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CHAP. 11
Fourier Series, Integrals, and
Transforms
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ABSTRACT OF CHAP. 11

» Fourier Analysis in Chap. 11 concerns periodic

B.D. Youn

phenomena—thinking of rotating parts of machines,
alternating electric currents, or the motion of planets.
However, the underlying ideas can also be extended to non-
periodic phenomena.

= Fourier series: Infinite series designed to represent general periodic
functions in terms of simple ones (e.g., sines and cosines).

= Fourier series is more general than Taylor series because many
discontinuous periodic functions of practical interest can be
developed in Fourier series.

= Fourier integrals and Fourier Transforms extend the ideas and
techniques of Fourier series to non-periodic functions and have basic
applications to PDEs.
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CHAP. 11.1
FOURIER SERIES

Infinite series designed to represent general periodic
functions in terms of simple ones like cosines and sines.
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PERIODIC FUNCTIONS

Fourier series are the basic tool for representing periodic functions, which play an important role in
applications. A function f(x) 1s called a periodic function if f{x) is defined for all real x (perhaps except
at some points, such as x =+ /2, +£ 37/2, -+ for tan x) and if there 1s some positive number p, called a

period of f{(x), such that
(1) Fix+pi=Fix) for all x .

flx)

AN NN AN
N LY

Fig. 255. Periodic function

» The smallest period is called a fundamental period.
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PERIODIC FUNCTIONS

Our problem 1in the first few sections of this chapter will be the representation of various functions f(x)
of period 2m 1n terms of the simple functions

3) 1, COSX, SINX, COs2X, SN2, wee, COSHX, SR, vee .

All these functions have the period 2w. They form the so-called trigonometric system. Figure 256
shows the first few of them (except for the constant 1, which 1s periodic with any period).

e o . W S O i B
o\_/z:: o\/::\_/ o\/\yy\/m

T 2n

cos X cos 2x cos 3x

G hE B PN YN w0 ¥ I =
g gl .y Y

sin X 5in 2x sin 3x

Fig. 256, Cosine and sine functions having the period 2n
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FOURIER SERIES

Now suppose that f{x) 1s a given function of period 2x and 1s such that it can be represented by a series
(4) , that 1s, (4) converges and, moreover, has the sum f{x). Then, using the equality sign, we write

)
Fix)=a,+ 2 (a,cosnx 4 b,sinnx)
n=l1

)

and call (5) the Fourier series of f(x). We shall prove that in this case the coefficients of (5) are the so-
called Fourier coefficients of f/(x), given by the Euler formulas

@ so=3-] f @)

T

(6) (&) an= l/} (x)cos nx dx =12,

m

() f?n=_l/}(x)sin nx dx n=12 -

)

] ¥
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EXAMPLE

EXAMPLE 1 Periodic Rectangular Wave (Fig. 257a)

Find the Fourier coefficients of the periodic function f(x) in Fig. 257a. The formula 1s

(7) f(r}—{_f-; i _[;i? and  flxt2m)=fx).

Functions of this kind occur as external forces acting on mechanical systems, electromotive forces in
electric circuits, etc. (The value of f{x) at a single point does not affect the integral; hence we can leave f

(x) undefined at x =0 and x =+ 1.)

Solution: rrom (6a) we obtain a;, = 0.

Qy = %/ F(x)cosmx dx = %|i/ﬂ { —&)cosux dx /I‘kcosnx dx:|
" _:r " _:r ﬂ

0] =0
because sin nx =0 at —m, 0, and « for all » = 1, 2, ---. Similarly, from (6¢) we obtain

bn:%/” 7 (x) sinnxdx — 1 /ﬂ (—k)smxdmf'ksmxdx]
L 7: " 77 D

:% _ksinnx

0 4 ksirmx

- T

_ %—fc cosxx |0 K COSMX ’T} _
w M - b D

Since cos (—a) = cos a and cos 0 = 1, this yields

by, = )fj?[cos[]— cos{ —am) — cosar 4 cosl] = %(1 — CosAT) .

)
v
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EXAMPLE

2 tor odd », A A Ak
1 — cosnr = == =00 k= =00 b=om
0 for even 2z . . m m
Since the g are zero, the Fourier series of /() is
i 7. 1 . 1 .
(8) —|sinx + = smm3x + =smOx -]
I 3 5
The partial sums are
, ) . s
g = @sm}:, &g = mls six - lsme , etc., sl S S,
W n 3 k - - -
J(/ \\
/, X
P -~
fix) s p /,f \
k —K\ \\‘_ _,’ n x
Ak .
== sin 3x
- 0 i1 2n x \_//‘\“\_/_ -k =
| I_,, | |
(a) The given function f{z) (Periodic rectangular wave) jsz 8,
k -
NSI i i }
(4 \
k f W
TN P, T
~ e x
\ " T Ng . %
- :]r x = sin Bx
—k
-k
(b) The first three partial sums of the corresponding Fourier series
Fig. 257. Example 1
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THEOREM 1
Orthogonality of the Trigonometric System (3)

THEOREM 2 -

The trigonometric system (3) is orthogonal on the interval —m = x = m(hencealsoon0 = x = 2n

or any other interval of length 2n because of periodicity): that is, the integral of the product of any
two functions in (3) over that interval is 0, so that for any integers n and m,

(@) / . cosnxcosmxdx = [ (n+m)

(9) (&) / stnxx siumxdx =0 (nzm)
—1T flx)

(c) / sinuxcosmxdx = 0 (mzm or n=m) .
— T 1_

fil1-0)

/

1

Representation by a Fourier Series

Let fix) be periodic with period 2 and piecewise continuous (see Sec. 6.1) in the interval —m = x =
n. Furthermore, let flx) have a left-hand derivative and a right-hand derivative at each point of that
interval. Then the Fourier series (5) of fix) [with coefficients (6) | converges. Its sum is f(x), except
at points x, where fx) is discontinuous. There the sum of the series is the average of the left- and

right-hand limits of flx) at x,.

1

B.D. Youn
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CONVERGENCE AND SUM OF FOURIER SERIES

Proof: For continuous f(x) with continuous first and second order

derivatives.
a 1 f f (x)cosnx dx
n 7[_7[
1 J~ (x) smnx)dx_l J- f’Smnde
r_: n r_: n
f ' 4
:l (x) sinnx _ L J f 'sinnx dx
T n _ 7n_
; ,

:—i J f 'sinnx dx
n

/4
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CONVERGENCE AND SUM OF FOURIER SERIES (cont)

Repeating the process:
T

1

Ei-

a, =———= j f"(x )cosnx dx
2
/101 e
Since f" 1s continuous on [— 7, T ]
£7(x)| <M
- I
‘an ‘:—2 jf"(x)cosnxdx < —5 jMdX
7101 Il e 110
‘ ‘ B 2TtM 2M
d —
n
nnz n2
%\
1
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CONVERGENCE AND SUM OF FOURIER SERIES (cont)

Similarly for

2M
\bn\<?

Hence

£(x)| < |ag \+2M(l+1+212 +212 +312 +312 +j

which converges.

B.D. Youn Engineering Mathematics Il CHAPTER 11 12
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HOMEWORK IN 11.1

» HW1. Problem 9
» HW2. Problem 15

B.D. Youn
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B.D. Youn

CHAP. 11.2
FUNCTIONS OF ANY PERIOD P=2L

general periodic functions with P=2L.

Engineering Mathematics Il CHAPTER 11 14
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FUNCTIONS OF ANY PERIOD
P=2L

we thus obtain from (1) the Fourier series of the function f(x) of period 2L

_ , = nar o
(5) f(x) = ag + 2 (,, COS 3 X + b,, sin 3 X

n=1

with the Fourier coefficients of f(x) given by the Euler formulas

l L
(a) agzngﬁmmm

- 1 , nx
(6) (b) a, = — f(x) cos dx n=1,2,-
L J_q
. I ‘ . nmX
© b=~ | fosin T d n=1,2,
L /g
B.D. Youn Engineering Mathematics Il CHAPTER 11 15
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EXAMPLE

EXAMPLE 1 Periodic Rectangular Wave

Find the Fourier series of the function (Fig. 259)

B.D. Youn

0 if 2<x<—1
fxX)=1k if -1<x< 1 p=2L=4, L=2
0 if I<x< 2

flx)

1, [,

-2 =1 0 1 2
Fig. 259. Example 1

From (6a) we obtain a, = /2 (verify!). From (6b) we obtain

_ 1 : ATX 4 1
cxn—E _gf(x)cosT x—E .

Thus a, = 0 1f n 1s even and

1

ATX 2X . AT
kros=——"dx = ==sn"—

2 nro 2

ay=2>ckinr £ =159 a,=—=2kinr & n=3"711, .

From (6¢) we find that bn =0 torn=1, 2, . Hence the Fourier series 1s

_ Kk ekf w1
f{x)—Ei - (coszx 3 Cos

L1
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FUNCTIONS OF ANY PERIOD (cont)
P=2L

Proof: Result obtained easily through change of scale.
X

V=
L

g(v)=a, + Z a,cosnv+ Z b, sinnv

n=1 n=1
1 s nmwx T 1 nmx
a, = - _J;Eg(v)cos nvdv = - _'[L f(x)cos T-fdx = T _jL f(x)cos de
Same for ay, b,
- I oo \T 1
ag = Py _Ig(v)dv = o _{ f(X)IdX = oL _{f(x)dx

B.D. Youn Engineering Mathematics Il CHAPTER 11 17



ANY INTERVAL (a, a + P)
P = PERIOD = 2L

2n7X

f(x)=ag+ Z (an COS +b,, sin
n=1
| a+P
ag :E j f(x )dx
a
a+P
an =% £ f(x)cos 21;;“ dx
| |
a+P
b, :% j f(x )sin ZnIzCX dx y a+Pb
a
B.D. Youn Engineering Mathematics Il CHAPTER 11 18



HOMEWORK IN 11.2

B.D. Youn

» HWI1. Problem 3
» HW?2. Problem 5
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B.D. Youn

CHAP. 113

EVEN AND ODD FUNCTIONS. HALF-
RANGE EXPANSIONS

Take advantage of function properties.

Engineering Mathematics Il CHAPTER 11 20
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EVEN AND ODD FUNCTIONS

Examples: x4, cos x
f(x) 1s an even function of x, if f(-x) = f(x). For example, f(x) = x sin(x), then
f(- x) = - x sin (- xX) = f(x)

and so we can conclude that x sin (X) is an even function.

Vs

Fig. 262, Even function
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EVEN AND ODD FUNCTIONS

Properties

I. If g(x) 1s an even function
L L
Ig(x)dx =2 jg(x)dx
-L 0

2. If h(x) is an odd function

jlil(x)dx =0

3. The product of an even and odd function 1s odd

Y
P4
2.p
A

(P == X
{

®

PILS Y
s
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THEOREMS

THEOREM 1
Fourier Cosine Series, Fourier Sine Series

The Fourier series of an even function of period 2L is a “Fourier cosine series”
)

(1) fx)=apg+ X aycosZix (f even)
n=1 L
with coefficients (note: integration from 0 to L only!)
(2) dy = E_/ Fixidx, a,= E/ Fix) cos%dx, =12,
0 0
The Fourier series of an odd function of period 2L is a “Fourier sine series”
Fx) =Y bysinix (f odd)
n=1 L
with coefficients
2 L . HTX
(4) b,FEA 7 () sin? .

THEOREM 2

Sum and Scalar Multiple
The Fourier coefficients of a sum f| + f, are the sums of the corresponding Fourier coefficients of f

and f5.

The Fourier coefficients of cf are ¢ times the corresponding Fourier coefficients of f.

CHAPTER 11 23
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EXAMPLE

EXAMPLE 3 Sawtooth Wave

flx}
Find the Fourier series of the function (Fig. 266)
Ffxi=z+47 f —v=x<7 and fix+2r)=jF(x). r ‘ | |
Solution: o o x
{a) The function f{x)
We have = f| + /5, where f| =xand f, = 7.
The Fourier coefficients of f, are zero, except for the first g S5 Sm\.
1 : Sr Sg \\ AL‘L
one (the constant term), which 1s 7. 31\“3 ',-f"#’”"t{" I
Since f; is odd, a, =0 forn=1, 2, -, and !g"" |
T T i f/" d ;
b?,,:%/ F(x) sinoex dx=%/ xsinxx dx g _--jﬂ" I|
T Jo T fo :. ___.’AJ
Integrating by parts, we obtain ’i_;?“f
T a v\
by = % —— ALOBAX | 1 cosnx dx | = — Zcoswr . | R
T M n - » 0 » Lo |
Hence bl =2, bz =-2/2, b3 =2/3, b4 =—2/4, ---, and the Fourier series of f{x) 1s ; 0 o
(b) Partial 81, 85,83, 8
fxy=m+ E(Sinx—%sinEx | %sinEx— 1] SRR e B a0
Fig. 266. Example 3
QLD
\\uﬁ_"_’%
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HOMEWORK IN 11.3

» HW1. Problem 11
» HW2. Problem 15

B.D. Youn

Engineering Mathematics Il CHAPTER 11
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B.D. Youn

CHAP. 11.5

FORCED OSCILLATIONS
Connections with ODEs and PDEs.
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Force

d Oscillations

Forced Oscillations under a

In (1), let m

I (gm), ¢ = 0.05(

(2)

Nonsinusoidal Periodic Driving Force

nE 2
gm/sec), and &k = 25 (gm/sec”), so that (1) becomes

v+ 0.05y" + 25y = r(1)

. . 2 . yea
where r(f) 1s measured in gm * cm/sec”. Let (Fig. 273)

rir)y = 3

Find the steady-state solution v(7).

B.D. Youn

Engineering Mathematics Il

aa
r+— it —ag <t<0,
2
r(t + 241) = r(t).
aa
—t+ — if 0 <1< 1.
2
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Forced Oscillations

rit)
w2

| |
—TT T t

) Force in Example 1
Solution. We represent () by a Fourier series, finding

o

4 | |
(3) r(ty = — (conr + —5 oS 3t + 5 COS 5+ - - -
.

(take the answer to Prob. 11 in Problem Set 11.3 minus 377 and write ¢ for x). Then we consider the ODE

, 4
(4) y' + 005y + 25y = 5 cos il (n=1,3,--°)

na

whose right side i1s a single term of the series (3). From Sec. 2.8 we know that the steady-state solution v,,(f)

of (4) is of the form

(5) Vi, = Ay, cos nt + By, sin nl.
QUED®
e gf:r‘_’%
B.D. Youn Engineering Mathematics Il CHAPTER 11 28 %"-"'a ﬁé_"
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Forced Oscillations

By substituting this into (4) we find that

| 425 - n?) 0.2 . i
(6) Ap = —5 ., B, = . where D, = (25 — n%)® + (0.05n)".
n“mh, nwh,

Since the ODE (2) is linear, we may expect the steady-state solution to be
(7) _\‘ — \'1 + \‘3 + \‘5 + o

where y,, 1s given by (5) and (6). In fact, this follows readily by substituting (7) into (2) and using the Fourier
series of r(f), provided that termwise differentiation of (7) is permissible. (Readers already familiar with the notion
of uniform convergence [Sec. 15.5] may prove that (7) may be differentiated term by term.)

From (6) we find that the amplitude of (5) is (a factor V' D,, cancels out)

e 4
C, = V A.”_z + B_nz = 5 i
n“wV D,

QUED®
. _____________________________________________________________________________________________________________________________________________|] &'A‘\'\.’#
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Forced Oscillations

Numeric values are

Cy = 0.0531
Cs = 0.0088
Cs = 0.2037
Cy = 0.0011
Cg = 0.0003.

Figure 274 shows the input (multiplied by 0.1) and the output. For n = 5 the quantity D,, is very small, the
denominator of Cy is small, and Cjy is so large that vg is the dominating term in (7). Hence the output is almost
a harmonic oscillation of five times the frequency of the driving force, a little distorted due to the term y4, whose
amplitude is about 25% of that of v5. You could make the situation still more extreme by decreasing the damping
constant ¢. Try it.

QER
. ________________________________________________________________________________________________________________________________________________________|] \‘%'A‘\'\.
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Forced Oscillations

1r

0.3

Output

Input

Input and steady-state output in Example 1

%
/i
(2}
A

NEDS

o
I

L
T
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HOMEWORK IN 11.5

B.D. Youn

» HW1. Problem 6

Engineering Mathematics Il

CHAPTER 11
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B.D. Youn

CHAP. 11.6
APPROXIMATION BY
TRIGONOMETRIC POLYNOMIALS

Useful in approximation theory.

Engineering Mathematics Il CHAPTER 11
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APPROXIMATION BY
TRIGONOMETRIC POLYNOMIALS

Consider a function f(x), periodic of period 2n. Consider an

approximation of f(x),
N
f(x)=F(x) = Ay + DA, cosnx+B,sin nx
n=1

The total square error of F
T

E= [(f-F dx

—T

1s minimum when F's coefficients are the Fourier coefficients.

Read Page 503 to see the derivation procedure of Eq. (6)

B.D. Youn Engineering Mathematics Il CHAPTER 11
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PARSEVAL'S THEOREM

The square error, call it E*, 1s

T N
(6) E* = f f2dx — {zaﬂz + > (a,2 + !‘)nz)} :

wherea,=A, and b, = B,.

Parseval’s theorem:

N
Y
%

S
P
) 1
.,
g €

(S

*‘}@

(

(SLE= I
N
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HOMEWORK IN 11.6

B.D. Youn

» HW1. Problem 2

Engineering Mathematics Il

CHAPTER 11
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CHAP. 11.7
FOURIER INTEGRAL

Extension of the Fourier series method to non-periodic
functions.

]
.4;‘?-‘;&
2
..

%

ek
(SLE= I
el

. _____________________________________________________________________________________________________________________________________________|]
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FOURIER INTEGRALS

Since many problems involve functions that are nonperiodic and are of

interest on the whole x-axis, we ask what can be done to extend the method
of Fourier series to such functions. This idea will lead to “Fourier integrals.”

0 f =Lax< =1
Jrx)=¢{1 f —=1=x=1
0 of Ta=x<=Ai.
B.D. Youn Engineering Mathematics Il CHAPTER 11 38

EXAMPLE 1 Rectangular Wave

we start from a special function /; of period 2L and see what happens to 1ts
Fourier series if we let L — oo,

Consider the periodic rectangular wave 7, (x) of period 2 > 2 given by




FOURIER INTEGRALS

The left part of F1g. 277 shows this function for 2L =4, 8, 16 as well as
the nonperiodic function f{x), we obtain from JpifweletL — o,

1] #=1<x<1

0 otherwise.

J () :Lhinljﬂx) = {

We now explore what happens to the Fourier coefficients of /; as L increases.

Smce f; 1s even, b, =0 for ». For a, the Euler formulas (6) , Sec. 11.2, give

1t amx,. 2 mmx . 2 sin(eriL)
Gy =57 _la.'x_L, a”—Lﬂlcﬁs 7 .::Ex-L./';c:::s L.:fx—L s

DUEFH®
———————————————————————————————————— 5 )

B.D. Youn Engineering Mathematics Il CHAPTER 11 39 | L;(y
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FOURIER INTEGRALS

Waveform fL[x,‘J . Amplitude spectrum an(w"}
\\wfn . | w_= nu/l
L]
\
i
1
filx) \ I/n =5
L L baJd g g J 1 ] "1 ﬂ.-""*\.hl
-2 0 2 x \\l‘;("/ ‘7’ W,
2L = 4 l s n=1
z \"'\‘#’-—'_’ n=2
fﬂﬂ‘ \ P 10
1= : o . — 1 \‘% e —
4 ﬂ 4 X i A wn
—ﬂ’/ n= 14;
Pe—2L =8—> =
! n=4
’er‘ 4"‘-‘{/ n =20
1 1 1 ]_[ \-..%‘ el e ) E
8 0 8 x - 4w
n=12 f n= ﬁl .
7 i L e |
flx)
=
-101 x
Fig. 277. Waveforms and amplitude spectra in Example 1
B.D. Youn Engineering Mathematics Il CHAPTER 11 40

L

I
(ol
""a

JELCSS
EL. -
SJ;&

€



FOURIER COSINE AND SINE INTEGRALS

Y nele Y
Y
B.D. Youn Engineering Mathematics Il CHAPTER 11 41 §,| ;_Li‘(v

We now consider any periodic function f; (x) of period 2L that can be represented by a Fourier series

-\- —
Frix)=ay+ 2 (@ycosw,x + bysinw,x), w, = %
n=l

and find out what happens if we let L — . Together with Example 1 the present calculation will

If we insert a, and b from the Euler formulas (6) . Sec. 11.2. and denote the variable of integration by v,

the Fourier series of f;(x) becomes

=

L
S =5 [ fuiav-

n=1

L L
> [coswnxf 7 1(w)cosw,vdy sinwnxf Jriv) sinwnvdv} .
—I =L

We now set

a4 1w nT T
n+l H I I I
Then 1/L = Aw/r. and we may write the Fourier series in the form

'

e 1 L | L |
(1) frlx) =Z/—L Frvidv 4 ;E (coswnx).lwf_L Fr(v)coswy,vdy - (smwnx).ﬁ.w];L 1 1(v) smw,vdv

n=1

This representation is valid for any fixed L. arbitrarily large. but finite.



FOURIER COSINE AND SINE INTEGRALS

We now let L — oo and assume that the resulting nonperiodic function

J(x)= tm f1(x)

1s absolutely integrable on the x-axis: that 1s. the following (finite!) limits exist:

0 h s
(2) ; ]1111 “x/ |f(x:l|r:fx | b@xﬁ |_}" (;l:j|c1'x (‘W‘I‘ittﬁﬂ]; |_;r’ [x)|a"x)_

Then 1/L — 0.

(3) Fi(x)= %/ I:coswxf 7 {(v)coswy dv 4 smwxf 1 (v)smwy dv}cfw .
“Jo . G
If we introduce the notations
L[ 1 [
(4) Alw) = j/ F(vicoswvdy, Blw)= :] F (v)smwv dv
1 — " — g
we can write this in the form
w0
(5) Jix) :/ [A(w)coswx + B(w)sinwx |dw .
0
This 15 called a representation of f{x) by a Fourier integral.
D, /452
B.D. Youn Engineering Mathematics Il CHAPTER 11 42 %J Lg
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FOURIER COSINE AND SINE INTEGRALS

f(x) = Jj[A(w)cos ox+ B(®)sin a)x]da)

A(w):% [ £(v) cos(av)d
B(m)=% [ (v) sin(av)a
[ele] 1 T
f(x)=aq + Z (an cosnx +b, sin nx) 4G=>" f f(x)ax
n=1 d
an=l i f (x)-cosnxdx
T
b, _1 .”f(x)-sinnxdx
7

o
-

CHAPTER 11 43
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THEOREM1: EXISTENCE

If £(x) 1s piecewise continuous in every finite interval and has a right hand
and left hand derivative at every point and if

0 b
lim [ [f(x)|dx+ lim [ ]f(x)]dx
a—r—ee b—> oo 0

exists, then f(x) can be represented by the Fourier integral.

The F.I. equals the average of the left-hand and right-hand limit of f(x)
where f(X) is discontinuous.

. _____________________________________________________________________________________________________________________________________________|]
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FOURIER COSINE AND SINE INTEGRALS

For an even or odd function the F.I. becomes much simpler.

If f(x) is even
5 =
Alo) = = j f(v) cos wvdv
n 0

A(o)cos (ox) do  Fourier cosine integral

=

—
>

N—
Il

If f(x) is odd
B(o) = 2 j f(v) sin @vdv
n 0
f(x) = I B(o)sin (ox) do  Fourier sine integral
0
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EXAMPLE

Consider f (x) —e KX x>0, k>0

Evaluate the Fourier cosine integral A(®) and sine integral B(m).

For Fourier cosine integral, A{w) = % f e " cosww dv
1]

A

ﬁe_kv(—ﬂsmw I n:oswv)
- w

Integration by parts gives / e coswy dv = — e

2k
k4wl

Alw) =

Fourier cosine integral is

Flx) =g T 2K COSWE_ vy (x = 0,k = 0)
0 A 4w

L

. . . ¥, @% v
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EXAMPLE

For Fourier sine integral, &{w) = % / e ™ sinww dv
'k I:'
: : —kv _ —kv [ & .
Integration by parts gives f e sinwy dv = — ﬁé ’ p S mswv)
aw f
Blw) =
kﬁ | Wﬂ

Fourier sine integral 1s

f{szé—kx_%[x W SIWA A
0

3 3
B w

Laplace integrals / - I::;::sw':lf2 dw = K hx (x =0, k=0)

' ypsinwr T —kx . .
dw = —¢ x =0 k=10
./u; ko wl 2 I: :

)

A ] ¥
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HOMEWORK IN 11.7

B.D. Youn

» HW1. Problem 1
» HW2. Problem 7

Engineering Mathematics Il
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CHAP. 11.8
FOURIER COSINE AND SINE
TRANSFORMS

An integral transform is a transformation in the form of
an integral that produces from given functions new
functions depending on a different variable.
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FOURIER SINE AND COSINE TRANSFORMS

For an even function, the Fourier integral is the Fourier cosine integral

f(x) = [ A(0)cos (x) do  A(0) = 2 [ £(v) cosavdy = Efc(w)

0 —oo

‘/ ‘/ ) cos ovdv = ‘/z I f(v) cos ovdv
2 0 T o3
(]2 do = |2 [ ] d
X) —! . f.(®) cos wx do = . '([ f. (@) cos ox dw

f.(@) 1is defined as the Fourier cosine transform of f.

f 1s the inverse Fourier cosine transform of f .

FAry=7. R{i}=r

L . v D
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FOURIER SINE AND COSINE TRANSFORMS (cont)

Similarly for odd function

4
o
y
e

(f‘_

4
2y
=== N
'(«44‘!
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NOTATION AND PROPERTIES

FArt=r.. Rirk=14

(1)
2

A

(3

\—

4

A

(5

-

(6

A

P s R

F {af +bg}=aF {f}+bF.{g}
Fs{af + bg}: aFS{f}-I— bFS{g}

F (= oF ) 2 10

FAF(x)}=-oF.{f}
2 £/(0)

F i) =-0?R )=

Fif'}=—0 Fs{f}+\/§ wf’(0)
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TRANSFORMS OF DERIVATIVES

Let fix) be continuous and absolutely integrable on the x-axis, let f'(x) be piecewise continuous on

every finite interval, and let let fix) — 0 as x — . Then

(@) Fe{f'@}=wF; (f@) — 27 ),

(8)
) Fs{f'®r=-wF. (f(x))
PROOF
Fe {f’(x}} = v@[ F(x) coswx dx
TJo
— E[j (x)coswx Ot } Wj[;-\ F(x) sinwx d;r]
= |27 +w L ()
and similarly,
F {j’(x)} = v@fij’(x)smwx dx
TJo
= E[j (x) simwx UX —w./;i F(x)coswx a’x}
=0—-wrF, {f(x)} .
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FOURIER TRANSFORM

The F.I. 1s:
£ ()= [ [A(@)cos @x+B(@)sin o] dx
A(w) :%j F(v) cos v dv
B() :%j £(v) sin v dv

Replacing

f(x) = % fo {J‘w f(v)[cosa)vcosa)x+sina)vsina)x]dv}d

— %_: {J:o f(v)cos(wx — a)v)dv}da)

o

V

G (w)=Even function in @

B.D. Youn Engineering Mathematics Il CHAPTER 11
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FOURIER TRANSFORM

Now,

B.D. Youn

1
2

Engineering Mathematics Il

= 21”'[0;|:'[ f(v)cosw(x — v)dv}da)

= IIZ{JSO f(v)sino(x — v)dv}d(o:o

F (w)=o0dd function in @

£ (v)cos (wx —wv) + i (v)sin(wx —wy) = £ (v)g W)

J { J f(v) eiw(xv)d\/] dw  Complex Fourier Integral
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B.D. Youn

FOURIER TRANSFORM (cont)

1 3 1 3 —i@v iwx
—Tﬂ'j —%jf(v)e dv | dw

f (@) =Fourier Transform of f

(o]

1 7 wx
E J‘ f(a)) e““dw
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NOTATION AND PROPERTIES

F {af + bg}=aF {f }+bF {g}
Fif'}=ioF{f}

F{t"}=—o*F{f}
F{f = g}=~2rF {t}+F {g}

Ve
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