquad (7.10)$$

[Re]momentum in θ = mass × velocity = $\rho\theta U \times U = \rho\theta U^2$

momentum in shaded area = $\int [\rho(U-u) \times u] dy$

$$\delta > \delta^* > \theta$$

(4) Energy thickness, δ_3

$$\frac{1}{2}\rho U^3 \delta_3 = \frac{1}{2} \int_0^h \rho u (U^2 - u^2) dy$$
$$\therefore \delta_3 = \int_0^h \frac{u}{U} (1 - \frac{u^2}{U^2}) dy$$

[Re]

1) Batchelor (1985):

displacement thickness = distance through which streamlines just outside the boundary layer are displaced laterally by the retardation of fluid in the boundary layer.

2) Schlichting (1979):

displacement thickness = distance by which the external streamlines are shifted owing to the formation of the boundary layer.

7.2.4 Integral momentum equation for 2-D boundary layers

Integrate Prandtl's 2-D boundary-layer equations

Assumptions:

constant density
$$d \rho = 0$$
steady motion $\frac{\partial()}{\partial t} = 0$ pressure gradient = 0 $\frac{\partial p}{\partial x} = 0$

BC's: @
$$y = h$$
; $\tau = 0$, $u = U$
@ $y = 0$; $\tau = \tau_0$, $u = 0$

Prandtl's 2-D boundary-layer equations become as follows:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \frac{\mu}{\rho}\frac{\partial^2 u}{\partial y^2}$$
(A)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{B}$$

Integrate Eq. (A) w.r.t. y

$$\int_{y=0}^{y=h\geq\delta} \left(\frac{u}{\frac{\partial u}{\partial x}} + v \frac{\partial u}{\frac{\partial y}{\partial y}} \right) dy = \frac{\mu}{\rho} \int_{y=0}^{y=h} \frac{\partial^2 u}{\partial y^2} dy$$
(C)
(1) (2) (3)

$$(3) = \mu \int_0^h \frac{\partial^2 u}{\partial y^2} dy = \int_0^h \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right) dy = \int_0^h \frac{\partial \tau}{\partial y} dy = [\tau]_0^h$$
$$= \tau \Big|_{y=h} - \tau \Big|_{y=0} = 0 - \tau_0 = -\tau_0$$

$$(2) = \int_{0}^{h} v \frac{\partial u}{\partial y} dy = \underbrace{\int_{0}^{h} \frac{\partial uv}{\partial y} dy}_{(4)} - \underbrace{\int_{0}^{h} u \frac{\partial v}{\partial y} dy}_{(5)}$$
(D)

[Re] Integration by parts: $\int vu' dy = vu - \int v' u dy$

$$(\textcircled{1}) = \int_0^h \frac{\partial uv}{\partial y} dy = [uv]_0^h = Uv_h - 0 = Uv$$

Continuity Eq.:
$$\frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x}$$
 (i)

$$\rightarrow \qquad v = -\int_0^h \frac{\partial u}{\partial x} dy \tag{ii}$$

Substitute (i) into (5)

$$(5) = \int_0^h u \left(-\frac{\partial u}{\partial x} \right) dy = -\int_0^h u \frac{\partial u}{\partial x} dy$$

Substitute (ii) into ④

$$(4) = Uv = -U \int_0^h \frac{\partial u}{\partial x} dy$$

Eq. (D) becomes

$$\int_{0}^{h} v \frac{\partial u}{\partial y} dy = -U \int_{0}^{h} \frac{\partial u}{\partial x} dy + \int_{0}^{h} u \frac{\partial u}{\partial x} dy$$
(E)

Then, (C) becomes

$$\int_{0}^{h} u \frac{\partial u}{\partial x} dy - U \int_{0}^{h} \frac{\partial u}{\partial x} dy + \int_{0}^{h} u \frac{\partial u}{\partial x} dy = -\frac{\tau_{0}}{\rho}$$
(F)

For steady motion with $\partial p / \partial x = 0$, and *U*=const., (F) becomes

$$\frac{\tau_0}{\rho} = U \int_0^h \frac{\partial u}{\partial x} dy - 2 \int_0^h u \frac{\partial u}{\partial x} dy = \int_0^h \frac{\partial U u}{\partial x} dy - \int_0^h \frac{\partial u^2}{\partial x} dy$$
$$= \int_0^h \frac{\partial}{\partial x} [u(U-u)] dy = \frac{\partial}{\partial x} \int_0^h u(U-u) dy = \frac{\partial}{\partial x} (\theta U^2)$$
where θ = momentum thickness θU^2

$$\frac{\tau_0}{\rho} = \frac{\partial}{\partial x} (U^2 \theta) = U^2 \frac{\partial \theta}{\partial x}$$
(7.18)

Introduce local surface (frictional) resistance coefficient C_f

$$C_{f} = \frac{D_{f}}{\frac{\rho}{2}u^{2}A_{f}} = \frac{\tau_{0}}{\frac{\rho}{2}U^{2}}$$

$$D_{f} = \frac{\rho}{2}C_{f}A_{f}u^{2}$$
(7.19)
$$C_{0} = \frac{\rho}{2}C_{f}U^{2}$$

$$C_{f} = 2\frac{\partial\theta}{\partial x}$$
(7.20)

[Re] Integral momentum equation for unsteady motion

$$\rightarrow$$
 unsteady motion: $\frac{\partial()}{\partial t} \neq 0$

 \rightarrow pressure gradient, $\frac{\partial p}{\partial x} \neq 0$

First, simplify Eq. (7.7) for external flow where viscous influence is negligible.

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + v \frac{\partial U'}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\mu}{\rho} \frac{\partial^2 U'}{\partial y^2}$$

$$\rho \frac{\partial U}{\partial t} + \rho U \frac{\partial U}{\partial x} = -\frac{\partial p}{\partial x}$$
(A)

Substitute (A) into (7.7)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + \frac{\mu}{\rho} \frac{\partial^2 u}{\partial y^2}$$
$$-\frac{1}{\rho} \frac{\partial p}{\partial x}$$

Integrate

$$\int_{0}^{h} \frac{\mu}{\rho} \frac{\partial^{2} u}{\partial y^{2}} dy = \int_{0}^{h} \left\{ \frac{\partial u}{\partial t} - \frac{\partial U}{\partial t} + \frac{u}{\partial x} \frac{\partial u}{\partial x} - U \frac{\partial U}{\partial x} + \frac{v}{\partial y} \frac{\partial u}{\partial y} \right\} dy$$
(B)
(B)

$$(1): \int_{0}^{h} \frac{\mu}{\rho} \frac{\partial^{2} u}{\partial y^{2}} dy = -\frac{\tau_{0}}{\rho}$$

$$(2): \int_{0}^{h} \left(\frac{\partial u}{\partial t} - \frac{\partial U}{\partial t}\right) dy = \int_{0}^{h} \frac{\partial}{\partial t} (u - U) dy = \frac{\partial}{\partial t} \int_{0}^{h} (u - U) dy = -\frac{\partial}{\partial t} U \delta^{*}$$

$$-U \delta^{*}$$

$$(3) = \frac{\int_{0}^{h} \left(u \frac{\partial u}{\partial x} - u \frac{\partial U}{\partial x} \right) dy}{(3) - 1} dy + \frac{\int \left(u \frac{\partial U}{\partial x} - U \frac{\partial U}{\partial x} \right) dy}{(3) - 2}$$

$$(3-1) = \int_0^h \left\{ u \frac{\partial}{\partial x} (u-U) \right\} dy$$

$$(3)-2=\int_0^h \left\{ (u-U)\frac{\partial U}{\partial x} \right\} dy = \frac{\partial U}{\partial x} \int_0^h (u-U) dy = \frac{\partial U}{\partial x} (-U\delta^*)$$

$$(4) = \int_{0}^{h} v \frac{\partial u}{\partial y} dy = -U \int_{0}^{h} \frac{\partial u}{\partial x} dy + \int u \frac{\partial u}{\partial x} dy = \int_{0}^{h} (u - U) \frac{\partial u}{\partial x} dy$$

$$Eq.(E)$$

Combine (3)-1 and (4)

$$\int_{0}^{h} u \frac{\partial}{\partial x} (u - U) dy + \int_{0}^{h} (u - U) \frac{\partial u}{\partial x} dy = \int_{0}^{h} \left[u \frac{\partial}{\partial x} (u - U) + (u - U) \frac{\partial u}{\partial x} \right] dy$$
$$= \int_{0}^{h} \frac{\partial}{\partial x} \left\{ u(u - U) \right\} dy = \frac{\partial}{\partial x} \int_{0}^{h} u(u - U) dy = \frac{\partial}{\partial x} (-\theta U^{2})$$

Substituting all these into (B) yields

$$-\frac{\tau_0}{\rho} = -\frac{\partial}{\partial t} (U\delta^*) - U \frac{\partial U}{\partial x} \delta^* - \frac{\partial}{\partial x} (\theta U^2)$$
$$\frac{\tau_0}{\rho} = \frac{\partial}{\partial x} (U^2 \theta) + U \frac{\partial U}{\partial x} \delta^* + \frac{\partial}{\partial t} (U\delta^*)$$
(7.21)

\rightarrow Karman's integral momentum eq.

7.3 The notion of resistance, drag, and lift

\rightarrow D&H Ch.15

Resistance to motion = drag of a fluid on an immersed body in the direction of flow

- ◆ Dynamic (surface) force exerted on the rigid boundary by moving fluid
 - tangential force caused by shear stresses due to <u>viscosity and velocity gradients</u> at the boundary surfaces

2) normal force caused by <u>pressure intensities</u> which vary along the surface due to dynamic effects

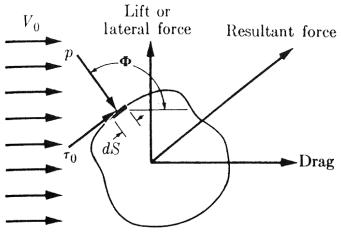


FIG. 8-7. Definition diagram for flow-induced forces.

• Resultant force = <u>vector sum of the normal and tangential surface forces</u> integrated over

the complete surface

~ resultant force is divided into two forces:

- 1) drag force = component of the resultant force in the direction of relative velocity V_0
- 2) lift force = component of the resultant force normal to the relative velocity V_0
- ~ Both drag and lift include frictional and pressure components.

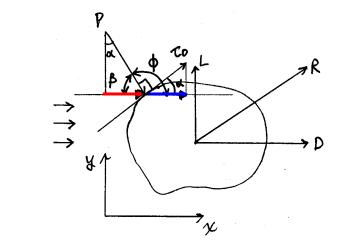
7.3.1 Drag force

• Total drag, D

$$D = D_f + D_p$$

where $D_f = frictional \ drag = \int_s \tau_0 \sin \phi ds$

$$D_p = pressure \ drag = -\int_s p \cos \phi ds$$



$$\sin\phi = \sin(90^\circ + \alpha) = \cos\alpha$$

 $\cos\phi = \cos(90^\circ + \alpha) = -\sin\alpha$

- (1) Frictional drag = surface resistance = skin drag
- (2) Pressure drag = form drag

~ depends largely on shape or form of the body

For airfoil, hydrofoil, and slim ships: surface drag > form drag For bluff objects like spheres, bridge piers: surface drag < form drag • Drag coefficients, C_{D_f} , C_{D_p}

$$D_f = C_{D_f} \rho \frac{V_0^2}{2} A_f$$
$$D_p = C_{D_p} \rho \frac{V_0^2}{2} A_p$$

where $A_f =$ actual area over which shear stresses act to produce D_f

 A_p = frontal area normal to the velocity V_0

Total drag coefficient C_D

$$D = C_D \rho \frac{V_0^2}{2} A$$

where A = frontal area normal to V_0

$$C_D = C_{D_f} + C_{D_p}$$

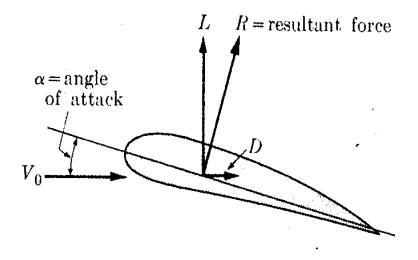
 $C_D = C_D(geometry, \text{Re}) \rightarrow \text{Ch. 15}$

[Re] Dimensional Analysis

$$D = f_1(\rho, \mu, V, L)$$
$$\frac{D}{\rho L^2 V^2} = f_2\left(\frac{\rho VL}{\mu}\right) = f_2(\text{Re}) = C_D$$
$$\therefore D = C_D \frac{\rho}{2} A V^2$$

7.3.2 Lift force

For lift forces, it is not customary to separate the frictional and pressure components.



• Total lift, L

$$L = C_L \rho \frac{V_0^2}{2} A$$

where C_L = lift coefficient; A = largest projected area of the body