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ABSTRACT OF CHAP. 7

» Linear algebra in Chaps. 7 and 8 discusses the theory and
application of vectors and matrices, mainly related to
linear systems of equations, eigenvalue problems, and
linear transformation.

» Chapter 7 concerns mainly systems of linear equations and
linear transformations.

= Systems of linear equations arise in structural analyses,
electrical networks, mechanical frameworks, economic
models, optimization problems, numerics (Chaps 21-
23) for differential equations.

Y
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CHAP. 7.1
MATRICS, VECTORS: ADDITION AND
SCALAR MULTIPLICATION

A matrix is a mathematical tool to represent linear
System characteristics.
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NOTATIONS AND CONCEPTS

» Notations: matrices are denoted by capital boldface
letters, such as A; entries at the intersection of the i-row
and j-column are denoted by a;; .

[y @ o dy |
A=[ap) =T G2 O
| dm1 m2 7 G

» A m X n matrix means m-rows and n-columns; an n X n
matrix 1s called square.

» In a square matrix the elements a,, down to a_, are said to
be on the main diagonal.

» Vector: a matrix with either one row or one column.
Entries are called components.
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MATRIX EQUALITY

> Definition:

Equality of Matrices

Two matrices A = [ﬁjk] and B= [bﬁ] are equal. written A = B. if and only if they have the same size
and the corresponding entries are equal. that is, a,, = b,,. a;, = b,,. and so on. Matrices that are not

equal are called different. Thus. matrices of different sizes are always different.

Addition of Matrices

The sum of two matrices A = [”g'k] and B = [b,;".ﬁr] of the same size 1s written A + B and has the entries

A + b;‘ﬁr obtained by adding the corresponding entries of A and B. Matrices of different sizes cannot
be added.
Scalar Multiplication (Multiplication by a Number)

The product of any m = 7 matrix A = [ﬂg'k] and any scalar ¢ (number ¢) 1s written cA and 1s the m =

7 matrix cA = [fajk] obtained by multiplying each entry of A by ¢.
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SCALAR MULTIPLICATION

Rules for Matrix Addition and Scalar Multiplication. From the familiar laws for the addition of
numbers we obtain similar laws for the addition of matrices of the same size m = n. namely.,

(a) A+B=B+A
) (A+B)+C=A4+B+C) (writen A+B+C)
(c) Asn=N

(d) A+(—A)=0.
Here 0 denotes the zero matrix (of size m x n). that is. the i * » matrix with all entries zero. (The last
matrix in Example 5 1s a zero matrix.)

Hence matrix addition is commutative and associative [by (3a) and (3b) ].

Similarly. for scalar multiplication we obtain the rules
(a) c(A+B)=cA+¢B
(b) (c+A)A=cA+ kA

4) _
& (c) c(kA) = (ck)A  (written ckA)
(d) JA=A
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ADDITION AND SCALAR
MULTIPLICATION OF VECTORS

» Problem 1
7A — 5B
where

A=[3 0 4]

B=[-1 8 2]

7TA=[21 0 28]

5B =[-5 40 10]

TA-5B=[26 -40 18]
e

7AT —5B" =| —40
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ADDITION AND SCALAR
MULTIPLICATION OF VECTORS

» Problem 2
5(C-2D)="
o - -
C=| 5 D=| -2
L 7_ L 6_
[ 5] [ 25
C-2D=| 9 5(C-2D)=| 45
-5 | | -25
5(2D-C)="
20| [45] [ 25
=[-20 |-| 25 |=|-25
60 35 | |-25
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HOMEWORKIIN 7.1

» HW1. Recall Example 2 (Page 274). Compute the total revenue of the
store when three products I, II, III are sold at $100, $120, and $150,

respectively.

» HW2. Build any matrix to represent your life characteristics. For
instance, grade (% scale) vs. number of study hours per week for three
courses (choose any) in the previous semester.

. _____________________________________________________________________________________________________________________________________________|] h : Ny
ik
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CHAP. 7.2
MATRIX MULTIPLICATION

The most popular use of matrix multiplication operation
is a linear transformation of one system to the other
system.
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MATRIX MULTIPLICATION

» Matrix algebraic operation: Addition, Subtraction, Scalar
Multiplication, and Matrix Multiplication

» Two matrices may be multiplied, and produce a third matrix,
provided they are conformable to multiplication.

» If there exists A and B then these two matrices are
conformable and the resultant matrix 1s of size ‘mp’, that is,

C

mp

. _____________________________________________________________________________________________________________________________________________|] = : Ny
\‘v;b":"‘%
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MATRIX MULTIPLICATION DEFINITION

Multiplication of a Matrix by a Matrix

The product C = AB (in this order) of an m = n matrix A = [aj i) times an 7 > p matrix B = [bjk] i3

defined if and only if » = » and is then the m * p matrix C = [¢ jk] with entries

by
(D Cik= L 6100 = anbik + Gjabak +  + Gjmbnk

A B = C
[ xn][nxr] = [mxr].

A A M
r N7 . A

b E L I

@11 %2 By by by, 11 %12

44 321 Gy Ops byy by | =| € €

m=

@31 %32 By by, by, €31 C32
i _ﬂdl ﬂdz I‘l‘a_ _c-ﬂl C“-E_
Fig. 155. Notations in a product AB = C
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MULTIPLICATION EXAMPLES

» Example
4 3] 5 s 8 +3 20 + 18]
7T 2] - =114 +2 35 + 12
1 6],
9 0_3’2 I8 45
» Example

{4 2} H ) {12 ¥ 10} ) {22}
18], 5], 3+40],, |43
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MULTIPLICATION RULES

» Multiplication is not commutative, in general.

» AB can be equal to 0, but this does not imply that either
A or B 1s necessarily 0.

» Even if it is given that AC = AD, it is not necessarily
true that C = D.

» Some rules include:

Our examples show that the order of factors in matrix products must always be observed very carefully.
Otherwise matrix multiplication satisfies rules similar to those for numbers, namely.

(a) (kA)B = k(AB) = A(KkB) Writien kAB or AKB
(b) A(BC) = (AB)C Written ABC
@) (c) (A+B)C=AC+BC
(d) C(A+B)=CA+CB
B.D. Youn Engineering Mathematics Il Chapter 7 14 ‘%-L



ROW AND COLUMN VECTOR
MULTIPLICATION

» Row X Column

_1_
3 6 1] ,;|2| =[3+12+4],
—4—3,1
» Column X Row
1] 3 6 1]
2| 36 1,=]6 12 2
4], 1224 4,
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MOTIVATION OF MULTIPLICATION

» Relation of x,x,-system to y,y,-system

Y1 =anx; +anx; v
Y =anX) + dpx;

Y1 Ay @ Qi || X1] [ @nXy b X
Ya| U7 |@m an||Xa|  |anx;tapx;|’
» Further the relation of x,X,-system to w,w,-system

. — X Bw — by by |[w
) "T‘-E \'_2.321 bﬁi Wﬂ

» Finally the relation of w,w,-system to y,y,-system

bywy + &pw,
boywy -+ byyw,

Vo (e | E1 1z || cnuwy + Wy
] Ca1 €m || W3 EqWy + CaaWy |

C=AB or ey =andy +apdy

C1p =and + apdy

C':1=f1315311 | ﬂ:zbzl szzﬂzlbu f ﬂnzbn

B.D. Youn
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TRANSPOSITION OF MATRICES

Transposition of Matrices and Vectors

The transpose of an m * n matrix A = [”jk] is the n = m matrix AT (read 4 franspose) that has the

first row of A as its first colummn. the second row of A as its second colummn. and so on. Thus the
. . aT )
transpose of A in (2) is & = [@jky]. written out

@11 @a1...%m1

T __ | d1a daat dma

(9) Al =ag]=| "B 20T
Al Cmn

As a special case, transposition converts row vectors to column vectors and conversely.

Rules for transposition are

(a) (A=A
| T AT T
(10) (&) (A+B) =A +B
() (cA)T=cAT
(d) (AB)"=BTAT.

A

N : N )
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TRANSPOSITION OF MATRICES

» Suppose the matrix A has m rows and n columns; then the
transposed matrix AT has n rows and m columns, with the
rows and columns of A interchanged.

5 4
5 -8 1 ;
A = . A"=[-8 0
4 0 0
1 0

B.D. Youn Engineering Mathematics Il Chapter 7 18



SPECIAL MATRICES

Symmetric and Skew-Symmetric Matrices. Transposition gives rise to two useful classes of matrices.
as follows. Symmetric matrices and skew-symmetric matrices are square matrices whose transpose
equals the matrix itself or minus the matrix, respectively:

AT=A (thus ayj = aik), AT= — A (thus @K = —ajk, hence aji=0).

11
(1) Symmetric Matrix Skew Symmetric Matr
20 120 200 01 =3
A=|[120 10 150 15 symmetric, and B=|-10 =2 15 skew-symmetric.
200 150 30 3 2 0

Triangular Matrices. Upper triangular matrices are square matrices that can have nonzero entries
only on and above the main diagonal. whereas any entry below the diagonal must be zero. Similarly.,
lower triangular matrices can have nonzero entries only on and below the main diagonal. Any entry on
the main diagonal of a triangular matrix may be zero or not.

1 4 2 2 0 0 ) vuo
1 3 9 =3 0 0
0 2| 03 2 |8 =1 0}, 1 02 0
00 6 7 6 8 -1 g 3 6_
Upper tnangular Lower tnangular
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SPECIAL MATRICES

B.D. Youn Engineering Mathematics Il Chapter 7 20

Diagonal Matrices. These are square matrices that can have nonzero entries only on the main diagonal.
Any entry above or below the main diagonal must be zero.

If all the diagonal entries of a diagonal matrix S are equal. say. ¢, we call S a scalar matrix because
multiplication of any square matrix A of the same size by S has the same effect as the multiplication by
a scalar, that is.

(12) AS =SA=cA

In particular, a scalar matrix whose entries on the main diagonal are all 1 is called a unit matrix (or
identity matrix) and 1s denoted by I or simply by I. For I. formula (12) becomes

(13) AT=TA=A

EXAMPLE 10 Diagonal Matrix D. Scalar Matrix S. Unit Matrix I

2 0 0 e 00 1 00
D=0 =3 0}, S=|[0 ¢ 0O, I=(0 10
0 0 0 00 ¢ 0 01

» For any square matrix A there exists an I such that: Al = A
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SPECIAL MATRICES

» If ais a row vector of order n, and b is a column vector, also of order n,
then the inner product or dot product of a and b is the scalar which 1s
the sum of the products of the respective elements

» Example
a=[4 -1 5]
o
b=|5
_8_

a-b=8 -5+ 40 = 43 (ascalar)

» Thus, matrix multiplication amounts to combinations of dot products of
row and column vectors

. . . ¥, |@l ¥
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MULTIPLICATION OF MATRICES BY
MATRICES AND BT VECTORS

EXAMPLE 11 Computer Production. Matrix Times Matrix

Supercomp Ltd produces two computer models PC1086 and PC1186. The matrix A shows the cost per
computer (in thousands of dollars) and B the production figures for the yvear 2005 (in multiples of 10000
units.) Find a matrix C that shows the shareholders the cost per quarter (in millions of dollars) for raw
material. labor, and miscellaneous.

Quarter
PCIO8B6 PCILIB6 ] 2 3 4

1.2 1.6 Raw Components

3 8 O 97 PCl086
A=103 0.4 l.ahor B =

] 2 4 3| PCl186

{15 (0.6 Miscellaneous

Solution: Quarter
] 2 3 4
13.2 12.8 13.6 15.6 Raw Components
C = AB = 13 32 3. 149 Laboa
5.1 52 54 6.3 Miscellaneous

Since cost 1s given in multiples of $1000 and production in multiples of 10 000 units, the entries of C
are multiples of $10 millions: thus ¢,, = 13.2 means $132 million, etc.

11 .
g' Y
B.D. Youn Engineering Mathematics Il Chapter 7 22 Yy E



HOMEWORK IN 7.2

B.D. Youn

» HW1. Problem 19(d)
» HW2. Problem 23
» HW3. Problem 28(a) and 28(b)

Engineering Mathematics Il Chapter 7
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CHAP. 7.3

LINEAR SYSTEMS OF EQUATIONS.
GAUSS ELIMINATION

The most important use of matrices occurs in the

solution of systems of linear equations, briefly called
linear systems.

%t%‘&-%»’?
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LINEAR SYSTEMS OF EQUATIONS

A linear system of i equations in » unknowns x, -, x 1is a set of equations of the form
EI]_I]_ | e | ﬂm}‘fn :bl

(1) anXy +eb @y = by
am1X1 ot Xy = b

The system 1s called /inear because each variable X; appears in the first power only, just as in the
equation of a straight line. a,, -+, a, = are given numbers, called the coefficients of the system. by, -,
b on the right are also given numbers. If all the b ; are Zero, then (1) 1s called a homogeneous system. If

at least one bj 1s not zero, then (1) 1s called a nonhomogeneous system.

A solution of (1) is a set of numbers x, -, x that satisfies all the m equations. A solution vector of (1)

1s a vector X whose components form a solution of (1) . If the system (1) 1s homogeneous, it has at least
the trivial solution x; =0, x =0.

Matrix Form of the Linear System (1) . From the definition of matrix multiplication we see that the m
equations of (1) may be written as a single vector equation

(2) Ax=Dh
where the coefficient matrix A = [a ;‘k] 1s the m X n matrix
‘ QLEDD®
R ¥
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LINEAR SYSTEMS OF EQUATIONS

B.D. Youn Engineering Mathematics Il Chapter 7 26 Yy

@11 @13 vt @ A1 by

o a (2 B
A= _21 '22 .m atiel x=| - and b=

@m1 @mz " dogn X .

are column vectors. We assume that the coefficients a g are not all zero, so that A 1s not a zero matrix.

Note that x has » components, whereas b has m components. The matrix

@y e @1 8

Em1 T Emn E:'m

is called the augmented matrix of the system (1) . The dashed vertical line could be omitted (as we
shall do later); it 1s merely a reminder that the last column of A does not belong to A.

» In a system of equations there may be a unique solution,
infinitely many solutions, or no solution at all.



EXAMPLE OF LINEAR SYSTEMS

Node P gives the first equation, node Q the second, the right loop the third, and the left loop the fourth,
as indicated in the figure.

20Q Q 10Q

’m VW NDdﬂP: il_ i:2+ is- U
i] l:3
Node @  —ij+ i,— iz= 0
80 Vl 100 lﬁﬂ v
T i T Right loop: 10i, + 25i, = 90
2
P 160 Left IODDZ Mi]+ 10!:2 = 80

Fig. 157. Network in Example 2 and equations relating the currents

——————————2225555———————————————————————————————————

N : N )
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GAUSS ELIMINATION

» The Gauss method of elimination is frequently used to
solve the linear systems.

» Gauss elimination is a standard method for solving linear
systems with the following rules:
e Rule 1- rows may be interchanged,;
e Rule 2- one row may be multiplied by a non-zero
constant
e Rule 3- a multiple of one row may be added to another
row
» We now call a linear system S, row-equivalent to a linear
system S, if S, can be obtained from S, by (finitely many)
row operations.

3
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GAUSS ELIMINATION

THEOREM 1

Row-Equivalent Systems

Row-equivalent linear systems have the same set of solutions.

Because of this theorem, systems having the same solution sets are often called equivalent systems. But
note well that we are dealing with row operations. No column operations on the augmented matrix are
permitted in this context because they would generally alter the solution set.

A linear system (1) 1s called overdetermined if it has more equations than unknowns, as in Example 2,
determined if m = n, as in Example 1, and underdetermined if it has fewer equations than unknowns.

Furthermore, a system (1) is called consistent if it has at least one solution (thus, one solution or
infinitely many solutions), but inconsistent if it has no solutions at all, as x; +x, = 1, x; +x, =01n

Example 1.

Y|
;E‘ﬁ
)
%

VLSS,
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@L:%
e

&
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GAUSS ELIMINATION

EXAMPLE 3 Gauss Elimination if Infinitely Many Solutions Exist

Solve the following linear systems of three equations in four unknowns whose augmented matrix 1s

30 20 20 50 1 80 + 2.0xy + 2013 — 5.0xg = 8.0
(5) 06 15 15 -54 | 27]. Thus, 0.6+ 1.5%5 + 1523 — 5.4x, = 2.7
|
12 =03 -03 24 | 21 1.2%| = 0.3x5 = 0.3xg + 2454 = 2.1
Solution:
Step 1. Elimination of x from the second and third equations by adding
—06/30= =02 times the first equation to the second equation,
— 1.2/3.0= =04 times the first equation to the third ecquation.
This gives the following, in which the pivot of the next step 1s circled.
3.0 2.0 2.0 501 80 3.0x; + 20xs + 2083 — 5.0x4 = B0
I
(6) 0 1.1 1.1 —44; 11| Row2— 02 Row | + .lxg — 44x4 = 1.1
|
0 —-1.1 —-11 441 -11] Row3 — 0.4 Row | “Llxg|— llxg + 4.4x, = —1.1
D EIND
)
B.D. Youn Engineering Mathematics Il Chapter 7 30 %p‘,‘éﬁv
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GAUSS ELIMINATION

Step 2. Elimination of x, from the third equation of (6) by adding
1.1/1.1=1 times the second equation to the third equation.
This gives

8.0 .?l.[:'.'l.']_ + 3.|.|‘.\.'2 + 2.|.]'.\'3 . .':'.*.l.'i',; - ®.()

(7) 0 1.1 1.1 4.4 1.1

I.I.\'E T ].l.'-'3 E —1-1{4

() Low 3 Row 2 0= 1

Back Substitution. From the second equation, x, = 1 — x5 + 4x,. From this and the first equation, x| =
2 — x,. Since x5 and x,, remain arbitrary, we have infinitely many solutions. If we choose a value of'x;

and a value of x,, then the corresponding values of x| and x, are uniquely determined.

On Notation. If unknowns remain arbitrary, it is also customary to denote them by other letters 7, 7,
~+. In this example we may thus write x; =2 —x, =2 — 715, x, =1 —xy +4dx, =1 — 1) +47,, x; =1, (first

arbitrary unknown), x, = 7, (second arbitrary unknown).

B.D. Youn Engineering Mathematics Il Chapter 7 31 V{n, E



GAUSS ELIMINATION

EXAMPLE 4 Gauss Elimination if no Solution Exists

What will happen 1f we apply the Gauss elimination to a linear system that has no solution? The answer
is that in this case the method will show this fact by producing a contradiction. For instance, consider

32 113 + Oxp + X3 = 3
| 3, : o

2 L 1, 0 24|+ x+ x3=10
|

6 2 4 1 6 Bxq |+ 2xp + 4xg = 6.

Step 1. Elimination of x, from the second and third equations by adding

3 2 1 : 3 Iy + 2+ x3= 3
0 -3 % .,-2| Row2-%Row — dxp)+ Axg = —2
0 2 2 : ) Row 3 — 2 Row > 2xg = O
Step 2. Elimination of x, from the third equation gives
) . 1 : 4 3?‘[1 f 2}\’3 X3 = S
|
-1 11 1, 1, _
0 3 3 i p — 3:&'3 f 3}’:3 = =2
o 0 0 : 12 | Row 3 —6 Row?Z 0= 12

The false statement 0 = 12 shows that the system has no solution.

B.D. Youn Engineering Mathematics Il Chapter 7 32 %JEL{
NN



GAUSS ELIMINATION

Row Echelon Form and Information From It

At the end of the Gauss elimination (before the back substitution) the row echelon form of the
augmented matrix will be

| [ LR
@y Ay e g 1By Here,r = manda; #0,¢,,#0, ", k_#0,
\ b
. o C b
“H_E:_'._ ..... el : : bl
R I &
b k. Ry | By
5,
I .
I »
| =
' b

a. Exactly one solution. if r =n and &, ,, -, &, if present, are zero. To get the solution, solve the
nth equation corresponding to (8) (whichis i, x, = E”) for x_, then the (7 — 1)st equation for
X

el and so on up the line. See Example 2, where r=n =3 and m = 4.

b. Infinitely many solutions. if ¥ <n and &, ,, -, &, if present, are zero. To obtain any of these
solutions, choose values of Xoiqs e X, arbitrarily. Then solve the rth equation for X, then the (r —

1)st equation for x_;, and so on up the line. See Example 3.

—

¢. No solution. if » < m and one of the entries HE;H_I, «s, f, 15 nOt zero. See Example 4, where r=2 <
m=3and b, = by=12.

Y

. . A )
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HOMEWORKIIN 7.3

B.D. Youn

» HW1. Problem 7

» HW?2. Problem 10
» HW3. Problem 18
» HW4. Problem 22

Engineering Mathematics Il Chapter 7
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CHAP. 7.4
LINEAR INDEPENDENCE. RANK OF A
MATRIX. VECTOR SPACE

To answer the questions of existence and uniqueness
of solutions, the rank of a matrix and vector space
shall be presented.

B.D. Youn Engineering Mathematics Il Chapter 7 35



LINEAR INDEPENDENCE

V |
B.D. Youn Engineering Mathematics Il Chapter 7 36 % E

Linear Independence and Dependence of Vectors

Given any set of m vectors Ay 7 Ay (with the same number of components), a linear combination
of these vectors 1s an expression of the form
cragry -+ caagy + b Cpag)

where €1, €y, 7, €, ATE ANy scalars. Now consider the equation

(1) cragly -+ caaey o epag = 0.
Clearly, this vector equation (1) holds if we choose all cj-‘s zero, because then it becomes 0 = 0. If this 1s
the only m-tuple of scalars for which (1) holds, then our vectors A1) s Ay, are said to form a linearly

independent set or, more briefly, we call them linearly independent. Otherwise, if (1) also holds with
scalars not all zero, we call these vectors linearly dependent, because then we can express (at least) one
of them as a linear combination of the others. For instance, 1f (1) holds with, say, ¢, #0, we can solve

(1) for )y’
agy =Jkoaey + -+ hkpagy  whereky= —c;ie;.

(Some i\}.’s may be zero. Or even all of them, namely, if Ay~ 0.)

Why is it important? Existence and uniqueness of solutions.



RANK OF A MATRIX

Rank of a Matrix

DEFINITION

The rank of a matrix A 1s the maximum number of linearly independent row vectors of A. It 1s
denoted by rank A.

Our further discussion will show that the rank of a matrix 1s an important key concept for understanding
general properties of matrices and linear systems of equations.

THEOREM 1

Row-Equivalent Matrices

Row-equivalent matrices have the same rank.

B.D. Youn
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VECTOR SPACE

EXAMPLE 3 Determination of Rank

For the matrix in Example 2 we obtain successively

3 0 2 ]
A=| =6 42 24

] 21 =21 0
3 0 2
0 42 28 Fow 2+ 2 Rowl
0 =21 =14 | Fow 2—7 Rowl
3 0 2
0 42 28 58

! 0 0 (] D_ Fow 3+ l Row 2

THEOREM 2

Linear Independence and Dependence of Vectors

p vectors with n components each are linearly independent if the matrix with these vectors as row
vectors has rank p, but they are linearly dependent if that rank is less than p.

WIS

B.D. Youn Engineering Mathematics Il Chapter 7 38
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RANK OF A MATRIX

THEOREM 3

Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent column vectors of A.

: T
Hence A and its transpose A" have the same rank.

THEOREM 4

Linear Dependence of Vectors

p vectors with n < p components are always linearly dependent.

V p
B.D. Youn Engineering Mathematics Il Chapter 7 39 ﬁn, E



VECTOR SPACE

Vector Space

A vector space 1s a (nonempty) set 7 of vectors such that with any two vectors a and b in J7all their
linear combinations aa + b (a, £ any real numbers) are elements of 7/, and these vectors satisty the laws

The maximum number of linearly independent vectors in " is called the dimension of /" and is denoted
by dim V. Here we assume the dimension to be finite; infinite dimension will be defined in Sec. 7.9.

A linearly independent set in /" consisting of a maximum possible number of vectors in V1s called a
basis for V. Thus the number of vectors of a basis for /" equals dim V.

The set of all linear combinations of given vectors A1y s Ay with the same number of components 1s

called the span of these vectors. Obviously, a span 1s a vector space.

By a subspace of a vector space J we mean a nonempty subset of " (including V" itself) that forms itself
a vector space with respect to the two algebraic operations (addition and scalar multiplication) defined
for the vectors of V.

Y|
®
L)
-’;-f y
K

VLSS,

'(’ £3

@L:%
W
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VECTOR SPACE

THEOREM 5

Vector Space R”
The vector space R" consisting of all vectors with n components (n real numbers) has dimension n.
)% g )%

PROOF
A basis of n vectors is a(l)Z[l 0 - 0], a(z)Z[O 10 0], a(n)Z[O =+ 0 1].

In the case of a matrix A we call the span of the row vectors the row space of A and the span of the
column vectors the column space of A.

THEOREM 6

Row Space and Column Space

The row space and the column space of a matrix A have the same dimension, equal to rank A.

Finally, for a given matrix A the solution set of the homogeneous system Ax = 0 is a vector space, called
the null space of A, and 1ts dimension 1s called the nullity of A. In the next section we motivate and
prove the basic relation

(6) rank A nullity A = Number of columns of &
LEIND
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BACKUPS

» p vectors Xq, ... X, (with n components) are linearly
independent if the matrix with rows X, ... X, has rank p; they
are linearly dependent if the rank is less than p.

» p vectors with n < p components are always linearly dependent.

» The vectors space R" consisting of all vectors with n
components has rank n.

. . . Y E
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BACKUPS

» Problem 8

100
110
111

the first row is subtracted from row 2 and also from row 3, the result 1s:
100
010
011

Then subtract row 2 from row 3 and get:
100
010
00 1

This 1s sometimes called canonical form, and is obviously of rank 3,

hence given vectors are linearly Independent.
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BACKUPS

» Problem 9
8 -4 2 -1 2 -1
-2 1 - 2 -1 - 0 O
6 -3 2 -1 0O O
Therefore,
Rank = 1
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BACKUPS

> Problem 10

14

10 + O

Therefore,

=2
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HOMEWORKIN 7.4

B.D. Youn

» HW1. Problem 2
» HW?2. Problem 6
» HW3. Problem 22
» HW4. Problem 27
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CHAP. 7.5
SOLUTIONS OF LINEAR SYSTEMS:
EXISTENCE, UNIQUENESS

Linear independence (or rank) shall answer the
questions of existence, uniqueness, and general
structure of the solution set of linear systems.
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SOLUTION EXISTENCE AND
UNIQUENESS

» A linear system of equations in n unknowns has a unique solution if
the coefficient matrix and the augmented matrix have the same rank
n, and infinitely many solution if that common rank is less than n.
The system has no solution if those two matrices have different
rank.

THEOREM 1
Fundamental Theorem for Linear Systems

a. Existence. 4 linear system of m equations in n unknowns x,, =, x,

2118 | 12X a fo e o di1min =.'E-'-'1
(1 @ X b BgaXg b QX = by
AmX 1+ AmaXa + o Qi = by

is comnsistent, that is, has solutions, if and only if the coefficient matrix A and the augmented
matrix A have the same rank. Here,

|

g1 v dn d11 = dm !
A= _ .. . and A=| . .. . |
|

Em1 " Epm Am1 = Emn | Bm

by

Y
. . A )
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SOLUTION EXISTENCE AND
UNIQUENESS

b. Uniqueness. The system (1) has precisely one solution if and only if this common rank r of A
and A equals n.

c. Infinitely many solutions. If this common rank r is less than n, the system (1) has infinitely
many solutions. All of these solutions are obtained by determining r suitable unknowns (whose
submatrix of coefficients must have rank r) in terms of the remaining n — r unknowns, to which
arbitrary values can be assigned. (See Example 3 in Sec. 7.3.)

d. Gauss elimination (Sec. 7.3). If solutions exist, they can all be obtained by the Gauss
elimination. (This method will automatically reveal whether or not solutions exist; see Sec.
7.3.)
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HOMOGENEOUS LINEAR SYSTEM

THEOREM 2
Homogeneous Linear System
A homogeneous linear system

anxy b apXy b dpx, =10
a1 X f 292X 4 f e o agan:U

4)
X+ QX + -+ Apxy =0

always has the trivial solution x, =0, -, x_ = 0. Nontrivial solutions exist if and only if rank A <n.

Ifrank A =r <n, these solutions, together with x =0, form a vector space (see Sec. 7.4) of dimension
n — r, called the solution space of (4) .

In particular, if X1 and X(p) are solution vectors of (4) , then x = ¢ 1X(1) T X () with any scalars ¢
and ¢, is a solution vector of (4) . (This does not hold for nonhomogeneous systems. Also, the term

solution space 1s used for homogeneous systems only.)

The solution space of (4) 1s also called the null space of A because Ax = 0 for every x in the solution
space of (4) . Its dimension 1s called the nullity of A. Hence Theorem 2 states that

(5) rank A -+ nullity A = »

where 7 is the number of unknowns (number of columns of A).

. _____________________________________________________________________________________________________________________________________________|]
B.D. Youn Engineering Mathematics Il Chapter 7 50

0

(et}

Y

£
¢

-

A

T
(e

e

=il

_'é
>
I

1&((((
A

7



NONHOMOGENEOUS LINEAR
SYSTEM

THEOREM 4

Nonhomogeneous Linear System

If a nonhomogeneous linear system (1) is consistent, then all of its solutions are obtained as

(6) X=X f Xp

where X is any (fixed) solution of (1) and x, runs through all the solutions of the corresponding

homogeneous system (4) .

%d_‘(.--a_ O
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CHAP. 7.7
DETERMINANTS. CRAMER’S RULE

Determinant were originally introduced for solving linear
systems but delivers important implications in
eigenvalue problems.

D HEIND
FRWMY
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DETERMINANTS

A determinant of order 7 is a scalar associated with an » x n (hence square!) matrix A = [a jk]-’ which 1s

written

@11 @i vt dp

@3] i v day
(1) D=detA=| . - .

@p1 dypz v Ayn
(3a) D=anCi+apCit -+ amln (j=1,2,, ofan)
or
(3b) D=apUy + agCap + -+ anelhur (k=12 ora)
Here,

Coi= (=17 M,

and J.ij 1s a determinant of order » — 1, namely, the determinant of the submatrix of A obtained from A
M, 1s called the minor of a ., in D, and (', the cofactor of a.,_in D.
7k Tk Jk Jk

For later use we note that (3) may also be written in terms of minors

H - k .
(4) D= L (=D"auMye (=12, orn)
WY
Rt
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DETERMINANTS

EXAMPLE 2 Expansions of a Third-Order Determinant

1 30
p=| 26 4|=1" =3] 2 %o % Cl=112—0)=3(4+4) 1000+ 6) = —12
0 2 -1 2 -1 0
-1 0 2
This 1s the expansion by the first row. The expansion by the third column 1s
2 6 1 3 1 3
D=0 -4 2 =0=1240= <12
‘—1 o| " =1 0| 2 6 | ’

Verify that the other four expansions also give the value —12.

EXAMPLE 3 Determinant of a Triangular Matrix

— T L)
B O
= O

_ _3|3 g‘= _3.4.5— —60.
2 5

Inspired by this, can you formulate a little theorem on determinants of triangular matrices? Of diagonal
matrices?

B.D. Youn
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DETERMINANTS

THEOREM 1

Behavior of an nth-Order Determinant under Elementary Row Operations

a. Interchange of two rows multiplies the value of the determinant by —1.
b. Addition of a multiple of a row to another row does not alter the value of the determinant.

¢. Multiplication of a row by a nonzero constant ¢ multiplies the value of the determinant by c.
(This holds also when ¢ = 0, but gives no longer an elementary row operation.)

THEOREM 2

Further Properties of nth-Order Determinants

(a)—(c) in Theorem 1 hold also for columns.

(d) Transposition leaves the value of a determinant unaltered.
(e) A zero row or column renders the value of a determinant zero.
(f) Proportional rows or columns render the value of a determinant zero. In particular, a

determinant with two identical rows or columns has the valiie zero.
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DETERMINANTS

THEOREM 3

Rank in Terms of Determinants

An m X n matrix A = [aﬂc] has rank r = 1 if and only if A has an r X r submatrix with nonzero
determinant, whereas every square submatrix with more than r rows that A has (or does not have!)
has determinant equal to zero.

In particular, if A is square, n x n, it has rank n if and only if
det A= 0.
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CRAMER’S RULE

B.D. Youn

THEOREM 4

Cramer's Theorem (Solution of Linear Systems by Determinants)

a. If a linear system of n equations in the same number of unknowns x, -, x|

A1Xy @y b @ Xy =8

aﬁlxl + anxg | wen sun men | dﬁ}‘!x}i:bﬁ
A% b Bk b b Xy = Ay,

has a nonzero coefficient determinant D = det A, the system has precisely one solution. This
solution is given by the formulas

(7)

= Xy= % = QD& {Cramer’s rule)

2

D L]
where D,_is the determinant obtained from D by replacing in D the kth column by the column

with the entries b, b, .

b. Hence if the system (6) is homogeneous and D # 0, it has only the trivial solution x; =0, x, =

0, x =0.IfD =0, the homogeneous system also has nontrivial solutions.
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CRAMER’S RULE

20 2 3

13 3
0 6 2 120 +234 — (52 +120) 354 — 172 _ 182

X = = = = =

91 91 91 91

20 3
7 13
I 0 2 26 + 20 — 39 - 280 —319 + 46 —-273

= = = = = —3
Y 91 91 91 91

2 20
7 3 13
I 6 O 26 + 840 — (60 + 78) 866 — 138 728

7 = = = = = 8

91 91 91 91

p—

Therefore,
X =2, y= -3, z=28
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HOMEWORKIIN 7.7

B.D. Youn

» HW1. Problem 11
» HW2. Problem 19
» HW3. Problem 24 (b)

Engineering Mathematics Il Chapter 7

59



