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ABSTRACT OF CHAP. 7

�Linear algebra in Chaps. 7 and 8 discusses the theory and 

application of vectors and matrices, mainly related to 

linear systems of equations, eigenvalue problems, and 

linear transformation.

�Chapter 7 concerns mainly systems of linear equations and 

linear transformations.

� Systems of linear equations arise in structural analyses, 

electrical networks, mechanical frameworks, economic 

models, optimization problems, numerics (Chaps 21-

23) for differential equations.
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CHAP. 7.1

MATRICS, VECTORS: ADDITION AND 

SCALAR MULTIPLICATION

A matrix is a mathematical tool to represent linear 

system characteristics.
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� Notations: matrices are denoted by capital boldface

letters, such as A; entries at the intersection of the i-row

and j-column are denoted by aij .

� A m × n matrix means m-rows and n-columns; an n × n

matrix is called square.

� In a square matrix the elements a11 down to ann are said to

be on the main diagonal.

� Vector: a matrix with either one row or one column.

Entries are called components.

NOTATIONS AND CONCEPTS
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� Definition:

MATRIX EQUALITY
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SCALAR MULTIPLICATION
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� Problem 1
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� Problem 2
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HOMEWORK IN 7.1

� HW1. Recall Example 2 (Page 274). Compute the total revenue of the 

store when three products I, II, III are sold at $100, $120, and $150, 

respectively.

� HW2. Build any matrix to represent your life characteristics.  For 

instance, grade (% scale) vs. number of study hours per week for three 

courses (choose any) in the previous semester.
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CHAP. 7.2

MATRIX MULTIPLICATION

The most popular use of matrix multiplication operation 

is a linear transformation of one system to the other 

system.
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� Matrix algebraic operation: Addition, Subtraction, Scalar 

Multiplication, and Matrix Multiplication

� Two matrices may be multiplied, and produce a third matrix, 

provided they are conformable to multiplication.

� If there exists Amn and Bnp then these two matrices are 

conformable and the resultant matrix is of size ‘mp’, that is, 

Cmp

MATRIX MULTIPLICATION
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MATRIX MULTIPLICATION DEFINITION
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� Example

� Example

4 3

7 2

9 0

2 5

1 6
3 2

2 2

















⋅


























,

,

 =  

 8 +  3 20 +  18

14 +  2 35 +  12

18 45

4 2

1 8
 =  

12 +  10

  3 +  40
 =  

22

43









 ⋅






























2 2 2 1 2 1

3

5
, , ,

MULTIPLICATION EXAMPLES



14B.D. Youn Engineering Mathematics II Chapter 7

� Multiplication is not commutative, in general.

� AB can be equal to 0, but this does not imply that either 

A or B is necessarily 0.

� Even if it is given that AC = AD, it is not necessarily 

true that C = D.

� Some rules include:

MULTIPLICATION RULES
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� Row ×××× Column

� Column ×××× Row
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MOTIVATION OF MULTIPLICATION

� Relation of x1x2-system to y1y2-system

� Further the relation of x1x2-system to w1w2-system

� Finally the relation of w1w2-system to y1y2-system

C = AB or
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TRANSPOSITION OF MATRICES
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� Suppose the matrix A has m rows and n columns; then the

transposed matrix AT has n rows and m columns, with the

rows and columns of A interchanged.
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SPECIAL MATRICES
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SPECIAL MATRICES

� For any square matrix A there exists an I such that: AI = A
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� If a is a row vector of order n, and b is a column vector, also of order n,

then the inner product or dot product of a and b is the scalar which is

the sum of the products of the respective elements

� Example

� Thus, matrix multiplication amounts to combinations of dot products of

row and column vectors
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SPECIAL MATRICES
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MULTIPLICATION OF MATRICES BY 
MATRICES AND BT VECTORS
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HOMEWORK IN 7.2

� HW1. Problem 19(d)

� HW2. Problem 23

� HW3. Problem 28(a) and 28(b)
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CHAP. 7.3

LINEAR SYSTEMS OF EQUATIONS. 

GAUSS ELIMINATION

The most important use of matrices occurs in the 

solution of systems of linear equations, briefly called 

linear systems.
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LINEAR SYSTEMS OF EQUATIONS
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LINEAR SYSTEMS OF EQUATIONS

� In a system of equations there may be a unique solution,

infinitely many solutions, or no solution at all.



27B.D. Youn Engineering Mathematics II Chapter 7

EXAMPLE OF LINEAR SYSTEMS
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� The Gauss method of elimination is frequently used to

solve the linear systems.

� Gauss elimination is a standard method for solving linear

systems with the following rules:

• Rule 1- rows may be interchanged;

• Rule 2- one row may be multiplied by a non-zero 

constant 

• Rule 3- a multiple of one row may be added to another 

row 

�We now call a linear system S1 row-equivalent to a linear 

system S2 if S1 can be obtained from S2 by (finitely many) 

row operations.

GAUSS ELIMINATION
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GAUSS ELIMINATION
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GAUSS ELIMINATION
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GAUSS ELIMINATION
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GAUSS ELIMINATION
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GAUSS ELIMINATION
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HOMEWORK IN 7.3

� HW1. Problem 7

� HW2. Problem 10

� HW3. Problem 18

� HW4. Problem 22
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CHAP. 7.4

LINEAR INDEPENDENCE. RANK OF A 

MATRIX. VECTOR SPACE

To answer the questions of existence and uniqueness

of solutions, the rank of a matrix and vector space 

shall be presented.
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LINEAR INDEPENDENCE

Why is it important? Existence and uniqueness of solutions.
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RANK OF A MATRIX
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VECTOR SPACE
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RANK OF A MATRIX
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VECTOR SPACE
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VECTOR SPACE
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� p vectors x(1) … x(p) (with n components) are linearly

independent if the matrix with rows x(1) … x(p) has rank p; they

are linearly dependent if the rank is less than p.

� p vectors with n < p components are always linearly dependent.

� The vectors space Rn consisting of all vectors with n 

components has rank n.

BACKUPS
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� Problem 8

the first row is subtracted from row 2 and also from row 3, the result is:

Then subtract row 2 from row 3 and get:

This is sometimes called canonical form, and is obviously of rank 3, 

hence given vectors are linearly Independent.
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0 0 1

BACKUPS
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� Problem 9
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� Problem 10
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HOMEWORK IN 7.4

� HW1. Problem 2

� HW2. Problem 6

� HW3. Problem 22

� HW4. Problem 27
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CHAP. 7.5

SOLUTIONS OF LINEAR SYSTEMS: 

EXISTENCE, UNIQUENESS

Linear independence (or rank) shall answer the 

questions of existence, uniqueness, and general 

structure of the solution set of linear systems.
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SOLUTION EXISTENCE AND 

UNIQUENESS

� A linear system of equations in n unknowns has a unique solution if

the coefficient matrix and the augmented matrix have the same rank

n, and infinitely many solution if that common rank is less than n.

The system has no solution if those two matrices have different

rank.
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SOLUTION EXISTENCE AND 

UNIQUENESS
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HOMOGENEOUS LINEAR SYSTEM
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NONHOMOGENEOUS LINEAR 

SYSTEM
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CHAP. 7.7

DETERMINANTS. CRAMER’S RULE

Determinant were originally introduced for solving linear 

systems but delivers important implications in 

eigenvalue problems.
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DETERMINANTS
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DETERMINANTS
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DETERMINANTS
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DETERMINANTS
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CRAMER’S RULE
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HOMEWORK IN 7.7

� HW1. Problem 11

� HW2. Problem 19

� HW3. Problem 24 (b)


