
Stability of Equilibrium: Buckling

Introduction

When slightly disturbed from an equilibrium configuration, does a system tend to 

return to its equilibrium position or does it tend to depart even further?
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Fig. 9.1 Example of (a) stable, (b) neutral, and (c) unstable equilibrium.
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Elastic Stability
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Fig. 9.2 Hinged bar is (a) stable for 

tensile load, (b) unstable for 

compressive load.

Make 

Stable
Fig. 9.3 (a) 
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2 (unstable)

2 (stable)       (9.1)
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Fig. 9.4 Transverse displacement x due to load eccentricity     .ε
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If P is not too close to  the critical load                         

the equilibrium displacement (x) is small.
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Examples of Instability

Fig. 9.6   Twist-bend buckling of a 
deep, narrow beam.

Fig. 9.7   Buckling of 

a column under a 

compressive load.
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deep, narrow beam.

Fig. 9.9   Twist-bend buckling of a shaft in torsion.

Fig. 9.8   Buckling and crumpling of the cylindrical walls 

of a can subjected to compressive force. Fig. 9.10   “Snap-through” instability of a shallow curved member.
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Elastic Stability of Flexible Columns

Fig. 9.11  (a) Beam subjected to 

longitudinal and transverse loads; (b) free-

body sketch of element of beam.
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0 (9.7)
00

b

v
M

at x at x Ldv
V

dx

= 
= 

= = 
== 

Boundary conditions
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d v 

Fig. 9.12  Column in a state of neutral equilibrium 

in the bent position.
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When EI and P are constants, the governing equation (9.6) is
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0

d v d v
EI P

dx dx
+ = (9.9)
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A solution to (9.9) for arbitrary values of the four constants is 

1 2 3 4
sin cos

P P
v c c x c x c x

EI EI
= + + +                      (9.10) 

Substituting (9.10) into the four boundary conditions of (9.7) and (9.8) 

1 4

2 3

0
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c c
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c c

EI

+ =

+ =
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2 3

3 4

2

0

sin cos 0

0

c c
EI

P P P P
c L c L

EI EI EI EI

c P

+ =

− − =

=

                 (9.11) 

This is an eigenvalue problem. 

2 3 4 1
0c c and c c= = = −  

Then the third equation becomes simply  
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1
cos 0

P P
c L

EI EI
=                                     (9.12) 

This can be satisfied by having a value of P  such that 

cos 0
P

L
EI

=                                          (9.13) 

The smallest value of P  meeting this condition is  
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2

24

EI
P

L

π
=     (Critical load)                            (9.14) 

Substituting back into (9.10), the corresponding deflection curve is 

1
1 cos

2

x
v c

L

π 
= − 

 
                                    (9.15) 

For smaller value of P  the straight column is stable. 

For larger value of P  the straight column is no longer stable. ���� Buckling    
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Another insight into column buckling:

imperfection in either the column or the loading

Fig. 9.13  Flexible column held in equilibrium by (a) a longitudinal 

compressive force P with eccentricity є and (b) the same compressive 
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compressive force P with eccentricity є and (b) the same compressive 

force  P plus an end moment M0000 . The equivalence of the two loadings 

is shown in (c). 
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Boundary conditions:
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(9.16)
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0
1 cos /

cos /

M P EI x
v

P P EI L

−
=

0 sec 1
M P

L
P EI

δ
 

= − 
 

x L=

(9.17)
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which reduces to

sec 1
P

L
EI

δ ε
 

= − 
 

(9.18)

Fig. 9.14  Relation between compressive force P and transverse 

deflection δ due to eccentricity є .
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Fig. 9.15  Critical loads for (a) clamped-free, (b) 

hinged-hinged, (c) clamped-hinged, and (d) 

clamped-clamped columns. In each case the 

constant c shown is to be inserted in the formula   

Pcrit  = cEI/L2.
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Lateral-torsional buckling of an aluminium 

alloy plate girder designed and built by 

students atImperial College London.

Sun kink in rail tracks
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Elastic Postbuckling Behavior
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where      is a parameter which fixes the nature of the nonlinearityβ
0:

0:

stiffening spring

softening spring

β

β

>

<

Fig. 9.16  Strut supported by nonlinear springs with   f = kx(1+βx2/L2) .



Stability of Equilibrium: Buckling

From Fig. 9.16(b)
2

2
2 1 0
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P kL= B : bifurcation point
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the branch BD represents unstable equilibrium positions.In every case

The branch BC represents

0

0

0

for

for

for

β

β

β

>

=

<

stable equilibrium positions.

neutral equilibrium positions.

unstable equilibrium positions.

Fig. 9.17  Ideal postbuckling curves for (a) ββββ = 10,   (b) β = 0, (c) β = -10.
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( )
2

2
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x
P x kLx

L
ε β

 
+ = + 

 
(9.20)

When the load is positioned slightly off-center:
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Fig. 9.18  Eccentric load on strut supported by nonlinear springs.
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Fig. 9.19  Effect of imperfection parameter є/L on postbuckling behavior for (a) ββββ = 10,   (b) β = 0, (c) β = -10.
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Fig. 9.20  Maximum load for softening nonlinearity (β = -10 ) depends on magnitude of imperfection.
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Extension of Euler’s Formula To Columns with Other End 

Conditions

Free end A and FFree end A and FFree end A and FFree end A and Fixed end Bixed end Bixed end Bixed end B

Behaves as the upper half of a pin-

connected column.

ㆍEffective length: 

ㆍCritical Load:

LLe 2=

2 2
EI EIπ π
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ㆍCritical Stress:

2 2

24
cr

e

EI EI
P

L L

π π
= =

2

2

)/( rL

E

e

cr

π
σ =

: Effective slenderness ratiorLe /

(11- 11’)

(11- 13’)
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Extension of Euler’s Formula To Columns with Other End 

Conditions (continued)
Two Fixed ends A and BTwo Fixed ends A and BTwo Fixed ends A and BTwo Fixed ends A and B

ㆍThe shear at C and the horizontal components of the reaction at A and B are 0.

ㆍRestraints upon AC and CB are identical.

ㆍPortion AC and BC: symmetric about  its midpoint D and E. 

→ D and E are points of inflection (M=0)

ㆍPortion DE must behave as a pin- ended column.
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→ The effective length is: / 2
e

L L=
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Extension of Euler’s Formula To Columns with Other End 

Conditions (continued)

One PinOne PinOne PinOne Pin---- Connected end A and One Fixed end BConnected end A and One Fixed end BConnected end A and One Fixed end BConnected end A and One Fixed end B

ㆍDifferential equation of the elastic curve:

Portion AQ:  

,

VxPyM −−=

EI

Vx

EI

Py

EI

M

dx

yd
−−==

2

2

EI

Vx
yp

dx

yd
−=+ 2

2

2
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,where

Particular solution is: 

General solution is: 

EI

P
p =2

x
P

V
x

EIp

V
y −=−=

2

x
P

V
pxBpxAy −+= cossin

(11- 6)
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Extension of Euler’s Formula To Columns with Other End 

Conditions (continued) 

One PinOne PinOne PinOne Pin---- Connected end A and One Fixed end B (continued)Connected end A and One Fixed end B (continued)Connected end A and One Fixed end B (continued)Connected end A and One Fixed end B (continued)

BC 1:                     →

BC 2:                  ,

oy =)0(

oLy =)( odxdy
Lx

=
=

/

L
P

V
pLA =sin

P

V
pxAp

dx

dy
−= cos

(11- 17)
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,                                      

→

0cos =−=
P

V
pLAp

dx

dy

P

V
pLAp =cos

pLpL =tan 4934.4=pL

2

19.20

L

EI
Pcr =

(11- 18)

(11- 19, 20)(11- 17, 18):

(11- 6): (11- 21)

(11- 11, 21’):                                ,                             
22

2 19.20

L

EI

L

EI

e

=
π

LLLe 7.0699.0 ≈=
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Extension of Euler’s Formula To Columns with Other End 

Conditions (continued)

Effective length of column for various end conditionsEffective length of column for various end conditionsEffective length of column for various end conditionsEffective length of column for various end conditions
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Extension of Euler’s Formula To Columns with Other End 

Conditions (continued)

Sample Problem 11.1Sample Problem 11.1Sample Problem 11.1Sample Problem 11.1

An aluminum column of length L and 

rectangular cross section has a fixed end B 

and supports a centric load at A. Two smooth 

and rounded fixed plates restrain end A from 

moving in one of the vertical planes of 

symmetry of the column, but allow it to move 
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symmetry of the column, but allow it to move 

in the other plane. (a) Determine the ratio a/ b 

of the two sides of the cross section 

corresponding to the most efficient design 

against buckling. (b) Design the most efficient 

cross section for the column, knowing that 

L=500 mm, E=70 GPa, P=20 kN, and that a 

factor safety of 2.5 is required.
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Extension of Euler’s Formula To Columns with Other End 

Conditions (continued)

SAMPLE PROBLEM 11.1SAMPLE PROBLEM 11.1SAMPLE PROBLEM 11.1SAMPLE PROBLEM 11.1

Buckling in x, y planeBuckling in x, y planeBuckling in x, y planeBuckling in x, y plane

Effective length with respect to buckling in this plane:            .

Radius of gyration: 

Effective slenderness ratio: 

Buckling in x, z planeBuckling in x, z planeBuckling in x, z planeBuckling in x, z plane

LLe 7.0=

12//)12/1(/ 3
aabbaAIr zz ===

)12//()7.0(/ aLrL ze =

=

(1)
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Effective length with respect to buckling in this plane:

Radius of gyration:

Effective slenderness ratio: 

(a)(a)(a)(a) Most effective design.Most effective design.Most effective design.Most effective design.

→The critical stresses corresponding to the possible modes of buckling are equal.

→                    ; 

LLe 2=

12//)12/1(/ 3
bababAIr yy ===

)12//()2(/ bLrL ye =

2

2

)/( rL

E

e

cr

π
σ =

12/

2

12/

7.0

b

L

a

L
= 35.0=

b

a

(2)
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Extension of Euler’s Formula To Columns with Other End 

Conditions (continued)

Sample Problem11.1Sample Problem11.1Sample Problem11.1Sample Problem11.1

(b) Design for given data.(b) Design for given data.(b) Design for given data.(b) Design for given data.

;  ;  ;  ;  eqn(2) →→→→

( . .) (2.5)(20kN) 50kN
cr

P F S P= = =

0.5mL =

3

2

50 10 N

0.35

cr

cr

P

A b
σ

×
= = ( )bbabA )35.0(==

brL ye /464.3/ =
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39.7mmb =

2 3 2 9

2 2 2

50 10 N (70 10 Pa)

( / ) 0.35 (3.464 / )
cr

e

E

L r b b

π π
σ

× ×
= = =

0.35 13.9mma b= =
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Eccentric Loading: The Secant Formula

PePyMPyM A −−=−−=

EI

Pe
y

EI

P

EI

M

dx

yd
−−==

2

2

Portion AQ:

Bending moment at Q is

(11- 22)

yd
2
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EI

P
p =2

epyp
dx

yd 22

2

2

−=+ (11- 23)

where,

General solution of (11- 23):

epxBpxAy −+= cossin (11- 24)
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Eccentric Loading: The Secant Formula (continued)

eB =

Boundary conditions:

(11- 25)

0)0( =y

0)( =Ly )cos1(sin pLepLA −=

2
cos

2
sin2sin

pLpL
pL =

2
tan

pL
eA =

2
sin2cos1 2 pL

pL =−and                             )(since
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22 2









−+= 1cossin

2
tan pxpx

pL
ey (11- 26)
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Eccentric Loading: The Secant Formula (continued)

The value of the maximum deflection is obtained by setting             .2/Lx =









−+= 1

2
cos

2
sin

2
tanmax

pLpLpL
ey













−= 1

cos

2
cos

2
tan 2

pL

pLpL

e
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







=

EI

P
p

2

(11- 27)







 2

cos
pL









−= 1

2
secmax

pL
ey












−









= 1

2
secmax

L

EI

P
ey (11- 28)
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Eccentric Loading: The Secant Formula (continued)

becomes infinite when 

22

π
=

L

EI

P

P

(11- 30)

(11- 29)

maxy

While the deflection does not actually become infinite, and    should 

not be allowed to reach the critical value which satisfies (11- 29).

2
EI

P
π

=
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(11- 30)
2L

EI
Pcr

π
=

Solving (11- 30) for      and substituting into (11- 28),EI












−












= 1

2
secmax

crP

P
ey

π (11- 31)
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Eccentric Loading: The Secant Formula (continued)

The maximum stress:

(11- 33)

(11- 32)

Portion AC:

I

cM

A

P max
max +=σ

( )eyPMPyM A +=+= maxmaxmax








 +
+=

+
+=

2

maxmax
max

)(
1

)(

r

cey

A

P

I

cey

A

P
σ
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(11- 35)



Substituting maxy























+=

2
sec1

2max

L

EI

P

r

ec

A

P
σ

(11- 34)


























+=

crP

P

r

ec

A

P

2
sec1

2

π
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Eccentric Loading: The Secant Formula (continued)

PSince the maximum stress does not vary linearly with the load    , 

the principle of superposition does not apply to the determination of 

the stress due to the simultaneous application of several loads; the 

resultant load must first be computed, and (11- 34) or (11- 35) may be 

used to determine the corresponding stress. For the same reason, any 

given factor of safety should be applied to the load, and not to the 

stress.
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(11- 34):   Making

(11- 36)

2
ArI =











+

=

r

L

EA

P

r

ecA

P

e

2

1
sec1

2

maxσ

The Secant FormulaThe Secant FormulaThe Secant FormulaThe Secant Formula
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Eccentric Loading: The Secant Formula (continued)
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For a steel column 6

29 10 psiE = × 3 6 k s i
Y

σ =
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Eccentric Loading: The Secant Formula (continued)

(11- 37)

2/ rec

2

max

1
r

ecA

P

+

=
σ

For all small value of         , the secant is almost equal to 1:         2/ rLe

For large values of         , the curves corresponding to the various 
values of the ratio          get very close to Euler’s curve defined by 

(11.13’), and thus that the effect of the eccentricity of the loading 

2/ rLe
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(11.13’), and thus that the effect of the eccentricity of the loading 

on the value of         becomes negligible.AP /
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Eccentric Loading: The Secant Formula (continued)

Sample Problem  11.2           

The uniform column AB consists of an 8- ft section of structural 
tubing having the cross section shown. (a) Using Euler’s formula 

and a factor of safety of two, determine the allowable centric load 

for the column and the corresponding normal stress. (b) Assuming 

that the allowable load, found in part a, is applied as shown at a 

point 0.75 in. from the geometric axis of he column, determine the 

horizontal deflection of the top of the column and the maximum 

normal stress in the column. Use                      .
6

29 10 psiE = ×

Mechanics and Design SNU School of Mechanical and Aerospace Engineering

normal stress in the column. Use                      .
6

29 10 psiE = ×
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Eccentric Loading: The Secant Formula (continued)

Effective LengthEffective LengthEffective LengthEffective Length

One end fixed and one end free: 2 ( 8 f t ) 1 6 f t 1 9 2 in .
e

L = = =

Critical LoadCritical LoadCritical LoadCritical Load

Using Euler’s formula,

2 2 6 4

2 2

( 2 9 1 0 p s i )(8 .0 0 in )
6 2 .1k s i

1 9 2
c r

E I
P

L

π π ×
= = =
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1 9 2
e

L

(a)(a)(a)(a) Allowable Load and StressAllowable Load and StressAllowable Load and StressAllowable Load and Stress

For a factor of safety of 2:
62.1ksi

31.1kips
. . 2

cr

all

P
P

F S
= = =

2

31 .1ksi
8 .79 ksi

3 .54 in

a ll
P

A
σ = = =
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Eccentric Loading: The Secant Formula (continued)

(b) Eccentric Load.(b) Eccentric Load.(b) Eccentric Load.(b) Eccentric Load.

sec 1 (0.75in) sec 1
P

y e
π π

= − = −
       

        

Column AB (Fig. 1) and its loading are identical to the 

upper half of the upper half of the Fig. 2.

Horizontal deflection of point A:
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max
sec 1 (0.75in) sec 1

2 2 2
cr

y e
P

= − = −           
Fig. 1Fig. 1Fig. 1Fig. 1

Fig. 2Fig. 2Fig. 2Fig. 2

0 . 9 3 9 i n=

Maximum normal stress:

max 2 2 2

31.1kips (0.75in)(2in)
1 sec 1 sec

2 3.54in (1.50in) 2 2
cr

P ec P

A r P

π π
σ = + = +

    
   
   

2 2 .0 k s i=


