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Part E: Numerical methods provide the transition from the
mathematical model to an algorithm, which is a detailed
stepwise recipe for solving a problem of the indicated kind
to be programmed on your computer

Chapter 19 on numerics begins with an explanation of
some general concepts, interpolations, numerical
Integration and differentiation.

Methods for solving equations (19.2), interpolatmethods
including splines (19.3 and 19.4), and numerictdgration and

differentiation (19.5)
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Methods for solving problems numerically on a computer

Steps
* Modeling
* Choice of a numerical method, Programming
e Doing the computation
* Interpreting the results

Algorithm

Numeric methods can be formulated as algorithms. An algorithm is a step-by-step procedure that states
a numeric method in a form (a “pseudocode’) understandable to humans. (Turn pages to see what
algorithms look like.) The algorithm is then used to write a program in a programming language that the
computer can understand so that it can execute the numeric method. Important algorithms follow in the
next sections. For routine tasks your CAS or some other software system may contain programs that you
can use or include as parts of larger programs of your own.
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Stability

Stability. To be useful, an algorithm should be stable; that is. small changes in the initial data should
cause only small changes in the final results. However, if small changes in the initial data can produce
large changes in the final results. we call the algorithm unstable.

This “numeric instability, ” which in most cases can be avoided by choosing a better algorithm, must be
distinguished from “mathematical instability” of a problem. which is called “ill-conditioning, ” a

concept we discuss in the next section.

Some algorithms are stable only for certain initial data. so that one must be careful in such a case.
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Errors of Numeric Results

Fmal results ot computations of unknown quantities generally are approximations; that is. they are not
exact but involve errors. Such an error may result from a combination of the following effects.
Roundoff errors result from rounding, as discussed on p. 782. Experimental errors are errors of given
data (probably arising from measurements). Truncating errors result from truncating (prematurely
breaking off). for instance. if we replace a Taylor series with the sum of its first few terms. These errors
depend on the computational method used and must be dealt with individually for each method.

[“Truncating™ is sometimes used as a term for chopping off (see before), a terminology that is not
recommended. |

Formulas for Errors. If 4 is an approximate value of a quantity whose exact value is a, we call the
difference

(_1') E = - E
the error of 4. Hence
(4%) a=a-+c, True value = Approzimation -+ Error .
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The relative error = _of 4 is defined by

(5) . _c_a—a _ _ Eror
Cp=—= = a#0).
" @ True value ( )
This looks useless because a 1s unknown. But if || is much less than |4| . then we can use 4 instead of a
and get

(5 "

This still looks problematic because  1s unknown—if it were known. we could get @ = a + < from (4)
and we would be done. But what one often can obtain in practice is an error bound for 4. that is. a
number [ such that

El’

=M

I
-

=l = 4, hence a—a|l= 3.

This tells us how far away from our computed @ the unknown a can at most lie. Similarly. for the
relative error, an error bound is a number p . such that

[ =gy hence @—4a |- By .

g”“é;‘f %”?z
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Error Propagation

This 1s an important matter. It refers to how errors at the beginning and 1in later steps (roundoff, for
example) propagate into the computation and affect accuracy, sometimes very drastically. We state here
what happens to error bounds. Namely. bounds for the error add under addition and subtraction,
whereas bounds for the relative error add under multiplication and division. You do well to keep this in

mind.

THEOREM 1

a. In addition and subtraction, an error bound for the results is given by the sum of the error

bounds for the terms.
b. In multiplication and division, an error bound for the relative error of the results is given
(approximately) by the sum of the bounds for the relative errors of the given numbers.
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HW1. Problems 14

A

=)

& vvvv&qﬂ

ll$ !l

"$%



- ) ) 4 )

X
®



# 1 5 Il$ 1 * #&l

BRI A

fx)=T(x)- T*<O0
X: battery design variable

To design a safe battery, a

f(x) =w, (X)-wl 0 temperature level must bef(x) =s (x)- S<0
X: bridgne design variablesmaller than a marginal  x: bridge gusset plate

temperature.
= To design a safe bridge,
a stress level at a critical
bridge element must be
smaller than its strength.

To design a safe bridge ,
an excitation frequency
must be different from its
natural frequency.

&)
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Solving equation f(x) =0
Methods:

* Fixed — Point Iteration
* Newton's Method

e Secant Method
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ldea: transform f(x) = 0 into X = g(x)

Steps
1. Choose ¥

2. Compute x=g(X), % = g(X), ¥, X,41 = g(X,)

A solution of x = g(x) Is called xed point

Depending on the initial value chosep)(the related
sequences may converge or diverge
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Example: f(x) =x*—-3x+1=0

. 2.618034
Solutions=
0.381966
The equation may be written
(42) k=@ =2+, s xep=tGh+ D).

If we choose x, = 1. we obtain the sequence (Fig. 423a: computed with 6S and then rounded)

xp = 1.000, xy=0.667, x, = 0481, x;=0411, xy=0.390,
which seems to approach the smaller solution. If we choose x, = 2. the situation is similar. If we choose

x, = 3. we obtain the sequence (Fig. 423a, upper part)
xp = 3.000,

x; = 3.333, x,=4.037, x3 = 5766, xy= 11415, -
which diverges.
"$% "$ I A
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Our equation may also be written (divide by x)

(4D) r=g@=3-1  tws  x=3-L
H
and if we choose x, = 1, we obtain the sequence (Fig. 423b)
xo = 1.000, x;=2.000, x,=2.500, xy=2.600, xy=2.615, -
which seems to approach the larger solution. Similarly, if we choose x, = 3. we obtain the sequence
(Fig. 423b)
xo = 3.000, x=2667, Xy =2.625, x3=2.619, xy=2.618, -

5 51
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f must have a continuous derivative '
The method is simple and fast

Y
tanb =f'(xq) = ):O()_(OX)
1

Fig. 425. Newton's method
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. ___________________________________________________________________________________________________________________________________________|
ALGORITHM NEWTON (f. f'. xo, € N)
This algorithm computes a solution of f{x) = 0 given an initial approximation x, (starting  value of the iteration). Here the function
f(x) is continuous and has a continuous derivative f'(x).

INPUT: f. f', initial approximation x,. tolerance € = 0, maximum number of iterations N.

OUTPUT: Approximate solution x,, (n = N) or message of failure.

Forn=0,1,2,---,N—=1do

1 Compute f "),
2 If f'(x,) = 0 then QUTPUT “Failure”, Stop.
[Procedure completed unsuccessfully)
3 Else compute
flxn)
(3) A+l = A T ,—n
F ()
- If |t,.41 — x| = elx,| then OUTPUT x,, . Stop.
[Procedure completed successfully]

End
5 OUTPUT “Failure™. Stop.
[Procedure completed unsuccessfully after N iterations]

End NEWTON
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Example: Find the positive solution of f(x) =2 sinx—-x=0

Solution:
Setting fix) =x — 2 sin x, we have f(x) =1 — 2 cos x, and (5) gives

2(8iXy — XyCosxy) N,
1 —Z2cosxy, D,

Xy — 251X,
1 —2cosxy,

ny1—=&n—

From the graph of f'we conclude that the solution is near x, = 2. We compute:

n X N D 1Y

1 n n “nrl
0 2.00000 3.48318 1.83229 1.90100
1 1.90100 3.12470 1.64847 1.89552
2 1.89552 3.10500 1.63809 1.89550
1.89550 3.10493 1.63806 1.89549

fad

X, = 1.89549 1s exact to 5D since the solution to 6D 15 1.895 494,
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Newton’s method is powerful but disadvantageous because it
IS difficult to obtain f'. The secant method approximates f .

f'rlf_}'fy!:l . f{IH}_f(IH—I:I

Xy —Ap—
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X
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Newton's Method
flx,)
e

rl.”_ - ] = "r”

Secant
flr':-'r'f:vz:' = J(xn) = F (xn_1)

An—An—

In _IH_]-

Int1=2Xn—JF %) Filxn)— Flx,—1)
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Find the positive solution of fix) =x — 2 sin x = 0 by the secant method, starting from x, =2.x, = 1.9.

Solution:

Here. (10) 1s

Xy = 28K 4y ) (X gy = Xy N
x}‘H-l:xn_ ': b ?!)': n ¥ 1:' _xH_Eﬂ"
e

Xy =X+ 2(sinx,_; — sinx,)

Numerical values are:

1 X X N D X

n—1 " n 1 Yat1 ~ T
1 2.000 000 1.900 000 —0.000 740 —0.174 005 —0.004 253
2 1.900 000 1.895 747 —0.000 002 —0.006 986 —0.000 252
3 1.895747 1.895 494 0 0

vy = 1.895 494 is exact to 6D. See Example 4.

p1 4
=
%

(55
EL: 5.
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HW1. Problems 2

HW2. Problems 10
HWa3. Problems 11
HWA4. Problems 21
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Function f(x) is unknown
Some values of f(x) are known (f,, ¥4, f.)

ldea: Find a polynomial [{x) that is an approximation of f(x)

pn(XO) :fO’ pn(Xl) = fli ’pn(xn) :fn

Lagrange interpolation
e Linear

e Quadratic
e General

Newton's interpolation

» Divided difference
 Forward difference
 Backward difference
Splines

LEING®
R
Sl
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Use 2 known values of f(x® f,, f;

y = filx)
W h

IU X xl

Fig. 428. Linear interpolation

p, is the linear Lagrange polynomial.
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P,(X) = Lo(X)fo + Ly (X)f;
L, and Liare linear polynomials (weight functions).

L) 1if x=Xg L) 0if x=Xq
X)= X)=
° 0if x=x4 . 1if X=X
X-X X-X
Lo(x)= L L(x)= 0
o= L=
X=Xy X- Xq
= f f
py(x) Xo- X X,- xg
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Example: Compute In 9.2 from In 9.0 =2.1972 an@é.b = 2.2513 by
linear Lagrange interpolation

Solution:
Xo =90, x;= 95, f;=In90, f;=In95
Lo(9.2) = g:(z): gg =06 L4(92)= 2523 2:8 =04
In9.2» py(9.2)
=Lo(9.2)fg + L(92)f;
= 06(2.1972+ 04(2.2513
=2.2188

Error: In 92-p;(9.2)=2.2192- 2.2188=0.0004

( "$% "$ I (1
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Use of 3 known values of f(® f,, fj, f,
Approximation of f(x) by a second-degree polynomial

p2(x) = Lo(x)fo + Ly(x)fy + Lo(x)f5
Lo = (X' Xlg(x' Xz)

(Xg - X4 )(X0 - X2)
_ (- xo)(x- x,)
= (Xl Xo) X1~ Xz)

(
(
- e

(Xz X0

(x- x)
(

X2 - Xl)
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Example: Compute In 9.2 foryf(x, = 9.0) =In 9.0, { (X, = 9.5) = In
9.5, fz(xz—llo)—ln 11.0

Solution:;

L,(x) = x? - 205x +1045

L (x)=-

oi 5(x2 - 20x+99)

L,(x)= ;(x - 185x+855)

IN9.2» p,(9.2)=22192

"$% "$ I +
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More appropiate for computation

Level of accuracy can be easily improved by adding
new terms that increase the degree of the polynomial

Divided difference
Forward difference

Backward difference
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f(X) = 1/(1+25x"2)
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HW1. Problems 3
HW?2. Problems 8
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Method of interpolation used to avoid numericalaiity

ldea: given an interval [a, b] where the high-degres/pomial
can oscillate considerable, we subdivide [a, [Haweral smaller
Intervals and use several low-degree polynomialsdvcannot

oscillate much)
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Inaninterval ¥ [x;, %,1],j=0,%,n-1

where

p;(x)=a, +ajl(x' Xj)+ajz(x' Xj)2+ajs(x' Xj)3
aj, = P (X)) =1,
aj, = pﬂ:(xj):kj
%2:%p@M):ﬁ%“ﬁf'ﬁ)€HMH+ZM)
am"ﬁ%(ﬂ"fwa)*ﬁ%(khl+kj)
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Let (X,fo), (Xp.f1), ..o, (X,1)-
Ky, Kk, are two given numbers.

Ky, K,, Y4, k., are determined by a linear system of n-1
equations:

J

plj(xj):kj’ p'j(xj+1):kj+1 (i=01, ,n-1

3
Ki.1 +4kj + kj+1 :E(fjﬂ § fj-l)

h is the distance between nodes
X, = X5+ Nh
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Clamped conditions
0'(%) = f(x0), 9'0Cp) =f(x)
Free/natural conditions

9"(X)) =0, g"(x)=0

Example:

Interpolate f(x) = £on interval xI [-1, 1] by cubic
spline in partitions x= -1, x, = 0, % = 1, satisfying
clamped conditions

g(-1) =1(-1), g'@)=7r1)
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HW1. Problems 11
HW?2. Problems 12
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Numerical evaluation of integrals whose analytical evidum is too
complicated or impossible, or that are given by recordederigal values

f (x)dx

a

Rectangular rule
Trapezoidal rule
Simpson's rule
Gauss integration

"$% "$ I



Approximation by n rectangular areas

b

J = f(X)dX » h[f(x*1)+ f(X*2)+ + f(X*n)]
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Approximation by n trapezoidal areas

b

I= f(drh f(a)+ k) flo)+ + )+ f(b)

a

"$% "$ I /



"$% "$ !



)< -

Approximation by parabolas using Lagrange polyndsris(x)
Interval of integration [a, b] divided into an eveamber of subintervals
b- a
h=—— f,=f =at+th X,=x+h
>~ To=106) % » =%
b

f (X)dx»g(fo +Af +2f, v AT+ 426, + 4T, + fy)

fj:f(xj)
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where

X = %[a(t 1)+ bt +1)

A, A, coefficierts
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HW1. Problem 5
HW?2. Problem 6
HW3. Problem 21
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