Finite Element Method: Truss Element

Introduction

= The finite element method (FEM) is a technique for analyzing the behavior of
engineered structures subjected to a variety of loads. FEM is the most widely applied
computer simulation method in engineering.

—>The basic idea is to divide a complicated structure into small and manageable pieces
(discretization) and solve the algebraic equation.

Applications of FEM in Engineering
Simulation
Experiment
Engineered system  Vehicle Tire Cellular phone Li-ion battery system
Predicted measure  Safety Cornering force Reliability Thermal behavior
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Available Commercial FEM Software

* ANSYS (General purpose) PATRAN (Pre/Post Processor)
* [-DEAS (Complete CAD/CAM/CAE package) NASTRAN (General purpose)
* HyperMesh (Pre/Post Processor) COSNOS (General purpose)

 ABAQUS (Nonlinear and dynamic analyses) * Dyna-3D (Crash/impact analysis)

Types of Finite Elements

1-D (Line) Element 2-D (Plane) Element 3-D (Solid) Element

—°

(Spring, truss, beam, pipe, etc.) (Membrane, plate, shell, etc.) (3-D fields — temperature,
displacement, stress, flow

velocity, etc.)
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Truss Element in 2D Space

Y
¥V i &
2 T
.,-""’
L dy. fo
1
)
T - X
Jlt' Ix
X, ¥ : global coordination system u : deformation
X, » :local coordination system L: length
: displacement

d
f :force
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Linear Static Analysis

Most structural analysis problems can be treated as linear static problems, based on the following

assumptions.

1. Small deformations (loading pattern is not changed due to the deformed shape)
2. Static loads (the load is applied to the structure in slow or steady fashion)

3. Elastic materials (no plasticity or failures)

Hooke’s Law and Deformation Equation

o=F¢ P
Equilibrium
i( y
Ao =T = Constant 7
Assumptions

1. Truss cannot support shear force. fi, =0

2. Ignore the effect of lateral deformation

Mechanics and Design
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Direct Stiffness Method

DSM is an approach to calculate a stiffness matrix for a system by directly superposing the
stiffness matrixes of all elements. DSM is beneficial to get the stiffness matrix of relatively
simple structures consist of several trusses or beams.

Step 1: Determination of element type Step 2: Determination of deformation

Assume a linear deformation function as

U=a,+a,x :[M x+d,,
L

In vector form

i=[N, Nz]{%x}

d2x

by
N, =1-= Ny =<

N,, N,: shape function
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Step 3: Strain and stress calculation

Deformation rate - strain

A

_di d,, —d,
&k L

X

&

Stress - strain

o =FEc¢

X X

Mechanics and Design

Step 4: Derivation of element stiffness matrix

T=Aoc, = AE(—dz"Zd“]

flx =-T= —(dAlx _dAzx)

NOTE: In a truss element, stiffness
(spring constant, k) is equivalent to AE/L
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Step S: Constitution of global stiffness matrix Step 6: Calculation of nodal displacement
Construct a global stiffness matrix in a * Use boundary conditions
global coordinate system * Solve the system of linear algebraic

equations £ =Kd to calculate the
nodal deformation in a truss structure

||
Mz

=

F={F}=% 1"

e=1

Step 7: Calculation of stress and strain in an element

Compute a strain and stress at any point
within an element

Mechanics and Design
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Example (Truss element in 1D space)

A structure consists of three beams (see below figure). Find (a) the global stiffness
matrix in global coordinate system, (b) the displacements at the node 2 and 3, (c)
the reaction forces at the node 2 and 3. 3000lb loading acts in the positive x-
direction at node 2. The length of the elements is 30:mn.

Young’s modulus for the elements 1 and 2: £ = 30 10° psi

Cross-sectional area for the elements 1 and 2: 4 = 1/

Young’ s modulus for the elements 3: £ = 15X 10° psi

Cross—sectional area for the elements 3: A = 2irf

3000 Ib
7,1 ® WZ*/ @ 3 ® 4\?/ X
é+— 30 in.—+f+— 30 in.—}—30 in ———Z
éf 90 in =Z/
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Step 4: Derivation of element
stiffness matrix

AE| 1 -1
L -1 1

[~

Step 5: Constitution of global
stiffness matrix

Mechanics and Design

element #
k(l) _ k(2) _ (1)(3())( 106) 1
- - 30 -1
Lo _ (A5x10°) 1 1 —1)
- 30 — 1
4 dy, d; dyy
1 —1 0 0
; -1 1+1 -1 0
K=10
0O -1 1+1 -1
i 0 0 —1 1
F{x\ 1 -1 0 O
FE -1 2 -1 0
I l_q0°
E. O -1 2 -1
Em i 0O o0 -1 1

‘
N
J

=

Answer of (a)
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Step 6: Calculation of nodal Using the boundary conditions d, = d, =0

displacement
3000 10° 2 —1}|(|d,,
o -1 2|4,

So, the displacements for this system are

d,. = 0.002in. d,. =0.001in. Answer of (b)

Substituting the displacements to the equation, the
load can be obtained as follows.

E, =105(d1,—a’ ) =10°(0—0.002) = —200075 Answer of (c)

. =10°(—d,, +2d,, —d;,) = 10°[0+2(0.002) — 0.001] = 300075

_m{ —d,, +2d;, —d,, ) =10°[-0.002+2(0.001)-0] =0
(-4,

F, =10° d,,) =10°(~0.001 +0) = —10007b

o, =—

Step 7: Calculation of stress and F
strain in an element x A

Mechanics and Design
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Selection of Deformation Function

1. The deformation function needs to be continuous within an element.
2. The deformation function needs to provide continuity among elements.

1-D linear deformation function satisfies (1) and (2). = compatibility

3. The deformation function needs to express the displacement of a rigid body and the constant
strain in element.

U=a,+a,x :1-D linear deformation function = completeness

a, considers the motion of a rigid body.
a, X considers the constant strain (&, =di/dx =a, )
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Truss Element in 2D Space

Vector transformation in 2-D

i d Displacement vector d in global
coordinate and local coordinate systems.

d=di+d j=di+dj

- X Global Local

Relation between two coordination systems

1 c S(d
a:x = . C=cos§ S=sinl Eq. (1)
d| |-S C]ld,
y
cC S . .
S C : Transformation Matrix
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Stiffness matrix in global coordinate system

The stiffness matrix of truss element in local coordinate system

f 1 -1](d P
le =£[ } ‘flx f=kd : Step 4 on page 6
£ L1-1 1|4, =
The stiffness matrix of truss element in global coordinate system

r]plx \ rdlx \
f d, : What we want to

T = k< m Z =kd construct in 2-D space
~f2x d2x

\ny, \dZy)

Let’s calculate the relation between é and £ .
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From Eq.(1), (
q-(1) "
d_=d, cos@+d,,sind { 1 } {C S 0 O} d,
A * >
‘;'u =d,, cosf+d, sind d,, 0 0 C S§]ld,
kd2y,
Simply,
22| B0 ~“7lo o c s

Transform the loading in a same way,

"
flx cC S 00 fly
{f} [o 0 C S} £

i

Simply,

[=T'f| Eq3
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From Eq.(2) and (3)
.y . [C s 0 0
J T ARE T =
* . where, L 00 C S
Tf=kI'd

We needs the inverse matrix of 7*; however, because 7* is not the square matrix, it cannot be
immediately transformed.

Invite (fAly,é’ly)and (fAzyaC?Zy)

=

Ko o [ [0
= <
Il
|
o O A
S O 0O
Cla A o o
Oy © o
N&SQAE
0>

Transformation Matrix

In a same way,

~

S=LJ
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Expanded 4 X4 matrix é

/. 1 0 -1 0|4,
[l _AENO 00Oy, |
]Zx L _1 O 1 O dzx
7 0 0 0 0]d,

The stiffness matrix of truss elements in global coordinate system

[ 3>

Tf=kTd f=T"'kTd=T"

Iid

T is an orthogonal matrix (T"=T").

k=T"kT
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So, C S 0 0
S -C* -CS r-|™ ¢ 00

AE s* -CS -5 oS

p o AE S — - 0 0 -S C
) c* CS k=T"kT ] ]
Symmetry s> | E4- 4 (1 0 -1 0]

) ) [ AE[0 0 0 0

= L|-10 1 0

0 0 0 0]

Assemble the stiffness matrix for the whole system

N N
Z]_C(e):K Zj_F(e):E
e=1 e=1

The relation between the nodal loading and displacement in global coordinate system

F=Kd
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Example (Truss element in 2D space)

Three truss elements are assembled and 10,0001b loading is applied at node 1 as shown in
figure. Find the displacements at node 1. For all elements, Young’s modulus:

E=30x10°psi , cross-sectional area: 4=2in.”,

g

10 ft

1 4:'§
T i i
10 ft |
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Data for stiffness matrix calculation

Node Element &g C S C*? S? CS
1 and 2 1 90° 0 1 0 1 0
1 and 3 2 45° J2172 2/2 1/2 1/2 1/2
1 and 4 3 0° 1 0 1 0 0
d, d, dy,
(0 0 O
6
Step 4: Derivation of element stiffness O (30 <10 )(2) 010
matrix (from Eq. (4)) B 120 0O 0 O
0 -1 0
a diy dy, ds,, ds), _ diy diy, dyy
05 05 -05 -05 1 0 =1
6
o) _ (30x10°)(2)| 0.5 05 -05 -0.5 o (30x10°)(2)] 0 0 ©
- 120x+2 |[-0.5 -05 05 05 = 120 1 0 1
05 -05 05 0.5 ] 0 0 0

Mechanics and Design
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Step S: Constitution of global stiffness matrix

Ay dy, dy, dy, ds, ds, diy dyy
1354 0354 0 0 -0354 -0354 -1 O

0354 1354 0 -1 -0354 -0354 0 O

0 0 0 0 0 0 0 O

K = (500,000) 0 —1 0 1 0 0 0 O
_ -0354 0354 0 0 0354 0354 0 O
-0354 0354 0 0 0354 0354 0 O

—1 0 0 O 0 0 1 O

0 0 0 0 0 0 0 0]
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Step 6: Calculation of nodal displacement

Using boundary condition at node 2,3, and 4. 0000 b ek |

0 (1354 0354 0 0 -0354 -0354 -1 0] [ 4.
-10,000 0354 1354 0 -1 -0354 -0354 0 0 d,,

E, 0 0 00 0 0 0 0| |d =0

F 0 -1 0 1 0 0 0 0 d, =

L= (500,000) )G

F, 0354 0354 0 0 0354 0354 0 0| |d, =0

E, -0354 0354 0 0 0354 034 0 0 d;, =0

F, 10 00 0 0 1 0| |d, =0

E, 0 0 0 0 0 0 0 0] Ld4y:0,

Calculate unknown displacement
0 1354 03541](d,,
= (500,000)
—10,000 0354 1354 ||4,,

d,=0414x107in. d, =-159x107in.

v
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F
Step 7: Calculation of stress and strain in an element ( o=~ )
(d, =0.414x107] P
Qo _ "2y
106 d, =-159x107 o=
o =300 g —3965psi A
120 d,, =0
d,=0 |
(d, =0.414%107)
-2
0(2)=30X106 —~2 2 V2 V2 J d,=-139x10 > o N2F,
12042 | 2 2 2 2 d,, =0 o ==
d, =0 |
=1471psi
and
(d, =0.414%107)
6 d, =-159%x107"
oo = 3010 [-1 0 1 O " - = —1035psi o Fl
120 d, =0 ¥ ==
d,, =0
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Step 8: Confirmation the loading equilibrium at node 1
Y E.=0  (1471psi)(2 m.z)%— (1035psi)(2in*) =0

D E,=0  (3695psi)(2in)+(1471psi)(2 in.z)g —10,000 =0
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Truss Element in 3D Space
()

et

"

|

o 8

C. C, C. 0 0 0
1o 0o o c c c

X

e

RPN S ST S ¥

[
[

- c. c, C. 0 0 0
- o 0o o c ¢ CcC

A truss in 3-D space

NOTE: &;i\+%-lj+6}zl;:dxi+dyj+dzk We can get k using Ix instead of 1 (]_C:ITI_CI).
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f_f 1s calculated by using

C. 0
C, 0
; C. 0|4E]|1
10 C. | L|-1
0 C
_O CZ_
- C.C,
o
p2E
- L
| Symmetry

Mechanics and Design

k=

|

c.C

X z

cC

y z

C

X

0

( TS)TEZS as below.

c, C. 0

0 0 C

-C?  -C.C,
2

-c.c, -C
-Cc.C. —-C,C,
c: GG,

C

0 O
c, C

-C.C

X z

-C C

y z

cC

X z

CcC

y z
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Example (Truss element in 3D space)

Solve the 3-D truss problem as shown in below figure. The elastic moduli for all elements are
E=12x10° psi . 10001b loading is applied in the negative z-direction at node 1. Node 2, 3,
and 4 are supported on sockets with balls (x,y, and z direction movements are constrained).
The movement along the vy direction is constrained by a roller at Node 1.

349 (0, 36, 72)

AP = 0.302 in.?
A® = 0.729 in.?
A® = 0.187 in.?

(0, 36, 0)

Roller preventing
/ y displacement

(72, 0, 0)

©, 0, —48)2: 4
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Step 4: Derivation of element stiffness matrix

Stiffness matrix of the elements A:
(_AE[ 2 -2
T LA 4

where the submatrix ﬁr:

sz Cx Cv Cx Cz
i“ — C}' Cx CE Cv Cz
Cz Cx Cz Cv C:

So, k is defined as A is defined.

For element 3

Directional cosine: XZLZ'O:—O,S?,?)
86.
C _X % _Ya—h _Z4 5
TON yo® 2 I3 C,=0
Where length of the element L®: —485
i =—=-0.550
L® = [(—7’2_'[))2 +(—48.0)2] " =86.5in. 865

Mechanics and Design
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Submatrix A

A 0.69 0 0.46
A= 0 0 0
046 0 030

Stiffness matrix of the element £

d]x dly d]z d4x d4y d4z

o _ (0187) (12 10 4 -1
- 86.5 ~A A
For element 1
L =80.5in. C.=-089 C,=045 C =0
079 -040 O L d e d
A=-040 020 0 o (03200(12x100)[ 4 -
0 0 0 - 80.5 - 2

Mechanics and Design
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Finite Element Method: Truss Element

For element 2
L® =108in. Cx =—0.667 Cy =0.33 CZ =0.667

045 -022 -0.45 G d b, ds, dy, d,
A=[-022 011 045 k(z):(0-729)(1-2><106){ A ) }
—0.45 045 045 N 108 —

Step 5, 6, 7

Using the boundary conditions ¢,,=0, d,,=d,,=d,.=0,d, =d; =d,.=0,d,, =d, ,=d,.=0

di, d,
9000 —2450
9450 4450 Stiffness matrix

0 9000 —24507(d,, _ . :
10007 22450 4550 d. Stiffness equation in global coordinate system

d._=—-0.072in.

x_

Calculated displacement (The negative signs mean that the
d,_=-0264in. displacements are in the negative x and z direction)

Mechanics and Design
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Inclined or Skewed and Support

2
‘y le g \\‘

> X

To be convenient, apply the boundary condition d, , to the local coordinate x'— '
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Displacement vector transformation at node 3:
d;. cosa sina |[d;,
d,| |-sina cosa]l|d,,

ld}=[1,]{d,} [t3]:[ cosa sina}

—sina@ Cos«

or

Displacement vector transformation at all nodes:
{a'}=[7]{d}
r !
{a}=[7] {d'}

or
’dlx\ dl,x
d d/
’ 1 o] 01|
Ay ) [ [ [
\ o [l [ J[5
\d3y \dgy
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Loading vector transformation :

In local coordinate system {fg'} = [fg ] {fg}

In global coordinate system

(f0
Tol 11/
ARILECRC e
=011} or = [0] [Z] [0] ] 2|

ny ny
PARURUR ey
f3’y \f 35 )

NOte: ‘]le:f'lx’ ﬁy:f'ly ’f2x:f'2x ’f2y:f'2y

d.=d,, d =d,, d, =d,;, d, =d]

1x° ly» 2x°9
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Transformation of the finite element formulation in global coordinates::
[£1=[K1{d}
S [BHS=[E]K )G
> [BHA=EKNL] {9

f;lx d]x

ﬁ}' dl}'

f}x dlx
1 r (~BIKNET

N 2y 2y
fl?px d?:x

kfl3y kd;}'

Boundary condition: d, =0, dly =0, d3’y =0 F,, =0, Fy =0 F,

d

Calculation of displacement and loading: unknown displacements d,..d, ,

2x°
forces F, , £, and that of inclined roller F;’y

d;  reaction

Mechanics and Design
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Example (Truss element in inclined support)

Find displacements and reacting forces for the plane trusses in the figure. £=210GPa and

A=6.00x10" m* for nodes 1 and 2, and A=6~2x10" m* for node 3.

%
_ ' | 3
1000 kN — 3o lm

©)

vx,
|

Mechanics and Design
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Element 1
cos =0 sinf=1
d, d, d dy,
-0 0 3
k(l)_(6.0><10*“)(210><109) 1 0 -1
- 1m O 0
| Symmetry 1
Element 2
cosf=1 sin@=0
d dy, dy, ds,
1 0 -1 0]
L) (60x107)(210x10%) 0 00
B lm 1 0
| Symmetry 0]

Mechanics and Design
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Element 3
cos@= Q sin &= Q
iy dyy dsy d3y_
05 05 -05 -05
Lo _ (642 x107)(210x10°) 05 —-05 —05
- V2 05 05
| Symmetry 0.5

Calculation of the matrix K in global coordinates using direct stiffness method:

0.5 05 0 0 -05 -05]
5 0 -1 -05 -05

S 1 0 -1 0
K=1260x10" N/m

0 0
1.5 05
| Symmetry 0.5

Mechanics and Design
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Matrix I, which transforms the displacement at node 3 in global coordinates to the local
coordinates Xx'—)':

1000 0 0
0100 0 0
0010 0 0
[7]=
00071 0 0
0000 22 22
0 0 0 0 —2/2 +2/2]
Calculation of K =T, KT,":
0.5 0.5 0 0 -05 -05]
0.5 1.5 0 -1 -05 -05
g 0 0 1 0 -1 0
T, K=1260x10
0 -1 0 1 0 0
-0.707 -0.707 -0.707 0 1414 0.707
0 0 0707 0 -0707 0 |

And,

Mechanics and Design
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Finite Element Method: Truss Element

dy; dy, dy dy), a3 a3,

0.5 05 0 0 —0707 0
0.5 15 0 -1 -0707 0

) oo 0 1 0 -0707 0.707

T,KT,"=1260x10

0 -1 0o 1 0 0

~0.707 —-0.707 —-0.707 0 1500 —0.500

0 0 0707 0 -0500 0500 |

Substituting the boundary conditions d1x=d1y=d2y=d3'y=0 to the above equation,
F,. =1000 kN 1 -0707](d,,
=(1260x107)
F.=0 ~0.707 150 ||d. |-

Calculating displacements,

d, =11.91mm
d; =5.613mm

Mechanics and Design
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Calculating loadings,

Mechanics and Design

1000 kN

. =—500kN
,=—500kN

s S

ol
I
S

<

F =707kN

2
>

1 500 kN

Y 500 kN

707 kN

Free body diagram of truss structure
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1. Solution of finite element coincides with the exact solution at nodes. The reason why it
coincides with the exact solution at nodes is because it calculates the element nodal
loading by the energy equivalent based on the linearly assumed displacement form at each
element .

2. Although the nodal value for displacement coincides with the exact solution, the values
between nodes are very inaccuracy in the case of using few elements due to using linear
displacement function at each element. However, when the number of elements increases,
the solution of finite element converges on the exact solution.

3. Stress 1s derived from the slope of displacement curve as G=E8=E(du/dx). Axial
stress is constant at each element, for # of each element in the solution of finite
element is a linear function. The much more elements are needed for the modeling of the
first derivative of the displacement function like the modeling of axial stress.

4. The most approximate value of the stress appears not at nodes, but at the central point.
It 1s because the derivative of displacement is calculated more accurate between nodes
than at nodes.

5. Stress is not continuous over the element boundaries. Therefore the equilibrium is not

satisfied over the element boundaries. Also, the equilibrium at each element is usually

not satisfied.
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